next up previous
Next: About this Up: schema Previous: Seminarium: Grootschalige

Bibliography

1
W. E. ARNOLDI, The principle of minimized iteration in the solution of the matrix eigenvalue problem, Quart. Appl. Math., 9 (1951), pp. 17-29.

2
Z. BAI AND J. DEMMEL, Using the matrix sign function to compute invariant subspaces, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 205-225 (electronic).

3
Z. BAI, J. DEMMEL, J. DONGARRA, A. RUHE, AND H. VAN DER VORST, eds., Templates for the solution of algebraic eigenvalue problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
A practical guide.

4
Z. BAI, P. FELDMANN, AND R. W. FREUND, How to make theoretically passive reduced-order models passive in practice, in Proceedings of the IEEE 1998 Custom Integrated Circuits Conference, IEEE, 1998, pp. 207-210.

5
Z. BAI AND Q. YE, Error estimation of the Padé approximation of transfer functions via the Lanczos process, Electron. Trans. Numer. Anal., 7 (1998), pp. 1-17 (electronic).
Large scale eigenvalue problems (Argonne, IL, 1997).

6
R. BARRETT, M. BERRY, T. F. CHAN, J. DEMMEL, J. DONATO, J. DONGARRA, V. EIJKHOUT, R. POZO, C. ROMINE, AND H. VAN DER VORST, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.

7
A. BJÖRCK, Solving linear least squares problems by Gram-Schmidt orthogonalisation, BIT, 7 (1967), pp. 1-21.

8
Å. BJÖRCK AND C. C. PAIGE, Loss and recapture of orthogonality in the modified Gram-Schmidt algorithm, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 176-190.

9
W. BOMHOF, Jacobi-Davidson methods for eigenvalue problems in pole zero analysis, Unclassified Report 012/97, National Laboratory, Philips Electronics, Eindhoven, the Netherlands, July 1997.

10
J. DANIEL, W. GRAGG, L. KAUFMAN, AND G. STEWART, Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization, Math. Comp., 30 (1976), pp. 772-795.

11
R. FLETCHER, Conjugate gradient methods for indefinite systems, in Numerical Analysis Dundee 1975, Lecture Notes in Mathematics 506, G. Watson, ed., Berlin, Heidelberg, New York, 1976, Springer-Verlag, pp. 73-89.

12
D. R. FOKKEMA, G. L. G. SLEIJPEN, AND H. A. VAN DER VORST, Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput., 20 (1999), pp. 94-125 (electronic).

13
R. W. FREUND, Reduced-order modeling techniques based on Krylov subspaces and their use in circuit simulation, Tech. Report Numerical Analysis Manuscript No. 98-3-02, Bell Laboratories, Murray Hill, New Jersey, USA, 1998.
To appear in Applied and Computational Control, Signals, and Circuits.

14
height 2pt depth -1.6pt width 23pt, Krylov-subspace methods for reduced-order modeling in circuit simulation, Tech. Report Numerical Analysis Manuscript No. 98-3-02, Bell Laboratories, Murray Hill, New Jersey, USA, 1999.
To appear in ???

15
R. W. FREUND AND P. FELDMANN, Reduced-order modeling of large linear passive multi-terminal circuits using matrix-Padé approximation, in Proceedings of the Design, Automation and Test in Europe Conference 1998, IEEE Computer Society Press, 1998, pp. 530-537.

16
R. W. FREUND AND N. M. NACHTIGAL, QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer. Math., 60 (1991), pp. 315-339.

17
L. GIRAUD AND L. J. LANGOU, Robust selective Gram-Schmidt reorthogonalization, Technical Report TR/PA/02/52, CERFACS, Toulouse, France, 2002.
Submitted to SISC Copper Mountain Special Issue.

18
height 2pt depth -1.6pt width 23pt, When modified Gram-Schmidt generates a well-conditioned set of vectors, IMA Journal of Numerical Analysis, 22 (2002), pp. 521-528.

19
L. GIRAUD, L. JUCIEN, AND R. MIRO, On the round-off error analysis of the Gram-Schmidt algorithm with reorthogonalization, Technical Report TR/PA/02/33, CERFACS, Toulouse, France, 2002.

20
A. GREENBAUM, M. ROZLOZNÍK, AND Z. STRAKOš, Numerical behaviour of the modified Gram-Schmidt GMRES implementation, BIT, 37 (1997), pp. 706-719.
Direct methods, linear algebra in optimization, iterative methods (Toulouse, 1995/1996).

21
E. J. GRIMME, D. C. SORENSEN, AND P. VAN DOOREN, Model reduction of state space systems via an implicitly restarted Lanczos method, Numer. Algorithms, 12 (1996), pp. 1-31.

22
W. HOFFMANN, Iterative algorithms for Gram-Schmidt orthogonalization, Computing, 41 (1989), pp. 335-348.

23
C. LANCZOS, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bur. Stand., 45 (1950), pp. 255-282.

24
R. B. MORGAN, Computing interior eigenvalues of large matrices, Linear Algebra Appl., 154/156 (1991), pp. 289-309.

25
C. C. PAIGE, B. N. PARLETT, AND H. A. VAN DER VORST, Approximate solutions and eigenvalue bounds from Krylov subspaces, Numer. Linear Algebra Appl., 2 (1995), pp. 115-133.

26
B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall Series in Computational Mathematics, Prentice-Hall, Englewood Cliffs, N.J., 1980.

27
A. RUHE, Numerical aspects of Gram-Schmidt orthogonalization of vectors, Linear Algebra Appl., 52/53 (1983), pp. 591-601.

28
Y. SAAD, Numerical Methods for Large Eigenvalue Problems, Manchester University Press, Manchester, UK, 1992.

29
G. L. G. SLEIJPEN, Gram-Schmidt orthogonalisation.
Personel notes, Januari 2000.

30
G. L. G. SLEIJPEN AND H. A. VAN DER VORST, A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 401-425.

31
P. SONNEVELD, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 36-52.

32
J. VAN DEN ESHOF, Analysis of nested iteration methods for nonlinear problems, Ph.D. thesis, Utrecht University, Utrecht, The Netherlands, September 2003.

33
H. A. VAN DER VORST, An iterative solution method for solving $f({A})x=b$, using Krylov subspace information obtained for the symmetric positive definite matrix ${A}$, J. Comput. Appl. Math., 18 (1987), pp. 249-263.

34
H. A. VAN DER VORST, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 631-644.

35
H. A. VAN DER VORST, Iterative methods for large linear systems.
Lecture notes on iterative methods, June 2002.

36
H. A. VAN DER VORST, Computational Methods for Large Eigenvalue Problems, Elsevier, North Holland, 2003.
To be published.


Gerard L.G. Sleijpen 2003-02-17