Next: About this
Up: Schedule
Previous: Seminar: Iterative
- 1
-
Z. BAI AND J. DEMMEL, Using the matrix sign function to compute
invariant subspaces, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 205-225
(electronic).
- 2
-
R. BARRETT, M. BERRY, T. F. CHAN, J. DEMMEL, J. DONATO, J. DONGARRA,
V. EIJKHOUT, R. POZO, C. ROMINE, AND H. VAN DER VORST, Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1994.
- 3
-
M. BENZI, Preconditioning techniques for large linear systems: a
survey, J. Comput. Phys., 182 (2002), pp. 418-477.
- 4
-
M. BENZI AND M. T0=0=0 0
BY1PTTO00
#MATH16#U"UMA, A sparse approximate inverse
preconditioner for nonsymmetric linear systems, SIAM J. Sci. Comput., 19
(1998), pp. 968-994 (electronic).
- 5
-
height 2pt depth -1.6pt width 23pt, Orderings for
factorized sparse approximate inverse preconditioners, SIAM J. Sci. Comput.,
21 (2000), pp. 1851-1868 (electronic).
Iterative methods for solving systems of algebraic equations (Copper
Mountain, CO, 1998).
- 6
-
height 2pt depth -1.6pt width 23pt, A robust incomplete
factorization preconditioner for positive definite matrices, Numer. Linear
Algebra Appl., 10 (2003), pp. 385-400.
Preconditioning, 2001 (Tahoe City, CA).
- 7
-
A. BJÖRCK, Solving linear least squares problems by
Gram-Schmidt orthogonalisation, BIT, 7 (1967), pp. 1-21.
- 8
-
Å. BJÖRCK AND C. C. PAIGE, Loss and recapture of
orthogonality in the modified Gram-Schmidt algorithm, SIAM J. Matrix
Anal. Appl., 13 (1992), pp. 176-190.
- 9
-
J. DANIEL, W. GRAGG, L. KAUFMAN, AND G. STEWART, Reorthogonalization
and stable algorithms for updating the Gram-Schmidt QR factorization,
Math. Comp., 30 (1976), pp. 772-795.
- 10
-
R. FLETCHER, Conjugate gradient methods for indefinite systems, in
Numerical Analysis Dundee 1975, Lecture Notes in Mathematics 506, G. Watson,
ed., Berlin, Heidelberg, New York, 1976, Springer-Verlag, pp. 73-89.
- 11
-
R. W. FREUND AND N. M. NACHTIGAL, QMR: a quasi-minimal residual
method for non-Hermitian linear systems, Numer. Math., 60 (1991),
pp. 315-339.
- 12
-
L. GIRAUD AND L. J. LANGOU, Robust selective Gram-Schmidt
reorthogonalization, Technical Report TR/PA/02/52, CERFACS, Toulouse,
France, 2002.
Submitted to SISC Copper Mountain Special Issue.
- 13
-
height 2pt depth -1.6pt width 23pt, When modified
Gram-Schmidt generates a well-conditioned set of vectors, IMA
Journal of Numerical Analysis, 22 (2002), pp. 521-528.
- 14
-
L. GIRAUD, L. JUCIEN, AND R. MIRO, On the round-off error analysis
of the Gram-Schmidt algorithm with reorthogonalization, Technical Report
TR/PA/02/33, CERFACS, Toulouse, France, 2002.
- 15
-
A. GREENBAUM, V. PTÁK, AND Z. STRAKOš, Any nonincreasing
convergence curve is possible for GMRES, SIAM J. Matrix Anal.
Appl., 17 (1996), pp. 465-469.
- 16
-
A. GREENBAUM, M. ROZLOZNÍK, AND Z. STRAKOš, Numerical behaviour of the modified Gram-Schmidt GMRES
implementation, BIT, 37 (1997), pp. 706-719.
Direct methods, linear algebra in optimization, iterative methods
(Toulouse, 1995/1996).
- 17
-
M. J. GROTE AND T. HUCKLE, Parallel preconditioning with sparse
approximate inverses, SIAM J. Sci. Comput., 18 (1997), pp. 838-853.
- 18
-
I. GUSTAFSSON, A class of first order factorization methods, BIT,
18 (1978), pp. 142-156.
- 19
-
W. HOFFMANN, Iterative algorithms for Gram-Schmidt
orthogonalization, Computing, 41 (1989), pp. 335-348.
- 20
-
T. K. HUCKLE, Efficient computation of sparse approximate inverses,
Numer. Linear Algebra Appl., 5 (1998), pp. 57-71.
- 21
-
S. A. KHARCHENKO, L. Y. KOLOTILINA, A. A. NIKISHIN, AND A. Y. YEREMIN,
A robust AINV-type method for constructing sparse approximate inverse
preconditioners in factored form, Numer. Linear Algebra Appl., 8 (2001),
pp. 165-179.
- 22
-
L. Y. KOLOTILINA AND A. Y. YEREMIN, Factorized sparse approximate
inverse preconditionings. I. Theory, SIAM J. Matrix Anal. Appl., 14
(1993), pp. 45-58.
- 23
-
C. LANCZOS, An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators, J. Res. Nat. Bur.
Stand., 45 (1950), pp. 255-282.
- 24
-
J. A. MEIJERINK AND H. A. VAN DER VORST, An iterative solution
method for linear systems of which the coefficient matrix is a symmetric
-matrix, Math. Comp., 31 (1977), pp. 148-162.
- 25
-
N. M. NACHTIGAL, S. C. REDDY, AND L. N. TREFETHEN, How fast are
nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl., 13 (1992),
pp. 778-795.
Iterative methods in numerical linear algebra (Copper Mountain, CO,
1990).
- 26
-
A. RUHE, Numerical aspects of Gram-Schmidt orthogonalization of
vectors, Linear Algebra Appl., 52/53 (1983), pp. 591-601.
- 27
-
Y. SAAD AND M. H. SCHULTZ, Conjugate gradient-like algorithms for
solving nonsymmetric linear systems, Math. Comp., 44 (1985), pp. 417-424.
- 28
-
G. L. G. SLEIJPEN, Gram-Schmidt orthogonalisation.
Personal notes, Januari 2000.
- 29
-
A. VAN DER SLUIS AND H. A. VAN DER VORST, The rate of convergence of
conjugate gradients, Numer. Math., 48 (1986), pp. 543-560.
- 30
-
H. A. VAN DER VORST, Iterative methods for large linear systems.
Lecture notes on iterative methods, June 2002.
- 31
-
height 2pt depth -1.6pt width 23pt, Iterative Krylov
methods for large linear systems, Cambridge University Press, Cambridge,
2003.
Cambridge Monographs on applied and computational mathematics, 13.