next up previous  Back to the seminar 2004 page
Next: About this Up: Schedule Previous: Seminar: Iterative

Bibliography

1
Zhaojun Bai and James Demmel, Using the matrix sign function to compute invariant subspaces, SIAM J. Matrix Anal. Appl. 19 (1998), no. 1, 205-225 (electronic). MR 99c:65066

2
Å. Björck and C. C. Paige, Loss and recapture of orthogonality in the modified Gram-Schmidt algorithm, SIAM J. Matrix Anal. Appl. 13 (1992), no. 1, 176-190. MR 93c:65056

3
Å. Björck, Solving linear least squares problems by Gram-Schmidt orthogonalisation, BIT 7 (1967), 1-21.

4
A. Bouras and V. Fraysse, A relaxation strategy for inexact matrix-vector products for Krylov methods, Technical Report TR/PA/00/15, CERFACS, France, 2000.

5
A. Bouras, V. Fraysse, and L. Giraud, A relaxation strategy for inner-outer linear solvers in domain decomposition methods, Technical Report TR/PA/00/17, CERFACS, France, 2000.

6
J.W. Daniel, W.B. Gragg, L. Kaufman, and G.W. Stewart, Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization, Math. Comp. 30 (1976), 772-795.

7
L. Giraud, J. Langou, M. Rozlozník, and J. van den Eshof, Rounding error analysis of the classical Gram-Schmidt orthogonalization process, Technical Report TR/PA/04/77, CERFACS, Toulouse, France, 2004.

8
Luc Giraud and Lucien J. Langou, Robust selective Gram-Schmidt reorthogonalization, Technical Report TR/PA/02/52, CERFACS, Toulouse, France, 2002, Submitted to SISC Copper Mountain Special Issue.

9
to3em, When modified Gram-Schmidt generates a well-conditioned set of vectors, IMA Journal of Numerical Analysis 22 (2002), no. 4, 521-528.

10
Luc Giraud, Langou Jucien, and Rozlozník Miro, On the round-off error analysis of the Gram-Schmidt algorithm with reorthogonalization, Technical Report TR/PA/02/33, CERFACS, Toulouse, France, 2002.

11
Anne Greenbaum, Vlastimil Pták, and Zdenek Strakoš, Any nonincreasing convergence curve is possible for GMRES, SIAM J. Matrix Anal. Appl. 17 (1996), no. 3, 465-469. MR 97c:65057

12
Anne Greenbaum, M. Rozlozník, and Zdenek Strakoš, Numerical behaviour of the modified Gram-Schmidt GMRES implementation, BIT 37 (1997), no. 3, 706-719, Direct methods, linear algebra in optimization, iterative methods (Toulouse, 1995/1996). MR 99a:65036

13
W. Hoffmann, Iterative algorithms for Gram-Schmidt orthogonalization, Computing 41 (1989), no. 4, 335-348. MR 90m:65081

14
C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bur. Stand. 45 (1950), no. 4, 255-282.

15
Noël M. Nachtigal, Satish C. Reddy, and Lloyd N. Trefethen, How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl. 13 (1992), no. 3, 778-795, Iterative methods in numerical linear algebra (Copper Mountain, CO, 1990). MR 93a:65039

16
Axel Ruhe, Numerical aspects of Gram-Schmidt orthogonalization of vectors, Linear Algebra Appl. 52/53 (1983), 591-601. MR 84j:65034

17
Youcef Saad and Martin H. Schultz, Conjugate gradient-like algorithms for solving nonsymmetric linear systems, Math. Comp. 44 (1985), no. 170, 417-424. MR 86d:65047

18
Valeria Simoncini and Daniel B. Szyld, Theory of inexact Krylov subspace methods and applications to scientific computing, SIAM J. Sci. Comput. 25 (2003), no. 2, 454-477 (electronic) (2003).

19
Gerard L. G. Sleijpen, Gram-Schmidt orthogonalisation, Personal notes, Januari 2000.

20
Jasper van den Eshof and Gerard L. G. Sleijpen, Inexact Krylov subspace methods for linear systems, SIAM J. Matrix Anal. Appl. 26 (2004), no. 1, 125-153.

21
A. van der Sluis and H. A. van der Vorst, The rate of convergence of conjugate gradients, Numer. Math. 48 (1986), no. 5, 543-560. MR 87h:65061

22
Henk A. van der Vorst, Iterative methods for large linear systems, Lecture notes on iterative methods, June 2002.

23
to3em, Iterative Krylov methods for large linear systems, Cambridge University Press, Cambridge, 2003, Cambridge Monographs on applied and computational mathematics, 13.