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It is well-known that Bi-CG can be adapted so that hybrid methods with computational 
complexity almost similar to Bi-CG can be constructed, in which it is attempted to further 
improve the convergence behavior. In this paper we will study the class of BiCGstab methods. 

In many applications, the speed of convergence of these methods appears to be determined 
mainly by the incorporated Bi-CG process, and the problem is that the Bi-CG iteration 
coefficients have to be determined from the BiCGstab process. We will focus our attention 
to the accuracy of these Bi-CG coefficients, and how rounding errors may affect the speed of 
convergence of the BiCGstab methods. We will propose a strategy for a more stable determina- 
tion of the Bi-CG iteration coefficients and by experiments we will show that this indeed may 
lead to faster convergence. 
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1. I n t r o d u c t i o n  

The  B i C G s t a b  m e t h o d s  can be viewed as B i - C G  c o m b i n e d  wi th  repea ted  low 
degree  G M R E S  processes,  like G M R E S ( 1 )  in B i - C G S T A B .  The re fo re ,  we s tar t  
wi th  a b r ie f  overv iew o f  Bi-CG.  

B i - C G  [7,12] is an  i terat ive so lu t ion  m e t h o d  for  l inear  systems 

A x = b  (1) 

in which  the n x n ma t r ix  A is nons ingular .  In  typical  appl ica t ions  n will be large 
an d  A will be sparse.  F o r  ease o f  p resen ta t ion ,  we assume A and  b to be real. 

S ta r t ing  wi th  an  initial  guess x0 for  the so lu t ion  x and  a " s h a d o w "  residual  ~0 
(mos t  o f t en  one  takes  r0 = r0), B i - C G  p roduces  sequences  o f  a p p r o x i m a t i o n s  xk, 
residuals  rk, and  search  d i rec t ions  uk by  

U k ~- r k - -  ] ~ k U k _ l ,  X k +  1 = X k -~- OLkl.tk, rk+ 1 = r k --  a k A U k ,  (2) 
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where the Bi-CG coefficients ak and/3k are such that rk and AUk are orthogonal to 
the shadow Krylov subspace J{'k(A T; ro). 

In principle we are free to select any basis for the shadow Krylov subspace that 
suits our purposes. We will represent the basis vectors of this subspace in poly- 
nomial form. 

If  (~k) is a sequence of  polynomials of  degree k with a non-trivial leading 
coefficient Ok then the vectors %( Ar ) ~o , . . . , ~bk_ l (Ar )~  o form a basis of  
~ ( A r ;  ?0) and we have (see [24] or [21]): 

Ok- 1 Pk Pk 
/3 k - and ak = - - ,  (3) 

O k Ok_ 1 O" k 

where 

Pk := (rk, ~bk(AT)r0), 

: =  (Au , 
In finite precision arithmetic computat ion the values of  the iteration coefficients 

depend quite critically on the choice of  the basis vectors for the shadow Krylov sub- 
space. For example, if we make the straightforward choice ~bk(t) = t k, then the basis 
vectors tend to be more and more in the direction of  the dominat ing eigenvector of  
A v. Depending on how well the dominant  eigenvalue of  A T is separated from the 
others, this would imply that eventually the new vectors in ~ffk(A; ro) are effectively 
made only orthogonal with respect to this dominating eigenvector. This then would 
lead to a new vector rk, that is almost orthogonal to the kth basis vector for the 
shadow Krylov subspace, and hence we may expect large relative errors in the 
new iteration coefficients. 

Of course, even if all computat ional  steps are done as accurately as possible (in 
finite precision), eventually the computed Bi-CG coefficients will differ in all digits 
from the exact ones. As is well known for the Bi-CG process itself (cf. [1,10,16]), this 
can be attributed to a global loss of  bi-orthogonality. Since Bi-CG seems to work 
rather well as long as some local bi-orthogonality is maintained (that means that 
the local bi-orthogonalization is done accurately enough, see also [9]), we expect 
to recover the convergence behavior of  the incorporated Bi-CG process (in the 
BiCGstab methods) if we compute the iteration coefficients as accurately as 
possible. Therefore, we want to avoid all additional perturbations that might be 
introduced by an unfortunate choice of the polynomial process that is carried 
out on top of the Bi-CG process. 

In section 2 we will study the choice of  the set of  ~k'S, and we will identify poly- 
nomials that lead to sufficiently stable computat ion of the Bi-CG iteration 
coefficients. 

The polynomials ~bk can also be used for a different purpose in the Bi-CG 
process. Sonneveld [24] was the first to suggest to rewrite the inner products, not 
only to avoid the operations with A T , e.g., 

Pk = (rk, ~bk(AV)?O) = (~bk(A)rk, ?0) = (rk, r0), (4) 
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but also to allow the construction of recursions for the vectors rk := Ck(A)rk. In 
this way the polynomials Ck can be used for a further reduction of the residual 
in some norm. In fact, Sonneveld suggested the specific choice Ck = Ck, where 
rk = Ck(A)ro (i.e., Ck is the Bi-CG iteration polynomial), and this led to the well- 
known CGS method [24]. More recently, other hybrid Bi-CG methods have 
emerged as well. In all these approaches the Bi-CG iteration vectors are not 
computed explicitly. 

In the BiCGstab methods [11,23,25] Ck is chosen as the product of low degree 
minimum residual (like GMRES) polynomials. We will study these choices in 
section 3 in view of our new insights on the choice of the Ck. It will turn out 
that the quest for a stable computation of the iteration coefficients is not 
always in concordance with optimal residual reducing properties. 

Conventions 
(1) Throughout this paper H" [I will denote the Euclidean norm. 
(2) For methods to be discussed, the residual rk at the kth step is in ~"k+~(A; r0) 
and can be written as a kth degree polynomial zp k in A acting on r0: 
rk = Ck(A)ro and Ck(0) = 1. In connection with this we will call the polynomial 
for method M, the M-polynomial associated with A and r 0 (see, e.g., [26]), or 
the M(k)-polynomial if we want to specify the degree k. In particular the OR- 
polynomial r corresponds to the situation where the residual is orthogonal 
with respect to the Krylov subspace 9ffk(A;ro) (FOM [18] and GENCG [4] 
define implicitly OR-polynomials). The MR-polynomial ~b~ e" defines the 
residual that is minimal in the Krylov subspace JY'k+l(A;re) (as in GMRES 
[191). 
(3) We will often use phrases like "reduces the residual" or "small residual". This 
will always mean that these residual vectors are reduced (or are small) with respect 
to the Euclidean norm. 

2. The  B i -CG i te ra t ion  coefficients 

To understand why the Bi-CG coefficients can be inaccurate, we concentrate 
first on the Pk (see (4)). Then, as we will show, the effects of inaccurate com- 
putation of ak can be understood in a similar way. The computed Pk will be 
inaccurate if rk is nearly orthogonal to Ck(Ar)f0 . As is well known, this will 
happen if the incorporated Lanczos process nearly breaks down (i.e. 
(r162 ~ 0 for any polynomial ~k of exact degree k), and this 
may be attributed to an unlucky choice of ~0. This kind of breakdown may be 
circumvented by so-called look-ahead techniques (see, e.g., [9,17]). However, 
apart from this a bad choice of Ck may lead to a small Pk as well. Here, we 
only consider how this choice of Ck causes further instability in the computation 
of the iteration coefficients. We assume that the Lanczos process itself does not 
(nearly) break down. 
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The relative error ek, due to rounding errors, in & can be bounded sharply by 
(see, e.g., [6]) 

where 

]ek] < 1.01n~ ([rk], [r 
- [(rk, Ck(AT)i:O)] 

< 1.01n( Ilrkll IlCk(Ar)~~ < -  
- I(rk, Ck(AT)~:0)I -- 

1.01n~ 
(5) 

I ("k, r (A T)Z0) I 
~ := I1"~-II IIr ' 

(6) 

is the relative machine precision and n the dimension of the problem. For a small 
relative error we want to have Pk (the scaled Pk) as large as possible. 

Because of the orthogonality of rk with respect to ~ffk(AT;/=0) it follows that 

(rk, Ck(AT)?o) = "Tk(rk, (AT)kFO), (7) 

where 7k is the leading coefficient of Ck: tbk(t) = ~j<k "Tj t j .  Hence, 

]Tk[ ](rk, (AV)ki:o)[ 
~ --I[r II"~ll (8) 

The second quotient in this expression for tSk does not depend on tb k, and therefore, 
the expression for t5 k is maximal over all polynomials Ck with fixed leading 
coefficient 7k, when Ck is an appropriate multiple of the OR-polynomial r 
associated with AT and ~0, that is 

r 0 _L ~k(Ar;/:0) and r = 1. 

The appropriate multiple is to take care that the polynomial has leading coefficient 
%, but since the expression for 15k is invariant under scaling for Ck, we conclude that 
the OR-polynomial is the polynomial that makes 15k maximal. 

For ak = (AUk, Ck(Ar)f0) we can follow the same line of reasoning. Since by 
construction in Bi-CG the vectors AUk are orthogonal to lower dimensional 
shadow Krylov subspaces, it follows that the relative error in Ok, due to rounding 
errors can be bounded by an expression which is also minimal for r Note that 
the Bi-CG iteration coefficients are formed from ratios of pk'S and ak'S, SO that 
errors in each of these add to the inaccuracy in the ak'S and/3k'S. 

Since Bi-CG is designed to avoid all the work for the construction of an 
orthogonal basis, it would be expensive to construct the r as the basis generating 
polynomials for the shadow Krylov subspace. In Bi-CG a compromise is made 
by taking the Ck = Ck which creates a bi-orthogonal basis. At least for (near) 
symmetric matrices this is (almost) optimal. 
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3. Smal l  res iduals  and  accurate  B i - C G  coefficients 

Now the question arises whether we can select polynomials ~bk, with ~bk(0 ) = 1, 
that satisfy the following requirements: 

1. Ck leads to sufficiently stable Bi-CG coefficients, 
2. ~/'k can be used to further reduce the Bi-CG residual, that is r k ~-~bk(A)r k is 

(much) smaller in norm than rk, 
3. the ~k can be (implicitly) formed by short recurrences. 

3.1. Some choices for the polynomial ~bk 

A choice that comes close, in many relevant cases, to fulfilling all these require- 
ments is the one suggested by Sonneveld [24]: ~bk = ~bk, which leads to CGS. 
However, there are two disadvantages associated with this choice. The first is 
that there is no reason why ~bk should lead to a further reduction (and often it 
does not), the second is that all irregularities in the convergence behavior of Bi- 
CG are magnified in CGS (although the negative effects of this on the accuracy 
of the approximated solution can be largely reduced [15,22]). 

An obvious alternative is to select ~b k as the product of k first degree MR (or 
GMRES) polynomials, which leads to Bi-CGSTAB [25], or as n/r factors of E 
degree MR-polynomials [21,23]. 

An obvious problem, when replacing the Bi-CG polynomial by other poly- 
nomials which are chosen as to reduce the residual vector, is that these polynomials 
do not necessarily lead implicitly to an optimal basis for the shadow Krylov 
subspace. 

We will first concentrate on suitable (inexpensive) polynomial methods that 
help to further reduce the Bi-CG residual. For hybrid Bi-CG methods, where 
r k = ~br~(A)rk, we have that Pk is computed as Pk = (~k, r0) (cf. (4)), and in finite 
precision arithmetic there will be a relative error e~,' in the evaluation of this 
inner product that can be bounded as 

1.01n( I'~1 < 1.Oln~ (Irkl, I~0l) < 1.01n~ Ilrkll I1~011 < (9) 
- I - ~ i ~ 0 ) 1 -  I (rk ,~0) l -  ~ ' 

where 

hff ._  I(rk, ~0)1 (10) 
Ilrkll I1~011 " 

For similar reasons as in section 2, we have 

["/k [ [ (Akrk ,  ro)I (11) 
P~ = II~(A)rkll I1~011 ' 

where 7k is the leading coefficient of~b H. Again, the OR-polynomial ~b ~ (associated 
with A and rk), which minimizes I1r (A)rk II/I'Yk I, would lead to a maximal value for 
fS~. Of course, there is no guarantee or reason why this polynomial should also 
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maximize the expression for Pk in the Bi-CG representation for the inner product, 
but given the fact that we want the polynomial to act directly on rk this is the best 
we can do. 

In the BiCGstab methods the ~b~ is chosen as a product of MR-polynomials, for 
obvious reasons. The MR-polynomial (associated with A and rk) minimizes 
IIr -II = N~(a)rkll  over all polynomials ~b~ for which ~b~(0) = I, and hence seems 
to be more appropriate for creating small residuals rk. But it would be too expensive 
to perform k steps of FOM or GMRES in order to compute rk = ~b~ (A)rk (using rk 
as initial residual): we not only strive for a large reduction but also for inexpensive 
steps. The product of MR(1)-polynomials (i.e. MR-polynomials of degree I) as in 
Bi-CGSTAB is a compromise between the wish for small residuals and inexpensive 
steps. In view of our discussion above, however, we might also consider OR(1)- 
polynomials in order to achieve more stability in some cases, giving up some of 
the reduction. 

With OR(1)-polynomials (1 -wkA) for which (I-~okA)f_L ~, where f :=  
~-_z(A)rk, we compromise between (locally) more accurate coefficients and 
inexpensive steps. Although these polynomials occasionally cure stagnation of 
Bi-CGSTAB (see also [5]) they also may amplify residuals, which again leads to 
inaccurate approximations (as explained by (7) in [23]) or even to overflow. 

We will now show that, if the angle between f and Af is more than 45 ~ 
I (i.e. I(f, Af)l _< [[Afll) then the OR(1)-polynomial locally amplifies the 

residual, while the MR(1)-polynomial leads to a smaller value for f3~ (cf. (1 I)). 
This property is easily explained with figure 1, where ~ is a scalar multiple of 

Af, scaled such that II l[ = Ilfll- The residual r ~ is obtained by applying the 
OR(1)-polynomial to f, r MR results from the MR(1)-polynomial. Clearly, in the 
situation as sketched in the figure, flrMRII < [[fl[ < IIr~ while scaling the poly- 
nomials such that the leading coefficient is identical (in the figure [I II/IIA I[) 
changes the order: Ilr~ [ < flail < IIrMRII/I~bl �9 

We have to be careful with such amplifications when they are extremely large 
or when they occur in a consecutive number of iteration steps (as will be the case 
in a stagnation phase of the process). In such cases, any of the two choices may 
slow down the convergence: the OR(1)-polynomials because of amplifying Ilrkll; 
the MR(1)-polynomials because of shrinking F3~ and thus affecting the accuracy 
of the Bi-CG coefficients. Apparently, Bi-CGSTAB may also be expected to 
converge poorly if in a number of consecutive steps the angle between f and Af 
is more than 45 ~ Especially when, in Bi-CGSTAB, GMRES(1) stagnates in a 
consecutive number of steps, it is important to have accurate Bi-CG coefficients, 
because, in such a case any convergence is to be expected only from the Bi-CG 
part of Bi-CGSTAB. Unfortunately, this is precisely the situation where the 
MR(1)-polynomials spoil the accuracy of the coefficients, while the OR(1)- 
polynomials spoil the accuracy of the approximations or lead to overflow. There- 
fore, we have to find a cure by other modifications. 

We will suggest other choices for wk (as in (28), see also [5]) which occasionally 
cure these problems. However, they often cannot completely prevent poor 
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Figure 1. Amplification effects of GMRES(1) and FOM(1). 

convergence. One reason is that, with these first degree factors, we are (implicitly) 
building a power basis for the shadow Krylov subspace (if the Wk are close to each 
other), and we have seen in section 1 that this is highly undesirable. 

We may expect better convergence results by performing a composit ion of d 
steps, using minimizing polynomials of  degree g, with { > I" that is, by taking Ck 
as a product  of  MR(Y)-polynomials as in BiCGstab(E) (see [11,21,23]), provided 
that the MR(d)-polynomials  lead to significant reductions. We will consider this 
approach in much more detail. 

In BiCGstab(d) the polynomial Ck is constructed as a product  of  polynomials of  
degree d: for k = m{, Ck = Pro- 1 " "-" " P0 where pj- is of  degree d. To investigate what 
properties these polynomial factors pj should have, we consider k = md, concen- 
trate on Pro, and we define 

:= Ck(A)r +t(A)ro = Ck(A)rk +t. (12) 

In BiCGstab({) the vector f is computed explicitly in the Bi-CG part of the 
algorithm. The new residual rk+t will be rk+t :=p,,(A)f: (for implementational 
details, see [21,23]). 

3.2. Minimizing polynomials of low degree 

For the derivations and results in this section we assume exact arithmetic. How- 
ever, we expect that they also have some validity in finite precision arithmetic, and 
as we will see in section 4, the experiments do largely confirm our expectations. 
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As before, we wish to maximize fS~ for polynomials Pm of degree Y for which 
pro(0) = 1. As in section 2, this means that we have to restrict ourselves to polyno- 
mials with a fixed leading coefficient 3':. 

In order to make our formulas more readable, we define 

Ilrll where r : = p ( A ) f  and p(t) = Z T j t  j. (13) 
[r[ := 17:1' 

j = 0  

In order to have ^H Pk+:, 

I(r, 0)l (14) 
- I lr l l  IV01l ' 

(approximately) maximal,  we should have that 

[p(A)f[ is (approximately) minimal. 

As is well known r MR solves 

min{llrll I r =p(A) f ,  degr(p) < :,p(O) = 1} 

if and only if 

r MR / Af, A2f , . . . ,  A:f. (16) 

In a similar way, one can show that r ~ solves 

min{[r] [ r =p(A) f ,  degr(p) <_ d,p(O) = 1} 

(cf. (15)) if and only if 

r ~ _L ~, Af:, . . . ,  A r 1~. (17) 

The residual r MR is the gth residual of  a minimal residual method (as GMRES) ,  and 
r ~ is the : t h  residual of  an or thogonal  residual method (as FOM),  each for the 
problem Ax = b with the same initial residual ~. 

The following theorem compares how good r MR is in maximizing tSk n and how 
well r ~ helps to reduce f. A method like O R T H O D I R  produces explicitly an 
or thonormal  basis for which theorem 3.1 can be applied. 

We will call a sequence of  vectors r l , - . . , ~ :  a Krylov basis for ~{':(A;~l) if 
r l , . - - , r j  and f ~ , . . . , A  j-lf~ span the same space for e a c h j  = 1 , . . . , { .  

Theorem 3.1 
Let r l ,  �9 �9 �9 , r:-1 be an or thonormal  Krylov basis for ~ : _  1 (A; Ai). Let the vectors r0 
and i :  be obtained by orthogonalizing i and A:f  with respect to o,T':_ l(A; Af): 

g - 1  

ro := r -  Z ( r ,  rj)ij and 
j = l  

Let 0 be defined as 

t ' - I  

j = l  

(r:, r0) 

0:-I1 :1111 oll (18) 
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Then  

II}oll _- rMR = ro -- 0 ~ r :  1 IlF011- (19) and rOR = ro - -  - 0 m r:'  

[IrMRII : v/1 - o211~o11 and ilrORi I _ r  - ~ I1~o11, 
Iol 

IrMR I v:i--- o 2 - Ilbll and Ir~ I = V/1 -- 0211bll . 
101 

(20) 

(21) 

Proof 
One may  easily verify that  s := r0 - 7r:  = p(A)f for some polynomial  p of  degree : 
with leading coefficient 3' and p(0) = 1. Moreover ,  since ~0 and ~r are o r thogona l  to 
Af , . . . ,  A:- ~, the vector s is also o r thogona l  to these vectors as well. 

Define v := I1~011/11~<11- With 7 = 0v, s is also or thogonal  to ~:, and consequently,  
o r thogona l  to A:f. By (16), s = r MR for this 7 = or. Similarly, the choice 7 = v/o 
makes  s o r thogona l  to ~0, which implies that  s = r ~ (cf. (17)), and this completes 
the p r o o f  of  (19). 

The  expressions in (20) for the norms of  the optimal  residuals follow from 
Pythagoras '  theorem: ~: _L r MR and r0 _t_ r ~ Combin ing  these expressions with the 
values for the leading coefficient "7 (7 = or,  7 = v/p, respectively) gives (21). [] 

The  vector ~0 in the theorem is precisely the residual in the (g - 1)th step of  a 
minimal  residual method .  Therefore,  if ff is the residual reduct ion in step r by 
this M R  m e t h o d  (i.e. ff := IIr~RII/ilr~_R~ I I ) t h e n  0 = x/1 - ~2 and we have the follow- 
ing corollary. 

Corollary 3.2 

where 

IIrMRII IrMR I 1 
iirORii --101 and Ir~ --101' (22.a) 

x,/1 - 0 2 II rMR II 
- IIr~-Rl II" 

(22.b) 

Proper ty  (20) can also be found  in [3,26] (there, the authors  focussed on G M R E S  
while our  fo rmula t ion  follows the O R T H O D I R  approach) .  

3.3. Global effects 

The concept  o f  Lanczos b reakdown is well known.  We will see that  it can be 
t ranslated in terms of  angles between the Krylov subspaces and their " shadow 
subspaces".  It is less obvious  what  near-breakdown of the Lanczos process could 
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mean. We will say that no near-breakdown takes place if the angle between the 
Krylov subspace ~e'k:= oUk(A;ro) and the shadow Krylov subspace )Tlk:= 
~fk(Ar;/:0) is uniformly (in k) sufficiently smaller than 7r/2: 

infcos L(o~,k ~Tg'k)=inf( inf sup I(v,O)l ) >  ~ > o. (23) 
k ' k \ v ~  ~ Ilvll I1~11 -- 

In particular, we then have that 

infsup{ [(rk'0)[ [0 E J~k+i }> 0 , l l r k i l  [i0l [ (24) 

and, since r k A_ ~k ,  we see that (rk,/:k) -r 0 (no-breakdown of  the Lanczos process). 
For  hybrid Bi-CG methods as CGS, Bi-CGSTAB and BiCGstab(E) we translate 

property (24) as 

f I(~(A)rk'r~ I t ~ k : = s u p ~ i l ~ l ] - ~ [ l ~ b p o l ,  o f d e g r e e k  , __ _ _  ~ ~ k > ~ > 0 ,  f o r a l l k .  (25) 

We may expect to obtain the most accurate Pk by using the kth OR-polynomial  4~ ~ 
of k steps of  an OR method with initial residual rk. Then, Pk may expect to be 
endowed with a relative error  of  size n~/~ k. In practise, if we use another  poly- 
nomial ~bk of  degree k, we may expect an error in Pk that is larger than n~/~ k by 
a multiplicative factor 

ICk(A)rkl 
D o g ( A ) r k l  . (26) 

If  this factor is large, say _> ~/(n~), the scalar Pk and hence the Bi-CG coefficients 
can not be expected to have any correct digit. It is difficult to analyze this factor 
as a function of  k, since the initial residual rk changes for each k. Clearly, since OR I~k+~(A)rk+,[ < IpOmR(A)~k(A)rk+e[ = [pOR(A)~[ and ~bk+ f =pm%bk = Pro'" "Po, 

I~k+e(A)rk+:[ 1 Ip~ 1 
OR -- > (27) ICk+e(A)rk+e[ ---~m OR -- ' 14~k+,(A)rk+tl 

where 

Ip~ 

0,, := IPm(A)~l " 

In our discussion, we assume that the factor in (26) has at least the order of 
magnitude of  the product  I-L"=0 l/~oj (with k = mE) of  the factors 1/_Qj (in (27)) 
per sweep. The conclusion that we should avoid that 1--[ l/Loj >_ ~l(n~) seems to 
be supported by results from numerical  experiments (cf. section 4). 

3.4. Discussion 

The OR(g)-polynomial  is the best choice for obtaining more accurate Bi-CG 
coefficients, but the MR(E)-polynomial  will do almost as well if there is a significant 
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error reduction at the gth step of GMRES (with initial residual f) (cf. (21) and (22)). 
In that case the effect of OR(E) is practically equivalent with the effect of MR(g) 
(cf. (20) and (22)), and MR(E)-polynomials may be slightly preferable. 

However, if GMRES (with initial residual f) does not reduce the residual well at 
the f th step then 181 << 1 (cf. (22)), and, hence, the MR(g)-polynomial may be 
expected to lead to an inaccurate Pk+e, while the OR(E)-polynomial will enlarge 
the residual significantly. Likewise, if in a consecutive number of sweeps with 
BiCGstab(E) the factor 181 is less than v~/2 ,  say, then the choice of MR(E)- 
polynomials may lead to inaccurate Bi-CG coefficients as well, because of an 
accumulation of rounding errors in Pk (and crk). On the other hand, the OR(g)- 
polynomials may lead to unacceptable large residuals, or even to overflow, after 
a consecutive number of amplifications of the residual. 

We propose to make a compromise by choosing some intermediate between the 
OR(g)- and MR(E)-polynomial in case of a poor reduction by the latter one. This 
choice is inspired by equation (19): 

rk+e = r0 -- " ) , k ~  f,  where ~k := ~1 max(101, f~), (28) 

with r0, ~e, and O as in theorem 3.1 and f~ E [0, cx~). In section 3.4.1 we will 
present some strategies for the choice of 9t and we will comment on computa- 
tional details. However, although this approach often helps to cure our instability 
problems, it is not a panacea which can always circumvent an occasionally poor 
convergence of BiCGstab(E). In such a situation, increasing the value of f may be 
an alternative. 

We may expect better convergence for BiCGstab(E) if we increase the value for E, 
and we will argue why. It helps for our discussion to compare BiCGstab(g) with Bi- 
CGSTAB (=BiCGstab(1)), that is, we compare 1 sweep of BiCGstab(g) with E 
sweeps of Bi-CGSTAB. In E sweeps of Bi-CGSTAB, g times a MR(1)-polynomial 
is applied (each time for a different starting vector: ~bk+j(A)rk+j+l, j = 0 , . . . ,  E - 1). 
By selecting higher degree MR(E)-polynomials, as in BiCGstab(E), we hope to 
profit for two different reasons: 

(1) One sweep of GMRES(g) may be expected to result in a better residual 
reduction than g steps of GMRES(1), 

Remark 
In the case that GMRES(1) reduces well, we do not have to fear a loss of speed of 
convergence due to inaccurate Bi-CG coefficients. However, since GMRES may 
accelerate (superlinear convergence behavior), we may expect to obtain a smaller 
residual rk with BiCGstab(g) than with Bi-CGSTAB. 

(2) g steps of GMRES(1) contribute g times to a decrease of/Sk (hence contribut- 
ing g times to increasingly larger rounding errors in Pk), while one sweep of 
GMRES(g) contributes only once; the decreasing effect in each single step of g 
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steps of GMRES(1) may be expected to be comparable or worse than the effect of 
only one sweep with GMRES(~'). 

Remark 
If the ~'th step of GMRES does not reduce well (i.e. we have a small [~ol) then the 
MR({)-polynomial "amplifies" the inaccuracy on Pk++ by 1/l~ol (in comparison 
with the OR(()-polynomial). In such a situation we may not expect to obtain a 
significant reduction by any of the steps of GMRES(1). It is even worse: in t' 
steps of Bi-CGSTAB, we should expect an "amplification" by the GMRES(1) 
steps in the inaccuracy of Pk+r by a factor like (1/10]) + or more. More specifically, 
in a stagnation phase of the iterative method, it is more likely to have rather 
accurate Bi-CG coefficients, when we use BiCGstab({), than with Bi-CGSTAB. 

In our discussion, the expected superlinear convergence behavior of GMRES 
plays a rather important role. However, as is well known, GMRES may as well 
converge slower or even stagnate for quite a while in any phase of the iteration 
process. In order to profit from a possible good reduction of the M R ( g ' -  1)- 
polynomial, in cases where the MR({)-polynomial gives only a poor additional 
reduction, we may use the modification as suggested in (28). 

3.4.1. Computational details 
The computation of the leading coefficient and ~, as suggested in theorem 3.1 

and formula (28), can be done with relatively inexpensive operations involving {- 
vectors only. 

If r0 = r ,  ~l , . . - , f+ is a Krylov basis of Jt"++l(A;i) and R : =  [r01...Ir+] then 
r0 =R~0 and ~e =Rff+ for some ~0, ~+ E l~r+l. Consider the ( f +  1) x (E+ 1)- 
matrix V := RrR,  the inner product (if,/-7) := fir V~ and norm I~] := ~ .  
Then (cf. (28)) 

with 

^ I#01. rt,++ : R ~0 - 7k ~-~ T/,,), (29) 

(#+, #0) 
"~, : :  max(l l, ), + -  I  11 01' 

and f~ some scalar in [0, cx~). 
With f~ = 0 we have the MR( f  )-polynomial which gives optimal reduction of f 

with respect to II-II. For very small Q or for a consecutive number of non-large O 
(say, 10[ < 1/2), f~ = 0 may result in inaccurate Bi-CG coefficients, since, as 
compared with the OR-polynomial, the MR-polynomial amplifies f with respect 
to 1. I by 1/Iol (i.e. IrMRI = IrOR[/lO[): if in m sweeps of BiCGstab({) each O is 
101 _ < 1 we may expect an amplification of the relative rounding error by at 
most (1//3) m (comparing local effects of OR- and MR-polynomials and assuming 
that local differences accumulate). 
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With f~ = 1/[ Q[ we have the OR(C)-polynomial. Although this polynomial gives 
optimal reduction of ~ with respect to [ �9 1, it may lead to large residuals. 

With fl > 0 we may avoid large amplifications of the inaccuracy in the Bi- 
CG coefficients. The choice f~ = 1 distributes negative effects of  small Q 
equally amongst  residual reduction (amplifying IIrMRII by at most v~: 
Ilrk+~ll _< x/~llrMall) and rounding error amplification (amplifying Ir~ I by at 
most x/2: Irk+~l _< X/21rORI). For  E = 1, this choice amplifies both [1~11 and IAfl 
whenever I~1 < �89 (that is, Ilrk+~ll > Ilfll and Irk+ll > IA~I), and reduces both 
quantities for other values of  Q. A significant amplification of  the rounding error 
in a few steps need not worry us as long as the coefficients are still rather accurate 
(in 16 digit arithmetic a cumulative amplification by, say, 108 may still be very 
acceptable). Therefore, the best choice of  s will depend on the length of  the stagna- 
tion phase: using (28), we expect a cumulative rounding error amplification by at 
most (1 4-fy2)/-//2e), where 2L is number  of matrix-vector multiplications in the 
stagnation phase (again assuming that the local differences accumulate). Therefore, 
for larger E a smaller f2 may be acceptable. Moreover, in the upper bound,  we did 
not take into account the reducing effect of the OR-polynomial  itself: the amplifi- 
cation factor 1/tO] of  the MR-polynomial  may be harmless i f  Jr OR] is small. For  
instance, for E = 1 and 1Ol < x/2/2, we have that Ill'MR[ < IArl. 

3.5. Minimizing polynomials and cr k 

Following the arguments for Pk, using the concept of  near-breakdown of the LU- 
decomposition, we can see that, for accurate cr k, the IACk(A)ukl should be as small 
as possible. In the ruth sweep, where ~bk = Pro- 1 "" "Po is given (k = mE) and Pm is 
constructed, [Apm(A)fl I, with ~ :=  ~k(A)Uk+t, should be as small as possible. 
Unfortunately,  the construction of  ~bk is linked to the residual rk. Note that we 
do not  have this problem in the Bi-CG process. For Bi-CG, the polynomial ~bk 
that will give the most accurate coefficients Pk and ok is linked to the initial 
shadow residual 50 (see section 2): ICk(Ar)~0l should be minimal. 

The following observation links the scaled cr k (cf. (30)) to the scaled Pk and the 
residual rk and gives some theoretical support  to the strategy of  concentrating on 
non-small scaled Pk only. 

Since AUk = ( 1 / a k ) ( r k  - -  rk+l )  and ( r  50) = 0 we have, 

1 IIACk(A)ukllll~oll _ IlCk(A)rk -- Ck(A)rk+l I111~011 
- -  ( 3 0 )  

^H "-- I(ACk(A)uk, 50)1 I(r 50)1 o" k 

Hence, with rk := ~Pk(A)rk, we can bound the scaled crk by the scaled & and the 
growth of  the residual in step k: 

Ĥ1 Ilrkllllf01l ( <  1 + [l~bk(A)rk+ll[)l(=_ IlCk(A)rk+,ll) . (31) 
~ k -  I(rk,~0)l IlCk(a)rkll [9 H 1-f IlCk(a)rkll 

If our strategy to choose the polynomial ~b k prevents f3 H to become too small 
and the residuals cannot grow much in one step then our strategy works for cr k 
as well. 
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One can show that (see [14]), 

0~) 1 I(rk+l,Fk+l)l I[rk+ t I_______~1 < - - - - ,  with Ak := (32) 
II,kll - II,k+,llll k+,ll' 

and O~ / and O~ / are maximal and minimal, respectively, such that, 

0~ / < a! k /< 0~ I for a l l j  = 0, k, (33) - -  ~ j  - -  . - . ~  

where the 0) k) are the singular values of the Lanczos matrix of A associated with 
{r0,...,rk} and {?0,...,rk}- The LU-decomposition in Bi-CG breaks down in 
step k if and only if the smallest singular value 0~ / is zero. By scaling by 0~/, we 
obtain oIkl/o Ikl that can be viewed as a quantification of the near-breakdown o f  - / + ,  

the LU-decomposition. (For a relation to the Babu~ka-Brezzi condition, well- 
known in mixed finite element theory, cf. [2, section 4]). Apparently, (32) tells us 
that the growth of the Bi-CG residuals at step k can be bounded in terms of the 
"distance" Ak to Lanczos breakdown and the distance 0(k)/0/k/ to LU-decomposi- - / + 

tion breakdown. 
If Bi-CG incorporated in the BiCGstab process does not suffer from near- 

breakdown of the Lanczos process nor from the LU-decomposition, then we 
expect 

IlCk(A)rk +, It/II r II 
(cf. (31)) to be of moderate size. 

4. Numer ica l  exper iments  

In the previous sections, we have focussed on the scaled Pk (i.e. tS~ as defined in 
(10)) and the scaled crt.. Although these scaled values (where we have applied 
Cauchy-Schwartz) are actually smaller than the values that we display in the figures 
they do not differ significantly in our numerical examples. The figures also show 
that the values of tS~ and 9~ are rather close to each other, as they should in 
view of our arguments in section 3.5. 

All figures show 

�9 the log~0 of the norm of the true residual b - AXk (curve 1, full line in figure) for 
k = rnf, 

�9 the log10 of I(rk,  0)l/(Irkl, I 01) (curve 2, dash-dotted line in figure), also for 
intermediate k, 

�9 the log10 of I(AUk,  0)l/([Aukl, I 01) (curve 3, dotted line in figure), 
�9 and the lOgl/0. 7 of I?kl (curve 4, the o's in figure), where "~k is the scaled leading 

coefficient of the polynomial Pm that we actually used (cf. (28)) and 0.7 is the 
value for f~ if we modify the methods by (28) (i.e., if f~ r 0). 

We count the iteration phases by numbers of matrix-vector products (MV), since 
this makes it possible to compare effectively different BiCGstab variants. 
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The numerical results clearly indicate that limiting the relative size of the leading 
coefficient of the polynomial may help to cure the effects of stagnation of 
BiCGstab(E), and also it may help to increase the value of ~ (our standard 
choice was E = 1 in these examples). In some situations one modification may 
help, while in other situations the other modification may help or a combination 
of both. 

4.1. Example  1 

First we consider an advection dominated second order partial differential 
equation, with Dirichlet boundary conditions, on the unit cube (this equation 
was taken from [13]): 

-Uxx - uyy - Uzz + 1000ux = f .  

The function f is defined by the solution 

u(x,  y, z) = e x p ( x y z )  sin(Trx) sin(Try)sin(Trz). 

This equation was discretized using I0 x 10 • 10 finite volumes and central 
differences for u~, resulting in a seven-diagonal linear system of order 1000. No 
preconditioning has been used in this example (or other examples in order to 
make the differences between approaches more visible). 

As we see, Bi-CGSTAB more or less stagnates (see figure 2), which creates the 
kind of situation that we were particularly interested in, and that we want to 
cure. After about 30 MVs, the scalars Pk and cr k, and consequently the Bi-CG 
coefficients, do not have any correct digit. None of the scaled leading coefficients 
Q is extremely small (according to figure 2, I 1-> (0.7) 1~ 0.0282; the e's in 
the figure show lOgl/0. 7 ]O[)- Apparently, the accumulation of the amplifications 
of Ill by the MR(1)-polynomials leads to this situation. The graph of 
I(rk, o)l/(Irkl, l ol) shows nicely the predicted exponential decrease for k < 10 
(that is for less than 20 MVs; 1-Ik_<10 >- (0.0282) 1~ = 3.18 x 10 16). For larger 
k, k >__ 11, these values are smaller than the machine precision. 

Although the modification with f~ = 0.7 improves the relative size of the Pk and 
cr k (only after k = 50 we lose all significant digits, cf. figure 3), we now even have 
divergence: the amplification of I1 11 per step is not compensated by better conver- 
gence behavior of the incorporated Bi-CG process. Note that, for k < 10 (that 
is, #MV < 20), I(rk, 0)l/(Irkl, I 01) decreases proportionally to (l/x/1 + f~-2)k = 
0.573 k. 

Using BiCGstab(2) improves the situation: both versions of BiCGstab(f') con- 
verge nicely. According to figure 4, IQ[ >- (0.7) 3 = 0.343. During the first 60 MVs, 
we have to deal with these O's 15 times. This leads us to expect a decrease of 
I(rk,  0)l/(Ird, I 0l) by at most > (0.343) 15 = 1.07 x 10 -7. This is confirmed by the 
numerical results. Here, BiCGstab(2) seems to be able to retain locally five correct 
digits of the Bi-CG coefficients, which is, apparently, enough to keep the incorpo- 
rated Bi-CG process converging as it should. 
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The modification with f't = 0.7 
slightly). 

4.2. Example 2 

further 

Figure 3. Modified ft = 0.7. 
Examp/e 1 

' - " <  : 
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Figure 5. Modified f~ = 0.7. 

improves the situation (but only 

For this comparison we have chosen the matrix that arises from a 63 • 63 finite 
volume discretization of 

-u,.~ - uyy + "7(xux + yuy) + flu = f (34) 
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F i g u r e  9. M o d i f i e d  f~ = 0.7. 

on the unit  cube with Dirichlet boundary  condit ions,  with "7 = 100 and/3  = -200 .  
This example has been suggested in [8]. We have chosen the right hand  side b such 
that  the solut ion x of  the equat ion  A x  = b is the vector (1, 1 , . . . ,  1)v. The zero 
vector was used as an initial guess. 

Here Bi -CGSTAB stagnates also (see figure 6). After  about  150 MVs, the Bi-CG 
coefficients do not  have any correct  digit left, due to the cumulat ive effect of  
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non-small lpf's (1Ol ~ (0-7) 5 = 0.i68). The modification with fl = 0.7 (cf. figure 7) 
improves the relative size of the Pk and cr k significantly, enough to survive the phase 
where 181's are ~ 0.17. As soon as the MR(1)-polynomial is more effective in redu- 
cing the norm of the residual (for #MV > 80, we find 181 _> 0.7), the relative size of 
the Pk and cr k grows. 

With BiCGstab(2) the situation does not seem to improve (see figure 8). In the 
initial phase, the values of 181 for the MR(2)-polynomials are much smaller than 
the values of 181 for the MR(D-polynomials. Although, up to #MV ~ 80 the 
decrease of the scaled Pk and cr k is a little bit better than with Bi-CGSTAB, this 
is apparently not enough to help survive the phase where the 181 is too small. 
However, (not shown in the figure) BiCGstab(2) did eventually converge (that 
is, ]]r~]] _< 10-14[jr0][) in 420 MV's, needing 120 MV more than the modified Bi- 
CGSTAB. 120 MVs is the length of the phase where the scaled Pk and cr k are 
very small (~ 10-1~ 

The convergence behavior of modified BiCGstab(2) with fl = 0.7 (see figure 9) is 
comparable to the one of modified Bi-CGSTAB (in figure 7). 

4.3. Example 3 

For this example we have selected a problem similar to the one in example 2. 
Here, the matrix arises from a 66 x 66 finite volume discretization of (34), now 
with 3' -- 1000 and ~ = 10 as in [20]. 

The example shows that a combination of our strategies for Bi-CGSTAB (increas- 
ing ~' and limiting the size of the scaled leading coefficient 5k, cf. (29)) can cure the 
accuracy problems, whereas each of the strategies independently may fail. 

As figure 11 shows, limiting the leading coefficient improves the accuracy of the 
Bi-CG coefficients in the initial phase of the process but can not prevent a loss of all 
digits (for #MV > 200). Now the amplifying effect on [[rk[[ of this choice of the 
polynomial can clearly be seen (from # M V - - 2 0 0  to # M V - - 4 0 0  the residual 
grows with ( l x / T - ~ )  l~176 = 4.6 x 108). 

5. Conclusions 

In order to maintain the convergence properties of the Bi-CG component in 
hybrid Bi-CG methods, it is necessary to select polynomial methods for the 
hybrid part that permit to compute the Bi-CG coefficients as accurately as possible. 

The (dynamical) combination of two strategies for the improvement of the local 
accuracy seems to be very attractive. These strategies are: 

A. Take products of degree r polynomials with r > 1 as in BiCGstab(E) rather 
than of degree 1 polynomials as in Bi-CGSTAB. 

B. Try to limit the size of the leading coefficient of  these polynomials, by switch- 
ing occasionally between FOM and GMRES processes. 
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Figure 13. Modified f~ = 0.7. 

This approach  often leads to improved convergence and may help to overcome 
phases of  stagnation. Our  strategies are rather inexpensive, relative to the work  per 
matrix-vector product .  
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