Ideas

Part 2: Rewriting and strategies

Johan Jeuring
Utrecht University
Wednesday, September 28, 2016

Strategy language

Our approach: to develop a strategy language for expressing cognitive skills for many domains, used to give feedback, hints, and worked-out solutions.

Strategy language with basic rules (r), sequences, and choices:
$s, t::=$ succeed \mid fail \mid single $r|s<|>t| s<\star\rangle t$

Very similar to (but slightly different from):

- Context-free grammars and their corresponding parsers
- Rewrite strategies
- Communicating sequential processes
- Proof tactics
- Workflows

Requirements for the strategy language

1. Give feedback or hints at any time, also for partial solutions
2. Feedback and hints are calculated reasonably efficient
3. Easy to adapt a strategy, or the feedback constructed from a strategy
4. Strategies should be compositional
5. Easy to extend the language

We need a clear semantics for our strategy language

The language of a strategy

Similar to context-free grammars, we generate the language of a strategy (a set of sentences)

$$
\begin{aligned}
& \mathcal{L}(\text { succeed })=\{\epsilon\} \\
& \mathcal{L}(\text { fail })=\emptyset \\
& \mathcal{L}(\text { single } r)=\{r\} \\
& \mathcal{L}(s<>t)=\mathcal{L}(s) \cup \mathcal{L}(t) \\
& \mathcal{L}(s<\nless\rangle t)=\{x y \mid x \in \mathcal{L}(s), y \in \mathcal{L}(t)\}
\end{aligned}
$$

- Compositional and extensible
- Abstract away from rewrite rules as symbols
- Useful as specification?

Strategy application

Rules and strategies have an effect on the underlying object; they rewrite a term

$$
\begin{aligned}
& \operatorname{succeed}(a)=\{a\} \\
& \text { fail }(a)=\emptyset \\
& (\text { single } r)(a) \\
& (s<\mid>t)(a) \\
& (s\langle\star\rangle t)(a) \\
& (a) \\
& (s \mid b \in s(a), c \in t(b)\}
\end{aligned}
$$

- Rule application returns a set of results (compositionality)
- What about intermediate terms and the used rules?

Observations

Simplicity of $\mathcal{L}(\cdot)$ is attractive, but:

- Sequences introduce back-tracking
- Remember that $\mathcal{L}(s\langle\nless\rangle)=\{x y \mid x \in \mathcal{L}(s), y \in \mathcal{L}(t)\}$
- Not desirable in tutor (limited look-ahead)
- No easy way to calculate intermediate terms and rules
- Some strategy combinators depend on the current object
- E.g. $s \triangleright t$: first try s, and only if this fails, use t.

Instead, we use a trace semantics based on firsts and empty.

Firsts set

$$
\begin{aligned}
& \text { firsts }(\text { succeed }, a)=\emptyset \\
& \text { firsts }(\text { fail }, a)=\emptyset \\
& \text { firsts(single } r, a)=\{r \mapsto \text { succeed }\} \\
& \operatorname{firsts}(s<\mid>t, a)=\operatorname{firsts}(s, a) \uplus \operatorname{firsts}(t, a) \\
& \operatorname{firsts}(s<\star>t, a)=\left\{r \mapsto s^{\prime}<\star>t \mid r \mapsto s^{\prime} \in \operatorname{firsts}(s, a)\right\} \\
& \uplus\left\{r \mapsto t^{\prime} \mid e m p t y(s, a), r \mapsto t^{\prime} \in \operatorname{firsts}(t, a)\right\}
\end{aligned}
$$

- firsts takes a strategy and the current object
- \uplus returns the union of two finite maps
- $r \mapsto s$ and $r \mapsto t$ are merged to form $r \mapsto(s<\mid>t)$

Empty property

$$
\begin{array}{ll}
\operatorname{empty}(\text { succeed }, a) & =\text { true } \\
\operatorname{empty}(\text { fail }, a) & =\text { false } \\
\operatorname{empty}(\text { single } r, a) & =\text { false } \\
\operatorname{empty}(s<\gg t, a) & =\operatorname{empty}(s, a) \vee \operatorname{empty}(t, a) \\
\operatorname{empty}(s<\star>t, a) & =\operatorname{empty}(s, a) \wedge \operatorname{empty}(t, a)
\end{array}
$$

- empty checks for successful termination

Traces

Traces can represent unfinished and unsuccessful sequences of steps, for example:

$$
\begin{aligned}
& -a_{0} \xrightarrow{r_{1}} a_{1} \xrightarrow{r_{2}} a_{2} \\
& -a_{0} \xrightarrow{r_{1}} a_{1} \checkmark
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{steps}(s, a) & =\{(r, b, t) \mid r \mapsto t \in \operatorname{firsts}(s, a), b \in r(a)\} \\
\operatorname{traces}(s, a) & =\{a\} \cup\{a \checkmark \mid \operatorname{empty}(s, a)\} \\
& \cup\{a \xrightarrow[r]{\longrightarrow} x \mid(r, b, t) \in \operatorname{steps}(s, a), x \in \operatorname{traces}(t, b)\}
\end{aligned}
$$

Algebraic laws

Equality:

$$
(s=t)=\forall a: \operatorname{traces}(s, a)=\operatorname{traces}(t, a)
$$

Laws:

- Choice is associative, commutative, and idempotent
- Choice has fail as its unit element
- Sequence is associative
- Sequence has succeed as its unit element
- Sequence has fail as its left zero (but not right zero)
- Sequence distributes over choice

Sequential composition revisited

Calculating firsts for sequences is not efficient

- Calculating firsts for $\left(s_{1}\langle\star\rangle s_{2}\right)\langle\star\rangle s_{3}$ requires:
- firsts for s_{1}
- firsts for s_{2}, if empty s_{1}
- firsts for s_{3}, if empty s_{1} and empty s_{2}
- We introduce prefix combinator $r \rightarrow s$
- Bring strategies to prefix-form
- Use algebraic laws to guide transformation

Prefix combinator

Specification:

$$
\begin{aligned}
& \operatorname{firsts}(r \rightarrow s, a)=\{r \mapsto s\} \\
& \operatorname{empty}(r \rightarrow s, a)=\text { false }
\end{aligned}
$$

Laws:

- prefix is left-distributive over choice

$$
r \rightarrow(s<1>t)=(r \rightarrow s)<1>(r \rightarrow t)
$$

- single $r=r \rightarrow$ succeed

We show how to transform sequences into prefix-form

Transforming sequence

We can systematically remove sequences:

$$
\begin{aligned}
& \text { succeed }\langle\star\rangle t=t \\
& \text { fail }\langle\star\rangle t=\text { fail } \\
& \left(s_{1}<\mid>s_{2}\right)<\star>t=\left(s_{1}<\star>t\right)<\mid>\left(s_{2}\langle\star\rangle t\right) \\
& (r \rightarrow s) \quad<\star>t=r \rightarrow(s<\star\rangle t) \\
& \left(s_{1}\langle\star\rangle s_{2}\right)\langle\star\rangle t=s_{1}\langle\star\rangle\left(s_{2}\langle\star\rangle t\right)
\end{aligned}
$$

Core grammar for strategies:

$$
s, t::=\text { succeed } \mid \text { fail }|s<|>t| r \rightarrow s
$$

Language extensions

How to extend the strategy language with new combinators?

1. Define in terms of existing combinators:

$$
\text { options } s=s<\mid>\text { succeed }
$$

2. Specify its firsts set and empty property
3. Transform combinator to core language

Some combinators require extensions to the presented trace semantics

Extension 1

Domain: Communication skills
Extension: A player holds a discussion with a patient, possibly about various topic. Players can perform only an initial part of a discussion, and then jump to another discussion.

Combinator: initial prefixes (inits s)
Example: If $\quad\left(a_{0} \xrightarrow{r_{1}} a_{1} \xrightarrow{r_{2}} a_{2}\right) \in \operatorname{traces}\left(s, a_{0}\right)$
then $\left\{a_{0} \checkmark, a_{0} \xrightarrow{r_{1}} a_{1} \checkmark, a_{0} \xrightarrow{r_{1}} a_{1} \xrightarrow{r_{2}} a_{2} \checkmark\right\}$
\subseteq traces(inits $\left.s, a_{0}\right)$

Initial prefixes

Specification:

$$
\begin{aligned}
& \text { firsts }(\text { inits } s, a)= \\
& \operatorname{empty}(\text { inits } s, a)=
\end{aligned}
$$

Transformation:

$$
\begin{aligned}
& \text { inits succeed }= \\
& \text { inits fail }= \\
& \text { inits }(s<1>t)= \\
& \text { inits }(r \rightarrow s)=
\end{aligned}
$$

Initial prefixes

Specification:

$$
\begin{aligned}
& \text { firsts }(\text { inits } s, a)=\{r \mapsto \text { inits } t \mid r \mapsto t \in \operatorname{firsts}(s, a)\} \\
& \operatorname{empty}(\text { inits } s, a)=\text { true }
\end{aligned}
$$

Transformation:

$$
\begin{aligned}
& \text { inits succeed }= \\
& \text { inits fail }= \\
& \text { inits }(s<>t)= \\
& \text { inits }(r \rightarrow s)=
\end{aligned}
$$

Initial prefixes

Specification:

$$
\begin{aligned}
& \text { firsts }(\text { inits } s, a)=\{r \mapsto \text { inits } t \mid r \mapsto t \in \operatorname{firsts}(s, a)\} \\
& \operatorname{empty}(\text { inits } s, a)=\text { true }
\end{aligned}
$$

Transformation:

$$
\begin{aligned}
& \text { inits succeed }=\text { succeed } \\
& \text { inits fail }=\text { succeed } \\
& \text { inits }(s<\mid>t)=\text { inits } s<>\text { inits } t \\
& \text { inits }(r \rightarrow s)=\text { succeed }<\mid>(r \rightarrow \text { inits } s)
\end{aligned}
$$

Extension 2

Domain: Math

Extension: Some higher-degree equations can be solved by: $A C=B C \Rightarrow A=B \vee C=0$. A student may switch between the two equations.

Combinator: interleaving $(s<\%>t)$
Example:

If	$\left[r_{a}, r_{b}\right]$ is a sentence of s
and	$\left[r_{x}, r_{y}, r_{z}\right]$ is a sentence of t
then $s<\%>t$ contains	
	$\left[r_{a}, r_{b}, r_{x}, r_{y}, r_{z}\right],\left[r_{a}, r_{x}, r_{b}, r_{y}, r_{z}\right]$,
	$\left[r_{a}, r_{x}, r_{y}, r_{b}, r_{z}\right],\left[r_{a}, r_{x}, r_{y}, r_{z}, r_{b}\right]$,
	$\left[r_{x}, r_{a}, r_{b}, r_{y}, r_{z}\right], \ldots$

Interleaving

Specification:

$$
\begin{aligned}
& \operatorname{firsts}(s<\%>t, a)= \\
& \operatorname{empty}(s<\%>t, a)=
\end{aligned}
$$

Transformation:

$$
\begin{array}{lll}
\text { succeed } & <\%>t & = \\
\text { fail } & <\%>t & = \\
\left(s_{1}<>s_{2}\right)<\%>t & <\% \\
(r \rightarrow s) & <\%>t & =
\end{array}
$$

Interleaving

Specification:

$$
\begin{aligned}
\operatorname{firsts}(s<\%>t, a) & =\left\{r \mapsto s^{\prime}<\%>t \mid r \mapsto s^{\prime} \in \operatorname{firsts}(s, a)\right\} \\
& \uplus\left\{r \mapsto s<\%>t^{\prime} \mid r \mapsto t^{\prime} \in \operatorname{firsts}(t, a)\right\} \\
\operatorname{empty}(s<\%>t, a) & =\operatorname{empty}(s, a) \wedge \operatorname{empty}(t, a)
\end{aligned}
$$

Transformation:

$$
\begin{array}{lrl}
\text { succeed } & <\%>t & = \\
\text { fail } & <\%>t & = \\
\left(s_{1}<>s_{2}\right) & <\%>t & = \\
(r \rightarrow s) & <\%>t & =
\end{array}
$$

Interleaving

Specification:

$$
\begin{aligned}
\operatorname{firsts}(s<\%>t, a) & =\left\{r \mapsto s^{\prime}<\%>t \mid r \mapsto s^{\prime} \in \operatorname{firsts}(s, a)\right\} \\
& \uplus\left\{r \mapsto s<\%>t^{\prime} \mid r \mapsto t^{\prime} \in \operatorname{firsts}(t, a)\right\} \\
\operatorname{empty}(s<\%>t, a) & =\operatorname{empty}(s, a) \wedge \operatorname{empty}(t, a)
\end{aligned}
$$

Transformation:

$$
\begin{array}{ll}
\text { succeed } & <\%>t
\end{array}=t .
$$

Solution: introduce left-interleave $s \%>t$

Left-interleave

Specification:

$$
\begin{aligned}
& \operatorname{firsts}(s \%>t, a)=\left\{r \mapsto s^{\prime}<\%>t \mid r \mapsto s^{\prime} \in \operatorname{firsts}(s, a)\right\} \\
& \operatorname{empty}(s \%>t, a)=\text { false }
\end{aligned}
$$

Transformation:

$$
\begin{array}{lr}
\text { succeed } \quad \%>t= \\
\text { fail } & \%>t= \\
\left(s_{1}<>s_{2}\right) \%>t= \\
(r \rightarrow s) & \%>t=
\end{array}
$$

Left-interleave

Specification:

$$
\begin{aligned}
& \operatorname{firsts}(s \%>t, a)=\left\{r \mapsto s^{\prime}<\%>t \mid r \mapsto s^{\prime} \in \operatorname{firsts}(s, a)\right\} \\
& \operatorname{empty}(s \%>t, a)=\text { false }
\end{aligned}
$$

Transformation:

$$
\begin{array}{lrl}
\text { succeed } & \%>t & =\text { fail } \\
\text { fail } & \%>t & =\text { fail } \\
\left(s_{1}<>s_{2}\right) & \%>t & =\left(s_{1} \%>t\right)<>\left(s_{2} \%>t\right) \\
(r \rightarrow s) & \%>t & =r \rightarrow(s<\%>t)
\end{array}
$$

Interleaving with left-interleave

$$
(r \rightarrow s)<\%>t=r \rightarrow(s<\%>t)<\mid>t \%>(r \rightarrow s)
$$

Extension 3

Domain: Propositional logic
Extension: If possible, we use the rewrite rule $\phi \wedge T \Rightarrow \phi$. If not, we succeed.

Combinator: left-biased choice $(s \triangleright t)$
Example: If $\operatorname{traces}\left(s, a_{0}\right)=\left\{a_{0}\right\}$
then $\operatorname{traces}\left(s \triangleright t, a_{0}\right)=\operatorname{traces}\left(t, a_{0}\right)$

Left-biased choice

Use a strategy predicate to specify left-biased choice:

- active s : strategy s is empty or offers steps (local)
- Opposite of active s is stopped s
- test s : strategy s can finish successfully (global)
- Opposite of test s is not s

Specification:

$$
\begin{aligned}
& \operatorname{firsts}(\text { stopped } s, a)=\emptyset \\
& \operatorname{empty}(\text { stopped } s, a)=\neg \operatorname{empty}(s, a) \wedge \operatorname{steps}(s, a)=\emptyset
\end{aligned}
$$

Then:

$$
s \triangleright t=s<\mid>(\text { stopped } s<\star\rangle t)
$$

Transforming left-biased choice

- Left-biased choice depends on the current object
- In some cases, we can transform strategies with a left-biased choice:

$$
\begin{aligned}
& \left.\left.\left(s_{1} \triangleright s_{2}\right)<\star\right\rangle t=\left(s_{1}\langle\star\rangle t\right) \triangleright\left(s_{2}<\star\right\rangle t\right) \\
& \quad \text { provided that } \forall a: \neg \operatorname{empty}\left(s_{1}, a\right) \\
& s \triangleright t=s \quad \text { provided that } \forall a: \operatorname{empty}(s, a)
\end{aligned}
$$

Labelled strategies

Labels mark a position in a strategy

$$
\text { label } \ell s=\text { Enter } \ell\langle\star\rangle s\langle\star\rangle \text { Exit } \ell
$$

- Labels show up in traces
- Customize reported feedback for a label
- Labels can be used to identify subtasks
- We can collapse, hide, or remove a labelled substrategy (adaptability)

Traversal combinators

Use navigation rules Left, Right, Up, and Down for defining all kinds of generic traversals

$$
\begin{aligned}
& \text { somewhere } s=s<\rangle>\text { layerOne (somewhere } s \text {) } \\
& \text { layerOne } s=\text { Down }\langle\star\rangle \text { visitOne } s<\star\rangle \text { Up } \\
& \text { visitOne } s=s<1\rangle(\text { Right }\langle\star\rangle \text { visitOne s) }
\end{aligned}
$$

Many more variations:

- left-to-right, right-to-left
- top-down, bottom-up
- full, spine, stop, once

Four component ITS architecture

- Traditionally, an ITS is described by four components
- Also: monitoring module for teachers, authoring environment, etc.
- We focus on the expert knowledge module

Designing domain reasoners

- Following Goguadze, we use the term domain reasoner
- Design goals:
- External, separate component reusable by other learning environments
- Feedback-oriented (e.g., not a CAS)
- Support for an exercise class (not one exercise)
- Calculating feedback is not tied to a particular domain

IDEAS is a generic framework for developing domain-specific reasoners that offer feedback services to external learning environments: the feedback services are based on the stateless clientserver architecture

Proposed design

List of feedback services

outer loop

- examples
- generate
predefined example exercises of a certain difficulty makes a new exercise of a specified difficulty

List of feedback services

outer loop

- examples
- generate
inner loop
- allfirsts
- apply
- diagnose
- finished
- onefirst
- solution
- stepsremaining
- subtasks
predefined example exercises of a certain difficulty makes a new exercise of a specified difficulty
all possible next steps (based on the strategy) application of a rewrite rule to a selected term analyze a student step checks whether response is accepted as an answer one possible next step (based on the strategy) worked-out solution for the current exercise number of remaining steps (based on the strategy) returns a list of subtasks of the current task

List of feedback services

outer loop

- examples
- generate
inner loop
- allfirsts
- apply
- diagnose
- finished
- onefirst
- solution
- stepsremaining
- subtasks
meta-information
- exerciselist
- rulelist
- rulesinfo
- strategyinfo
predefined example exercises of a certain difficulty makes a new exercise of a specified difficulty
all possible next steps (based on the strategy) application of a rewrite rule to a selected term analyze a student step checks whether response is accepted as an answer one possible next step (based on the strategy) worked-out solution for the current exercise number of remaining steps (based on the strategy) returns a list of subtasks of the current task
all supported exercise classes
all rules in an exercise class
detailed information about rules in an exercise class information about the strategy of an exercise class

A domain reasoner (for quadratic equations)

We have to decide on:

1. A rewrite strategy
2. Rules and buggy rules

- $(x+y)^{2} \nRightarrow x^{2}+y^{2}$

3. Equivalence relation

- $x^{2}-4 x+3=0,(x-3)(x-1)=0$, and $x=3 \vee x=1$

4. Similarity relation (determines granularity of steps)

- $x^{2}-x=0 \approx-x+x \cdot x=0$

5. Solved form

- does $\sqrt{8}$ require further simplification?

Diagnose feedback service

All these exercise components are used by the diagnose feedback service

List of exercise components

component
strategy
rules
equivalence
similarity
suitable
finished

description

rewrite strategy that specifies how to solve an exercise possible rewrite steps (including buggy rules) tests whether two terms are semantically equivalent tests whether two terms are (nearly) the same identifies which terms can be solved by the strategy checks whether a term is in a solved form

List of exercise components

component
strategy
rules
equivalence
similarity
suitable
finished
exercise id
status
parser
pretty-printer navigation rule ordering

description

rewrite strategy that specifies how to solve an exercise possible rewrite steps (including buggy rules) tests whether two terms are semantically equivalent tests whether two terms are (nearly) the same identifies which terms can be solved by the strategy checks whether a term is in a solved form identifier that uniquely determines the exercise class stability of the exercise class parser for terms pretty-printer for terms (inverse of parsing) supports traversals over terms tiebreaker when more than one rule can be used

List of exercise components

component

strategy
rules
equivalence
similarity
suitable
finished
exercise id
status
parser
pretty-printer
navigation
rule ordering
examples
random generator
test generator

description

rewrite strategy that specifies how to solve an exercise possible rewrite steps (including buggy rules) tests whether two terms are semantically equivalent tests whether two terms are (nearly) the same identifies which terms can be solved by the strategy checks whether a term is in a solved form
identifier that uniquely determines the exercise class stability of the exercise class
parser for terms
pretty-printer for terms (inverse of parsing) supports traversals over terms tiebreaker when more than one rule can be used list of examples, each with an assigned difficulty generates random terms of a certain difficulty generates random test cases (including corner cases)

