
[Faculty of Science
Information and Computing Sciences]

Ideas
Part 2: Rewriting and strategies

Johan Jeuring
Utrecht University

Wednesday, September 28, 2016

[Faculty of Science
Information and Computing Sciences]

2

Strategy language

Our approach: to develop a strategy language for expressing cog-
nitive skills for many domains, used to give feedback, hints, and
worked-out solutions.

Strategy language with basic rules (r), sequences, and choices:

s, t ::= succeed | fail | single r | s <|> t | s <?> t

Very similar to (but slightly different from):

I Context-free grammars and their corresponding parsers
I Rewrite strategies
I Communicating sequential processes
I Proof tactics
I Workflows

[Faculty of Science
Information and Computing Sciences]

3

Requirements for the strategy language

1. Give feedback or hints at any time, also for partial solutions
2. Feedback and hints are calculated reasonably efficient
3. Easy to adapt a strategy, or the feedback constructed from

a strategy
4. Strategies should be compositional
5. Easy to extend the language

We need a clear semantics for our strategy language

[Faculty of Science
Information and Computing Sciences]

4

The language of a strategy

Similar to context-free grammars, we generate the language of a
strategy (a set of sentences)

L(succeed) = {ε }
L(fail) = ∅
L(single r) = {r }
L(s <|> t) = L(s) ∪ L(t)
L(s <?> t) = {xy | x ∈ L(s), y ∈ L(t)}

I Compositional and extensible
I Abstract away from rewrite rules as symbols
I Useful as specification?

[Faculty of Science
Information and Computing Sciences]

5

Strategy application

Rules and strategies have an effect on the underlying object; they
rewrite a term

succeed(a) = {a}
fail(a) = ∅
(single r)(a) = r(a)
(s <|> t)(a) = s(a) ∪ t(a)
(s <?> t)(a) = {c | b ∈ s(a), c ∈ t(b)}

I Rule application returns a set of results (compositionality)
I What about intermediate terms and the used rules?

[Faculty of Science
Information and Computing Sciences]

6

Observations

Simplicity of L(·) is attractive, but:

I Sequences introduce back-tracking
• Remember that L(s <?> t) = {xy | x ∈ L(s), y ∈ L(t)}
• Not desirable in tutor (limited look-ahead)

I No easy way to calculate intermediate terms and rules
I Some strategy combinators depend on the current object

• E.g. s . t: first try s, and only if this fails, use t.

Instead, we use a trace semantics based on firsts and empty.

[Faculty of Science
Information and Computing Sciences]

7

Firsts set

firsts(succeed, a) = ∅
firsts(fail, a) = ∅
firsts(single r , a) = {r 7→ succeed}
firsts(s <|> t, a) = firsts(s, a)] firsts(t, a)
firsts(s <?> t, a) = {r 7→ s′ <?> t | r 7→ s′ ∈ firsts(s, a)}

] {r 7→ t ′ | empty(s, a), r 7→ t ′ ∈ firsts(t, a)}

I firsts takes a strategy and the current object
I] returns the union of two finite maps
I r 7→ s and r 7→ t are merged to form r 7→ (s <|> t)

[Faculty of Science
Information and Computing Sciences]

8

Empty property

empty(succeed, a) = true
empty(fail, a) = false
empty(single r , a) = false
empty(s <|> t, a) = empty(s, a) ∨ empty(t, a)
empty(s <?> t, a) = empty(s, a) ∧ empty(t, a)

I empty checks for successful termination

[Faculty of Science
Information and Computing Sciences]

9

Traces

Traces can represent unfinished and unsuccessful sequences of
steps, for example:

I a0
r1−→ a1

r2−→ a2
I a0

r1−→ a1 X

steps(s, a) = {(r , b, t) | r 7→ t ∈ firsts(s, a), b ∈ r(a)}

traces(s, a) = {a} ∪ {a X | empty(s, a)}
∪ {a r−→ x | (r , b, t) ∈ steps(s, a), x ∈ traces(t, b)}

[Faculty of Science
Information and Computing Sciences]

10

Algebraic laws

Equality:

(s = t) = ∀a : traces(s, a) = traces(t, a)

Laws:

I Choice is associative, commutative, and idempotent
I Choice has fail as its unit element
I Sequence is associative
I Sequence has succeed as its unit element
I Sequence has fail as its left zero (but not right zero)
I Sequence distributes over choice

[Faculty of Science
Information and Computing Sciences]

11

Sequential composition revisited

Calculating firsts for sequences is not efficient

I Calculating firsts for (s1 <?> s2) <?> s3 requires:
• firsts for s1
• firsts for s2, if empty s1
• firsts for s3, if empty s1 and empty s2

I We introduce prefix combinator r → s
I Bring strategies to prefix-form
I Use algebraic laws to guide transformation

[Faculty of Science
Information and Computing Sciences]

12

Prefix combinator

Specification:

firsts(r → s, a) = {r 7→ s}

empty(r → s, a) = false

Laws:

I prefix is left-distributive over choice
r → (s <|> t) = (r → s) <|> (r → t)

I single r = r → succeed

We show how to transform sequences into prefix-form

[Faculty of Science
Information and Computing Sciences]

13

Transforming sequence

We can systematically remove sequences:

succeed <?> t = t
fail <?> t = fail
(s1 <|> s2) <?> t = (s1 <?> t) <|> (s2 <?> t)
(r → s) <?> t = r → (s <?> t)

(s1 <?> s2) <?> t = s1 <?> (s2 <?> t)

Core grammar for strategies:

s, t ::= succeed | fail | s <|> t | r → s

[Faculty of Science
Information and Computing Sciences]

14

Language extensions

How to extend the strategy language with new combinators?

1. Define in terms of existing combinators:

options s = s <|> succeed

2. Specify its firsts set and empty property
3. Transform combinator to core language

Some combinators require extensions to the presented trace
semantics

[Faculty of Science
Information and Computing Sciences]

15

Extension 1

Domain: Communication skills

Extension: A player holds a discussion with a patient, possibly about
various topic. Players can perform only an initial part of a
discussion, and then jump to another discussion.

Combinator: initial prefixes (inits s)

Example: If (a0
r1−→ a1

r2−→ a2) ∈ traces(s, a0)
then {a0 X, a0

r1−→ a1 X, a0
r1−→ a1

r2−→ a2 X}
⊆ traces(inits s, a0)

[Faculty of Science
Information and Computing Sciences]

16

Initial prefixes

Specification:

firsts(inits s, a) =

empty(inits s, a) =

Transformation:

inits succeed =
inits fail =
inits (s <|> t) =
inits (r → s) =

[Faculty of Science
Information and Computing Sciences]

16

Initial prefixes

Specification:

firsts(inits s, a) = {r 7→ inits t | r 7→ t ∈ firsts(s, a)}

empty(inits s, a) = true

Transformation:

inits succeed =
inits fail =
inits (s <|> t) =
inits (r → s) =

[Faculty of Science
Information and Computing Sciences]

16

Initial prefixes

Specification:

firsts(inits s, a) = {r 7→ inits t | r 7→ t ∈ firsts(s, a)}

empty(inits s, a) = true

Transformation:

inits succeed = succeed
inits fail = succeed
inits (s <|> t) = inits s <|> inits t
inits (r → s) = succeed <|> (r → inits s)

[Faculty of Science
Information and Computing Sciences]

17

Extension 2

Domain: Math

Extension: Some higher-degree equations can be solved by:
AC = BC ⇒ A = B ∨ C = 0. A student may switch
between the two equations.

Combinator: interleaving (s <%> t)

Example:
If [ra, rb] is a sentence of s
and [rx, ry, rz] is a sentence of t
then s <%> t contains

[ra, rb, rx, ry, rz], [ra, rx, rb, ry, rz],
[ra, rx, ry, rb, rz], [ra, rx, ry, rz, rb],
[rx, ra, rb, ry, rz], . . .

[Faculty of Science
Information and Computing Sciences]

18

Interleaving

Specification:

firsts(s <%> t, a) =

empty(s <%> t, a) =

Transformation:

succeed <%> t =
fail <%> t =
(s1 <|> s2) <%> t =
(r → s) <%> t =

[Faculty of Science
Information and Computing Sciences]

18

Interleaving

Specification:

firsts(s <%> t, a) = {r 7→ s′ <%> t | r 7→ s′ ∈ firsts(s, a)}
] {r 7→ s <%> t ′ | r 7→ t ′ ∈ firsts(t, a)}

empty(s <%> t, a) = empty(s, a) ∧ empty(t, a)

Transformation:

succeed <%> t =
fail <%> t =
(s1 <|> s2) <%> t =
(r → s) <%> t =

[Faculty of Science
Information and Computing Sciences]

18

Interleaving

Specification:

firsts(s <%> t, a) = {r 7→ s′ <%> t | r 7→ s′ ∈ firsts(s, a)}
] {r 7→ s <%> t ′ | r 7→ t ′ ∈ firsts(t, a)}

empty(s <%> t, a) = empty(s, a) ∧ empty(t, a)

Transformation:

succeed <%> t = t
fail <%> t = fail
(s1 <|> s2) <%> t = (s1 <%> t) <|> (s2 <%> t)
(r → s) <%> t = . . .

Solution: introduce left-interleave s %> t

[Faculty of Science
Information and Computing Sciences]

19

Left-interleave

Specification:

firsts(s %> t, a) = {r 7→ s′ <%> t | r 7→ s′ ∈ firsts(s, a)}

empty(s %> t, a) = false

Transformation:

succeed %> t =
fail %> t =
(s1 <|> s2) %> t =
(r → s) %> t =

[Faculty of Science
Information and Computing Sciences]

19

Left-interleave

Specification:

firsts(s %> t, a) = {r 7→ s′ <%> t | r 7→ s′ ∈ firsts(s, a)}

empty(s %> t, a) = false

Transformation:

succeed %> t = fail
fail %> t = fail
(s1 <|> s2) %> t = (s1 %> t) <|> (s2 %> t)
(r → s) %> t = r → (s <%> t)

[Faculty of Science
Information and Computing Sciences]

20

Interleaving with left-interleave

(r → s) <%> t = r → (s <%> t) <|> t %> (r → s)

[Faculty of Science
Information and Computing Sciences]

21

Extension 3

Domain: Propositional logic

Extension: If possible, we use the rewrite rule φ ∧ T ⇒ φ. If not, we
succeed.

Combinator: left-biased choice (s . t)

Example: If traces(s, a0) = {a0}
then traces(s . t, a0) = traces(t, a0)

[Faculty of Science
Information and Computing Sciences]

22

Left-biased choice

Use a strategy predicate to specify left-biased choice:
I active s: strategy s is empty or offers steps (local)

• Opposite of active s is stopped s
I test s: strategy s can finish successfully (global)

• Opposite of test s is not s

Specification:

firsts(stopped s, a) = ∅

empty(stopped s, a) = ¬empty(s, a) ∧ steps(s, a) = ∅

Then:

s . t = s <|> (stopped s <?> t)

[Faculty of Science
Information and Computing Sciences]

23

Transforming left-biased choice

I Left-biased choice depends on the current object
I In some cases, we can transform strategies with a

left-biased choice:

(s1 . s2) <?> t = (s1 <?> t) . (s2 <?> t)
provided that ∀a : ¬empty(s1, a)

s . t = s provided that ∀a : empty(s, a)

[Faculty of Science
Information and Computing Sciences]

24

Labelled strategies

Labels mark a position in a strategy

label ` s = Enter ` <?> s <?> Exit `

I Labels show up in traces
I Customize reported feedback for a label
I Labels can be used to identify subtasks
I We can collapse, hide, or remove a labelled substrategy

(adaptability)

[Faculty of Science
Information and Computing Sciences]

25

Traversal combinators

Use navigation rules Left, Right, Up, and Down for defining all
kinds of generic traversals

somewhere s = s <|> layerOne (somewhere s)

layerOne s = Down <?> visitOne s <?> Up

visitOne s = s <|> (Right <?> visitOne s)

Many more variations:

I left-to-right, right-to-left
I top-down, bottom-up
I full, spine, stop, once

[Faculty of Science
Information and Computing Sciences]

26

Four component ITS architecture

Expert knowledge
module

Student model
module

Tutoring
module

User interface
moduleStudent

ITS

I Traditionally, an ITS is described by four components
I Also: monitoring module for teachers, authoring

environment, etc.
I We focus on the expert knowledge module

[Faculty of Science
Information and Computing Sciences]

27

Designing domain reasoners

I Following Goguadze, we use the term domain reasoner
I Design goals:

• External, separate component reusable by other learning
environments

• Feedback-oriented (e.g., not a CAS)
• Support for an exercise class (not one exercise)
• Calculating feedback is not tied to a particular domain

Ideas is a generic framework for developing domain-specific rea-
soners that offer feedback services to external learning environ-
ments: the feedback services are based on the stateless client-
server architecture

[Faculty of Science
Information and Computing Sciences]

28

Proposed design

MathDox

DME

Math-Bridge

Logic tool

LinAlg

Math

Logic

XML over HTTP

JSON over HTTP

client server

feedback scriptlearning environment
domain reasoner

domain-specific
knowledge

generic
framework

[Faculty of Science
Information and Computing Sciences]

29

List of feedback services

outer loop
– examples predefined example exercises of a certain difficulty
– generate makes a new exercise of a specified difficulty

inner loop
– allfirsts all possible next steps (based on the strategy)
– apply application of a rewrite rule to a selected term
– diagnose analyze a student step
– finished checks whether response is accepted as an answer
– onefirst one possible next step (based on the strategy)
– solution worked-out solution for the current exercise
– stepsremaining number of remaining steps (based on the strategy)
– subtasks returns a list of subtasks of the current task
meta-information
– exerciselist all supported exercise classes
– rulelist all rules in an exercise class
– rulesinfo detailed information about rules in an exercise class
– strategyinfo information about the strategy of an exercise class

[Faculty of Science
Information and Computing Sciences]

29

List of feedback services

outer loop
– examples predefined example exercises of a certain difficulty
– generate makes a new exercise of a specified difficulty
inner loop
– allfirsts all possible next steps (based on the strategy)
– apply application of a rewrite rule to a selected term
– diagnose analyze a student step
– finished checks whether response is accepted as an answer
– onefirst one possible next step (based on the strategy)
– solution worked-out solution for the current exercise
– stepsremaining number of remaining steps (based on the strategy)
– subtasks returns a list of subtasks of the current task

meta-information
– exerciselist all supported exercise classes
– rulelist all rules in an exercise class
– rulesinfo detailed information about rules in an exercise class
– strategyinfo information about the strategy of an exercise class

[Faculty of Science
Information and Computing Sciences]

29

List of feedback services

outer loop
– examples predefined example exercises of a certain difficulty
– generate makes a new exercise of a specified difficulty
inner loop
– allfirsts all possible next steps (based on the strategy)
– apply application of a rewrite rule to a selected term
– diagnose analyze a student step
– finished checks whether response is accepted as an answer
– onefirst one possible next step (based on the strategy)
– solution worked-out solution for the current exercise
– stepsremaining number of remaining steps (based on the strategy)
– subtasks returns a list of subtasks of the current task
meta-information
– exerciselist all supported exercise classes
– rulelist all rules in an exercise class
– rulesinfo detailed information about rules in an exercise class
– strategyinfo information about the strategy of an exercise class

[Faculty of Science
Information and Computing Sciences]

30

A domain reasoner (for quadratic equations)

We have to decide on:

1. A rewrite strategy
2. Rules and buggy rules

• (x + y)2 6⇒ x2 + y2

3. Equivalence relation
• x2 − 4x+ 3 = 0, (x− 3)(x− 1) = 0, and x = 3 ∨ x = 1

4. Similarity relation (determines granularity of steps)
• x2 − x = 0 ≈ −x+ x · x = 0

5. Solved form
• does

√
8 require further simplification?

[Faculty of Science
Information and Computing Sciences]

31

Diagnose feedback service

All these exercise components are used by the diagnose feedback
service

equivalent? buggy rule?

similar? expected by
strategy?

discover
rule?

Unknown mistake

Common mistake
with buggy rule

Small rewrite step,
not recognized

Rewrite step follows
expert strategy

Correct rewrite step,
but unknown

Correct step, but
detour from strategy

no no

no no no

yes

yesyes yes

yes

diagnose
feedback service

[Faculty of Science
Information and Computing Sciences]

32

List of exercise components

component description
strategy rewrite strategy that specifies how to solve an exercise
rules possible rewrite steps (including buggy rules)
equivalence tests whether two terms are semantically equivalent
similarity tests whether two terms are (nearly) the same
suitable identifies which terms can be solved by the strategy
finished checks whether a term is in a solved form

exercise id identifier that uniquely determines the exercise class
status stability of the exercise class
parser parser for terms
pretty-printer pretty-printer for terms (inverse of parsing)
navigation supports traversals over terms
rule ordering tiebreaker when more than one rule can be used
examples list of examples, each with an assigned difficulty
random generator generates random terms of a certain difficulty
test generator generates random test cases (including corner cases)

[Faculty of Science
Information and Computing Sciences]

32

List of exercise components

component description
strategy rewrite strategy that specifies how to solve an exercise
rules possible rewrite steps (including buggy rules)
equivalence tests whether two terms are semantically equivalent
similarity tests whether two terms are (nearly) the same
suitable identifies which terms can be solved by the strategy
finished checks whether a term is in a solved form
exercise id identifier that uniquely determines the exercise class
status stability of the exercise class
parser parser for terms
pretty-printer pretty-printer for terms (inverse of parsing)
navigation supports traversals over terms
rule ordering tiebreaker when more than one rule can be used

examples list of examples, each with an assigned difficulty
random generator generates random terms of a certain difficulty
test generator generates random test cases (including corner cases)

[Faculty of Science
Information and Computing Sciences]

32

List of exercise components

component description
strategy rewrite strategy that specifies how to solve an exercise
rules possible rewrite steps (including buggy rules)
equivalence tests whether two terms are semantically equivalent
similarity tests whether two terms are (nearly) the same
suitable identifies which terms can be solved by the strategy
finished checks whether a term is in a solved form
exercise id identifier that uniquely determines the exercise class
status stability of the exercise class
parser parser for terms
pretty-printer pretty-printer for terms (inverse of parsing)
navigation supports traversals over terms
rule ordering tiebreaker when more than one rule can be used
examples list of examples, each with an assigned difficulty
random generator generates random terms of a certain difficulty
test generator generates random test cases (including corner cases)

