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Chapter '

Introduction

A robot is a machine capable of carrying out a complex series of actions automati4
cally 5the Concise Oxford dictionary 9::;<= Over the past years? the use of robots has
become common in an increasing number of areas= With the wider range of appli4
cations comes a growing need for autonomy of the robots= The earlier generations
of robots? encountered for example in assembly lines? mostly execute prescribed
5repeating< sequences of uniform actions= As such? they often eDectively replace
human4beings in routine tasks= More recent and advanced application domains for
robots include operation in environments that are dangerous or inaccessible to hu4
mans= Among such domains are space exploration? 5nuclear< waste handling? and
medical surgery= The nature of the robot tasks in these environments requires a
high degree of autonomy of the operational robot= The series of actions performed
by the robot tends to become less uniform and the descriptions of the tasks will be
formulated at a higher level= An ultimate goal in the Geld of robotics inspired by
this growing need for autonomy is the development of robots that accept high4level
descriptions of tasks and execute these tasks with as little intervention as possible?
and ideally without further intervention at all= A fundamental task for such an au4
tonomous robot would be to move from a current placement to another placement
while avoiding collision with the obstacles on its way= The motion planning problem?
that is? the problem of Gnding such a collision4free path? is the subject of this thesis=

A robot is a movable mechanical device operating in a physical world? the robotIs
workspace= Robots generally consist of one or more bodies? or links? that are? in
most practical situations? in some way attached to each other= These couplings
of the links? which are referred to as joints? constrain the relative placements and
motions of the attached links= Typical joints are the revolute 5or rotating< joint and
the prismatic 5or sliding< joint= An articulated robot consists of several links that
are all connected by joints= If the links of an articulated robot are arranged in a
chain and one of the two ends of the chain is Gxed at some position? then the robot
is an arm= The Gxed end of an arm is referred to as the base of the armL the other

 Robotics is the study of robots or the art or science of their design and operation 23345
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end is the tip( or hand +,- ./ Robots at assembly lines are( in general( robot arms/
7Typical assembly robots have approximately six links/> The robots in the di?cult
environments sketched in the previous paragraph are often not Bxed/ If( except for
possible collisions with the obstacles in the workspace or with itself( the motion of
the robot in the workspace is unconstrained( then the robot is free*+ying/ In this
thesis( we will mainly deal with freeEFying robots/

The unique characterization of any placement of a robot in its workspace involves
a certain minimum number of parameters/ These parameters are the degrees of
freedom 1DOF5 of the robot/ Let us consider the examples of robots in Figure ,/,
to get a feeling of the various degrees of freedom of robots/ The robot arm B moves
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Figure ,/,K Three examples of robotsK B is a robot arm in the plane consisting of
three links( B! is a freeEFying articulated robot in the plane consisting of two links(
and B" is a freeEFying rigid robot in threeEdimensional space/

in a twoEdimensional workspace and consists of three links L ( L!( and L"L the lower
end of L is Bxed at the origin O( L and L! are attached to each other by a revolute
joint( and L! and L" are connected by a prismatic jointL the NoverlapO of the links L!

and L" at the prismatic joint varies between - and "/ The angle between the links
L and L!( and the length of the overlap of L! and L" uniquely deBne any placement
of B ( so B has two degrees of freedom/ Any pair 7#$w> ! +-$  &>" +-$ ". represents
exactly one placement of B / As a result( the set of points in the workspace covered
by B can be calculated from 7#$w>( provided that the shapes of the individual links
are known/ The articulated robot B! with links L# and L$ which are joined by a
revolute joint moves in a twoEdimensional workspace/ Assume( for the moment( that
the link L# is constrained to move at a Bxed orientation/ In that case( the coordinates
7x$ y> ! IR! of( for example( the joint uniquely specify the points covered by the
link L#/ The orientation of the link L$( however( is still variable/ An additional



 

parameter   '(! )"*+ being the angle between both links L and L! completes a
unique characterization of the placement of B"< So+ the constrained robot B" has
three degrees of freedom< Any triple @x! y!  *  IR" " '(! )"* represents exactly one
placement of the B"< The triple @x! y!  * no longer suEces to uniquely specify a
placement of B" if the link L is allowed to rotate as well< Then+ the robot can take
inFnitely many placements while its joint is placed at @x! y* and the angle between its
links L and L! equals  < The addition of an extra parameter &  '(! )"*+ giving the
angle between+ for example+ the link L and the positive xIaxis+ solves the problem<
Any quadruple @x! y!  ! &*  IR" " '(! )"*" speciFes exactly one placement of this
unconstrained version of B"< The robot B" has four degrees of freedom< The robot
B# moving in a threeIdimensional workspace is a soIcalled rigid robot consisting of
one solid nonIdeformable link< A triple @x! y! z*  IR# Fxes the position of some point
p  B#< While p is placed at @x! y! z*+ the point q can be chosen to lie anywhere on
the sphere with radius jpqj centered at @x! y! z*< A pair @*! +*  '(! )"*"'(! "K suEces
to identify a point on a sphere< Even though the quintuple @x! y! z! *! +* Fxes both
p and q+ the robot B# can still be in inFnitely many diMerent placements as it is free
to rotate around the supporting line of the segment pq< One additional parameter
+  '(! )"* is enough to model this rotational freedom< Hence+ the robot B# has six
degrees of freedom< Any tuple @x! y! z! *! +! ,*  IR# " '(! )"* " '(! "K" '(! )"* is a
parametric representation of exactly one placement of B#< We refer to the tuple as
a con'guration of the robot<

The motion planning problem is commonly tackled in the space of these paraI
metric representations of robot placements+ or con'guration space for short< As we
will see+ the conFguration space formulation transforms the motion planning probI
lem into the problem of Fnding a continuous curve within a subspace+ the free space+
of the conFguration space< The free space consists of all placements of the robot in
which it intersects no obstacle< The continuous curve in the free space corresponds
to a continuous free motion of the robot in the workspace<

Motion planning methods process the free space for the eEcient solution of one
or more pathIFnding queries< The methods can be classiFed according to two+ more
or less orthogonal+ criteria< First al all+ a method is either exact or approximate<
Approximate methods+ which originate mainly from the robotics community+ are ofI
ten fast and simple to implement< On the other hand+ they may occasionally spend
a lot of time and storage in Fnding a path or+ worse+ fail to Fnd a path+ even if one
exists< Exact methods+ which originate mainly from the computational geometry
community+ are guaranteed to Fnd a path if one exists< The price to pay for this
completeness is generally a considerable increase in computation time< A second
subdivision classiFes the methods by the type of technique that is used to Fnd a
path< Latombe 'STK distinguishes three diMerent motion planning approachesU cell
decomposition methods+ roadmap methods+ and potential 'eld methods< The next
few paragraphs brieVy discuss the essential features of each of the three approaches<
Exact and approximate examples of each of the approaches are mentioned+ if availI
able<
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The cell decomposition approach subdivides /a conservative approximation of5
the free space FP into a 8nite number of simple connected subcells: such that plan;
ning a motion between any two placements within a single subcell is straightforward
and such that uniform crossing rules can be de8ned for the robot crossing from
one subcell into another? Each cell de8nes a vertex in the connectivity graph CG?
Two vertices in CG are connected by an edge if their corresponding subcells share
a common boundary allowing direct crossing of the robot? Given the connectivity
graph CG: the problem of 8nding a motion between the placements Z and Z! is
reduced to a graph problemC 8nd the subcells C and C! in which Z and Z! lie
and determine a path in CG between the vertices corresponding to the subcells C 

and C!: or report that no such path exists? Next: the resulting sequence of subcells
and the crossing rules for each pair of subsequent subcells are used to transform the
sequence into a path for the robot B from Z to Z!? To this end: a point is chosen
on the common boundary of each pair of consecutive subcells in the sequence? /The
points correspond to unique placements of the robot?5 As a result: two points are
given in every subcell of the sequence? The imposed simplicity of the subcells facili;
tates the identi8cation of a continuous curve between the two points that is entirely
contained in the subcell? The concatenation of all such curves is a continuous curve
between the Z and Z!: representing a continuous collision;free motion for the robot
between the corresponding placements?

Exact cell decomposition methods partition the free space into simple subcells:
so that the union of the subcells equals exactly the free space? Examples of exact
cell decomposition applied to varying instances of the motion planning problem are
found in G H: IJ: K : L : LI: LK: LM: NOP? Section O?R discusses the examples in more
detail? Approximate cell decompositionmethods GON: HI:  L: KJ: OJHP approximate the
free space by a collection of subcells with uniform shapes: for example rectangloids?
The union of the subcells is a subset of the free space? Occasional failure to return
a path is evident from the diTerence between the free space and the subcell union?
Most approximatemethods decompose the free space in a recursive manner: stopping
when a subcell is entirely free or entirely non;free and further re8ning when a subcell
contains both types of placements? Physical limitations: like the amount of storage
that is available: require the recursive process to stop at a certain level?

The roadmap approach to motion planning aims at capturing the structure
and connectivity of the free space in some one;dimensional network of curves: the
roadmap? The availability of the roadmap reduces the planning problem to de;
termining motions between the initial and 8nal robot placements Z and Z! and
two placements on the roadmap: and subsequently searching the roadmap for a se;
quence of curves connecting these two placements? The latter problem is again a
graph searching problem if the network of curves is represented as a graph? The
sequence of curves resulting from the graph search corresponds directly to a contin;
uous path for the robot in its workspace? Nearly all known roadmap algorithms are
exact GRJ: KR: MJ: MO: NHP? They share the property that all roadmap curves in a sin;
gle connected component of the free space are connected in the roadmap /through



 

a sequence of curves,- Section 1-2 reveals some details of certain exact roadmap
methods- Brooks ;1<= presents an approximate roadmap method for a translating
and rotating polygonal robot among polygonal obstacles- The basis of the roadmap
is an approximation of the Voronoi diagram ;<= on the obstacles in the workspace-
Conservative assumptions used in its construction may cause disconnected roadmap
components in a single connected component of the free spaceE leading to potential
failure to determine a path between two placements within a connected component
of the free space- The method works well if the obstacles are not too much clutF
tered- Another approximate roadmap methodE due to Overmars and ISvestka ;JK=E
constructs a graph on randomly chosen conLgurations in free space- Two conLgF
urations are connected by an edge if a simple collisionFfree motion exists between
them-

Potential (eld methods ; 2E  ME  K= direct the motion of the robot through an
artiLcial potential Leld set up by the goal placement and the obstacles- The goal
conLguration pulls the robot towards it by generating a strong attractive Nnegative,
potentialE while the obstacles push the robot away through a repulsive Npositive,
potential- The search is guided by trusting the intuitive feeling that the direction
of the steepest descent of the potential is the best direction towards the goalO the
search proceeds to a neighboring placement that achieves the maximum decrease of
the potential- The success of the method clearly depends on adequate choices for
the attractive and recursive potential functions- UnfortunatelyE the search might
get stuck in a local minimum of the potential- Considerable eQorts are devoted to
Lnding ways to deal with these minima- One direction of research attempts to specF
ify potential functions that cause no or few local minima ;  E <2E <ME  M=- Another
approach is to develop techniques to escape from local minima ;12E 1M=E for example
by random motions- Despite the observed complications due to local minimaE poF
tential Leld methods are eScient in many practical situations- All Nknown, variants
of the potential Leld approach are approximateE due to fact that steps of a certain
minimum size are taken-

Over the past decadeE the motion planning problem has attracted the interest
of researchers in the Leld of computational geometry ;1UE M<E VME  UE  1E K2E KVE
JUE J1E <VE < E <JE W1E WM=- The explanation for this interest lies in the geometric
Xavor of the problem which is not only inherent in its statementE but also present
in the space in which the motion planning problem is most conveniently solvedE
the conLguration space- The number of degrees of freedom of the robot determines
the dimension of this space- The conLguration space formulation transforms the
motion planning problem into the problem of Lnding a curve within a subspaceE the
free spaceE of the conLguration space- The subspace is the union of speciLc cells in
an arrangement of hypersurfaces which are deLned by robotFobstacle contacts ;MW=-
The study of arrangements and arrangement cells ;M2= is one of the main subjects
in computational geometry-

The research eQorts in motion planning in computational geometry are aimed
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at the exact solution of the problem so that a path for the robot is returned if one
exists3 It is obvious that the theoretical complexity of 7nding such a path depends
highly on the complexity of the free space3 The high bounds on the cumulative
complexity of a collection of cells in an arrangement of hypersurfaces established in
computational geometry demonstrate the potentially high complexity of the motion
planning problem3 Even though the hypersurfaces that de7ne the arrangement in
the; say; f <dimensional con7guration space are not arbitrary =as they represent sets
of contact placements>; they still allow for the construction of worst<case arrange<
ments of; roughly; at least @=nf  > complexity; where n is the number of obstacles3
Exact motion planning methods process the appropriate arrangement cells into a
structure capable of providing an exact answer to a path<7nding query3 The cumu<
lative complexity of the cells is reBected in the size and computation time of the
query structure3 Since the number of degrees of freedom f of practical robots is often
as large as 7ve or six; exact methods suEer from impractically high computational
costs and are therefore not feasible for practical motion planning problems3

On the other hand; the worst<case arrangements mentioned in the previous para<
graph involve arti7cial constructions with a robot and obstacles with extreme and
often uncommon shapes3 The complexity of the free space for many real<life mo<
tion planning problems tends to remain far below the theoretical worst<case bounds3
Exact motion planning methods might become feasible for such realistic problems;
provided that their performance is positively aEected by reductions of the free space
complexity3 Unfortunately; only few of the existing exact motion planning exhibit
such a dependency3 The preceding observations show that it is interesting to seek for
mild constraints on the robot and the obstacles that lead to a provable low free space
complexity3 To make the outcome practically useful; it is necessary to 7nd motion
planning methods that bene7t from low free space complexities in the sense that
they process the free space in time comparable to its complexity into a path<7nding
query structure of size comparable to the free space complexity3

A bound on the relative sizes of the robot and the obstacles and a certain JfatnessK
of the obstacles are shown to be suLcient to get a free space with a complexity that
is only linear in the number of obstacles3 Fatness has been studied in the context of
several problems in computational geometry; but; so far; not in the context of motion
planning3 Under the sketched circumstances; it will be shown that certain existing
exact motion planning algorithms show a considerable performance enhancement3
Moreover; the realistic assumptions cause the linear complexity free space to have a
structure that allows for a new and simple motion planning paradigm based on the
so<called cell decomposition approach3 The paradigm basically reduces the planning
problem to a partitioning problem in a lower<dimensional subspace3 Instances of
the paradigm lead to almost linear<time =in the number of obstacles> algorithms
for general planar motion planning and for restricted cases of three<dimensional
motion planning; namely where the robot is con7ned to a workBoor or where the
sizes of the obstacles diEer by at most a constant factor3 Quadratic and cubic time
algorithms are obtained for three<dimensional motion planning among arbitrarily<



 

sized polyhedral and general obstacles respectively3 The results are independent of
the number of degrees of freedom and extend towards any environment with low
obstacle density3

We are aware of only few ;related< results on exact motion planning methods
with provable e=ciency or free space complexity>sensitive behavior for realistic mo>
tion planning problems ;with low complexity workspaces or free spaces<3 Sifrony
and Sharir ABCD present a motion planning algorithm for a line segment in a planar
workspace with polygonal obstacles3 The reported running time of the algorithm
depends ;nearly exclusively< on the number of pairs of obstacle corners that lie less
than the length of the ladder apart3 This number gives some idea of how cluttered
the obstacles in the workspace are and is furthermore closely related to the com>
plexity of the free space3 Sifrony and SharirEs algorithm is the only algorithm with
a running time that is reported to depend on complexity>related variables3 A few
other algorithms ;see Chapter H< have some hidden dependency on the complexity
of the free space3

Schwartz and Sharir AIID consider workspaces with obstacles of so>called bounded
local complexity3 Any ;imaginary< ball with radius r in such a workspace inter>
sects no more than a constant number of obstacles3 The property resembles a
workspace property that follows from the fatness of the obstacles ;see Chapter J<3
The bounded local complexity is shown to have implications for the free space com>
plexity3 The authors give directions on how to solve the motion planning problem
in such workspaces3

Pignon A ID structures workspaces with polygonal obstacles for a polygonal robot
to easily detect certain simple and impossible path>Lnding queries3 The author uses
the maximal inscribed circle and minimal enclosing circle of the robot to deLne the
so>called safe and impossible spacesN which are both e=ciently computable subspaces
of the workspace3 The safe space consists of all workspace positions that the robot
can occupy at any orientation without intersecting the obstacles3 More preciselyN
the safe space is the collection of center points of the enclosing circle in which that
circle does not intersect any obstacle3 The impossible space consists of all positions
in which the robot always intersects some obstacleN regardless of its orientation3
HenceN the impossible space is the collection of centers of the inscribed circle in
which that circle intersects some obstacle3 The possible space is the complement of
the impossible space3 NowN two types of simple queries can be easily detected3 If
the workspace positions of the robot in the initial and Lnal placements belong to a
single connected component of the safe spaceN then both positions are connected by
a path for the enclosing circle of the robot3 As a resultN it su=ces to Lnd a motion
for the circleN which is a simpler motion planning problem ;with two instead of
three degrees of freedom<3 If the positions lie in diSerent components of the possible
spaceN then no motion for the inscribed circle of the robot exists between the query
placementsN and therefore certainly no motion exists for the robot itself between
these placements3 In all other casesN the exact solution of the problem requires the
application of an exact method to the original problem3
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Alt et al& '() introduce the tightness of a motion planning problem for a rectangle
among polygonal obstacles as a measure for its complexity& The tightness of a
problem is closely related to the scaling factor for the rectangular robot to make
the problem unsolvable if the original problem is solvable= or to make the problem
solvable if the original problem is unsolvable& The authors present an approximate
motion planning algorithm for the rectangular robot with a tightness?dependent
running time&

 ! The general motion planning problem

This thesis focusses on the following version of the general motion planning problem&

Given a robot B moving amidst a collection of obstacles E? and an initial
placement Z and a desired Anal placement Z! for B? And a continuous
motion for B from Z to Z! during which the robot avoids collision with
the obstacles? or report that no such motion exists(

A single robot B moves around in a workspace= or physical space= W& The robotAs
workspace W usually equals the Euclidean space of dimension two or three DIR"

or IR#G= since these are the most interesting cases from a practical point of view&
Throughout the thesis= the robot B is assumed to be a collection of closed rigid links
Dattached to each other by jointsG of constant total complexity& A rigid body is a
non?deformable compact connected set& A closed set incorporates the set boundary
as part of the set Dcontrary to an open set which excludes the set boundaryG& The
assumption that the robot is a collection of rigid bodies is liberal= as many papers
require the robot to be a single rigid body&

The motion planning problem is commonly modeled and solved in the so?called
conIguration space of the problem& The con2guration space C is the space of para?
metric representations of robot placements& A con2guration Z " C is a unique
DcompactG speciIcation of the position of every point of the robot B at a certain
placement in the workspace W"& Each placement of the robot B in its workspace W
corresponds to exactly one point Z in the conIguration space C& In the sequel= the
subtle diJerence between the conIguration Z and the represented robot placement
is generally ignored& The parameters that are required for a unique speciIcation of
a robot placement Ix the dimensions of the conIguration space& These parameters
are referred to as the degrees of freedom of the robot& The number of degrees of
freedom determines the dimension of the conIguration space C& At each placement
Z " C the robot B covers a set of points in the workspace W which is denoted by
B'Z)&

 For a more concise formulation of the notions of con/guration space and con/guration in
terms of rigid transformations and relative positions of reference frames4 the reader is referred to
Latombe7s book 9:;< on the state=of=the=art in robot motion planning>



 ! ! THE GENERAL MOTION PLANNING PROBLEM  

Another substantial ingredient of the motion planning problem is the set E of
obstacles in the workspace W7 Each obstacle E ! E is a closed connected9 possibly
unbounded9 subset of W7 The obstacles are stationary9 that is9 they do not move
or change shape in time7 Moreover9 the obstacles of E are assumed to be known9 so
that the robot B does not have to explore the workspace W and detect the obstacles
through certain sensing devices7 The presence of the obstacles in the workspace
causes some placements to be inaccessible7 A point Z in the con>guration space C
can correspond either to a placement of the robot B in the workspace W in which
it intersects no obstacle9 B?Z@# A$E EEB C %9 or to a placement of B in W in which
is has nonDempty intersection with the obstacle set E7 The >rst type of placement
is called a free placement7 The free space FP is the open set of all free placements
of the robot B9 hence

FP C fZ ! C j B?Z@ # A$E EEB C % g#
If the placements of the robot B are restricted to FP then B is not allowed to move
in contact with the obstacles of E7 Sometimes9 however9 allowing motion in contact9
or compliant motion9 results in more eIcient motion planning algorithms ?JK9  L@7 A
semi/free placement of the robot is either a free placement or a placement in which
it touches one or more obstacles but intersects the interior of no obstacle7 More
formally9 a semiDfree placement Z satis>es B?Z@ # A$E EintAEBB C %9 where intAEB
stands for the interior of the closed set E9 i7e79 E without its boundary 'E7 The
semi/free space SFP is the set of all semiDfree placements of the robot B9 hence

SFP C fZ ! C j B?Z@# A$E EintAEBB C % g#
Actually9 the quoted results ?JK9  L@ solve the motion planning problem in the closure
clAFPB of the free space which is formally a subset of SFP7 Except for some very
speci>c circumstances Asee ?O @B9 the closure clAFPB of the free space equals the
semiDfree space SFP7

The presented problem formulation is extendible in many directions7 Most of
the generalizations are hardly studied in exact motion planning7 One extension
is to have nonDstationary obstacles9 either moving autonomously Asee e7g7 ?RJ@B or
movable by the robot7 The dynamic behavior of the collection of free placements in
the case of autonomously moving obstacles is adequately modeled by adding a time
axis to the f Ddimensional con>guration space resulting in an Af SJBDdimensional soD
called con>gurationDtime space7 AThe intersection of this con>gurationDtime space
at some time t C T shows the free and nonDfree placements at t C T 7B The case
of movable obstacles raises additional problematic issues like how to grasp objects7
Another generalization would be to allow multiple robots7 An appropriate choice for
the con>guration space of such a system of robots is the Cartesian product of the
con>guration spaces of the individual robots Asee e7g7 ?RV@B7 Although the results of
this thesis are generalizable towards multiple robots9 we restrict ourselves to a single
robot7 Other extensions are unknown obstacles and nonDholonomic constraints7
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Non%holonomic constraints are relations between the degrees of freedom of the robot5
The relations impose restrictions on the shape of the collision%free robot motions5

A collision&free path or collision&free motion9 or path or motion for short9 for
a robot B from an initial placement Z ! FP to a <nal placement Z! ! FP is a
continuous map>

! > ?!"  @" FP"

with
! A!B C Z and ! A B C Z!#

Semi%freemotion can be allowed by changing the range of the map ! into SFP5 Hence9
the problem of motion planning is equal to the problem of <nding a continuous
curve between two query points9 completely lying inside the free portion FP of the
con<guration space5 No quality restrictions with respect to length9 curvature etc5
are imposed upon the reported path5 The eIort that is to be invested in <nding
such a curve obviously highly depends on the complexity of the free space FP5 The
discussion of motion planning algorithms below con<rms this statement5

The complexity of the free space9 as we will see in Chapter L9 is determined by
the number of multiple contacts of the robot B5 A multiple contact of the robot B is
a placement in which it touches more than one obstacle feature9 that is9 a basic part
of the obstacle boundary like a vertex9 edge9 or face5 Besides the collisions of the
robot with the obstacles9 parts of the robot can also collide with other robot parts5
Although these so%called self&collisions are often ignored in our considerations9 we
shall return to them at appropriate moments to demonstrate the validity of the
results when self%collisions are taken into account5 Unfortunately9 the number of
multiple contacts9 and9 hence9 the complexity of the free space9 can be very high5
If n is the number of obstacle features and f is the constant number of degrees of
freedom of the robot Athat is9 the dimension of the con<guration spaceB and the
number of robot features is bounded by some constant9 then this complexity can be
QAnf B5 As a generic example9 consider the robot arm in Figure  5R5 If the lengths
of the links and the distances between the obstacles are appropriately chosen9 then
each of the f links can be placed against any of the n&f obstacles in the vertical row
that it cuts through9 yielding An&fBf combinations of obstacles and therefore leading
to QAnf B multiple contacts5 As a consequence9 the complexity of the free space for
the robot arm is QAnf B5 Slightly lower worst%case free space complexities have been
obtained for speci<c free%Sying rigid robots among certain classes of obstacles5 The
reader is referred to Chapter L for an overview of some relevant results5 These bounds
generally remain close to an order of magnitude9 i5e59 a factor n9 below the QAnf B
bound5 Hence9 even in such bene<cial cases9 the theoretical worst%case bounds are
high5 Fortunately9 in many practical situations the complexity of the free space is
much smaller9 as arti<cially constructed workspaces with e5g5 a very large robot and
small obstacles are hardly encountered in real life5 When extreme shapes and sizes
of the robot and the obstacles do not occur9 high free space complexities tend to be
harder to obtain5 Consider for example the realistic motion planning environment of
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n!f

f

Figure  '() An ,f -DOF0 robot arm consisting with f links and f revolute joints
with ?,nf 0 f -fold contactsA andA henceA with free space complexity ?,nf 0'

Figure  'E where the FspiderG robot and the obstacles have constant complexity and
roughly the same sizes' The robot has six degrees of freedom) two for its position
in the workspaceA and four for each of the legs that are free to rotate around the
central joint' While being in contact with a certain obstacleA the robot is unable to
touch more than a constant number of other obstacles ,on the average0' ThenA the
number of multiple contacts can impossibly exceed O,n0' HenceA the free space for
this robot has complexityO,n0 and thus remains far below the free space complexity
obtained with the construction of Figure  '(' The impressive gap between the ?,nf 0

B

Figure  'E) A ,L-DOF0 robot with few multiple contactsA andA henceA with low free
space complexity'

construction and the realistic O,n0 example immediately raises the question what
speciNc properties of the robot and the obstacles lead to low free space complexities'
What natural mild assumptions would for example lead to the relative low obstacle
density of the above exampleA in which the robot is unable to touch more than
a constant number of obstacles simultaneouslyO ,Circumstances that resemble the
relative low obstacle density have been studied by Schwartz and Sharir RSST who refer
to it as bounded local complexity and by Pignon RVST who calls it sparsity'0 The
case of the L-DOF robot strongly suggests that a bound on the relative sizes of the
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robot and the obstacles is necessary to obtain the low obstacle density1 given that
the obstacles may lie arbitrarily close to each other5 Comparable robot and obstacle
sizes alone1 however1 are insu:cient to achieve really low free space complexities5
A very interesting additional assumption for the obstacles is fatness5 The fatness
assumption forbids the obstacles to be long and thin themselves or to have long or
thin parts5

Fatness is an interesting phenomenon in computational geometry5 It has received
quite some attention over the past few years5 Several papers study the surprising
inCuence of fatness of the objects under consideration on combinatorial and algorithE
mic complexities5 Examples of combinatorial complexity reductions include papers
by Alt et al5 GHI1 MatouKsek et al5 GMNI1 Efrat1 Rote1 and Sharir GPQI1 and Van Kreveld
GHTI which all show that the complexity of the union of certain geometric Ugures is
low if the objects are fat5 Overmars GNPI presents an e:cient algorithm for point
location in subdivisions consisting of fat cells5 For a discussion of these and some
other results1 the reader is referred to Chapter !5 For the moment1 the impact of
fatness is illustrated by a single1 though very attractive1 exampleW the complexity
of the union of n triangles in the plane5 If the triangles are unconstrained then a
quadratic union size can be obtained by arranging the triangles in a gridElike fashion
as shown in Figure  5Q5 MatouKsek et al5 GMNI show that the complexity of the union
of n triangles is only OXn log log nY if the angles of all triangles are at least "1 for
some Uxed constant " # Z5

n! 

n! 

Figure  5QW The union boundary of n arbitrary triangles can have complexity [Xn Y\
if the triangles are fat Xsee rightY1 then the complexity is nearly linear5

Chapter ! proposes a new notion of fatness that1 contrary to previous notions
like the "Efatness for triangles1 deals with arbitrary shapes in any dimension5 The
deUnition involves a parameter k that gives a qualitative indication of the fatness of
an object5 The fatness of the obstacles of E according to this deUnition1 along with
a bound on the relative sizes of the obstacles and the robot B1 and a bounded comE
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plexity assumption for the robot and the individual obstacles6 provide a practical
framework for many real9life motion planning problems; The free space for all prob9
lems that =t in this framework is shown to have only linear complexity in Chapter
?; The linear complexity result opens the way to devising e@cient algorithms for
solving many motion planning problems in realistic environments;

 !" Exact motion planning algorithms

Exact algorithms process the free space into a representation that captures all the
necessary details of Bthe structure ofC the free space to guarantee completeness;
The e@ciency of such methods is usually expressible in terms of the complexity of
the motion planning environment Bsee belowC; Judging purely on the worst9case
complexities for exact motion planning6 exact methods do not seem to be practical
alternatives for approximate methods in real9life situations; The constructions that
lead to these complexity bounds6 however6 are hardly encountered in practice; In9
spired by this observation6 this thesis shows that under certain realistic assumptions
Bon fatness and size ratiosC6 some exact algorithms do become feasible as their run9
ning times are reduced considerably; Moreover6 these realistic assumptions result
in a very bene=cial structure of the free space that allows for an e@cient general
paradigm for the exact solution of the motion planning problem;

Let us now brieIy review the two main classes of exact algorithmsJ cell decom9
position algorithms and retraction or roadmap algorithms; In general6 the existing
exact motion planning algorithms process the free space into a structure that is
capable of e@ciently handling multiple BarbitraryC path9=nding queries; The run9
ning time of an exact motion planning algorithm is actually the time to process the
free space into such a query structure; Both exact approaches reduce the motion
planning problem to a graph searching problem; Exact cell decomposition meth9
ods partition the free space FP into a =nite number of simple connected subcells6
such that planning a motion between any two placements within a single subcell is
straightforward and such that uniform crossing rules can be de=ned for B crossing
from one subcell into another; Applications of the cell decomposition technique in9
clude the famous OBn C Piano MoversP algorithm by Schwartz and Sharir RS?T for
planning the motion of a polygonal robot B moving amidst polygonal obstacles E
in the plane Bwith a total number of n edgesC; This early result has been improved
to OBn! log nC for a ladder Bline segmentC robot by Leven and Sharir RU?T; Halperin6
Overmars6 and Sharir R?!T decide in time OBn! log! nC on the existence of a collision9
free path for an L9shaped Bnon9convexC robot among polygonal obstacles; Avnaim6
Boissonnat6 and Faverjon R YT apply a variant of the cell decomposition technique to
a translating and rotating polygon among polygonal obstacles; Instead of decom9
posing the free space6 they decompose the free space boundary BFP Z clBFPC n FP
in time OBn" log nC; The motion obtained with this algorithm is semi9free rather
than freeJ except from the =rst and last portion6 the robot moves in contact with
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the obstacles+ When increasing the con1guration space dimension beyond three7
the results deteriorate rapidly+ Schwartz and Sharir ;<=> decompose the free space
of a robot moving amidst polyhedral obstacles in ABspace+ The algorithms for a
DEBDOFI ladder robot and for a DJBDOFI polyhedral robot yield connectivity graphs
with ODn  I and ODn !I nodesKsubcells respectively and have at least corresponding
running times7 where n is the total complexity of the obstacles+ Ke and ONRourke
;EQ> give a cell decomposition algorithm that improves the ODn  I bound for a ladB
der in ABspace to ODn" log nI+ In a diSerent paper ;<E> in the Piano MoversN series7
Schwartz and Sharir give a general cell decomposition algorithm7 based on algebraic
decomposition techniques by Collins ;AQ>+ The running time of the algorithm for a
robot with f degrees of freedom and constant complexity amidst obstacles with cuB
mulative complexity n is ODn#

f !
I7 which amounts e+g+ to ODn$%&"I for a freeBXying

rigid robot in ABspace+ Needless to say is that the known results for motion planning
problems with more than three degrees of freedom are far from practical due to their
performance+ Further examples of cell decompositions are found in the two other
papers in the Piano MoversN series ;<J7 Z >+

An alternative exact approach to motion planning is the retraction method or
roadmap method+ The approach recursively \retractsN the free space FP into a lowerB
dimensional subspace FP + The crucial aspect of the approach is the retraction
function Im ] FP  FP 7 mapping each placement in FP onto a placement in the
subspace FP + A simple collisionBfree motion must exist between every point Z ! FP
and its mapping ImDZI ! FP + Provided that such simple motions exist7 the problem
of planning a motion between Z% and Z in FP is reduced to the problem of 1nding a
motion between their retractions ImDZ%I and ImDZ I in the lowerBdimensional space
FP + Hence7 motion planning in FP is reduced to lowerBdimensional motion planning
in FP + The objective is to obtain7 after repeated retractions7 a oneBdimensional
network7 or roadmap7 N " FP+ There7 motion planning is reduced to graph searching
if we represent the oneBdimensional network N as a graph+ ÒNDùnlaing and Yap ;= >
and ÒNDùnlaing7 Sharir7 and Yap ;=Q> present algorithms for planning the motion of
a disc and a ladder7 based on retractions onto curves in twoB and threeBdimensional
Voronoi diagrams+ The algorithms run in time ODn log nI and ODn# log n log! nI
respectively'+ Leven and Sharir ;J!> use generalized Voronoi diagrams to extend
the former ODn log nI result to a translating convex robot+ Sifrony and Sharir ;ZA>
apply a variant of the retraction technique to a translating and rotating ladder
robot among polygonal obstacles+ They use a retraction that maps placements in
FP onto particular vertices on the boundary of FP+ The resulting algorithm runs in
ODK log nI7 where K is the number of feature pairs that are less than the length of
the ladder apart+ Kedem and Sharir ;E > present a variant of the retraction approach
for a convex polygonal robot in which they construct a graph on the edges of the
boundary BFP of the free space+ The algorithm runs in time ODn%"DnI log nI7 where

 log n # minf i ! ' j log!i" n # ( g) where log!i" stands for the logarithm function applied i
times in succession 67(89
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  "n# is a nearly,linear function related to Davenport,Schinzel sequences :;< =>?@
The resulting motions are once more semi,free rather than free@ A general roadmap,
based algorithm is due to Canny :G>?@ The algorithm computes a roadmap in the free
part of an f ,dimensional conHguration space in roughly O"nf log n# time< assuming a
robot and obstacles with bounded complexity@ The time,bound is close to worst,case
optimal@

The description of the ideas behind both exact planning approaches exhibits how
the complexity of the free space inKuences the eLciencies of the algorithms@ As it is
impossible to decompose the free space into subcells with a cumulative complexity
that is lower than the free space complexity< or to capture the combinatorial structure
of FP in a roadmap with complexity below the complexity of FP< the complexity of
the free space clearly provides a lower bound on the complexity "and computation
time# of any of the motion planning algorithms@

A question that immediately comes to mind when considering the linear free
space complexity result is whether it opens the way to eLcient motion planning
algorithms for realistic environments that Ht in the framework sketched in the pre,
vious section@ The sensitivity to the actual free space complexity of many existing
algorithm is unclearP algorithms may e@g@ construct wasteful decompositions or
roadmaps in cases of low FP complexity< or may construct small decompositions
and roadmaps but at relatively high computational cost@ Two algorithms< however<
yield a more or less immediate result< namely the O"K log n# boundary,vertices
retraction algorithm by Sifrony and Sharir :=Q? and the O"n! log n# boundary cell
decomposition by Avnaim< Boissonnat< and Faverjon : >?@ The relative low obstacle
density causes the number K of close corner pairs to be only O"n# resulting in a
running time of O"n log n# for a not too large ladder among fat obstacles@ Avnaim<
Boissonnat< and Faverjon claim that the running time of their algorithm decreases
considerably if the obstacle density is low@ No other papers claim enhanced perfor,
mance of algorithms under certain circumstances@

Most of the exact motion planning algorithms discussed in this section have never
been implemented@ One of the few exceptions is Schwartz and SharirWs O"n"# algo,
rithm@ BaXnon :  ? discusses an implementation for a ladder robot that is reported to
perform surprisingly well< contrary to expectations based on the theoretical complex,
ity analysis@ This observation may be due to a hidden sensitivity of the algorithmWs
running time to the complexity of the free space< which is far below O"n"#@ Schwartz
and Sharir do not give any clues in this direction@ Nevertheless< the surprising per,
formance of the exact algorithm motivates a more precise theoretical analysis of its
performance under the realistic assumptions sketched in the previous section@ In
Chapter !< it is proven that the algorithm by Schwartz and Sharir runs< unmodiHed<
in timeO"n## if the obstacles are fat and the robot is not too large< whereas a minor
modiHcation even enhances the eLciency to a running time of O"n log n#@ The same
chapter also shows examples of algorithms that do not beneHt from the fatness of
the obstacles@
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Algorithms for e.cient motion planning in 3D workspaces are scarce7 approaches
in contact space8 like the algorithms mentioned above by Sifrony and Sharir8 and
by Avnaim8 Boissonnat8 and Faverjon8 were never shown to generalize to higher
dimensionsB General approaches to motion planning Dfor example by Canny GHIJ
and Schwartz and Sharir GKLJM are computationally expensive8 particularly for the
low free space complexity motion planning problems from the realistic frameworkB
ThreePdimensional workspaces imply at least threePdimensional conQguration spaces
with arrangements deQning the free portionsB Naturally8 the structure of such higherP
dimensional arrangements is considerably more complex to understand8 let alone to
subdivide the free arrangement cells into simple subcells or catch their structure in
some onePdimensional roadmapB At this point8 however8 fatness comes to our help
to provide us with a very beneQcial property of the workspace8 which in fact also led
to the enhanced performance of Schwartz and SharirSs algorithm mentioned in the
previous paragraph7 the bounded local complexity of the workspace implied by the
fatness of the objects makes it possible to partition Da subspace ofM the workspace
W rather than the conQguration space into regions R such that the free part of
the conQguration space cylinder obtained by lifting R into conQguration space has
constant complexityB Moreover8 the bounded local complexity also establishes the
existence of small partitions into such regionsB

We formalize and exploit the workspace properties outlined in the preceding
paragraph and obtain a paradigm in Chapter ! for planning the motion of a not too
large constantPcomplexity robot moving amidst constantPcomplexity fat obstaclesB
The paradigm follows the cell decomposition approach to motion planning and reP
duces the problem of Qnding a decomposition of the free space to the problem of
Qnding a partition of an appropriate lowerPdimensional subspace of the conQguration
space8 subject to some constraintsB The robotSs workspace turns out to be a valid
choice for the subspace under the general circumstances of a freePVying robotB The
size of the free space decomposition into simple subcells is determined by the size
of the partition in the lowerPdimensional subspace of the conQguration spaceB The
running time of algorithms based on the paradigm depends on the time to Qnd such
a partitionB

In Chapter X8 the paradigm is shown to lead to e.cient algorithms for many
motion planning problems among constantPcomplexity fat obstacles both in IR and
IR!B We brieVy review the resultsB Unless stated otherwise8 the bounds apply to
freePVying robotsB The algorithm for solving the planar problem among arbitrarilyP
shaped obstacles in the plane runs in ODn log nM and outputs an optimal DlinearM
size decomposition of the free spaceB The same optimal bounds are obtained for
two practical instances of spatial motion planningB The Qrst case concerns settings
in which the obstacles have roughly the same size8 that is8 where the ratios of the
obstacle sizes are bounded by a constantB In the other8 often encountered case8 the
obstacles are unconstrained but the motion of the robot is conQned to a plane in
the spatial workspace7 the robotSs workVoorB Many examples of such constrained
robots can be found in industrial environmentsB Chapter X furthermore reports an
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O"n log n& algorithm for motion planning among polyhedral obstacles in 67space8
The algorithm computes a cell decomposition of size O"n &8 Non7polyhedral obsta7
cles require a totally di>erent algorithm8 The simple algorithm presented in Chapter
! for motion planning amidst arbitrarily7shaped obstacles in 67space runs in O"n!&
time and yields a decomposition of size O"n!&8 The results are not restricted to
the speci@c circumstances of fat obstacles and a bounded7size robot but hold in all
workspaces with relative low obstacle densities8 Note that all bounds are indepen7
dent of the number of degrees of freedom of the robotD which can easily be as high
as six or more8

 !" Fatness in geometry and thesis outline

The @rst chapters of this thesis introduce a new notion of fatness and discuss its role
in a broader geometric context than motion planning8 From Chapter G onwardD the
emphasis is on the inHuence of fatness on di>erent aspects of the motion planning
problem8

Chapter I introduces a new and general notion of fatness8 The new notion is
subsequently compared with previous and less general notions8 The chapter fur7
thermore reports two properties of scenes of fat objects in IRd that are both key
tools in many proofs throughout the thesis8 The @rst property applies to scenes of n
non7intersecting fat objects8 It is shown that any region of size proportional to the
smallest among the objects intersects at most a constant number of objects in the
scene8 This property is for obvious reasons repeatedly referred to as the low object
density property8 If n non7intersecting objects are grown then they eventually start
intersecting8 The second property states that if the growth is again proportional
to the smallest objectD then the arrangement of intersecting boundaries of the "not
necessarily fat& grown objects has complexity O"n&8 Besides its role as a toolD the
latter property has interesting consequences for complexities of union boundaries
of geometric @gures8 In addition to these resultsD Chapter I studies the relation
between the "lack of& fatness of an object E and the "lack of& fatness of objects
E"# $ $ $ # Em with  " i mEi N E8 The main conclusion from the obtained results
is that an object with low fatness cannot be split into "or covered by& a constant
number of objects with high fatness8

In O!6PD Overmars discusses a data structure for eRcient and simple point location
in fat subdivisions or sets of disjoint fat objects with total complexity n8 The
structure supports point location queries in time O"logd!" n& and uses O"n logd!" n&
storage8 Chapter 6 shows that the data structure can be used to answer range
queries with arbitrarily7shaped but bounded7size ranges8 To this endD it is proven
thatD under the condition of fatness of the stored objectsD each bounded7size range
query can be solved by a constant number of point location queries with carefully
chosen pointsD leading to a range query time of O"logd!" n&8 It is furthermore shown
that such range queries facilitate the eRcient construction of the data structure "a
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problem left open in -./01 in time O2n logd  n log log n14
Chapters 9:. focus on the role of fatness in motion planning4 A quick glance

of the chapters learns that Chapter 9 concentrates on the combinatorial aspects of
motion planning4 Besides giving an overview of combinatorial complexities of var:
ious motion planning problems 2in terms of worst:case free space complexities1E it
formulates the mild assumptions thatE along with the fatness of the obstaclesE yield
a linear free space complexity4 The remaining chapters deal with the algorithmic
aspects of motion planning4 In Chapter IE the impact of fatness on a representa:
tive selection of existing 2planar1 motion planning algorithms is considered4 The
algorithms show varying sensitivity to the low free space complexity induced by the
fatness of the obstacles4 Chapter J presents an eKcient general paradigm for motion
planning amidst fat obstacles that exploits the speciLc structure of the free space
2of motion planning problems amidst fat obstacles1 to reduce the problem of Lnding
a cell decomposition of the free space to the problem of Lnding some constrained
partition of a lower:dimensional subspace4 In Chapter .E the value of the paradigm
is demonstratedE as it leads to eKcient algorithms for a number of realistic motion
planning problems4



Chapter '

Fatness in computational

geometry

Many combinatorial and algorithmic worst1case complexity bounds in computational
geometry follow from rather arti7cial constructions that are not very likely to occur
in practice: Often< such constructions include extremely small< large< or thin ob1
jects< like lines< line segments< in7nitely long simplices< and points: In many cases<
the arti7cial worst1case constructions become impossible if the objects under con1
sideration are not allowed to have ?extreme@ shapes< but are assumed to have some
fatness property: Over the past few years< researchers in computational geometry
have not only noted that certain constructions become impossible for objects with a
certain fatness but< more surprisingly< also that combinatorial and algorithmic com1
plexities of certain problems are provably lower if the objects satisfy speci7c fatness
constraints:

A sequence of recent papers considers the inCuence of fatness in computational
geometry: Alt et al: DEF< Efrat< Rote< and Sharir DJKF< and MatouLsek et al: DMNF study
the complexity of the union of  1fat triangles< wedges Othat is< regions bounded by
two half1lines emanating from a single pointP< and double wedges Othat is< regions
bounded by two intersecting linesP< for a 7xed constant  : Either one of the regions
is  1fat if all its internal angles are at least  Osee Figure R:SP: Note that quadratic1
complexity constructions exist for all union sizes if the objects in the union are
non1fat Osee for example Figure S:KP: Alt et al: DEF show that the complement of the
union of n  1fat double wedges consists of OOnP components: In addition< they prove
an OOnP bound on the boundary complexity of n homothetic Othat is< scaled and
translatedP or reCected Owith respect to a vertical lineP homothetic copies of a single
 1fat triangle: MatouLsek et al: DMNF generalize the results by Alt et al: DEF: The authors
study the union of n  1fat triangles and prove that its boundary has complexity
OOn log log nP: The complement of the union consists of OOnP components: If the
triangles have roughly the same size or if they are replaced by  1fat wedges< then
the complexity of the union boundary becomes OOnP: Efrat< Rote< and Sharir DJKF
prove a similar result for the union boundary of  1fat wedges with a nearly inverse

SW
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Figure  ()* The triangle1 wedge1 and double wedge are  6fat for some constant  ! !
if the indicated angles are at least  (

quadratic instead of inverse cubic dependence on the constant  ( Van Kreveld @ABC
extends the OEn log log nF boundary complexity result to so6called  6wide polygons1
where  E! $   )F gives the minimal ratio of the width and length of any corridor
Enarrow passageF in the polygon( Finally1 Alt et al( @AC report an OEnF bound for
the complexity of the union boundary of n translated copies of a bowtie( A bowtie
is the rotation Igure of a rectangle( The linear bound holds if the rotation angle
does not exceed  arctanEb&aF1 where a1 b* a ! b1 are the lengths of the rectangleJs
sides( Note that the aspect ratio of a rectangle1 that is1 the ratio of the length of its
sides1 intuitively provides a good qualitative measure of its compactness or fatness(

Papers by Katz1 Overmars1 and Sharir @PQC1 Overmars @RSC1 De Berg1 De Groot1
and Overmars @)AC1 and Agarwal1 Katz1 and Sharir @)C report algorithmic conse6
quences of the fatness of the objects under consideration( Katz1 Overmars1 and
Sharir @PQC present an algorithm for eXcient hidden surface removal for scenes of ob6
jects with small union size( The algorithm computes the visibility map from z Y"
of a set of n  6fat triangles in S6space1 each of which is contained in a plane parallel
to the Ex* yF6plane1 in time OEEn log log n Z kF log nF1 where k is the complexity of
the output( Results for comparable scenes of non6fat triangles are1 among others1
an OEn

p
k log nF algorithm by Sharir and Overmars @Q C and an OEn!" Zn !#" k !#F

algorithm1 for any - ! !1 by Agarwal and Sharir @SC( Overmars @RSC gives a simple
data structure for point location in d6dimensional subdivisions consisting of fat cells
with query time OElogd ! nF and storage requirement OEn logd ! nF( For a detailed
discussion of OvermarsJ results and an overview of results on point location for non6
fat objects1 the reader is referred to Chapter S( There1 it is also shown how the point
location structure can be used for range searching and how the data structure is built
eXciently( Overmars uses the notion of fatness that is introduced in this chapter(
De Berg1 De Groot1 and Overmars @)AC show that an OEnF size orthogonal subdi6
vision of a set of n planar non6intersecting fat objects exists in which each region
is intersected by a constant number of objects( The subdivision can be computed
in time OEn log nF using OEn log nF storage( The result leads to eXcient binary
space partitions for scenes of fat objects( Agarwal1 Katz1 and Sharir @)C study depth
orders of non6intersecting fat objects in S6space( They show that the depth order of



 !

n triangles with fat xy.projections can be computed in time O7n log n89 The com.
putation takes O7n! "#!8< for any $ % >< if the triangles are non.fat ?!@A9 In addition<
they prove that the depth order of n convex objects with fat xy.projections and sizes
within a constant ratio from one another is computable in time O7n&$ %s 7n8 log! n8<
where &s7n8 is related to the length of so.called Davenport.Schinzel sequences ?IAJ
the parameter s equals the maximum number of intersections of the boundaries of
any two xy.projections of the convex objects9 The fatness of the object projections
boils down to a constant ratio between the size of the smallest enclosing square and
the largest inscribed square of any projection9 Halperin and Overmars ?I A< Mnally<
use ideas from the study of fatness to obtain eNcient algorithms for manipulating
a molecule model of loosely inter.penetrating spheres< representing the atoms that
constitute the molecule9

The notions of fatness encountered so far mostly apply to a limited set of objects
in two.dimensional space9 For our aim< a study of the role of fatness in motion
planning< we need a more general notion that at least applies to planar and spatial
objects9 The notion of k.fatness that is introduced in Section  9! applies to arbitrary
objects in any dimension and forbids objects to be long and thin or to have long and
thin parts9 This type of fatness imposes a suNcient requirement on the obstacles
to obtain a low free space complexity result9 The parameter k gives a qualitative
indication of the fatnessP the lower the value of k< the fatter the object9 In the
sequel< a fat object is an object that is k.fat for a constant k9 Section  9! furthermore
compares our notion of fatness with alternative notions9

The remainder of the chapter is mainly devoted to deducing properties that
serve as tools elsewhere in the thesis9 Nevertheless< some of these results are also
interesting in their own right as they have applications outside motion planning9

Section  9R contains the low object density result for scenes of non.intersecting
fat objects9 The property plays a crucial role throughout the thesis9 Within the
same section< it forms the basis of a linear complexity result for the arrangement
obtained by growing the fat object boundaries by an amount proportional to the size
of the smallest object9 Besides its applications in motion planning< the latter result
is also interesting in relation to the complexity of the union boundary of Mgures in
arbitrary dimension9

In Section  9I< it is shown that the union of two 7intersecting8 fat objects is
at most a constant factor less fat than the least fat of its two constituents9 As a
result< it takes at least V7log7k)k 88 pieces to partition an object that is not k.fat
7so WthinnerX than k.fat8 into k .fat pieces for any k  k9 The failure to subdivide
a thin object into a constant number of fat objects makes it impossible to extend
the results in this thesis to thin objects by partitioning the objects into fat objects<
as such an approach would increase the asymptotic size of the object set9 The last
section of this chapter presents a generalization of the notion of fatness< and states
the relations between the diYerent types of fatness that Mt in the generalization9
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 !" Fatness

Our de&nition of fatness in a d.dimensional Euclidean space involves d.dimensional
closed hyperspherical regions centered at some arbitrary point in an object E: The
closed hyperspherical region with radius r centered at m will be denoted by Sm!r= so

Sm!r > fx ! IRdjdAx&mB # rgC

the boundary of Sm!r will be denoted by 'Sm!r= so

'Sm!r > fx ! IRdjdAx&mB > rg(

Hyperspherical regions with boundaries that have non.empty intersection with an
object E play a central role in our notion of fatness: Therefore= the following de&.
nition is useful:

De"nition '() *Um!E& UE+
Let E % IRd be an object) The set UE is de/ned as

UE >
 
m E

Um!E&

where

Um!E > fSm!r % IRd j 'Sm!r & E '> (g(
So= UE is the set of all hyperspherical regions with center inside E that do not fully
contain E: Figure  : gives two.dimensional examples showing two circular regions
S and S! that belong to UE and two circular regions S" and S# that do not belong
to UE: The region S lies completely inside the object E and is therefore easily seen
to be an element of UE: The region S! is only partly covered by E but= since its
center lies inside the object E and its boundary has non.empty intersection with
E= the region S! is a member of UE: The circular region S" does not belong to UE
because its boundary has empty intersection with E= whereas S# is not a member
of UE because it has its center outside E:

We de&ne fatness in a way such that objects are not only IcompactJ but also
do not have extremely thin protuberances: The de&nition of fatness involves some
positive number k: This number is a measure for the actual fatness of the object:
If the value of k is increased then the object is allowed to be less fat: For objects
with a boundary with in&nitesimally thin protuberances Ae:g: line segmentsB it is
impossible to &nd such a k= so these objects can never be fat:

De"nition '(' *k,fat+
Let E % IRd be an object and let k be a positive constant) The object E is k5fat if7

)S ! UE k * volumeAE & SB + volumeASB(
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Figure  ( ) Illustration of the de4nition of UE) S " S!  UE5 S" ! UE because
#S" " E 8 #5 S# ! UE because its center m ! E(

Informally5 an object E is k<fat if the part of any hyperspherical region S with a
boundary that intersects E and its center inside E covered by the object E is at least
a @'k<th of S( Hence5 the relatively emptiest hypersphere among all hyperspheres
centered inside E and with a boundary intersecting E determines the fatness of E(
Figure  (! gives a collection of two<dimensional objects( Below5 an indication of
the fatness of the these objects is given5 along with an indication of the relatively
emptiest circle( The diverse character of the various emptiest circles gives a 4rst
indication that the fatness of an object may be hard to compute( The object E! is
not fat due to the in4nitely thin part on the upper edge( No 4nite bound exists on
the ratio of the area inside the dashed circle and the area of E! inside the circle( The
fatness of a convex object like E" is computable from its area and its diameter Gsee
Section  ( IJ E" is GKL('@!I<fat( The object E# may seem quite thin Gi(e( not very
fatI at 4rst sight( The closeness of the teeth of the NcombO though makes it hard to
draw relatively empty circles centered inside E#( E# is GP(I<fat( The object E$ is
G (Q (

p
!I<fat( Like in many other cases5 the relatively emptiest circle is centered

on the object boundary and enclosing the object entirely( If one of the angles is
chosen smaller5 then the emptiest sphere is centered at the corresponding vertex
and passes through the edges incident to the vertex( In such a case Gsee e(g( E%I5
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Figure  ()* A single non0fat object E! and 8ve objects E$! " " " ! E of varying fatness(
The width of a tooth of the >comb@ E# equals the distance between two successive
teeth( The width of the narrow bar of the >H@0shaped object E is DEE times smaller
than the width of both wide bars( The length of the narrow bar equals the width
of the wide bars( The dashed circles are the relatively emptiest circles in UEi! FD  
i  GHI the black dots are the circle centers(

the sharpest angle determines the fatness( The object E% is  E0fat( The object E K
8nallyK is not very fatK due to the narrow barI E is F L%H0fat( HereK the narrowest
corridor determines the fatness of the object( Note that the emptiest circle slightly
penetrates the wide bars( FSee the next section for some information on computing
the fatness of objects(H

We list a few straightforward properties of fat objects without proofK as the
validity of each of the properties is easily veri8ed(

Property '() Let E ! IRd be a k%fat closed connected object. Then

*a, E is k %fat2 for any k " k5

*b, R # E is k%fat2 for any rotation matrix R $ SOFdH5

*c, E S t is k%fat2 for any translation vector t $ IRd5

*d, ,E is k%fat2 for any scaling factor , $ IR&.
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The choice for hyperspherical regions in the de3nition of fatness is rather ar4
bitrary6 In fact we could have used any compact region <with non4zero volume>?
like hypercubic regions? regions bounded by simplices etc6 Section  6! examines the
relation between de3nitions of fatness with respect to diCerent shapes6 From the
results presented there? it is clear that if an object is k fat with respect to a given
compact shape A1 it is k  fat with respect to another compact shape B for some k 

that is only a constant multiple of k5

The lower bound on k in the de9nition of fatness equals ; in any dimension d5
The maximal ; fatness in dimension d is achieved by the =object? IRd as it covers ;BB
C of any hypersphere5 A half space in any dimension d is E fat as is covers at least
half of any hypersphere centered inside the half space5 Determining a lower bound
on the value of k is a lot more interesting if we restrict ourselves to bounded objects5
Then1 the lower bound diGers from dimension to dimension5 There are for example
no HboundedI ; fat objects at allJ there can be K fat objects in a two dimensional
workspace but K fat objects in a three dimensional workspace do not exist5 Suppose
we have a k fat object E with diameter %5 The volume of this object is bounded from
above by the volume of a hypersphere with diameter % Hor radius %&EI5 The diameter
of E is %1 so there is a pair of points on the boundary of E that are a distance % apartJ
let m(m  E be these two points5 The hyperspherical region Sm"# is an element of
UE since m  +Sm"# and m  E5 HSimilarly1 the hyperspherical region Sm "# is an
element of UE5I Hence1 the set UE contains an element S with radius %5 We know
that volumeHE ! SI " volumeHEI " ,d # H%&EId and volumeHSI P ,d # %d1 where
,d is the dimension dependent multiplier in the volume formulae for hyperspheres 5
Combination with De9nition E5E HE is k fat and S  UEI yields k $ Ed5 The
boundary value Ed fatness is only obtained for hyperspherical objectsJ hyperspherical
objects have maximal fatness among the bounded objects5

The de9nition of k fatness has a =local? characterR a certain portion of the prox 
imity of every point in the object must be covered by the object as well5 As stated
before1 this locality prohibits objects with in9nitesimally thin protuberances1 even
if these protuberances are extremely short5 A huge spherical object with a very
short line segment sticking out of its boundary will not be k fat for any value of k5
This might contradict with our intuitive idea of fatness5 An alternative is the more
=global? type of fatness given in De9nition E5S5 For convenience1 we will refer to it
as thickness!5 Here1 we only compare the volume of the entire object to the volume
of its minimal HvolumeI enclosing hypersphereR the volume of the object should be
at least a certain portion of the minimal enclosing hypersphere of the object5 This
more liberal de9nition allows objects with small protuberances5 If E is an object
then we denote the minimal enclosing hypersphere of E by MESE5

 For even dimension  d *  !m * !m"m+, For odd dimension  d *  !m" * -.-!/m".-m01/++,
See3 e,g,3 5673 Section 6:;<,

!Thickness is equivalent to our initial notion of fatness3 as presented in 5:;<, Its shortcomings
with respect to the ability to obtain a low free space complexity led to the present deKnition of
fatness3 given as DeKnition -,-,
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De"nition '() *k+thick/
Let E  IRd be an object and let k ! $ be a constant, The object E is k0thick if3

k " volume%E& ! volume%MESE&,

The de+nition of k1thickness involves just one hypersphere instead of in+nitely many>
Note that not necessarily MESE # UE@ the minimal enclosing hypersphere of an
object can have its center outside the object> Again we have the straightforward
property that an object that is k1thick is also k 1thick for k ! k> Spherical objects
are $1thickF because the minimal enclosing hyperspheres of such objects are the
objects themselves>

Even though the notion of k1thickness seems more naturalF it is not very useful
for our purposes because it does not result in low complexities of the free spaceF due
to the impossibility to prove a low object density property for scenes of such objects
%similar to Theorem  >I&F which turns out to be the basis of the low free space
complexity result presented in Chapter K> We could restrict ourselves to convex
objects butF as we will see belowF in that case thickness is equivalent to fatness>
ThereforeF we have chosen to use the de+nition of fatness stated as De+nition  > 
because it also allows for non1convex objects> The property of the set Um#E for
a convex region E given in the next lemma is a useful tool in the proof of the
equivalence of thickness and fatness for convex objects>

Lemma '(3 Let E  IRd be a convex object and m # E, Let Sm#r # Um#E and
Sm#R # Um#E with r $ R, Now the following inequality holds3

volume%E % Sm#r&

volume%Sm#r&
! volume%E % Sm#R&

volume%Sm#R&
'

Proof7 We use a polar coordinate frame with origin m and angles () * ) ' ' ' ) *d!!F
with O $ ( +  ,F O $ * ) ' ' ' ) *d!! $ ,> Each %d& $&1tuple of angles %() * ) ' ' ' ) *d!!&
speci+es a viewing direction from m> Since the object E is convexF each point on
the boundary of E can be seen from m> ThereforeF the relation between the viewing
direction and the distance to the boundary of E is a function> The same obviously
holds for both spheres> SoF there are three functions .E) .Sm!r ) .Sm!R @ PO)  ,& '
PO) ,Qd!! ( IR" ) fOgF that give the distance from m to the boundary of EF Sm#rF
Sm#R respectively> The latter two functions are constant@ .Sm!r %() * ) ' ' ' ) *d!!& R r
and .Sm!R %() * ) ' ' ' ) *d!!& R R> Let f) F @ PO)  ,&' PO) ,Qd!! ( PO) $Q be de+ned as@

f%() * ) ' ' ' ) *d!!& R min%
.E%() * ) ' ' ' ) *d!!&

r
) $&)

F %() * ) ' ' ' ) *d!!& R min%
.E%() * ) ' ' ' ) *d!!&

R
) $&'

The left1hand side volume%E % Sm#r&1volume%Sm#r& is obtained by integrating the
product of some determinant function T and the function f to some power p over



 !"! FATNESS  !

the full angular domain0 The right2hand side volume4E  Sm!R5"volume4Sm!R5 is
obtained by integrating the product of the same : and the function F to the power
p over the same domain0 The determinant : is a product of 4sin %i5

j 2terms0 Since
> ! % & ' ' ' & %d ! ! (? function :@s range is restricted to A>& BC0 Functions f and F
have the same range0 If we can prove that f4*& % & ' ' ' & %d !5 " F 4*& % & ' ' ' & %d !5?
for all > ! * +  ( and > ! % & ' ' ' & %d ! ! (? then? because :? f ? and F only have
non2negative function values? the integral containing f will yield a larger value than
the one containing F ? and hence the inequality involving the volumes will be proved0

Relevant changes in the values of f and F appear at ,E4*& % & ' ' ' & %d !5 H r and
,E4*& % & ' ' ' & %d !5 H R0 Therefore? we consider three diIerent ranges for the value

m
E

" 

"!

""

"#

Sm!R

Sm!r

Figure  0JK The angular interval A* & *!C is an example of case 4B5? interval A*!& *"C
is an example of case 4 5? and the angular interval A*"& *#C is an example of case 4M50

of ,E4*& % & ' ' ' & %d !50

B0 If ,E4*& % & ' ' ' & %d !5 ! r then
f4*& % & ' ' ' & %d !5 H ,E4*& % & ' ' ' & %d !5"r
" ,E4*& % & ' ' ' & %d !5"R H F 4*& % & ' ' ' & %d !50

 0 If r ! ,E4*& % & ' ' ' & %d !5 ! R then
f4*& % & ' ' ' & %d !5 H B " ,E4*& % & ' ' ' & %d !5"R H F 4*& % & ' ' ' & %d !50
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"# If R  !E&"# $ # % % % # $d !' then
f&"# $ # % % % # $d !' , - , F &"# $ # % % % # $d !'#

Figure  #3 shows a two8dimensional example of each of the three cases given above#
Combining the three diBerent rangesC we obtain

f&"# $ # % % % # $d !' ! F &"# $ # % % % # $d !'#
for all D  " (  ) and D  $ # % % % # $d !  )#  

Lemma  #F shows that in each set Um#E the portion of a hyperspherical region that is
covered by the object E does not increase as the radius of the hyperspherical region
increases# The ratio is therefore minimal for the region ESm#E " Um#E with maximal
volumeC which is the enclosing hypersphere of E centered at m# The region ESm#E
is uniquely deKned by following expression

ESm#E " Um#E # $S!Um!ES % ESm#E%

A consequence of Lemma  #F is that if k & volume&E ' ESm#E' ! volume&ESm#E'
holds then we can conclude that k & volume&E ' S' ! volume&S' for all S " Um#E#
DeKne the set ESE of all enclosing hyperspherical regions centered at some point in
the objectN

ESE , fESm#Ejm " Eg%
It is clear that ESE % UE# Lemma  #F makes a simpliKcation of the condition in
DeKnition  # possible for convex objects# Note that for all S " ESEC the obvious
equality E ' S , E holds# HenceC a convex object E is k8fat ifN

$S " ESE k & volume&E' ! volume&S'%

The preceding lemma and considerations provide useful tools in the proof of the
equivalence of thickness and fatness for convex objects#

Theorem &'( Let E % IRd be a convex object0 Then

E is k5fat + E is k"5thick # E is l5thick + E is l"5fat8

with k" , c & k and l" , c" & l8 for some constants c and c"0
Proof+
E is k8fat + E is k"8thickN

Choose some hyperspherical region S " ESE# The object E is k8fat and
ESE % UEC so k & volume&E' , k & volume&E ' S' ! volume&S'# Region
S is some enclosing hyperspherical region of E and MESE is deKned as
the minimal volume enclosing hyperspherical region of EC so obviously
volume&MESE'  volume&S' holds# Combining both inequalities results
in k & volume&E' ! volume&MESE'C proving k

"8thickness of EC with k" ,
k#
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E is l$thick E is l $fat+

The convex object E is l$thick4 so l ! volume5E6 " volume5MESE67 By
Lemma  7< and the convexity of E we know that it su@ces to prove that
#S $ ESE + l ! volume5E6 " volume5S64 for some constant l 7 Let #
be the diameter of MESE and let $ be the diameter of the object E7
The obstacle E Dts inside MESE so trivially $ % #7 The diameter of the
object E is determined by two points m and m on its boundary7 The
radius of a hyperspherical region in ESE is at most $7 This is the radius
of the largest regions ESm"E and ESm "E7

We have volume5MESE6 G &d !5#' 6d and for all S $ ESE+ volume5S6 %
&d ! $d4 where &d is the dimension$dependent multiplication factor men$
tioned earlier in this section7 Combination of all equalities and inequal$
ities yields for all S $ ESE+

 d ! l ! volume5E6
"  d ! volume5MESE6
G &d ! #d
" &d ! $d
" volume5S64

proving l $fatness of the convex object E4 with l G  d ! l7  

Fatness and thickness are deDnitely not equivalent for non$convex objects as can be
concluded from the object E in Figure  7K which is not fat but very thick7

A consequence of Theorem  7M is that the complexity results that we prove for
convex objects that are k$fat also hold for convex objects that are k $thick7 In the
sequel4 we will only consider fatness4 not thickness7

The notion of fatness proposed in this section also relates to most of the other
notions summarized in the introductory part of this thesis4 for the speciDc classes
of objects to which these other notions apply7 A #$fat triangle P<4 MQR is also fat
according to our deDnition7 Assume that we are given a #$fat triangle with a longest
edge e7 The triangle has minimum area if the other two angles have magnitudes #
and * &  #7 This minimal area is 5jej! tan #6'S7 Using a result from Chapter  7 on
the fatness of convex objects4 we Dnd that this triangle is S*'5tan #6$fat according
to our fatness deDnition7 Maximum fatness is achieved for equilateral triangles
and there is no fatness if # G V7 The latter triangle will also be non$fat in PMQR7
Furthermore4 it is easily veriDed that a #$fat wedge is 5 *'#6$fat and a #$fat double
wedge is 5*'#6$fat7 Van KreveldYs notion of wideness for polygons P<ZR is related for
c$gons only4 where c is some constant7 It is4 however4 rather di@cult to determine a
relation between the fatness and wideness of a c$gon7
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 ! Computing the fatness of an object

Section )*+ provides a de2nition of k4fatness5 stating when an object is k4fat* The
fact that an object is k4fat however does not give a clue on how fat the object really
is5 due to the property that a k4fat object is also k 4fat5 for all k  k* The minimum
k for which E is k4fat provides a realistic qualitative measure for EAs fatness* Let
F CED be this minimum5 so

F CED E minfkjE is k # fatg#
We will occasionally refer to F CED as Gthe fatness of EA* Substitution of the de2nition
of k4fatness in the de2nition given above yields the following formulation for F CEDH

F CED E minfkj%S!UEk & volumeCE ' SD  volumeCSDg

E minfkj%S!UE

volumeCSD

volumeCE ' SD
( kg

E minfkjmaxf volumeCSD

volumeCE ' SD
jS ) UEg ( kg

E maxf volumeCSD

volumeCE ' SD
jS ) UEg#

The equation shows that the minimum k for which E is k4fat is achieved by the
hypersphere S ) UE that maximizes the ratio fECSD E volumeCSD'volumeCE ' SD*
Informally5 this hypersphere S is the relatively emptiest among the hyperspheres
of UE* Figure )* shows that the relatively emptiest hyperspheres for the objects
E ( # # # ( E! are very diMerent*

We will now derive an explicit formula for F CED in the case that E * IRd is an
arbitrary convex shape with volume V and diameter ** We were unable to express
the fatness F CED of an object E as a function of parameters that are related to the
shape of E5 and to characterize the corresponding relatively emptiest hypersphereCsD
in UE5 for non4convex objects*

The basis for an explicit fatness formula for convex objects E lies in Lemma )*O5
which5 after minor manipulations5 states that the inequality

fECSm%RD E
volumeCSm%RD

volumeCE ' Sm%RD
 volumeCSm%rD

volumeCE ' Sm%rD
E fECSm%rD

holds for any pair Sm%r( Sm%R ) UE with r ( R* Like in Section )*+5 we abbreviate the
largest member of UE centered at m to ESm%E* Notice that ESm%E is the enclosing
hypersphere of E centered at m* All enclosing hyperspheres ESm%E centered at some
m ) E are collected in a set ESE* A consequence of the above inequality is that for
all Sm%r ) UEH

fECESm%ED  fECSm%rD#
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Informally+ the inequality says that the largest of the hyperspheres from UE centered
atm is the emptiest among all such hyperspheres7 As a result+ the relatively emptiest
hypersphere belongs to the set ESE  UE of enclosing hyperspheres+ so

maxffE<S=jS # UEg > maxffE<S=jS # ESEg

> maxf volume<S=

volume<E % S=jS # ESEg%

Each hypersphere in ESE fully encloses the convex object E+ hence E % S > E
for all S # ESE7 This identity and the assumption volume<E= > V allow for the
following reformulation7

maxffE<S=jS # UEg > maxfvolume<S=

V
jS # ESEg

The constant denominator V of the fraction in the rightChand side of the equality
justiDes the conclusion that the maximum fraction is obtained when the numerator
volume<S= is chosen as large as possible7 Therefore+ the largest hypersphere in ESE
is the relatively emptiest hypersphere in UE7 Since the diameter of E equals '+
the maximum distance between any pair of points in E is '7 Let p) q # E be such
that the distance from p to q is '7 Then Sp"# # ESE and Sq"# # ESE because
q # +Sp"# and p # +Sq"# respectively7 For obvious reasons+ the set ESE contains
no hyperspheres with radii larger than '7 Combining these considerations with
volume<Sp"#= > volume<Sq"#= > ,d & 'd yields maxfvolume<S=jS # ESEg > ,d & 'd+
and thus

F <E= > maxffE<S=jS # UEg >
,d & 'd
V

%

This leads to the following theorem on the fatness of convex objects7

Theorem &'( Let E  IRd be a closed convex object with volume V and diameter
'4 Then E is <,d & V   & 'd=6fat4

The problem of maximizing the ratio fE<S= > volume<S=.volume<E % S= for
general E or+ less ambitious+ for diKerent classes of E <like polytopes= is very hard7
The diMculty lies both in the shape and <implicit= dimension of the domain of
fE and in the analytic form of fE7 The continuous domain UE of hyperspheres
of the function fE can be seen as a subset of the <d N !=Cdimensional Cartesian
product of the dCdimensional space of hypersphere centers m > <m ) % % % )md= # IRd

and the oneCdimensional space of radii r # IR!7 The complex shape of the domain+
constrained by the two dependent expressions m # E and +Sm"r%E '> (+ contributes
to the diMculty of the problem7 Another complicating factor is that the <analytical=
description of fE<Sm"r= in terms of m > <m ) % % % )md= and r is not unique throughout
the entire domain of hyperspheres+ due to the changing topology of the intersection
of Sm"r and E7
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The problem of computing the fatness for any class of objects beyond convex
shapes remains open9 A relaxed version of the problem; aimed at <nding an upper
bound on the fatness that is not more than a constant multiple of the =real> fatness
?that is; the maximum ratio volume?S@!volume?E  S@@; is also largely unsolved9

 !" Properties of scenes of fat objects

In this section we prove two important results for scenes of fat objects9 The results
form the basis of many proofs throughout this thesis9 In the <rst subsection we show
that a scene of nonCintersecting kCfat objects satis<es a certain low density property;
saying that the number of objects within a =neighborhood> is at most constant9 The
exact interpretation of =neighborhood> is shown to be dependent on the sizes of the
objects that are involved9 The low density property resembles the notion of bounded
local complexity introduced by Schwartz and Sharir in FGGH9

The complexity of the arrangement of the boundaries of n disjoint constantC
complexity objects is clearly O?n@9 If we expand the objects in some way then they
will start intersecting; and eventually the asymptotic combinatorial complexity of
the arrangement will increase9 In the case of general objects; a drastic increase of
the complexity can occur soon after the expansion has started9 We may expect; on
the grounds of the low density property of the original disjoint objects; that such a
sudden increase does not take place if the objects are fatK one gets the feeling that an
expansion by some bounded amount does not increase the asymptotic complexity of
the arrangement9 The second subsection provides the circumstances that do indeed
lead to this result9 The results have immediate consequences for complexities of
union boundaries; like those in FMGH and FNOH9

 !"!# Fatness implies low density

This subsection discusses a certain low object density property implied by the fatness
of the objects under consideration9 The property has a large impact in the rest of
this thesis; as many proofs apply it in some form9 The result can be paraphrased
in many diPerent; but essentially similar; ways9 We decide to give two alternative
formulations; to save ourselves from repeatedly deducing either one of the two from
the other one in the future9 As remarked earlier; the result; like many others in this
thesis; includes a notion of neighborhood depending on the size of the objects under
consideration9 Therefore; we shall <rst introduce a convenient way to express the
size of an object9

Clearly; there are many ways to express a bound on the size of an object9 The
size; that is; the radius; of the minimal enclosing hypersphere of an object is felt to
be the most convenient measure for our purposes9 The size of the minimal enclosing
hypersphere can be seen to relate closely to other measures of the size of the fat
object; like the diameter of the object; and; because of the fatness; also the volume9
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The choice for the minimal enclosing hypersphere as a measure of size4 implies that
if we say that 6an object X is larger than another object E9 we implicitly mean to
say that 6the :radius of the< minimal enclosing hypersphere MESX of X is larger
than the :radius of the< minimal enclosing hypersphere MESE of E9= Similarly4 6the
smallest object E9 means 6the object with the smallest :radius< minimal enclosing
hyperspere MESE9=

De"nition '() *minimal enclosing hypersphere 5or mes67 radius: The min)
imal enclosing hypersphere radius5 or mes)radius5 of an object X is the radius of the
minimal enclosing hypersphere of the object X:

Theorem ?=@ states the low object density property for scenes of nonAintersecting
kAfat objects=

Theorem '(< Let k  B and c  C be constants and let E be a set of non)
intersecting k)fat objects in IRd with minimal enclosing hypersphere radii at least
$: Then the number of objects E " E intersecting any region R with minimal en)
closing hypersphere radius c # $ is bounded by the constant k # :cF B<d:

Proof? The approach is to identify a region T with bounded volume such that
each object E intersecting R has a certain minimum volume inside the region T =
The combination of the volume of T and the lower bound on the volume of E $ T
results in a bound on the number of objects E that intersect R=

DeIne T J MESR % SO%&4 the Minkowski diMerence of the minimal enclosing
hypersphere MESR of R and the hypersphere with radius $4 centered at the origin
O= The radius of the hypersphere T equals c # $F $ J :cFB< # $4 which implies that
the volume of T is

volume:T < J )d # ::cF B< # $<d J )d # :cF B<d # $d*

where )d is the dimensionAdependent multiplier for hypersphere volumes=
Now consider an object E intersecting the region R= Let m be a point in the

nonAempty intersection E $R= The point m lies inside E so it deInitely lies in the
minimal enclosing hypersphere MESE as well= As a consequence4 the hypersphere
Sm%& is completely contained in T JMESR%SO%&= In order to be able to give a lower
bound on the volume of E lying in Sm%& and hence in T 4 we show that Sm%& " UE=
The object E has nonAempty intersection with Sm%& because m " E= Moreover4
the object E cannot lie entirely in the interior of Sm%& as this would contradict the
assumption that the minimal enclosing hypersphere of E has radius at least $= So4
the boundary of Sm%& is intersected by E and therefore Sm%& " UE= From Sm%& " UE
and the containment of Sm%& in T it follows that

volume:E $ T <  volume:E $ Sm%&<  B

k
# volume:Sm%&< J k  # )d # $d-
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The combination of volume.T / 0 !d  .c12/d  #d and volume.E!T / " k   !d  #d
for any E intersecting R8 results in an upper bound of k  .c12/d on the number of
objects E intersecting R=  

Informally8 the theorem states that the number of k?fat objects intersecting a region8
that is not too large compared to the objects8 is constant= The weakness of the notion
of thickness8 as deBned in the previous section8 lies in the impossibility to deduce
a similar property for scenes of such objects= This impossibility is illustrated by
the two?dimensional example of Figure F=G8 where an extremely small rectangular
region is intersected by n very thick8 namely !?thick8 objects= In a motion planning
context8 this would imply that even an extremely small robot is able to touch many
obstacles simultaneously8 which potentially leads to a high complexity free space=

R

Figure F=GH The small rectangular region R intersects n !?thick objects=

The following alternative formulation of the low density property in terms of
distances can be given= It bounds the number of larger k?fat objects that can lie
close to a given k?fat object=

Corollary &'() Let k " 2 and c " I be constants and let E be a set of non/
intersecting k/fat objects in IRd4 Let E $ E be an object with minimal enclosing
hypersphere radius #4 Then the number of object E! $ E with larger minimal en/
closing hypersphere radii within a distance c  # from E is bounded by the constant
k  .c1 F/d4

Proof, Any object E ! within a distance c  # from E must also lie within the same
distance c  # from the minimal enclosing hypersphere MESE of E8 which has radius
#= Necessarily8 such an object E! must then intersect the region bounded by the hy?
persphere concentric to MESE but at a distance c  # from MESE8 hence with radius
.c1 2/  #= So8 application of Theorem F=N with R chosen to be the region bounded
by the concentric hypersphere8 with mes?radius .c12/ # yields the claimed result=  
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 !"! Arrangements of fat object wrappings

This subsection studies the complexity of the arrangement of boundaries of ex7
panded fat objects9 Clearly; the arrangement of the boundaries of n non7intersecting
constant7complexity objects has O<n= complexity9 Let us see what happens if the
objects are expanded9 While expanding the fat objects; each of the boundaries will
eventually start intersecting other boundaries9 Intuitively; the Crst boundaries that
are to be intersected belong to neighboring objects9 As there is only a constant num7
ber of objects closeby; the contribution of each boundary to the complexity of the
arrangement of boundaries does; again intuitively; not increase asymptotically as it
starts intersecting the boundaries of these objects9 Below; these informal ideas are
made concrete by giving accurate bounds on the expansion of the k7fat objects such
that the combinatorial complexity of the arrangement of the boundaries of these <in7
tersecting= expansions equals O<n=9 The so7called #7wrappings that are introduced
Crst provide a convenient means of expressing the expansion of an object9

SuHciently tight wrappings of fat objects play a crucial role in providing the
justiCcation that the paradigm for motion planning amidst fat obstacles presented
in Chapter I indeed works9 Besides that; the wrappings also help in Cnding eHcient
instances of the paradigm; for speciCc classes of motion planning problems9 More7
over; the theorem on wrappings that we prove below is interesting in its own right;
as it implies nice complexity bounds for certain arrangements and for the boundary
of the union of speciCc families of shapes9

De"nition '()) *#+wrapping1
Let E  IRd and let # ! IR ' Any object M " E satisfying d<p'E= # # for all p ! M
is an #3wrapping of E'

An #7wrapping of an object E is an enclosing shape of E; with the property that
the distance from the wrapping to E never exceeds #9

Theorem N9ON states the circumstances that lead to a linear complexity arrange7
ment of expanded fat object boundaries9 An obvious way to express a bound on the
expansion of an object E is to state that the expanded object is some #7wrapping
of the object E itself; for some bounded positive #9 Note that the object expansions
need not necessarily be fat9

Theorem '()' Let k $ O and c $ Q be constants and let E be a set of n non3
intersecting k3fat objects in IRd with minimal enclosing hypersphere radii at least )'
Assume that a constant3complexity <c & )=3wrapping M<E= is given for every object
E ! E' Then<

5a6 the complexity of the arrangement A<M= of all wrapping boundaries *M<E= is
O<n==

5b6 every point p ! IRd lies inside at most O<O= wrappings M<E='
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Proof$ To prove the *a,-part. let us assume that the objects in E are ordered
by increasing size< E ! " " " ! En. and that # ! " " " ! #n are the corresponding minimal
enclosing hypersphere radii. so # ! # ! " " " ! #n= We intend to count for each
object Ei the subspaces of dimensions @ to d"A that are deBned by the intersection
of %C*Ei, and wrapping boundaries %C*Ej, with j ' i= A *c##,-wrapping boundary
%C*Ei, can only be intersected by *c # #,-wrapping boundaries %C*Ej, *i * j, if
the distance from Ei to Ej does not exceed Gc # # ! Gc # #i= *See Figure G=! for a
GD example of intersecting wrappings=, Application of Corollary G=A@ yields that

Ek Ei

Ej

x

 i

c   i

Figure G=!< The bold lines are the boundaries of *c # #,-wrappings. and *because
# ! #i, also *c # #i,-wrappings. of the objects Ei. Ej. and Ek= The set of objects
with wrapping boundaries that intersect the wrapping boundary of Ei is a subset
of the object within a distance Gc # # ! Gc # #i from Ei= Although Ek lies a distance
x ! Gc # #i from Ei. EkLs wrapping *boundary, does not intersect EiLs wrapping
*boundary,=

there can only be a constant number of such Ej Ls within a distance Gc # #i from Ei.
so there is at most a constant number of wrapping boundaries %C*Ej, *j ' i, that
intersect %C*Ei,= By the additional assumption that all wrappings have constant
complexity. there is only a constant number of subspaces of dimension between @
and d " A deBned by the intersection of %C*Ei, and wrapping boundaries %C*Ej,
*j ' i,= Adding the contributions of all wrappings amounts to a total of O*n,
subspaces of dimensions @ to d " A in the arrangement A*C,= The linear bounds
on the number of these subspaces imply the same bound of O*n, on the number
of d-faces in A*C,. making the total combinatorial complexity of the arrangement
O*n,=

The *b,-part follows immediately from the proof of the *a,-part= Let Ei be the
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smallest object for which the point p  IRd lies inside the wrapping 78Ei9: Since
there is only a constant number of wrappings of larger objects intersectingEi>s wrap?
ping@ the point p can be in no more than a constant number of additional wrappings:
 

Besides applications in motion planning that become clear later in this thesis@
Theorem C:DC has interesting implications for complexities of union boundaries of
certain geometric Fgures: The relation between the complexity of an arrangement
of wrapping boundaries and the complexity of the boundary of the union of the
wrappings becomes clear if one realizes that the faces of the union boundary form
a subset of the faces of the arrangement of wrapping boundaries: So@ under the
circumstances sketched in Theorem C:DC@ the boundary complexity of !E E78E9
is O8n9: An alternative@ more or less inverse@ informal formulation of the result
is the following: The boundary complexity of the union of 8intersecting9 constant?
complexity objects is linear in the number of objects if k?fat sub?objects can be
identiFed in all objects@ such that the sub?objects are mutually non?intersecting and
not more than some bounded amount smaller than the original objects: The bounded
amount must be proportional to the size of the smallest object: As an example@ the
ideas are applicable to the molecule model in the paper by Halperin and Overmars
MNCO: The atoms that constitute a molecule are assumed to satisfy the hard sphere
model: The hard sphere model describes atoms by spheres and forbids any sphere
center to penetrate another sphere too far: This property makes it possible to regard
the atoms as wrappings of certain non?intersecting smaller spheres@ which are only
a bounded amount smaller than the original atoms: The construction provides an
alternative proof for the linear 8in the number of atoms9 descriptional complexity
of the molecule surface:

 !" Assembling and disassembling fat objects

The objective in this section is to show that it takes more than a constant number
of cuts to partition a thin object into fat parts: In fact@ we show that the minimum
number of parts that is needed to cut up a thin object into fat subobjects is at
least logarithmically dependent on a measure of the lack of fatness of the object:
The main impact of this result is that it is impossible to extend the results in the
remainder of this thesis for fat objects to thin objects by simply partitioning the
thin object into fat objects without increasing the total number of objects:

To get to the above result we study the implications for fatness of splitting an
object into two subobjects: We subsequently observe that a very fat object can be
split into two extremely thin objects@ that a thin object can be split into two object
of which one can be very fat@ and Fnally@ that at least one of the parts resulting
from splitting a thin object cannot be more than a constant factor fatter 8or less
thin9 than the original object: The latter result forms the basis of the main result
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mentioned in the *rst paragraph0

Before we move on to examine the e6ect of splitting9 we must *rst *nd an
appropriate way of expressing the bound on the lack of fatness9 or >thinness?9 of an
object9 as the observations include thin objects as well as fat objects0 A problem
lies in the fact that the remark that an object is kBfat does not say exactly how fat
the object is9 but only that the object is not less fat9 or thinner9 than kBfat0 On
the opposite9 we would now also like to have a means of expressing that an object
is not less thin9 or fatter9 than a certain amount0 Similarly9 saying that an object
is E! FFF! FFFBfat does not necessarily mean that it is very thin9 because the object
might still be EFBfat as well0 Fortunately9 the negation does supply a bound on the
extent to which an object is fat0 The fact that an object is not kBfat tells us that it
is de*nitely not less thin or fatter than kBfat0 Hence9 the negation of fatness supplies
an appropriate means of expressing a certain guaranteed amount of thinness9 or lack
of fatness0

A simple example shows that it is possible to partition a very fat object into two
unboundedly thin subobjects0 Take the JKBfatL circle E of Figure M0N0 The circle is

E 
E!

E 

E!

E

E

Figure M0NO The left KBfat circle E is split into two arbitrarily thin objects E and
E!0 The right relatively thin object E is split into a KBfat object E and another
object E!0

split equivalent parts9 each one being half a circle with a thin needle sticking into the
opposite half0 The needle can be made as thin as one likes9 resulting in extremely
thin subobjects of the circle S0 The example straightforwardly generalizes to higher
dimensions0 Obviously9 it is also possible to partition a very fat objects into two
parts of which exactly one is unboundedly thin0

A second observation is that a very thin object can be split into two parts of which
one is extremely fat0 Consider the second example in Figure M0N of a rectangle E in
MD with very large aspect ratio9 i0e09 the ratio of its side lengths0 The partitioning
into two parts of which one is extremely fat can be obtained by simply cutting an
JarbitrarilyL small KBfat circle E out of the rectangle0 Again9 the MD example is
straightforwardly generalizable0
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Partitioning a thin object into two fat objects2 however2 is impossible7 We shall
prove that any split of an object E that is not n:fat ;for some large n< results in
two parts of which one is not ;cn<:fat2 for some ;dimension:dependent< constant
c between ? and @7 In fact2 we even give a more general result stating that the
union of two intersecting objects cannot be more than a constant factor less fat2 or
thinner2 than the least fat of its two constituents7 This statement does not appear
strange at allC if we superimpose two objects2 the result does not seem to be a lot
thinner than the original objects7 Before we prove the corresponding lemma2 we
Erst deEne a dimension:dependent constant #d7 The constant plays a role in the
upcoming lemmaC

#d F minff;%<j% " @g&
where

f;%< F
@

%d
G

;!  
!
<d

%d

F
;% $ @<d G Hd

;H%<d
'

An analysis of the function f learns that it has a single minimum for % % J@&&<K

this minimum is reached at % F H
d

d  G @2 henceC

#d F f;H
d

d  G @< F ;H
d

d  G @<  d 

Example values are !! + ,"- and !" + 01 2p34"21 " 5 5678
Now we are ready to formulate the lemma concerning the fatness of the union of

two intersecting fat objects8

Lemma $%&' Let E # IRd be a closed connected k +fat object and let E! # IRd be
a closed connected k!+fat object such that E $ E! %+ &0 Then the union E ' E! is
0!  d (max0k % k!44+fat0

Proof, The proof obligation is that

)S * UE !E!

max0k % k!4

!d
( volume00E ' E!4 $ S4 + volume0S4%

or

)S * UE !E!
volume00E ' E!4 $ S4 + !d

max0k % k!4
( volume0S4 

Let us consider a randomly chosen S + Sm#r * UE !E!
8 By deJnitionK the center m

must lie in at least one of E and E!8 Assume without loss of generalityK that m * E 

and recall that ESm#E 
is the E Menclosing hypersphere centered at m8 DeJne rES

to be the radius of ESm#E 
K so ESm#E 

+ Sm#r
ES

8 We distinguish two diPerent casesQ
r , rES or r + rES and analyze them separatelyK starting with the JrstK and easiestK
one8
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r  rES In combination with the connectedness of E 1 the assumptions r  rES and
m ! E yield S ! UE 

6 Using the k 9fatness of E and ! & 'd  :1 we then get

volume;;E " E!< # S<

$ volume;E # S<

$ :

k 
% volume;S<

$ 'd
max;k ( k!<

% volume;S<(

proving the inequality for all hyperspheres in UE  E!
that do not fully contain

E in their interior6

r $ rES In this case the hypersphere S has E completely in its interior6 The assump9
tion that S ! UE  E!

then implies that the boundary of S must intersect E!6
On the other hand1 the non9emptiness of the intersection E # E! and the
connectedness of E! yield that E! must also intersect the boundary of ESm#E 

6
For the same pair of reasons1 Dnally1 E! must also intersect the boundary of the
hypersphere Sm#"r#r

ES

$%! which lies precisely halfway )ESm#E 
and )S6 Now let

m! ! E!#)Sm#"r#r
ES

$%! and deDne the hypersphere L F Sm #"r"r
ES

$%!6 Note that
this hypersphere touches )ESm#E 

from the outside and )S from the inside6
Because L and ESm#E 

are disjoint and both contained in S1 we get that

volume;;E " E!< # S<

$ volume;;E " E!< # ESm#E 
< I volume;;E " E!< # L<

$ volume;E # ESm#E 
< I volume;E! # L<+

ESm#E 
is the largest hypersphere centered at m whose boundary still inter9

sects E 1 so ESm#E 
! UE 

6 The hypersphere L has its center m! in E! and1
in addition1 its boundary )L is intersected by E! because E! intersects the
boundaries )ESm#E 

and )S which1 in turn1 both have non9empty intersection
with the interior of L6 Hence1 L ! UE!

6 The memberships ESm#E 
! UE 

and
L ! UE!

combined with the k 9fatness of E and the k!9fatness of E! result in

volume;E # ESm#E 
< I volume;E! # L<

$ :

k 
% volume;ESm#E 

< I
:

k!
% volume;L<

$ :

max;k ( k!<
% ;volume;ESm#E 

< I volume;L<<

$ :

max;k ( k!<
% ;;rES

r
<d % volume;S< I ;

;r & rES <,K

r
<d % volume;S<<+

The latter expression is simpliDed considerably by the deDnition - LF r,rES 6
Note that - $ : by the assumption r $ rES 6 Substitution of - and subsequent
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application of the de.nition of  d yield0

!

max3k " k!4
 33rES

r
4d  volume3S4 5 3

3r ! rES 4%6

r
4d  volume3S44

7
!

max3k " k!4
 33!

&
4d  volume3S4 5 3

3& ! !4%6

&
4d  volume3S44

7
!

max3k " k!4
 33& ! !4d 5 6d

36&4d
4  volume3S4

" !

max3k " k!4
  d  volume3S4'

Combination of all inequalities gives

volume33E # E!4 $ S4 "  d
max3k " k!4

 volume3S4"

proving the inequality for all hyperspheres in UE  E!
that completely contain

E @

The fact that S was randomly chosen from all hyperspheres in UE  E!
centered in

E and the symmetry of the construction with respect to E and E! imply that the
inequality

volume33E # E!4 $ S4 "  d
max3k " k!4

 volume3S4

holds for all hyperspheres S % UE  E!
@  

InformallyD Lemma 6@!F states that if we place two fat objects in overlapping posiH
tionsD then the resulting union is not more than a constant factor less fat than the
least fat of the two united objects@

Corollary 6@! is a generalized version of the result mentioned earlier and saying
that a thin object cannot be split into two 3relatively4 fat parts@ The result of the
corrolary is more general because the object is not decomposed into two subobjects
but covered by two subobjects@ Note that a decomposition is a restricted type of
covering in which the subobjects only overlap at their boundaries@ Corollary 6@! is
essentially a reformulation of Lemma 6@!F where k 7 k! 7 k@

Corollary &'() Let E % IRd be a closed connected object that is not k1fat3 Any
covering of E by two closed connected parts results in at least one part that is not
3 d  k41fat:

Corollary 6@! supplies a crucial tool for proving the main result of this section@
Assume we are given an object E that is not kHfat@ Our aim is to partition it intoD or
cover it byD a preferably small number of k!Hfat partsD for some k! & kD provided that
it is possible to do so@ Theorem 6@!N repeatedly applies Corollary 6@! to eventually
end up with k!Hfat parts@
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Theorem &'() Let E  IRd be a closed connected object that is not k.fat0 and let
k ! k1 Any covering of E by k .fat parts consists of $%log%k"k )) parts1

Proof, Let P be such that each P  P is k 4fat and #P!PP 8 E9 so P is a
covering of E by k 4fat parts> The union #P!PP is not k4fat> Now divide P into
two %non4empty) subsets P and P! such that #P!P 

P and #P!P!
P are connected

sets> By Corollary !>E 9 at least one of #P!P 
P and #P!P!

P is not %$d $ k)4fat> We
recursively apply the above procedure to the subsets that contain more than one
part> As a result9 it takes at least "d log%k"k ) I E recursive set divisions to end up
with subsets P  % P such that #P!P  P is k 4fat> Hence P must contain $%log%k"k ))
parts>  

Theorem !>EK gives a lower bound on the number of parts that is involved in any
covering of a thin object by fat parts> The existence of an upper bound on the
same number9 on the other hand9 seems unlikely> Especially for small values of k 9 a
covering of the object E %which is not k4fat) by k 4fat parts may require many small
parts>

 !" Fatness de*ned with respect to other shapes

This section presents a proof of the supposition from Section !>E concerning the
close relation between fatness deQnitions with respect to diRerent compact shapes9
that is9 if an object is k4fat with respect to a compact shape A then it is k 4fat
with respect to some other shape B for some k that is only a constant multiple of
k> This supposition sounds rather vague9 as it is yet unclear what exactly Sfatness
with respect to a shape AT means> We deQne fatness with respect to A by rather
straightforward generalization of DeQnition !>!>

Let A & IRd be a closed connected subset containing the origin O %O  A)>
Any scaled translate X of A can be described by X 8 )A I m9 where )  IR" is
a scaling parameter and m 8 %m + , , , +md)  IRd a translation vector> %So X 8
f%)a Im + , , , + )ad Imd)j%a + , , , + ad)  Ag>)

De.nition &'(2 3UA
m%E+ U

A
E 4

Let m  IRd and let E & IRd be an object1 The set UA
m%E is de9ned as:

UA
m%E 8 f)AIm j /%)AIm) * E +8 ,g

The set UE is de9ned as:

UA
E 8

 
m!E

UA
m%E

The following deQnition is a generalization of the notion of fatness given in DeQnition
!>!>
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De"nition '()* +k,fatness with respect to shape A5
Let E  IRd be an object and let k be a positive constant/ The object E is k2fatA if4

!S " UA
E k # volume$E $ S% % volume$S%%

Note that fatness with respect to some arbitrary shape A is not invariant under rota:
tion like the regular fatness $with respect to hyperspheres%> Property @>!$a%A$c%A$d%
hold for the generalized notion of fatness>

Theorem @>DE establishes a relation between the fatness of an object with respect
to a shape A and with respect to a shape B> The fatness of the object E with respect
to B depends on its fatness with respect to A and the relative fatness of B with
respect to A>

Theorem '()8 Let A  IRd and B  IRd be shapes with O " A and O " B/ Let
E  IRd be a closed connected object/ If the object E is k2fatA and A itself is k 2fatB9
then the object E is $k # k %2fatB/

Proof: We must prove that for each S " UB
E A the inequality k #k #volume$E$S% %

volume$S% holds> We choose some arbitrary m " E> In additionA we choose some
arbitrary )A such that *$)B I m% $ E &J '> The set )B I m will be denoted by
Y > We deKne X J ) A I m such that ) is the largest positive real for which
X $ $IRd ( Y % J '> In wordsA ) is the largest positive real for which X Kts in Y >
Note that point m not only lies in EA butA because O " A and O " BA also lies in
X and Y > The intersection E $ X $ Y is therefore non:empty> $See Figure @>E for
a two:dimensional example of the construction>%

Our Krst step is to prove that X J ) AIm " UA
E > The intersection of E and X

is non:empty> Object E will therefore either lie completely in the interior of X or
the boundary *X of X is intersected by E> The assumption that Y " UB

E implies
that the boundary *Y of Y is intersected by E> As *Y lies completely outside the
interior $X ( *X% of XA this means that the object E must lie partly outside the
interior of X> Combining the facts that the intersection of E and X is non:empty
and that E lies partly outside the interior of X with the assumption that E is
connected implies that *X $ E &J '> Together with the fact that m " E we obtain
that X J ) AIm " UA

E >
The object E is k:fatAA whichA by deKnition of fatnessA means that for each

S " UA
E R k # volume$E $ S% % volume$S%% Since X " UA

E A we yield

k # volume$E $X% % volume$X%%

In a second step we prove that Y J )B I m " UB
X > We know that m " XA

so the only thing that remains to be proven is that *Y $ X &J '> Assume for a
contradiction that *Y $ X J '> Since m " X $ Y A this would imply that X lies
completely in the interior $Y ( *Y % of Y > But then we can grow X J ) A I mA
by increasing ) A while it remains Ktting in Y > This ability to grow ) contradicts
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m

XY

E

A B
O O

Figure '()* Construction of Y 2 'B 3 m and X 2 ' A 3 m6 for some arbitrary
m  E and some arbitrary ' establishing (Y ! E "2 #(

the assumption that ' is the largest positive real such that X 2 ' 3m >ts in Y (
Hence6 we obtain that Y 2 'B 3m  UBX (

The object A is k CfatB( By the property that the generalized fatness of an object
is not aFected by translation and scaling of the object6 the object X 2 ' A 3 m
is also k CfatB( By the de>nition of fatness6 this means that for each S  UBX *
k $ volumeGX ! SH % volumeGSH( Since Y  UBX and X & Y 6 we get

k $ volumeGXH 2 k $ volumeGX ! Y H % volumeGY H,

Combining both inequalities with the straightforward inequality volumeGE !
Y H % volumeGE ! XH induced by Y ' X6 results in the following lower bound on
the part of Y covered by E

k $ k $ volumeGE ! Y H % k $ k $ volumeGE !XH % k $ volumeGXH % volumeGY H,

Recalling the fact that Y was chosen randomly from all members of UBE 6 we may
conclude that in fact

(S  UBE k $ k $ volumeGE ! SH % volumeGSH-

holds( So6 the object E is Gk $ k HCfatB(  

A twoCdimensional example illustrates the use of the above theorem( Assume
we are given an object E that is kCfat6 i(e(6 E is kCfat with respect to the GunitHC
circle centered at O( For some reason Gsee for example Chapter NH6 our interest is
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to determine what part of any axis2parallel square with the intersection point of its
diagonals inside E and not fully containing E in its interior is covered by E: In
other words< we wish to know E>s fatness with respect to the square C ? f@x# yA !
IR j # C $ x# y $ Cg: Now< with the theorem available< the only thing that remains
to be done is to determine the fatness of the square @w:r:t: the circleA: With the
additional knowledge that the square is F%2fat< Theorem F:CH yields that E is @F%kA2
fatC < and< hence< also that any axis2parallel square with its diagonals intersecting in
E and not fully containing E is covered for at least C'@F%kA2th by E:
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Chapter '

Range searching and point

location among fat objects

In this chapter we study two fundamental problems in computational geometry in
a context of fat objects7 point location and range searching8 The point location
problem aims at preprocessing a set of disjoint geometric objects for e:ciently re;
porting the speci<c object containing a query point8 The objective of the ?general@
version of the range searching problem is to preprocess a set of geometric objects
for quickly reporting all objects intersecting some query range ?e8g8 rectangloidB
simplexB hypersphere@8 It is shown that arbitrary convex objects andCor non;convex
polytopes in d;dimensional space can be preprocessed in time O?n logd  n log log n@
into a data structure of size O?n logd  n@ which supports point location queries and
range searching queries with arbitrarily;shaped but bounded;size regions in time
O?logd  n@8 The data structure is based on OvermarsF structure for point location
in fat subdivisions GHIJ8 Let us brieLy review some relevant results in both point
location and range searching to place our result in a broader perspective8

Point location in N;space has been studied extensively and solved in a satisfac;
tory way for many types of scenesB as several solutions achieve logarithmic query
time and ?near;@linear storageB after ?near;@linear preprocessing time GNOB IIB PQJ8 In
higher;dimensional spacesB on the contraryB e:cient solutions are available only for
restricted problem instances8 In I;spaceB Chazelle GNNJ obtains O?log! n@ query time
and an O?n@ storage requirement for the case where the stored geometric objects
are the I;cells of a spatial subdivisionB consisting of a total of n facets and satisfying
the restrictive constraint that the vertical dominance relation on its cells is acyclic8
Preparata and Tamassia GSTJ consider point location in a set of disjoint convex poly;
hedra with total complexity n8 ?The polyhedra subdivide IR" into a number of
convex cells ; the polyhedra ; and a single non;convex cell ; the complement of the
polyhedra8@ Their data structure uses O?n log! n@ storage and is capable of answer;
ing point location queries in time O?log! n@ after O?n log! n@ preprocessing time8
Goodrich and Tamassia GIHJ improve the storage requirement for sets of disjoint
convex polyhedra to O?n log n@ without aWecting the query time8 The results for

QH
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arbitrary dimension d are further restricted2 applying only to arrangements of hyper6
planes or hypersurfaces of bounded degree7 Clarkson :;!< presents a data structure
for point location in an arrangement of n hyperplanes in d6dimensional space7 The
structure supports queries in time O?log n@ and requires roughly O?nd@ storage and
preprocessing7 ?Chazelle and Friedman :; < improve the storage to exactly O?nd@ at
the cost of an increase of the preprocessing time to O?n!d"!@@7 Chazelle et al7 :;E<
achieve the same O?log n@ query time for point location in arrangements of hyper6
surfaces of constant degree with a data structure of size roughly O?n!d #@2 which is
computable in roughly O?n!d !@ time7 Apparently2 eHcient solutions for sets of non6
convex objects or non6polyhedra in E6space and for scenes other than arrangements
of hyperplanes or hypersurfaces of bounded degree in higher6dimensional spaces are
lacking7

Nearly all papers on range searching discuss how to preprocess a very elementary
class of geometric objects2 namely points2 for eHciently answering range search
queries with speciKc range types7 The most extensively studied type of query range
is the orthogonal range2 and a long6established result says ?see e7g7 :LM<@ that a
set consisting of n points can be preprocessed in time O?n logd  n@ into a data
structure of size O?n logd  n@2 which is capable of answering an orthogonal range
query in time O?logd  n@!7 ?Some small improvements are possible7@ DiPerent
range types give rise to more complicated solutions7 In general2 the solutions to e7g7
simplicial range searching only provide low query time at the cost of a relatively
high storage requirement and preprocessing time or vice versa7 At the one end2 one
Knds solutions providing polylogarithmic query time and roughly O?nd@ storage and
preprocessing ?see :;R2 RR<@2 whereas2 at the other end of the spectrum2 solutions
require only O?n@ storage2 but guarantee only a larger query time of O?n   !d@ ?see
:RS2 RR<@7 Van Kreveld :SL< gives similar bounds for the problem of reporting all
simplices that are entirely contained in a query simplex7 In between the previous
results are the trade6oP solutions which allow for exchanging storage for query time7
An example of such a solution is given by MatouWsek :RR<X the presented structure
supports queries in time O??n#m !d@ logd" ?m#n@@ at the cost of an O?m@ storage
requirement2 where n  m  nd7 Alternative trade6oP solutions provide similar
bounds7 More speciKc results ?with respect to dimension@ are reported by Chazelle
and Welzl :;L< who give a solution with O?

p
n log n@ query time and O?n@ storage

for triangular range searching in ;6space and a solution with O?n!!# log! n@ query
time and a storage requirement of O?n log n@ storage for tetrahedral range searching
in E6space7 Semi6algebraic query ranges are considered by Agarwal and MatouWsek
:;<2 resulting in a data structure of size O?n@ with preprocessing time O?n log n@
which supports range queries with a region Z in d6space in time O?n   !b"#@2 where
% is some arbitrarily small value and b is bounded by d  b  ;d " E2 although its

 All quoted rough bounds are adequate up to a factor n logc n2 for some arbitrarily small ! and
some constant c6

!In all quoted time bounds we neglect the dependence of the query time on the size of the
answer to the query6 All results actually have the form O;f;n< = h<2 where h is the output size6
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precise value depends on /0

Overmars 3456 discusses a data structure for e9cient and simple point location
in fat subdivisions or sets of fat objects with total complexity n0 The structure
supports point location queries in time OBlogd  nD and uses OBn logd  nD storage0
In his paperF Overmars does not touch the issue of e9ciently computing the data
structureF that isF in time comparable to the storage requirement0 It is shown in
this chapter that for arbitrary convex objects and for nonGconvex polytopesF the
structure can be built incrementally in time OBn logd  n log log nD0 Besides supG
porting e9cient point location queriesF the data structures storing the arbitrary
convex objects andIor polytopes canF surprisinglyF also be used for range searchG
ing with arbitrarilyGshaped but boundedGsize ranges0 In factF we show that each
boundedGsize range query can be implemented by a constant number of point locaG
tion queriesF thus leading to a time bound of OBlogd  nD for range search queries0
Chapter L gives an important application of boundedGsize range searching0 The moG
tion planning paradigm presented there requires the a priori knowledge of all pairs
of neighboring obstaclesF where the notion of neighboring is related to the size of the
smallest obstacle0 The results presented in this chapter facilitate the computation
of all pairs in time OBn logd  n log log nD0

The main contribution of our results with respect to the point location probG
lem lies in their dimensional generalityF where previous results in higher dimensions
are restricted to arrangements of hyperplanes or hypersurfaces of bounded degreeF
and to severely restricted subdivisions and scenes of nonGintersecting convex polyG
hedra in 5Gspace0 We Ond that point location queries in scenes of nonGintersecting
Bor mildly intersectingD fat convex objects andIor fat polytopes can be performed
in polylogarithmic time at the cost of nearGlinear storage and preprocessing0 To
see the contribution for range searching we recall the results by Van Kreveld 3R46
quoted earlier0 A query with a simplex in dGspace for all contained simplices takes
logarithmic query time at the cost of roughly OBndD storage or linear storage at the
cost of polynomial query time0 The solutions to range searching among points have
similar performance0 Although the range searching results apply only to fat objects
and small query rangesF they succeed in combining polylogarthmic query time with
nearGlinear storage and query time for simplicial range searching among arbitrary
convex shapes and nonGconvex polytopes0 MoreoverF the data structure caters for
arbitrary query ranges0

The Orst section below discusses OvermarsU data structure for e9cient point
location among fat objectsF while the next section shows how the structure can
be used for simple and e9cient range searching among classes of fat objects0 In
the third sectionF the range searching results are used to support the incremental
construction of the multiGpurpose data structureF starting from the largest object
and repeatedly adding the next largest object0 FinallyF we summarize the results
and point out the various potential generalizations0
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 !" Point location among fat objects

This section discusses a data structure for point location among disjoint fat objects
by Overmars 9:;<= The author presents the data structure as a structure for solving
the problem of point location in subdivisions of d>dimensional space into fat cells=
The answer to the query is the speciAc cell containing the query point= The point
location problem in fat subdivisions can be seen as an instance of the followingB
more generalB formulation of the point location problemC

Given a set E of non9intersecting constant9complexity k9fat objects in
IRd and a query point p ! IRdG report the object E ! E that contains pG
or report that no such object exists(

Figure ;=G shows two point location queries in a set of Ave non>intersecting fat
objects= The query with the point p should yield the answer E B whereas the query
with q must result in the answer that no object contains q= If the objects in E

q

E 

E!
E"

E#
E$

p

Figure ;=GC Two point location queries in the set fE % & & & % E!gH the query with p
yields the answer E B while q is reported to lie in no object=

entirely cover IRd then we obtain a fat subdivision like in OvermarsJ paper= In the
more general settingB the complement of the objects need not be fatB nor does it
have constant complexity= The ideas from 9:;< are discussed below in the context of
this more general problem formulation=

OvermarsJ paper only presents a data structure for eLciently answering point
location queriesH the issue of building the structure remains untouched= Later in this
chapterB a solution for this problem is given for arbitrary convex objects and non>
convex polytopes= The solution relies on the ability to do eLcient range searching
queries among these objects= Before discussing range searching and its application
to building the point location structureB this section simply summarizes the results
of Overmars presented in 9:;<=

Let us assume in this chapter that the constant>complexity k>fat objects in
E % & & & % En ! E are ordered by radius of their minimal object enclosing hyperspheres=
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Let furthermore  i be the radius of Ei0s minimal enclosing hypersphere7 Let us de8
note the axis8parallel enclosing hypercube of the minimal enclosing hypersphere of
an object Ei by Ci7 By construction< the hypercubes are ordered by increasing size7
Note that the side length of the hypercube Ci is ? i7 Notice that the hypercubes
Ci may be overlapping< although the objects Ei are disjoint7 Furthermore< let Vi be
deBned as followsD

Vi E fEj ! EjEj $ Ci %E & ' j ( ig&
Hence< Vi is the set of objects that are larger than Ei< i7e7< with larger minimal
enclosing hypersphere< intersecting the box Ci7 Theorem ?7H immediately supplies
a useful property of the sets Vi< ! * i * n7

Lemma $%& For all i D ! * i * n D jVij E OI!J%

A second crucial lemma from LMNO is the following7

Lemma $%' Let p ! Ej and i E minfhjp ! Chg% Then Ej ! Ci%

In words< the lemma states that if the query point p lies in an object Ej< then Ej is
an element of the set of objects Vi associated to the smallest hypercube Ci containing
p7 This suggest the approach outlined below7

Assuming that the hypercubes Ci and the sets Vi for all ! * i * n are available<
we proceed as follows to Bnd the answer to a point location query with a point
p ! IRd7 Determine the smallest hypercube< if any< containing p7 If no hypercube
contains p than p lies in no objectT if< on the contrary< Ci is the smallest hypercube
containing p< then the set Vi must contain the answer to the query7 To this end< we
check the objects in Vi for containment of p7 Note that the check for containment
of a point in an object Ej ! Vi takes constant time due to the constant complexity
of the objects7 The constant cardinality of Vi yields that the entire inspection of
all objects in Vi takes OI!J time7 If no object in Vi contains p then no object in
E contains pT otherwise the unique object Ej ! Vi containing p obviously is the
answer to the query7 As the inspection of Vi takes constant time< the point location
query time is dominated by the time to Bnd the smallest hypercube Ci containing
the query point p7 An appropriate data structure that solves this problem is given
below7

The point location problem is now essentially reduced to the following priority
point stabbing problem among IintersectingJ hypercubesD

Given a set of hypercubes C in IRd and a query point p ! IRdD report the
smallest hypercube C ! C containing pD or report that no hypercube in
C contains p!

To solve a priority point stabbing query among hypercubes< Overmars proposes a
d8level data structure in which the upper d, ! levels are based on the segment tree
and the lowest level is a list or a balanced binary tree7
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d " # The hypercubes C " # # # " Cn are intervals on the real line5 The interval end7
points partition the real line into !n 8 # so7called elementary intervals5 All
points within a single elementary interval are covered by exactly the same one7
dimensional hypercubes5 We organize the intervals as an ordered list and label
each elementary interval with the index of the smallest of all one7dimensional
hypercubes covering it5 The list structure requires OBnC storage5 The answer
to a point stabbing query is provided by the label of the elementary interval
containing the query point5 The interval can be identiDed in time OBlog nC5

d & # The d7dimensional hypercubes are stored in a segment tree T on their pro7
jections onto the d7th coordinate axis5 The endpoints of the hypercube pro7
jections partition the d7th coordinate axis into a number of elementary inter7
vals5 An interval I! is associated with each node ) in T F I! is the union of
all BconsecutiveC elementary intervals associated with the leaves of the sub7
tree rooted at )5 With ) we store in an associated structure the intersec7
tions G !"!Hd  " I! # Ci for hypercubes Ci that entirely span the slab
G !"!Hd  " I! but do not entirely span the slab G !"!Hd  " I! corre7
sponding to the parent )! of ) in T 5 The projection of such an intersection
G !"!Hd  " I! # Ci onto the subspace spanned by the Drst d  # coordi7
nate axes is a Bd  #C7dimensional hypercube5 We store these hypercubes in
a Brecursively deDnedC similar Bd  #C7level data structure on the Drst d  #
coordinatesI that isI if d  # & #5 If d  # " # we use the one7dimensional
construction outlined above to store the intersection of the squares and the
planar slab5 The structure suKces because the squares intersect the vertical
slab perpendicularlyI and can therefore be represented as intervals5 SoI the
bottom7level structure is a list or ordinary balanced binary tree instead of a
segment tree5

Searching the multi7level data structure with a query point p proceeds in the
following recursive mannerF start at the root and repeatedly continue towards the
child corresponding to the slab containing p5 BTesting only the last coordinate is
suKcient5C The search ends at the leaf corresponding to the elementary interval
containing the last coordinate5 We have now obtained OBlog nC nodes on the search
pathI each corresponding to a slab containing p5 The search is continued recursively
in the substructures associated to each of these nodes5 The entire search from top to
bottom in the multi7level data structure takes therefore OBlogd nC timeI resulting in
OBlogd  nC candidate answers5 The minimum among these candidates is the Dnal
answer to the query5 The query time can be improved by applying fractional cas7
cading G! H to the two lower levels of the data structure5 This is possible because the
bottom7level structures are ordered lists Ba sequence of intervalsC5 Fractional cascad7
ing improves the query time in a !7level data structure consisting of a segment tree
with the one7dimensional ordered lists as substructures from OBlog! nC to OBlog nC5
HenceI a priority point stabbing query among hypercubes takes OBlogd  nC time5
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The structure uses O*n logd  n. storage0 The result is summarized in the following
theorem0

Theorem &'& A set E of non'intersecting constant'complexity k'fat objects in IRd

can be stored in a data structure of size O*n logd  n.7 such that7 for a query point
p ! IRd7 it takes O*logd  n. time to report the object E ! E that contains p7 or to
conclude that no object contains p;

The remaining open problem concerns the preprocessing phase< that is< the
computation of the data structure= given a set of non?intersecting k?fat constant?
complexity objects E % & & & % En ordered by increasing radii of their minimal enclosing
hyperspheres< compute the multi?level data structure storing the enclosing hyper?
cubes C % & & & % Cn of the minimal enclosing hyperspheres of these objects plus the
sets V % & & & % Vn of larger objects intersecting the respective hypercubes C % & & & % Cn0
Building the multi?level data structure can be accomplished in time O*n logd  n.
using standard techniques0 Another option< that is exploited in Section !0!< is to
build the structure in an incremental way0 It is well?known that a hypercube can be
inserted in a d?level segment tree in time O*logd n.0 Moreover< if we use dynamic
fractional cascading IJKL instead of MregularN fractional cascading< the insertion time
can be further reduced to O*logd  n log log n. *see Section !0!.0

The computation of the sets Vi< on the other hand< seems to pose more problems0
Finding the objects Ej with j " i intersecting the hypercube Ci requires a range
search query with Ci0 The query is not an ordinary range search query< since we
are only interested in objects with a certain minimal size *or index.0 Performing
a range search query among all objects and subsequently Qltering out the smaller
objects is not a good idea< as the answer to the range query might by orders of
magnitude larger than Vi0 A better idea would be to perform a range search query
with Vi only among objects that are larger than Ei0 Surprisingly< we show in the
next section that it is possible< in most interesting cases< to use the point location
structure itself for solving the range search query0 This suggests an approach where
we add the hypercubes from large to small< meanwhile computing the sets Vi in
the following *incremental. way= use< before insertion of the hypercube Cn m< the
sets Vn m! % & & & % Vn m and the multi?level data structure storing the hypercubes
Cn m! % & & & % Cn to compute Vn m by a range query with Cn m among the objects
En m! % & & & % En0 Next< insert Cn m into the structure and continue with Cn m  0
Section !0! contains the details of the approach0

 !" Range searching by point location

In this section we use the point location data structure to tackle the following general
version of the range searching problem=

Given a set E of non;intersecting constant;complexity k;fat objects in IRd

with minimal enclosing hyperspheres with radii at least , and a constant;
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complexity query region R of arbitrary shape with diameter at most h  "
for some positive constant hG report all objects E ! E that intersect R(

Figure ()* shows a bounded3size range query in a set of 9ve non3intersecting fat
objects) The query with the range R must yield the answer fE $ E!$ E"g) Using

E 

E!
E"

E#
E$

R

Figure ()*A A range query in the set fE#$ % % % $ E"gC the query with R yields the
answer fE $ E!$ E"g)

Theorem *)D it is easy to verify that the answer to the query with a region RE
satisfying the diameter boundE is a set of objects of constant cardinality) Let us
de9ne the set QGRH of objects intersecting the region RA

QGRH I fE ! EjE & R 'I (g%

It is shown how the point location structure can be used to solve the range
searching problem in time OGlogd # nH in the case that E is a set of arbitrary convex
objects andMor non3convex polytopes) The solution relies on local properties of fat
objects) The de9nition of fatness requires a k3fat object E to have a large NdensityO
in the vicinity of any point p in the objectA P+k3th of a hypersphere centered at p
is covered by E) It turns out that this property makes it possible to hit any object
or object part with a certain minimum sizeE regardless of its exact locationE with at
least one point from a suRciently denseE but not too largeE pattern of sample pointsE
whereas this would clearly be impossible if the obstacle is non3fatA the chance to hit
a line segment by an extremely dense pattern of sample points is practically zero)
To structure the problem and the shape of its solutionE we restrict the sample points
to be arranged as a regular orthogonal grid)

De"nition '() A regular orthogonal grid GGrH with resolution r is de/ned by2

GGrH I fGz#r$ % % % $ zdrHjz#$ % % % $ zd ! Zg%
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This section focuses on the problem of 1nding a grid resolution such that a small
subset of the corresponding regular orthogonal grid is guaranteed to hit any object
E having non'empty intersection with the query region R3 We shall 6rst determine a
suitable grid resolution for convex objects< and subsequently use the results obtained
there to 6nd an appropriate resolution for general polytopes3

The main implication of these results is that the range query with the bounded'
size range R  IRd can be solved by a sequence of point location queries< each taking
OBlogd  nC time< using the data structure for point location among fat objects3
Under the assumption that the diameter of the query region does not exceed h ! %<
the sequence of point location queries will have constant length3

The aim is to 6nd a grid resolution r establishing that each object E " QBRC is
hit by at least one point in some subset E # GBrC< where< preferably< the size of E
depends on k and h Band the complexity of the individual objectsC only3 Before we
focus on the diGerent types of objects< we 6rst give some basic results that ease the
task to 6nd a grid resolution3

To simplify the approach< we will de6ne for each object a large hypersphere that
is contained in the object E " QBRC3 For the hypersphere< it is easy to determine
the grid resolution r such that the hypersphere is always hit by at least one of the
grid points3

Property '() Any hypersphere with radius at least  
!
r
p
d contains at least one point

of the orthogonal grid GBrC3
The hypersphere itself is determined in two steps3 First< a result by LeichtweiJKLMN
makes it possible to identify a large ellipsoid inside a convex part of the object E3
Due to the fatness of the object E< the ellipsoid< in turn< indeed contains a large
hypersphere3

Ellipsoids play an important role throughout this section3 Let us therefore brieQy
review some relevant properties of these shapes3 Any ellipsoid L  IRd can be re'
garded as a translated and rotated copy of an ellipsoid in so'called standard position3
An ellipsoid Ls in standard position has the following form

Ls S
X

i!f #$$$#dg

x!i
a!i
& M-

where a - . . . - ad are constants3 The segment connecting the points Ti  '(ai'Td i "
Ls and Ti  ' ai ' Td i " Ls< which has length Uai< is referred to as an axis of LsV
Ls has d such axes3 If w & ai for all M & i & d< then the hypersphere with radius w
centered at the origin is entirely contained in Ls Bsee Figure W3WC3 The volume of an
ellipsoid can be given as a function of the lengths of its axesV the volume of Ls Band
of its translated and rotated copies LC is given by Bsee e3g3 KXXNC

volumeBLsC Y 1d !
Y

i!f #$$$#dg

ai-
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a 

a!
L

Figure ()(* The ellipse L with half4axes a  a! contains a circle with radius a!)

where "d is again the dimension4dependent constant multiplier from the volume
formulae for hyperspheres =see Chapter ?@)

A lower bound V on the volume of an ellipsoid L alone does not suCce to prove
that L encloses a large hypersphereD as it is possible to construct a very Elong and
thinF ellipsoid) An additional upper bound on the diameter of the ellipsoidD andD
henceD on the aiFs =G ! i ! d@D howeverD makes such a construction impossible) This
follows easily from the volume formula for ellipsoids)

Lemma $%& Let L " IRd be an ellipsoid with volume=L@  V and let & be an
upper bound on its diameter2 Then L contains a hypersphere with radius at least
V
#d
# =?'&@d  2

Proof+ Assume without loss of generality that L is in standard positionD andD henceD
of the form

P
i!f $%%%$dg x

!
i'a

!
i K G) ThenD its volume is volume=L@ K "d # Qi!f $%%%$dg ai)

The upper bound of & on the diameter of L implies that none of the axes of L is
longer than &D andD thusD for all G ! i ! d*

ai ! &'?)

Now assumeD for a contradictionD that aj *
V
#d
# =?'&@d  ) Subsequent application of

this inequality and the upper bound ai ! &'? =G ! i ! d@ yields

volume=L@ K "d # aj #
Y

i!f $%%%$dg$i$"j

ai

* "d # V
"d

# =?'&@d  # Y
i!f $%%%$dg$i$"j

ai

! "d # V
"d
# =?'&@d  # =&'?@d  

K V+

contradicting the assumption volume=L@  V )
The ellipsoid L entirely contains the hypersphere with radius V

#d
# =?'&@d  cen4

tered at the origin)  
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In the two subsections below/ we use the property and lemma to 6nd a valid grid
resolution/ and identify a small subset of that grid that su:ces to hit all objects
intersecting the query region R  IRd>

 !"!# Searching among convex objects

Let E  IRd be a convex kAfat object intersecting the query region R  IRd/ and
let m ! E " R> The hypersphere Sm"# belongs to UE as it is centered inside E and
can impossibly have E entirely in its interior> The membership Sm"# ! UE and the
kAfatness of E yieldC

k # volumeDE " Sm"#E $ volumeDSm"#E F &d # 'd( DG>HE

The shape E " Sm"# is convex as it is the intersection of the convex objects E and
Sm"#> The following result due to LeichtweiIJKHL holds for any convex shape>

Lemma $%& Let E % IRd be a convex object. There exist ellipsoids LI * LO  IRd

such that LI  E  LO and

dd # volumeDLIE $ volumeDLOE(

Corollary G>N is a trivial consequence of Lemma G>!>

Corollary $%, Any convex object E  IRd contains an ellipsoid L with

dd # volumeDLE $ volumeDEE(

Application of Corollary G>N to the shape E " Sm"#/ satisfying DG>HE/ implies the
containment of an ellipsoid L  E " Sm"# such that

volumeDLE $ &d'
d

kdd
( DG>PE

The diameter of L is bounded by P'/ because L is contained in the hypersphere Sm"#

with diameter P'> The application of Lemma G>K to the ellipsoid L with diameter
at most P' and volume bounded by DG>PE yields that L contains a hypersphere S
with radius at least k  d d'> Property G> subsequently implies that such a hyperA
sphere is hit by at least one point from the regular orthogonal grid with resolution
Pk  d !d"

 
!
#'/ or GDPk  d !d"  

!
#'E> Hence/ at least one point from GDPk  d !d"  

!
#'E

hits S  L  E " Sm"#>
So far/ we have only bothered about 6nding a su:ciently high resolution for a

grid to hit all objects E ! QDRE> Clearly/ it is unnecessary and even undesirable
to perform point location queries with a too large subset of the grid/ both because
it increases the query time and because it would lead to many accidental hits of
objects E '! QDRE> Fortunately/ the size of the sample set Dand the number of
accidental hitsE can be adequately limited by a quick glance at the deduction of the
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grid resolution- the resolution is chosen such that any object E  Q4R5 is hit inside
a hypersphere Sm!" with m  R8 This hypersphere lies entirely inside the region
R ! SO!": where O is the origin of the Euclidean coordinate frame and ! denotes
the Minkowski di@erence operator8 The Minkowski di@erence of two sets A and B
is deAned by A!B B fa# bja  A% b  Bg8 Hence: at least one of the grid points
hitting E lies in R! SO!"8 As a result: it suEces to restrict the set of sample points
F to be the set of grid points in the grown query region-

F B G4Hk  d !d"  

!
#,5 ( 4R! SO!"5-

The result is summarized in the following lemma8

R

R SO!"
Gr

 ! Gr " "R SO!"#

Figure K8L- A twoMdimensional example of the construction of the set of sample
points F for a query with a region R with diameter h ) , among a set E of objects
with minimal enclosing circle radius ,8 The resolution r of the orthogonal grid is
determined by the type of the objects in E8

Lemma $%& Let E be a set of convex k,fat objects E + IRd with minimal enclosing
hyperspheres with radii at least , and let R + IRd be a region with diameter h ) ,8
for some constant h9 The set Q4R5 of objects E  E intersecting R can be found by

point location queries with the points from G4Hk  d !d"  

!
#,5 (R ! SO!"9
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The data structure presented in the previous section allows us to perform point
location queries among the objects of E with all points in 9 in time O:j9j logd  n;<
The resulting set fE # Ej9$E %= &g of query answers? which clearly has at most j9j
elements? is a superset of the answer Q:R; to the range query with R< For each of
the objects E # fE # Ej9 $ E %= &g? additional constant time suAces to verify the
membership E # Q:R; by a simple test for the nonBemptiness of E $ R? provided
that R and all E # E have constant complexity< Hence? the computation of Q:R;
takes O:j9j logd  n; time<

It remains to bound the size of 9< Clearly? the Minkowski diJerence R ( SO"#

Kts entirely in the hypercube LxR! ) '( xR! M :hM N;'O* * * ** LxRd ) '( xRd M :hMN;'O?
where xRi :N + i + d; is the minimal xiBcoordinate occurring in R< As a result? the
number of elements in 9 is bounded by the number of grid points in the enclosing
hypercube? leading to

j9j = jG:Qk  d "d#  

!
$'; $ :R ( SO"#;j

+ jG:Qk  d "d#  
!
$';

$LxR! ) '( xR! M :hM N;'O * * * ** LyRd ) '( yRd M :hM N;'Oj

= :
N

Q
kdd#

 
! :bhcM Q;;d

= O::kddh;d;

In a setting where all objects are kBfat for some constant k and the diameter of the
query region R does not exceed a constant multiple h of ' it follows that j9j = O:N;?
which implies an O:logd  n; time bound for range searching with a boundedBsize
region R<

Theorem &'() Let k / R and h / R be constants* and let E be a set of convex k/fat
constant/complexity objects E 0 IRd with minimal enclosing hyperspheres with radii
at least '9 A range searching query with a region R 0 IRd of diameter at most h 1 '
among E takes O:logd  n; time9

 !"!" Searching among polytopes

Having solved the range searching problem among convex objects we now turn
our attention to :nonBconvex; polytopes< We assume that all polytopes E 0 IRd

in E are bounded by c hyperplanar faces? that is? each face is part of a :d ) N;B
dimensional hyperplane< Let E be a kBfat polytope intersectingR? and letm # E$R<
Inequality :V<N; applies to the intersection of the polytope E and the hypersphere
Sm"# # UE? on exactly the same grounds as in the convex case< Unfortunately? the
intersection E $ Sm"# is not a polytope as its boundary contains portions of the
hyperspherical boundary of Sm"#< This can be remedied by replacing Sm"# by its
:axisBparallel; enclosing hypercube Cm"# :with XcenterY m and side length Q'; with
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volume"Cm!"#!volume "Sm!"# $ %d!#d& The ratio of the volumes5 the inequality "9&:#5
and the obvious inequality volume"E  Cm!"# ! volume"E  Sm!"#5 together yield

%dk

#d
" volume"E  Cm!"# ! volume"Cm!"# $ %d&d' "9&9#

The intersection E  Cm!" is a collection of polytopes& The arrangement of the
c@%d supporting hyperplanes of the c faces of E and the %d faces of the hypercube
Cm!" subdivide IR

d and5 more importantly5 E  Cm!" into convex regionsD the dEfaces
"or cells# of the arrangement& EdelsbrunnerGs book on combinatorial geometry I9%J
supplies bounds on the numbers of faces of various dimensions in arrangements of
hyperplanes& Lemma 9&:: reproduces the bounds&

Lemma $%&& The maximum number f
 d!
k "n# of k/faces in an arrangement of n

hyperplanes in IRd is given by

f
 d!
k "n# $

X
i f"!&&&!kg

!
d# i
k # i

"!
n

d # i
"
'

We are interested in the maximum number of dEfaces in an arrangement of c @ %d
hyperplanes in IRd5 or f

 d!
d "c@ %d# for short& By Lemma 9&::5 we have that

f
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d "c@ %d# $
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"

$ %c#$d#%'

The basis of the Orst of the above inequalities lies in the simple observation that
d $ %

$
"c@%d#& Note that the bound of %c#$d#% on the number of dEfaces is probably

not very tight5 as the c@%d hyperplanes include many parallel pairs of hyperplanes&
The c@%d hyperplanes subdivide the collection of polytopes E Cm!" into g $ %c#$d#%

convex regions& The largest region E$ % E  Cm!" of these g convex regions clearly
satisOes

volume"E$# ! :

g
" volume"E  Cm!"# ! :

%c#$d#%
" volume"E  Cm!"#

! #d&
d

%c#$d#%k
' "9&Q#

The convexity of the subshape E $ % E  Cm!" allows for the subsequent appliE
cation of Corollary 9&S5 Lemma 9& 5 and Lemma 9&T& First of all5 Corollary 9&S tells
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us that the convex shape E contains an ellipsoid L with

volume2L3  "d#
d

4c !d!"kdd
& 25673

As the ellipsoid L lies entirely inside the hypercube Cm#$< the diameter of L is
bounded by 4#

p
d6 Lemma 56 now implies that L contains a hypersphere S with

radius at least 4!#c !d!"$k!"d!  

!
#%d!"$#6 Property 567< Anally< shows that any such

hypersphere S is hit by at least one point from the regular orthogonal grid with
resolution 4!#c !d!!$k!"d! "

!
d#6 Hence< at least one point from G24!#c !d!!$k!"d! "

!
d#3

hits S # L # E # E $Cm#$6 Notice that in the case of polytopes< unlike for convex
objects< the required grid resolution depends on the complexity c of the objects of
E6

By the considerations of the previous paragraphs< one of the grid points that
hit any object E & Q2R3 lies inside a hypercube Cm#$ with m & E $ R6 This
hypercube must therefore lie completely inside the Minkowski diKerence R ' CO#$6
As a consequence< the set L may be restricted to

L M G24!#c !d!!$k!"d! "
!
d#3 $R ' CO#$&

Lemma 56!4 summarizes the results obtained so far in this subsection6

Lemma $%&' Let E be a set of k,fat polytopes E # IRd bounded by c hyperplanar
faces and with minimal enclosing hyperspheres with radii at least #7 Furthermore9
let R # IRd be a region with diameter h ( #9 for some constant h7 The set Q2R3 of
objects E & E intersecting R can be found by point location queries with the points
from G24!#c !d!!$k!"d! "

!
d#3 $R' SO#$7

Similar to the convex case< the sequence of point location queries with all points
in L takes O2jLj logd!" n3 time and results in the set fE & EjL $ E +M ,g6 The
extraction of Q2R3 from this set takes O2jLj3 time under the additional assumption
that R and all E & E have constant complexity< so c must be constant6 To bound
the number of elements in L< we notice that R ' CO#$ also Ats completely in the
hypercube RxR& .#1 xR& S2hS!3#T/ & & &/ RxRd .#1 xRd S2hS!3#T< where xRi 2! 0 i 0 d3
is once again the minimal xiUcoordinate in R6 The number of grid points in the
hypercube bounds the number of elements in LV

jLj M jG24!#c !d!!$k!"d! "
!
d#3 $ 2R' CO#$3j

0 jG24!#c !d!!$k!"d! "

!
d#3

$RxR& . #1 xR& S 2hS !3#T / & & &/ RyRd . #1 yRd S 2hS !3#Tj
M 24c !d!!kd

"
!
d2bhc S 433d

M O224ckddh3d3
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If$ besides c$ the parameters k and h are also constant$ then we get j6j 7 O89:$
which induces polylogarithmic query time for range searching with bounded>size
ranges among fat objectsA

Theorem &'(& Let k $ B and h ! B be constants* and let E be a set of k-fat
constant-complexity polytopes E # IRd with minimal enclosing hyperspheres with
radii at least &7 A range searching query with a region R # IRd of diameter at most
h $ & among E takes O8logd  n: time7

 ! Building the data structure

The results of the previous section can be used for the incremental construction of
the point location 8and range searching: data structureA Let us assume we are given
the d>level data structure for priority point stabbing queries among hypercubes from
Section HA9$ storing them largest hypercubes Cn m! , - - - , Cn$ and the corresponding
constant cardinality sets Vn m! , - - - , VnA We refer to this partial priority point
stabbing structure as TmA Hence$ the objective is to eventually compute Tn from
some initial structure T"A The outline of the incremental construction is as followsA

compute T"K
m L7 BK
while m 0 n do

9A compute Vn m by a range query with Cn m

8using Tm and the sets Vj $ n % m 0 j & n:K
!A compute Tm! by inserting Cn m into TmA

We study both steps in the loop in more detail$ starting with the second step$ as
the implications of its solution inMuence the Nrst step as wellA

Computation of Tm! 

The problem with the insertion of a hypercube into the d>level priority point stab>
bing structure lies in the use of fractional cascading$ which was incorporated to im>
prove the point location and range search query time from O8logd n: to O8logd  n:A
Unfortunately$ insertions into the multi>level data structure do not beneNt from
fractional cascading$ so an insertion into the structure Tm would require O8logd n:
time instead of O8logd  n:A Moreover$ a sequence of insertions into the multi>level
data structure with the static fractional cascading part is likely to increase the time
for a query back to O8logd n: as the fractional cascading part no longer RsuitsS the
updated multi>level data structureA Building the data structure would$ even with
fractional cascading$ require O8n logd n: timeA Fortunately$ Mehlhorn and NWaher
describe in X YZ a dynamic version of fractional cascadingA Incorporation of dynamic
fractional cascading in the data structure during the construction phase improves
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the preprocessing time to O.n logd  n log log n01 The alternative requires only mi8
nor modi:cations1 We give the main result from = >? in a formulation that is tailored
to our applications1

Theorem &'() Let T be a tree with t nodes and let an ordered list L.%0 of elements
from a given domain D be associated to each node %3 Furthermore6 de7ne l to be
the total length of all lists L.%06 so l @

P
! jL.%0j3

*a, Let T ! be a connected subtree of T with s nodes3 Location of a query value x
in L.%!0 for every % ! ! T !6 that is6 7nding the position in L.%!0 of the smallest
value larger or equal than x6 takes O.log.lAt0As log log.lAt00 time worst<case3

*b, The deletion of a value x from a list L.%0 takes6 given x>s position in L.%06
amortized time O.log log.lA t003

*c, The insertion of a value x from a list L.%0 takes6 given the position in L.%0
of the smallest value larger than x6 amortized time O.log log.lA t003

To simplify the process of incrementally building the objective structure TnD
we observe that all hypercubes that are to be added throughout the construction
process can be computed in advance1 This observation facilitates a less complex
semi8dynamic .instead of dynamic0 preprocessing1 The prior knowledge of all n
hypercubes means that the endpoints of the projections of the hypercubes on the
i8th coordinate axis are from a :xed :nite universe Ui of size O.n01 We actD howeverD
as if we only know the projections of the hypercubes on the last d"I coordinate axesJ
hence each corner .x - x!- . . . - xd0 is assumed to be a point from IR# U! # . . .# Ud1
The static nature of the hypercubes with respect to the last d " I axes is used
to compute the major part of the d8level data structure in advance by recursively
building a segment tree on the projections of the hypercubes onto the last d " I
coordinate axes1 The resulting .d" I08level segment treeD which can be regarded as
the initial tree T" in our incremental constructionD diMers from our objective d8level
data structureD TnD only in that the one8dimensional ordered lists in the nodes of
the substructures at level d " I are missing1 These lists are built incrementally
by NinsertingO the hypercubes from large to small into the skeleton provided by the
.d " I08level segment tree1 Note that the substructures at level d " I represent
decompositions into vertical slabs of the plane spanned by the second and :rst
coordinate axes1

Let us now consider the intermediate structure TmD obtained after inserting the
largest m hypercubes Cn m# - . . . - Cn into the skeleton T"1 Following the standard
insertion procedure for multi8level segment treesD the insertion of the hypercube
Cn m into Tm boils down to the insertion of a squareD that isD the projection of
Cn m onto the plane spanned by the :rst two coordinate axesD into O.logd ! n0
substructures T at level d " I1 Note that the prior computation of the skeleton T"
guarantees that no new nodes have to be created in any of the higher8level structures
during the insertion of a hypercube1
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We move on to study the reduced problem of inserting the planar projection
8iL ! iH 9 8iL! ! i

H
! 9 of Cn m into a level:;d! <= substructure T of Tm> The upper level

of T is a segment tree on the projections onto the second coordinate axis of allA
at most nA planar hypercube projections stored in T > The associated ;ordered list=
structure L;'= of a node ' of T stores the sequence ;from x C !" to x C D"=
of disjoint slab intervals 8)! *9 I$ within which all points share the same smallest
containing hypercube> The intervals are labeled with the respective hypercube index>

The hypercube Cn m must be stored in the ordered list substructures L;'= at
nodes ' of T corresponding to slabs IR I$ that are entirely spanned by the projection
8iL ! iH 9 8iL! ! i

H
! 9 of Cn m onto the plane spanned by the Hrst two coordinate axesA but

with parents parent;'= corresponding to slabs IR Iparent"$# that are not spanned by
8iL ! iH 9 8iL! ! i

H
! 9> Alternatively phrasedA the hypercube Cn m must be stored in the

ordered lists L;'= at nodes ' corresponding to intervals I$ that are entirely spanned
by 8iL! ! i

H
! 9 and have parents parent;'= corresponding to intervals Iparent"$# that are

not spanned by 8iL! ! iH! 9> Although the resulting nodes do not form a connected
subtree of T they are in fact never more than one node oJ the search path from
root to leaf in T for either the endpoint iL! or the endpoint iR! > HenceA we can
apply Theorem L><!;a= to the connected subtree T ! of T consisting of all nodes on
and just oJ both search paths and therefore eMciently search all L;' != for '! in T !

simultaneously for the location of the left endpoint iL of the projection of Cn m

onto the Hrst coordinate axis> The search time depends ;see Theorem L><!= on the
number of nodes ;s= in the connected subtree T !A the cumulative length ;l= of all
associated ordered lists in T A and the number of nodes ;t= in T > First of allA the tree
T is a priorly built tree on a subset of the projections of all hypercubes C ! / / / ! CnA
so t C O;n=> The subtree T ! consists of two root:leaf paths in T plus all nodes that
are only one node oJ these search pathsA thus s C O;log n=> MoreoverA an ordered
list L;'= ;before insertion of Cn m= stores only projections of the m hypercubes
Cn m$ ! / / / ! CnA so jL;'=j C O;m=> Because ;a part of= each projection appears
at no more than two nodes at a single height:level in T A we have l C

P
$ jL;'=j C

O;m logm= C O;n log n=> Application of Theorem L><!;a= to the subtree T ! of T
and the query value iL yields that the location of the query value is identiHed in
all lists L;'!= for ' ! in T ! in time O;log n log log n= worst:case> Note that the set of
nodes in T ! is a superset of the set of nodes in whose associated substructures Cn m

must be inserted>
The problem that remains is toA given the interval 8iL ! i

H
 9 and pointers to the

location of iL in all lists L;'= with ' in T !A insert the interval 8iL ! i
H
 9 only into

the lists L;'= of nodes in which Cn m must be insertedA i>e>A 8iL! ! i
H
! 9 spans I$ but

not Iparent"$#> Let us consider a node ' in T !> Verifying whether 8iL ! i
H
 9 must be

inserted into L;'= is easily done in constant time by comparing 8iL! ! i
H
! 9 with I$ and

Iparent"$#> Assume that 8iL ! i
H
 9 must indeed be inserted into L;'=A labeled with the

index Tn!mU> After insertion of the intervalA a query with a point p $ 8iL ! i
H
 9 I$

for the smallestA or lowest indexedA covering hypercube ;projection= must obviously
yield the answer Tn ! mU> HenceA the interval 8iL ! i

H
 9 must overwrite all parts of
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intervals that have non-empty intersection with 3iL  iH  and are present in L*#+
upon insertion of the latter interval2 Using the pointer into L*#+ we can identify the
subsequence of intervals that have non:empty intersection with the interval <iL  iH  
in time proportional to its length2 Let <$  %   & & &  <$g %g be this sequence and note
that only <$  %  may contain iL and only <$g %g may contain iH 2 The update
of L*#+ proceeds in four simple steps? in which we scan all intervals intersected by
<iL  iH  @

A2 if iL  *$  %  then replace <$  %  by <$  iL  
else delete <$  %  B

C2 for all C ! h ! g " A do delete <$h %h B
D2 if iH  <$g %g+ then replace <$g %g by <iH  %g 

else delete <$g %g B
E2 insert <iL  iH  2

As l G O*n log n+ and t G O*n+? the amortized time spent on each of the above
deletions or insertions is? by Theorem D2AE*b+?*c+? O*log log n+2 The four steps in:
clude one insertion and g deletions in L*#+2 The fact that some varying number of g
deletions take place during a single update of a list L*#+ is not a problem? due to the
observation that each deletion must follow an earlier insertion of the same interval2
Hence? at any time during the preprocessing? the number of insertions so far exceeds
the number of deletions2 So? the amortized number of deletions per list update is
one as well? which implies that the amortized time spent in updating a single list
with a new hypercube is O*log log n+2 Within each level:*d" A+ substructure T ? the
required associated list updates are restricted to a subset of the O*log n+ nodes of the
subtree T  ? so the time spent on all necessary list updates in T is O*log n log log n+2
Combined with the O*log n log log n+ time bound for the simultaneous search in all
lists L*#  + with # in T  for the locations of the value iL ? this implies that the total
time spent on the update of a single level:*d" A+ substructure is O*log n log log n+2
Since the total number of level:*d " A+ substructures that have to be updated is
bounded by O*logd!! n+? the insertion of Cn!m into Tm to obtain Tm" takes time
O*logd! n log log n+2

Lemma ./01 The insertion of the hypercube Cn!m into Tm to obtain Tm" requires
O*logd! n log log n+ amortized time4

The computation of the structure Tm" by inserting the hypercube Cn!m into the
intermediate structure Tm is independent of the actual shape of the objects under
consideration2 The ePciency of this part is therefore guaranteed? irrespective of the
object shape2 The ePciency of the computation of Vn!m? however? relies on the
fact that the objects under consideration are convex or polytopes2 The dependence
follows from the use of the results from Section D2C2
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Computation of Vn m

The computation of Vn m . fEj ! EjEj $ Cn m %. & ' j ( n ) mg is based
on a sequence of point location queries5 In the static point location structure7
the query time was found to be O:logd  n< due to the incorporation of fractional
cascading5 Throughout the incremental construction of the point location structure7
however7 we use dynamic fractional cascading instead of fractional cascading to
achieve e>cient insertions7 which leads to a query time of O:logd  n log log n<5 Let
us analyze a point stabbing query in the intermediate structure Tm5

Like in the static case described in Section C5D7 a query with a point p in the
intermediate structure Tm proceeds recursively in the substructure associated to
the O:log n< nodes on the search path from root to leaf5 This eventually leads
to a search of O:logd ! n< substructures at level d ) D7 the level where dynamic
fractional cascading is incorporated5 The upper level of such a substructure T is
a segment tree on the projections onto the second coordinate axis of the locally
stored hypercubes5 The query point p will therefore again be contained in the
slabs corresponding to the nodes * on the search path from the root to the leaf of
the elementary interval containing pGs projection5 Hence7 we must search all lists
L:*< of nodes * on the search path5 Fortunately7 the nodes on the path form a
connected subtree T ! of T with O:log n< nodes7 so7 by Theorem C5DJ:a< these nodes
can be searched simultaneously in worstKcase time O:log n log log n<5 The entire
point stabbing query time amounts to O:logd  n log log n<5 Note that a single search
with p yields O:logd  n< candidate answersM one for each list L:*< that is searched5
The ultimate answer to the query is clearly the minimum among all hypercube
indices found5

The computation of the set Vn m beneNts from the fact that the hypercubes are
inserted into the data structure from large to small in the sense that at the time of
the setGs computation7 the intermediate data structure only stores hypercubes and
objects from the appropriate index range On ) m P D, - - - , nQ5 Therefore7 we may
restrict ourselves to Nnding the hypercubes in the data structure that intersect the
query hypercube Cn m without having to bother about the sizes of these hypercubes5
Moreover7 note that future additions of hypercubes and their corresponding objects
do not aSect the earlier computed sets Vj 5 To apply the range searching results from
Section C5T7 we must verify the validity of the constant ratio between the diameter
of the search region :the hypercube Cn m< and the lower bound on the radii of
the minimal enclosing hyperspheres of the stored objects5 The radii of the minimal
enclosing hyperspheres of the objects in fEn m" , - - - , Eng are bounded from below
by .n m" 7 and7 by the ordering on the radii7 also by .n m5 The query region
Cn m is the axisKparallel enclosing hypercube of the minimal enclosing hypersphere
of En m with radius .n m5 As a result7 the diameter of Cn m is T

p
d , .n m5 The

application of Theorems C5DV and C5DC7 yields7 taking into account the modiNed point
location query time due to dynamic fractional cascading7 a worstKcase time bound
of O:logd  n log log n< for the computation of Vn m5
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Lemma $%&' Let# for all n m " j ! n# Vj be a set of convex objects or polytopes2
Then the computation of the set Vn m from Tm and fVjjn  m " j ! ng takes
O"logd  n log log n& time2

Lemmas ,-./ and ,-. show that each of the O"n& steps in the incremental
construction of the d;level data structure for point location and range searching
among convex objects or polytopes takes O"logd  n log log n& timeB resulting in a
time bound of O"n logd  n log log n& for the computation of Tn from the skeleton
T!- Adding to this bound the O"n logd  n& time bound for building the "d .&;level
segment tree T!B we obtain the desired result-

Theorem $%&, Let E be a set of non:intersecting constant:complexity k:fat convex
objects or arbitrary polytopes2 Then the d:level point stabbing structure can be built
in time O"n logd  n log log n&2

After the construction of the data structureB the query time can be improved back to
O"logd  n&- To this endB it suFces to rebuild the structure using static fractional
cascading- As all the sets Vi are now knownB this can easily be achieved in time
O"n logd  n&-

 !" Summary of results and extensions

In this chapter we have presented a data structure for both point location and range
searching with bounded;size ranges in certain scenes of fat objects- Theorem ,-.I
summarizes the results by combining Theorems ,-,B ,-.JB ,-.,B and ,-.!-

Theorem $%&- Let k ) J and h & J be constants and let E be a set of non:
intersecting constant:complexity k:fat arbitrary convex objects and<or non:convex
polytopes E ' IRd with minimal enclosing hypersphere radii at least ,2 Then the set
E can be stored in time O"n logd  n log log n& in a data structure of size O"n logd  n&
which supports point location queries and range searching queries with ranges R '
IRd of diameter at most h ( , among the objects of E in time O"logd  n&2

The theorem does not apply to scenes of arbitrarily;shaped non;convex objects-
It is though believed that a similar result holds in that case as well- Preliminary re;
sults in that direction with two;dimensional objects bounded by algebraic polygonal
curves of bounded degree are promising-

Throughout the entire chapterB the assumption that the objects in E are non;
intersecting only plays a role in showing that the number of larger objects E! inter;
secting the enclosing hypercube C of some object E is bounded by a constant- No
other lemma or theorem relies on the disjointness of the objects- As a consequenceB
all results in this chapter remain valid if we drop the requirement of disjointness
and instead impose the weaker restriction upon E that each enclosing hypercube C
of E ) E is intersected by at most a constant number of objects E! larger than E-
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In the generalized setting of intersecting objects4 a query point may be contained
in more than one object: The answer to a point location4 or point stabbing4 query
should therefore be the collection of objects containing the query point: Note that
the new restriction on the data set E prevents more than a constant number of
simultaneous containments: An interesting example of such a set is a collection Ew
of Ac ! !BCwrappings of nonCintersecting kCfat objects: If the wrappings E " Ew are
kCfat for some constant k and convex or polytopes4 then Theorem D:E! applies to
the set Ew of intersecting objects:

The results of this chapter have an important application in the motion planning
part of this thesis: The running time of the general paradigm for motion planning
amidst fat obstacles in Chapter  depends on the time spent in computing the
pairs of obstacles within a distance b ! ! from each other4 where b is a constant
and ! is a lower bound on the minimal enclosing hypersphere radii of the obstacles
in the workspace: By Corollary I:EJ there are only OAnB such pairs: The result
in this chapter allow for the computation of all pairs in time OAn logd  log log nB
time instead of the trivial OAn!B time: As a related application4 it is possible to
compute the linear complexity arrangement Aby Theorem I:EIB of tight wrappings
of nonCintersecting fat objects in time OAn logd  log log nB:



Chapter '

The complexity of the free space

In this chapter+ we return to the motion planning problem and start the investiga5
tion on how fatness in7uences the problem and its solution8 The problem of :nding
a collision5free motion for a robot in a workspace with obstacles is commonly trans5
formed into the problem of :nding a continuous curve in the free space8 In Chapter
>+ we have argued that the complexity of :nding such a curve highly depends on
the complexity of the free space8 This chapter studies the in7uence of fatness on
the free space complexity8 More speci:cally+ it shows that the complexity of FP
for a constant5complexity robot moving amidst constant5complexity fat obstacles is
linear in the number of obstacles+ provided that the size of the robot is proportional
to the size of the smallest obstacle and provided that the constraint hypersurfaces
de:ned by the robot5obstacle contacts are algebraic of bounded degree8

Section E8> studies the structure of the free space in detail and establishes the
relation between the complexity of the free space and the number of multiple contacts
for the robot with the obstacles in the workspace8 Section E8F gives an overview
of known results on free space complexities8 The overview gives an idea of the
conditions that typically lead to high complexities8 The observations are used in
Section E8G to formulate a realistic framework of motion planning problems with a
linear complexity free space8

 !" The structure of the free space

The con:guration space C is the space of parametric representations of all robot
placements8 The number of degrees of freedom f of the robot B determines the
dimension of the con:guration space8 We classify the points in the con:guration
space according to the robot placements that they represent+ resulting in three
diIerent types of points 8 Let Z ! C be a placement of the robot B+ and let
BKZL " W be the collection of points in the workspace covered by B when placed at

 In the sequel) we generally do not distinguish between the point Z  C and the placement
that Z represents6

MN
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Z" Furthermore+ we denote the interior of a closed set X by int7X8" Assume that
Z  C+ then

! Z is a free placement when "E E B:Z; $ E < %+
! Z is a contact placement when &E E B:Z;$E '< % and "E E B:Z;$ int7E8 < %+
! Z is a forbidden placement when &E E B:Z; $ int7E8 '< %"

Informally+ a free placement is a placement in which B does not intersect any obsta?
cle+ a contact placement is a placement in which B is in contact with the boundary
of some obstacle but does not intersect the interior of any obstacle+ and a forbid?
den placement is a placement in which B intersects the interior of some obstacle"
Clearly+ any point Z  C satisAes exactly one of the three expressions and corre?
sponds therefore to either a free placement+ or a contact placement+ or a forbidden
placement"

The subset of conAguration space of all free placements can+ according to the
above classiAcation+ be obtained by subtracting the union of all sets CE < fZ  
CjB:Z; $ E '< %g with E  E from CF FP < C n -E ECE" A set CE is sometimes
7see e"g" :HI;8 referred to as a conAguration space obstacle 7of E8+ as it consists of
all placements of B in which it intersects E" The boundary $CE consists of robot
placements Z such that B:Z;$ E '< % and B:Z;$ int7E8 < %+ or+ in other words+ of
all placements in which B touches E" The set of placements $CE in which B touches
E separates the placements of CE in which B intersects the interior of E from the
placements of C n CE in which B does not intersect E" On a more global level+
we And that the union boundary $7-E ECE8 separates the forbidden placements
from the free placements" The union boundary equals exactly the set of all contact
placements" 7Notice that the semi?free space SFP deAned in Chapter N consists of
all free placements and all contact placements"8

The boundary $CE of a conAguration space obstacle CE in the f ?dimensional
conAguration space can be regarded as a collection of 7f . N8?dimensional hypersur?
faces consisting of contact placements of a single robot feature and a single obstacle
feature of appropriate dimension" We use the term feature to describe a basic part
of the boundary of a geometric object whether an obstacle or the robot" An 7f .N8?
dimensional hypersurface of contact placements is called a constraint hypersurface"
The lower?dimensional features on the boundary of a conAguration space obstacle
are common boundaries or intersections of two or more constraint hypersurfaces"
For example+ in the two?dimensional conAguration space C < IR of a translating
polygonal robot amidst polygonal obstacles+ each constraint curve is induced either
by the contact of a robot vertex with an obstacle edge or by the contact of a robot
edge with an obstacle vertex" Figure R"N shows both types of contact" If the robot is
allowed to rotate as well+ then both combinations deAne constraint surfaces in the yet
three?dimensional conAguration space C < IR / :!& S'8" In the three?dimensional
conAguration space C < IR! of a translating polyhedral robot amidst polyhedral
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Figure ()!* The two types of contacts inducing a constraint curve in the con9guration
space of a polygonal robot translating amidst polygonal obstacles* a robot vertex
sliding along an obstacle edge> and a robot edge sliding along an obstacle vertex)

obstacles> each constraint surface is induced by the contact of either a robot vertex
and an obstacle face> or a robot edge and an obstacle edge> or a robot face and an
obstacle vertex)

The constraint hypersurfaces in con9guration space allow for an interpreta?
tion of the free space with a more computational?geometry?like Aavor) The Bf  
!C?dimensional constraint hypersurfaces partition the f ?dimensional con9guration
space into f ?dimensional cells) A cell is a maximal connected f ?dimensional subset
of the con9guration space containing no part of a constraint hypersurface) The cells
consist either exclusively of free placements of exclusively of forbidden placements)
The cells are referred to as free cells and forbidden cells respectively) The free cells
in the arrangement of constraint hypersurfaces collectively constitute the free space
FP) We are therefore interested in studying a collection of cells> namely> the free
cells> in the partitioning of f ?dimensional space by a collection of Bf !C?dimensional
hypersurfaces) Note that> by the de9nition of a cell> no two points in two diHer?
ent free cells are linked by a free path> that is> a path that is entirely contained in
the free space) The de9nition of the free space via the arrangement of constraint
hypersurfaces links the study of the motion planning problem to a basic study in
computational geometry> namely> the study of arrangements of hypersurfaces)

Before we de9ne the complexity of a cell in an arrangement> we 9rst formulate
an assumption regarding the constraint hypersurfaces in con9guration space) The
assumption stands throughout all of the remaining chapters)

The hypersurface in con9guration space corresponding to the set of place?
ments in which a certain robot feature is in contact with a certain ob?
stacle feature of appropriate dimension is algebraic of bounded degree)

The assumption on the shape and complexity of the constraint hypersurfaces mainly
means that the boundaries of the robot and the obstacles are not too irregularly
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shaped( A direct consequence of the assumption is that the intersection of any mul6
tiple of hypersurfaces consists of only a constant number of connected components(
Moreover: it implies a ;rst simple upper bound of O<nf = on the complexity of the
entire arrangement of constraint hypersurfaces(

The complexity of a cell in an arrangement of algebraic hypersurfaces of bounded
degree is de;ned to be the number of faces of various dimensions on the cellAs bound6
ary( A j6dimensional face: or j6face is a maximal connected j6dimensional part of the
arrangement containing no lower6dimensional faces in its interior( A j6dimensional
face of the speci;c arrangement of constraint hypersurfaces is a maximal connected
component of the intersection <or common boundary= of f  j constraint hypersur6
faces( For example: the complexity of a two6dimensional cell in an arrangement of
line segments in the plane is the number of edges <D6faces= and vertices <E6faces= on
the cellAs boundary: where a vertex is either an endpoint of a line segment or the
intersection point of segments: and an edge is a maximal portion of a line segment
meeting no vertex of the arrangement(

The complexity of the free space is the sum of the complexities of the free cells
and: hence: bounded by the complexity of the entire arrangement of constraint
hypersurfaces: that is: the total number of faces of any dimension in the arrangement(
As each constraint hypersurface is induced by a contact of a robot feature and an
obstacle feature: the intersection of j such surfaces corresponds to the simultaneous
occurrence of j contacts for the robot( Because each intersection of j hypersurfaces
consists of a constant number of connected components by the assumption on the
shape and complexity of the hypersurfaces: the number of j6fold contacts is of the
same order of magnitude as the number of j6dimensional faces in the arrangement(
Thus: the complexity of the free space is determined by the total number of diGerent
single and multiple contacts for the robot: since they determine the complexity of
the arrangement of constraint hypersurfaces <which bounds the complexity of FP=(

To get a feeling of what a multiple contact is: consider the case of a ladder
<line segment= translating among polygonal obstacles in the plane( This is a mo6
tion planning problem with two degrees of freedom and the constraint curves that
it induces in the con;guration space C I IR are straight line segments( Each of
these constraint segments is induced either by the contact of a ladder endpoint with
an obstacle edge: or by the contact of the interior of the ladder with an obstacle
vertex( Consider now the case where each ladder endpoint touches a distinct obsta6
cle edge <and assume further that these two edges have diGerent directions=( The
contact of each ladder endpoint with an obstacle edge is expressed as a segment in
the con;guration space: and this double contact will manifest itself as the meeting
point of these two segments: namely as a vertex in the con;guration space( The
fact that the double contact occurs at an isolated point in con;guration space can
be easily understood by observing that it is impossible to maintain the double con6
tact while slightly moving the ladder( If the ladder is also allowed to rotate then
the single contacts mentioned above de;ne constraint surfaces in the con;guration
space IR ! NE% !&=( The double contact of the robot in which its two endpoints touch



 !"! THE STRUCTURE OF THE FREE SPACE  !

two di'erent non+parallel edges now de1nes a curve in the con1guration space6 the
intersection of the two constraint surfaces corresponding to both contacts of the
endpoints9 The fact that the double contact de1nes a curve can be understood by
the observation that it is possible to slide both robot endpoints along the respective
obstacle edges that they touch< thus maintaining the double contact9 The continu+
ously changing robot placements lie on a curve in con1guration space9 An additional
third contact for the ladder robot< for example when its interior touches an obstacle
vertex 1xes the position of the robot in the sense that is unable to move without
losing at least one of the three contacts9 Triple contacts therefore occur at isolated
points in con1guration space@ they correspond to intersections of three constraint
surfaces9

In the preceding paragraphs we have implicitly assumed that the robot can only
collide with the obstacles and not with itself9 In other words< we have assumed that
no part of the robot can collide with another part of the robot9 Although the absence
of such so+called self+collisions Bor self+intersectionsC is a common assumption in
motion planning< we choose to give some thought to the possible consequences when
self+collisions are not neglected9 Self+collisions clearly only occur when the robot
under consideration is not a single rigid body but instead consists of a number of such
bodies linked together by revolute or prismatic joints9 A speci1c property of self+
collisions is that they depend solely on the relative positions of the robot parts@ the
location of the robot in the workspace is irrelevant for determining if a certain robot
placement causes self+collision9 Figure I9J illustrates the observation9 Consider the
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Figure I9J6 An example of a self+colliding BI+DOFC robot9

robot consisting of a triangle and a line segment attached to each other by a revolute
joint J @ the triangle edges incident to J de1ne an angle N9 The joint J serves also
as the robotOs reference point9 A placement of this I+DOF robot is speci1ed by the
position Bx" yC of the reference point in the workspace W Q IR < and by the angles $
and % between the positive x+axis and the line segment and the triangle respectively9
Clearly< the two linked parts of the robot intersect in any placement Bx" y" $" %C
satisfying %  $  % S N Bmod J&C9 Hence< the entire subspace IR ! fB$" %C #
UV" J&C! UV" J&Cj%  $  %SN Bmod J&Cg consists of forbidden placements due to
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self&intersections of the robot/ Robot&robot collisions can be dealt with in exactly
the same way as the robot&obstacle collisions7 so that we end up with a number of
self&collision constraint hypersurfaces that separate placements in which parts of the
robot intersect each other from placements in which the robot does not self&intersect/
A self&collision constraint hypersurface is induced by the contact of a robot feature
with another robot feature of appropriate dimension/ The self&collision constraint
hypersurfaces in the linked !&DOF robot example are the two three&dimensional
surfaces  @ ! and  @ ! A B/ The arrangement of all DregularE and self&collision
constraint hypersurfaces subdivides the f &dimensional conGguration space in free
and forbidden cells w/r/t/ the obstacles and the robot itself/ Below we search for
conditions for the self&collisions that prevent an increase of the complexity of the
arrangement and7 hence7 of the complexity of the free space/

The shape of the self&collision constraint hypersurfaces diIers somewhat from
the shape of the regular constraint hypersurfaces in the sense that they are DlargerE/
The bounded range of reference point positions in the workspace in which a speciGc
robot feature touches a speciGc obstacle feature is reJected in a certain compactness
of the corresponding constraint hypersurface in conGguration space/ On the con&
trary7 a collision of two robot features is independent of the position of the robotEs
reference point so that the corresponding constraint hypersurface can be unbound&
edly large Ksee for example the surfaces of the above exampleL/ The size of the
self&collision constraint hypersurfaces causes such surfaces to KpossiblyL intersect all
other surfaces/ If7 however7 the number of self&collision constraint hypersurfaces is
constant and each hypersurface is algebraic of bounded degree7 then certainly these
additional surfaces will not increase the asymptotic complexity of the arrangement
of constraint hypersurfaces/ Because of our general assumption that the robot is of
constant complexity7 this is always the case/ Hence7 in bounding the free space com&
plexity7 we may neglect self&collisions/ We brieJy revisit self&collisions in Chapter R
to examine their algorithmic consequences/

Unfortunately7 the worst&case number of multiple contacts7 and7 hence7 the com&
plexity of the free space7 can be high/ If n is the number of obstacle features and
f is the number of degrees of freedom of the robot Ki/e/7 the dimension of the con&
Gguration spaceL and the number of robot features is bounded by some constant7
then this complexity can be UKnf L/ So7 theoretically7 motion planning techniques
whose performances depend on the size of the free space are expensive/ Fortunately7
in many practical situations the complexity of the free space FP tends to be much
smaller and7 as a result7 such methods might become feasible/ A study of proper&
ties that limit the number of multiple contacts for the robot Kand consequently the
complexity of FPL is therefore of obvious importance/

In many practical cases the relative positions and the shapes of the obstacles are
such that the number of multiple contacts for the robot B is very low/ Obstacles
that lie far apart clearly result in less multiple contacts for B than obstacles that
are cluttered/ Similarly7 obstacles that have long and skinny parts will induce more
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multiple contacts than /fat1 obstacles that do not have such parts6 Before we for9
malize these intuitions in the Section <6=> we ?rst review some known bounds on the
complexities of the free space for motion planning problems6

 !" Results on free space complexities

Research in motion planning throughout the last few years has concentrated on
studying the structure and complexity of the free space rather than on developing
new motion planning algorithms6 This trend can be explained from the fact that a
thorough insight in the structure and complexity of the free space is evidently very
important for the design of algorithms that eFciently preprocess FP into a small
structure capable of providing fast answers to motion planning queries6

Besides studying the entire free space> several papers also focus on the complexity
and computation of a single connected component> or single cell> of the free space6
The motivation for this direction of research lies in the simple observation that a
robot can only reach placements that lie in the free space component containing the
initial robot placement6 The complexity of a single free cell is sometimes an order
of magnitude smaller than the complexity of the entire free space6

In the preceding section> we have seen that the complexity of an arrangement
of O/n1 constraint hypersurfaces in f 9dimensional con?guration space is bounded
by O/nf 1> by standard arguments on arrangements of algebraic hypersurfaces of
bounded degree6 For certain motion planning problems> that is> for certain robots
and obstacle types> the shapes of the constraint hypersurfaces are such that the
arrangement of hypersurfaces> and> hence> the complexity of the free space> has a
worst9case complexity smaller than O/nf 16 Given the upper bounds obtained by
combinatorial arguments> it is interesting to see if examples of motion planning
environments> that is> a robot in a workspace with obstacles> can be constructed
that do indeed achieve these worst9case free space complexities6 When trying to do
so> it turns out that it is often diFcult to construct settings of robots in workspaces
with obstacles that establish or even approximate the upper bound on the free
space complexity /or single cell complexity1> thus leaving a gap between theoretical
worst9case bounds obtained by combinatorial arguments and complexities obtained
by constructed diFcult /complex1 motion planning environments6 The existence of
such a gap clearly raises uncertainty on the tightness of the upper bound6

The lower bound constructions of diFcult motion planning environments found
in literature are often very arti?cial and as such rarely encountered in real9life situ9
ationsM they often involve robots and obstacles that are extremely thin andNor have
exorbitant relative sizes6 If the extreme properties of the robot and the obstacles
that are necessary to construct these diFcult settings do not occur> then most of
the arti?cial lower bound constructions become impossible6 This illustrates that the
complexity of the free space for practical motion planning problems is likely to stay
far below the worst9case complexities obtained by combinatorial arguments and ap9
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proximated by arti.cial settings4 Below we review some of the known lower bound
constructions and upper bounds on free space and single cell complexities for motion
planning problems4 The currently available results are restricted to problems with
at most three=dimensional con.guration spaces4 We consider motion planning prob=
lems involving a constant=complexity robot amidst n constant=complexity obstacles4

The trivial upper bound on the complexity of the free space of a translating
polygonal robot ?f @ AB amidst polygonal obstacles is O?n B4 If the robot is convexD
then the worst=case complexity of the free space remains an order of magnitude
below the trivial bound ?see e4g4 EFGHB4 The linear bound is clearly optimal4 Things
change if the robot is allowed to be non=convex4 Figure J4K shows an L=shaped
robot amidst n#A vertical line segments close to each other and n#A horizontal
line segments arranged similarly on a horizontal line4 If the robotNs horizontal bar

B
n! 

n! 

Figure J4KO A planar translational motion planning problem with free space com=
plexity Q?n B4

is placed between two consecutive horizontal line segments and its vertical bar is
placed between two vertical segmentsD then both bars of the RLN are stuck between
these two pairs of segments and the reachable positions of the vertex incident to
the two bars are restricted to a small ?dottedB square of points4 These position
constitute a separate connected component of the free space4 As there are n #J
combinations of a vertical and horizontal segmentD the free space consists of Q?n B
free cells4 HenceD the complexity of FP is Q?n B4 Let us try to .nd out what
speci.c properties of the construction in Figure J4K lead to the quadratic free space
complexity4 First of allD it turns out that a similar constructions can be obtained
for any combination of sizes of the robot and the segmentsD simply by appropriately
choosing the distance between any pair of consecutive parallel segments4 ThusD a
restriction on the relative sizes alone does not make the construction impossible4
On the other handD a minimal fatness restriction on the obstacles alone is also
insuWcient4 In the case that the line segments are replaced by squares of equal sizeD



 !"! RESULTS ON FREE SPACE COMPLEXITIES   

the above construction can be obtained by choosing the robot su1ciently large3 More
obstacles though necessitate a larger robot5 so the size of the robot is proportional
to the number of obstacles3 This observation indicates that the combination of a
minimal fatness requirement and a bound on the relative sizes of the robot and the
obstacles make the construction impossible3 The results in the next section con>rm
the supposition3 For the sake of completeness5 we mention that the complexity of
a single free cell for a polygonal robot amidst polygonal obstacles is OAn"AnBB CDEF5
where "AnB is the extremely slowly growing inverse of the Ackermann function3

The complexity of the free space of a translating and rotating polygonal robot
Af H DB amidst polygonal obstacles is trivially bounded by OAn B3 Leven and Sharir
CKDF report an OAn$!AnBB bound on the complexity if the robot is a convex polygon5
where $!AnB is a nearLlinear function depending on the length of certain soLcalled
DavenportLSchinzel sequences3 AFor a discussion of DavenportLSchinzel sequences
and more detailed bounds on $sAnB for various values of s5 the reader is referred
to CNF3B Ke and OQRourke CSTF show that UAn"B moves5 that is5 constant complexity
curves5 may be necessary to connect two placements in a single free cell3 This
result gives an indication of the potential complexity of >nding a path in a single
cellV the cell complexity alone does not give full insight in this matter A>nding a
path between two points in a convex cell5 for example5 is simple5 regardless of its
complexityB3 Figure N3N gives an UAn"B lower bound construction for the single cell
complexity5 and5 hence5 for the complexity of the entire free space that approximates
the nearLquadratic upper bound of OAn$!AnBB5 thus leaving a relatively small gap
between the theoretical upper bound and achievable lower bound construction3 The
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Figure N3NW A planar motion planning problem for a convex robot with free space
and single cell complexity UAn"B3

robot B5 which is a simple line segment moving among small Apoint or squareB
obstacles5 can be in simultaneous contact with any combination of obstacles from
the top and bottom row5 yielding n"&N obstacle pairs3 Any simultaneous contact
with features of such a pair de>nes a oneLdimensional face on the boundary of the
free space5 resulting in UAn"B oneLdimensional faces3 All double contact placements
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are connected by ,semi01free paths and belong therefore to the boundary of a single
connected component of the free space8 Thus: the complexity of this free cell: and
obviously also of the entire free space: is =,n 18 Like in the purely translational case:
it is possible to build the construction if the obstacles have a certain minimal fatness:
simply by making the robot su@ciently large8 A restriction on the relative sizes of
the robot and the obstacles: however: seems to make the construction impossible8
Once more: the combination of both assumptions implies a linear upper bound on
the complexity of FP: as will be shown in Section H8I8

Contrary to the case of a convex robot: the trivial upper bound of O,n!1 on I0
DOF motion planning can be achieved for some construction involving a non0convex
robot8 Figure H8L shows an L0shaped robot moving among two horizontal rows of n"I
obstacles and one vertical row of n"I obstacles8 The example is taken from a paper
by Halperin: Overmars: and Sharir NHIO on motion planning for an L0shaped robot8
For appropriately chosen distances between the three rows and between consecutive
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Figure H8LP A planar motion planning problem for a non0convex robot with free
space complexity =,n!18

obstacles within a single row: it can easily be veriQed that it is possible to place
one bar between any combination of pairs of consecutive obstacles in the upper and
lower horizontal rows and the other bar between any pair of consecutive obstacles in
the vertical row8 Once the bars are placed between consecutive pairs of obstacles in
each of the three rows: the robot is RstuckS between these pairsP it is not connected
by a free path to a placement of the bars between diTerent obstacle pairs8 As the
number of combinations is about n!"U : the free space consists of =,n!1 free cells
and has complexity =,n!18 Like in the previous examples: the construction can be
built for fat obstacles as well8 A restriction on the relative sizes of the robot and
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the obstacles probably makes the construction impossible3 the worst setting that is
then achievable seems to be the setting of Figure 9:;< yielding quadratic size free
space: Halperin and Sharir B99C present an upper bound of ODn EO!log

  ! n%F on the
complexity of a single connected component of the free space: This bound is almost
tight as a quadratic lower bound construction is given by Figure 9:9 if we apply a
minor modiIcation to the robot to turn it into a nonJconvex shape Dsee also B9KCF:

Finally< we brieLy consider a translating polyhedral robot Df M ;F among polyJ
hedral obstacles in a threeJdimensional workspace< with a trivial upper bound of
ODn&F on the complexity of the free space: A rather straightforward generalization
DBO!CF of the construction of Figure 9:; shows that the cubic complexity can indeed
by achieved if the robot is nonJconvex: Figure 9:P shows the threeJdimensional conJ
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Figure 9:PQ A spatial translational motion planning problem for a nonJconvex robot
with free space complexity RDn&F:

struction3 the orientations of the three sets of parallel planes restrict the position
of the meeting point of the three bars of B to a small cube< similar to the planar
example: The construction becomes impossible upon addition of a minimal fatness
requirement for the obstacles< for reasons similar to those of the corresponding plaJ
nar case: Other results on the complexity of the free space are restricted to convex
robots: Results by Wiernik and Sharir BKVKC imply the existence of a lower bound
construction of size RDn #DnFF for a translating convex polyhedral robot among
polyhedra< based on DavenportJSchinzel sequences: Halperin and Yap B9PC prove an
upper bound of ODn #DnFF for the free space complexity of a translating box< conJ
Irming the more general conjecture of Sharir BO!C that the same upper bound holds
for any convex polyhedral robot: Recently< Aronov and Sharir B C have shown that
the worstJcase complexity of FP for a convex polyhedral robot amidst polyhedral
obstacles is ODn log nF: Halperin and Sharir B9[C< Inally< prove an upper bound on
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the complexity of a single cell in an arrangement of n low4degree algebraic surface
patches in 84space of O9n ! :; for any " # !; where the constant of proportionality
depends on "< The result bounds the complexity of a single connected component of
the free space for motion planning problems with three degrees of freedom involving
a robot and obstacles of constant complexity<

Ke and OARourke DE!F report a lower bound for a more complicated spatial motion
planning problem; namely that of a translating and rotating ladder 9f G E: among
polyhedral obstacles< They show that H9n": distinct moves; or constant degree
curves in conIguration space; may be necessary to connect two placements of the
ladder< It is not hard to understand that H9n": moves can only be necessary within
a free cell with at least the same complexity H9n":; and; hence; also in a free space
with complexity H9n":<

 !" Fat obstacles and the free space complexity

In this section; we deduce a linear bound on the complexity of the free space for a
robot moving amidst fat obstacles; and formulate the necessary additional assump4
tions that lead to the result< The considerations in the Irst section of this chapter
show that the number of multiple contacts is of the same order of magnitude as the
complexity of the free space; provided that the constraint hypersurfaces are algebraic
of bounded degree< Under this assumption; we may therefore settle for a bound on
the number of multiple contacts to bound the complexity of the free space< A very
useful observation now is that two obstacle features that are far apart 9more than
the maximum diameter of the robot: cannot be involved in any multiple contact for
B; simply because B is unable to touch both simultaneously< Hence; obstacles that
do induce such a contact must lie in each otherAs proximity<

As the notion of proximity depends on the size of the robot; we must Irst de4
termine a convenient way of expressing this size< The fact that the robot may be
articulated implies that its diameter is variable; so a more general notion is needed<
Let O ! B be the robotAs reference point< The reach %B of a robot B is deIned to
be the maximum distance from the reference point O ! B to any point in B in any
placement Z of B< More formallyQ

De"nition '() *reach %B of a robot B1
Let ZW be some arbitrary position of the reference point O of the robot B0 Then the
reach %B of the robot B is de3ned as

%B G sup
ZD!D

max
p!B$%ZW$ZD&'

d9p) ZW:*

In words; the reach %B of a robot B is the maximum distance in the workspace that
any point in the robot B can ever have to the reference point; which is also equal
to how far the robot can reach; measured from its reference point< Naturally; the
reach is independent of the actual position of the reference point< The deInition
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involves a *sup- instead of a *max- because the rest7space D might be open9 like e;g;
D < =>! ?"@ in the case of the planar rotating and translating rigid robot; Notice
that the deBnition of the reach causes any robot with reach #B and its reference
point O placed at p  W to be completely contained in the hypersphere Sp!"

B

with
radius #B centered at p9 regardless of the actual placement Z of the robot; Note
furthermore that the maximum diameter of a robot with reach #B is ?#B; In the
remainder of the thesis9 the reach of the robot will be used as the main means of
expressing the robot size;

A convenient strategy for bounding the number of multiple contacts is by charg7
ing each multiple contact to the smallest obstacle involved in the contact9 and sub7
sequently bounding the number of chargings to any obstacle E; The observation in
the previous paragraph learns that all features involved in a contact of B with E
and larger obstacles must lie in the proximity of E; Corollary ?;!> supports this
strategy by supplying a valuable bound on the number of obstacles Land9 hence9 on
the number of features of obstacles@ larger than E that lie in E-s proximity; The
corollary9 which we recall below as Property N;? in a form that is tailored to our
current needs9 also gives clear indications on what additional assumptions on the
workspace W and obstacles E are required for obtaining a linear number of multiple
contacts;

Property '() Let k # ! and b # > be constants and let E be a set of non,
intersecting k,fat objects in IRd1 Let E  E be an object with minimal enclosing
hypersphere radius #1 Then the number of objects E!  E with larger minimal en,
closing hypersphere radii within a distance ?b $ # from E is bounded by the constant
k $ L?bP ?@d1

The importance of the property becomes clear if we realize that a robot with reach
#B % b $ # can only simultaneously touch obstacles that are less then ?#B % ?b $ #
apart; The features involved in a multiple contact of B Lwith minimal enclosing
hypersphere radius #B % b $#@ with E and larger must clearly be among the features
of the at most k $ L?bP ?@d < OL!@ obstacles in the proximity of E;

Before we focus on the problem of Bnding an upper bound on the number of
multiple contacts9 we brieRy reconsider the notion of multiple contact itself; What
kind of subspaces of the conBguration space are deBned by multiple contacts and
how many obstacles can participate in a multiple contactS

The set of placements of the robot B in which a certain feature of B is in contact
with a boundary feature Lof an obstacle@ in E of appropriate dimension forms an
Lf & !@7dimensional subspace Lor hypersurface@ in the f 7dimensional conBguration
space; An intersection of j of these hypersurfaces corresponds to a simultaneous
contact of the robot with j obstacle boundary features in E; Such an intersection
is an Lf & j@7dimensional subspace of the conBguration space; Consequently9 the
f 7fold contacts appear at isolated points in the conBguration space9 and9 hence9 Bx
the position of the robot; Contacts that involve more than f obstacle features do
not appear if we assume that the obstacles are in general position; Such contacts
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can be discarded without a0ecting the complexity of the free space8 We see that a
robot B with f degrees of freedom can have up to f simultaneous contacts with the
boundaries of the obstacles in E8

We consider the situation where a robot B moves amidst n k;fat obstacles E " E
in general position< where k # = is a constant8 The robot as well as the individual
obstacles are assumed to have constant complexity< so the number of robot features
is O?=@ and the number of boundary features in the obstacle set E is O?n@8 As
a consequence< the total number of hypersurfaces is O?n@8 The hypersurfaces are
assumed to be algebraic of bounded degree< so that the intersection of any j hy;
persurfaces consists of at most a constant number of connected components8 To
successfully apply Property D8!< the robot B is assumed to be not too big compared
to the obstacles8 Let & be a lower bound on the minimal enclosing hypersphere radii
of all obstacles8 The reach &B of the robot B is constrained by &B % b & &< where b
is some positive constant8 This assumption regarding the size of the robot is not
very restrictiveG it basically rules out the situation where the robot B is so large
that it would make the obstacles into point obstacles relative to its own size8 The
assumption will be satisIed in most practical cases8 ?In the previous subsection we
already saw that such a restriction is required to obtain low free space complexities8@
We summarize the assumptions below8

' The workspace W of the robot B is the d;dimensional Euclidean space IRd8

' The workspace W of the robot B contains a collection E of n k;fat obstacles
E ( IRd in general position< for some constant k # =8

' The reach &B of the robot B is bounded by &B % b & &< where b # M is a
constant and & is a lower bound on the minimal enclosing hypersphere radii
of all obstacles E " E8

' The robot B has constant complexity8

' Each obstacle E " E has constant complexity8

' The hypersurface in the conIguration space corresponding to the set of robot
placements in which a certain robot feature is in contact with a certain obstacle
feature is algebraic of bounded degree8

The assumptions remain valid throughout the remaining chapters8
The proximity result given in Property D8! is the key to successful application

of a proof strategy that repeatedly considers an obstacle E and counts the number
of multiple contacts for the robot B involving E and obstacles with larger minimal
enclosing hypersphere radii8 Property D8! guarantees that we Ind a constant upper
bound on this number for each obstacle E8 The resulting overall number of multiple
contacts will be linear< which is stated in Theorem D8N8
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Theorem &'( Let d! k  " and b  # be constants and let E be a set of n k,fat
obstacles in IRd of constant complexity each and with minimal enclosing hypersphere
radii at least %6 The robot B with constant complexity8 f degrees of freedom8 and
reach %B # b $ % moves in W ' IRd amidst the obstacles of E6 Then8 for each
( # j # f 8 the number of j,fold contacts of the robot B is linear in the number of
obstacles; O)n*6

Proof+ Consider some obstacle E & E and let %E  % be its minimal enclosing
hypersphere radius> Let us count the number of jAfold contacts of B that involve E
and obstacles E! with larger minimal enclosing hypersphere radii> Such an obstacle
E ! must lie within a distance (%B from E in order to allow B to touch E and E!

simultaneously )because the reach %B of B bounds BEs maximum diameter by (%B*>
Let p be the number of obstacles E ! that lie within a distance (%B from E> Since
(%B # (b $ % # (b $ %EG we know by Property J>( that p # k $ )(bK (*d ' O)"*>

A single jAfold contact is determined by j diMerent pairsG each pair consisting
of a robot feature and an obstacle feature> Let us assume that the robot has xB
diMerent features and that the number of features of each obstacle E is bounded
by xE> The Orst contact is a contact between a robot feature and a feature of the
obstacle E> We have at most xB $ xE choices for this contact> For each of the j ' "
remaining contacts we can choose the obstacle feature on each of the p obstacles in
the proximity of EG which gives a total number of xE $ p possibly involved obstacle
features> For each contact we can again choose from all xB robot features> HenceG
the total number of jAfold contacts involving E is bounded by )xB $xE $p*j# (xB $xEG
which is a constant>

Adding all the n constant upper bounds results in an overall upper bound on
the number of jAfold contacts of n $ ))xB $ xE $ p*j# ( xB $ xE*G which is O)n*G since
xBG xEG pG and j are constants>  

Note that the value of j in Theorem J>! ranges from ( to f > The number of single
contacts is of course also linearG because the number of pairs of a robot feature and
an obstacle feature is linear> The case j ' " is deliberately excluded from Theorem
J>! to emphasize that fatness TonlyE reduces the number of multiple contactsG and
not the number of single contacts>

The )f ' j*Adimensional subspace deOned by a single jAfold contact is not necA
essarily connected> Figure J>U shows an example for f ' ! and j ' (G where it is
impossible for the robot to move from Z! to Z without losing contact with either
the upper or the lower obstacle feature> The "Adimensional subspace induced by
the contact with both features is therefore nonAconnected> Our assumption that all
contact hypersurfaces are of bounded degreeG howeverG implies that the number of
diMerent connected subspaces induced by a single multiple contact is bounded by
some small constant> The complexity of the free space is now solely determined by
the number of multiple contactsG since the contribution of a single multiple contact
to the free space apparently has constant complexity> Variable j in Theorem J>! can
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Z Z
0 1

Figure !()* There is no continuous motion of the robot from Z to Z! during which
it remains in contact with both features(

only have f  ; di<erent values= so the total number of multiple contacts is linear
and= hence= the free space has linear complexity(

Corollary &'& Let d# k ! ; and b ! @ be positive constants and let E be a set
of n k/fat obstacles in IRd of constant complexity each and with minimal enclosing
hypersphere radii at least '7 The robot B with constant complexity9 f degrees of
freedom9 and reach 'B $ b % ' moves in W D IRd amidst the obstacles of E7 Then9
the free space for the robot B moving amidst the k/fat obstacles of set E has linear
complexity7

The linear upper bound on the free space complexity obviously imposes an equal
bound on the complexity of a single free cell(

The constant that we obtained in Theorem !(F can be quite high* the Grst contact
for the robot is a feature of E= but each of the other j  ; contacts are chosen from
all features in the proximity of E( In practice= this approach yields a bound that
is far from tight because many of the features in EHs proximity cannot be touched
by B while it touches some feature of E( Figure !( shows an example of such a
situation( Even though the distance between two features alone may allow the robot
to touch both of them simultaneously= the positions of the obstacles in the workspace
may prevent the robot from actually doing so( So= only a subset of all theoretical
combinations of features really implies a multiple contact in the conGguration space(
Clearly= the number of actual jMfold contacts for B will remain far below the upper
bound of Theorem !(F(

The framework of assumptions that leads to the linear free space complexity
includes a general position assumption for the obstacles( The assumption basically
simpliGes the analysis by allowing us to neglect multiple contacts involving more
than f pairs of features( The upper bound of f on the value of j in counting
the number of jMfold contacts involving a feature of some obstacle E and features
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Figure () * The robot B touching the edge e of obstacle E is long enough to touch
e and the edge e of E simultaneously1 Nevertheless5 it is unable to do so5 because
the obstacle E  is in its way1

of larger obstacles E 5 however5 seems in no way relevant in obtaining a constant
bound1 The general position assumption5 although common in motion planning5 is
therefore not very essential to the validity of our result1

A second glance at the proof of Theorem :1; learns that most of the assumptions
are not used explicitly1 Instead5 the combination of the assumptions leads to a low
obstacle density in the workspace5 which basically means that any workspace region
with size comparable to the reach of the robot intersects only a constant number
of obstacle features1 This implied workspace property5 rather than the individual
assumptions5 is essential to the proof of Theorem :1;1 The linear bounds on the
numbers of j@fold contacts can therefore be extended to motion planning problems
for constant@complexity robots in workspaces that satisfy the low density property1
If5 in addition5 the constraint hypersurfaces deAned by the robot@obstacle contacts
are algebraic of bounded degree5 then the linear free space complexity result of
Corollary :1: extends to such motion planning problems as well1
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Chapter '

Existing algorithms and fat

obstacles

Exact motion planning algorithms process the free space FP for answering path
4nding queries8 The linear complexity result for FP does not directly imply that
the outcome of the processing; a representation of FP; has linear complexity as well8
Moreover; if an algorithm succeeds in supplying a linear complexity representation;
then it may still take far more time to compute this representation8

Before we focus on a general paradigm for motion planning amidst fat obstaA
cles in the next chapter; we study the inBuence of fatness on a number of existing
algorithms for moving a translating and rotating rigid robot among polygonal obA
stacles8 This speci4c problem has been studied extensively in the midACDEs which
has resulted in a number of algorithms with varying eFciency8 GIn fact; planar
motion amidst polygonal obstacles is the most extensively studied motion planning
problem8I The algorithms that are discussed below constitute an interesting crossA
section of the available algorithms and illustrate as such the diJerences between the
various approaches to solving the problem8 We consider examples of both major
exact approaches to motion planningM cell decomposition and retraction8 The aim
of studying the algorithms is to learn the speci4c combinatorial and algorithmic
properties that lead to eFcient motion planning algorithms; so that we can use the
results in 4nding an eFcient paradigm for general fat motion planning8

The running time of the boundaryAretraction algorithm for a ladder among polyA
gons by Sifrony and Sharir OPQR is sensitive to the number K of pairs of obstacle
corners that lie less than the length of the ladder apart8 Section S8T con4rms the inA
tuitive feeling that the low obstacle density implied by the fatness and the bound on
the relative sizes of the robot and the obstacles cause K to be only OGnI instead of
OGn I8 The performance of the VoronoiAbased retraction algorithms OWD; WTR though
is not enhanced by our assumptions as the worstAcase size of the respective Voronoi
diagrams does not bene4t from them8

Sections S8X and S8Q consider two cell decomposition algorithms8 The famous
Piano MoversE algorithm for planning the motion of a ladder or polygon among

CW
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polygons by Schwartz and Sharir 3 45 appears to be surprisingly sensitive to the
complexity of the free space< The algorithm outputs a decomposition of the free
space into O>n? subcells for problems involving a bounded@size robot amidst fat ob@
staclesA whereas the worst@case number of subcells for general settings can be as high
as O>n ?< Without modiCcationsA the algorithm computes such a cell decomposition
in time O>n!?< A number of adaptations enhance the running time to O>n log n?<
We discuss these results quite thoroughly as they provide the main ideas for the
general paradigm of Chapter G< The algorithm by Leven and Sharir 3G45 for a lad@
der among polygons does not beneCt from the fatness of the obstaclesA although its
worst@case behavior is superior to that of Schwartz and Sharir< We give an example
with fat obstacles that leads to a cell decomposition consisting of I>n!? subcellsA
which equals the worst@case number of subcells for general obstacles<

In Section K<4A the claim of AvnaimA BoissonnatA and Faverjon 3OP5 that their
boundary cell decomposition algorithm performs considerably better than the worst@
caseO>n" log n? running time if the workspace has a low obstacle density is conCrmed
for workspaces that satisfy our assumptions< We Cnd that the running time of the
algorithm indeed reduces to O>n log n?<

Throughout the entire chapterA it is assumed that a constant@complexity rigid
robot B moves in a two@dimensional Euclidean workspace amidst a collection E of
n polygonal k@fat obstaclesA for some positive constant k< Each individual obstacle
E " E has constant complexity and a minimal enclosing hypersphere radius of at
least $< As an exceptionA the bounds on the sizes of ladder robots are expressed in
terms of their lengths instead of their reachesA to conform to the original papers<
Needless to say is that the length of a ladder is closely related to its reach< Note
that the robot itself need not be fat< The assumptions are generally omitted in the
formulation of the results of this chapter<

 !" Boundary+vertices retraction

Let us Crst consider the boundary@vertices retraction method of Sifrony and Sharir
3TU5 for planning the motion of a ladder amidst polygonal obstaclesA which runs in
time O>K log n?A where K is the number of pairs of obstacle corners >vertices? that
lie less than the length of the ladder apart< We will prove that in the indicated
setting K V O>n?A yielding an eWcient O>n log n? algorithm<

For simplicityA we assume that the polygonal obstacles in E#& ' ' ' & En " E are
ordered by increasing minimal enclosing circle radii $#& ' ' ' & $nA and furthermore that
the features of each object Ei are ordered in some way fi#& ' ' ' & fic >c V O>O? by the
constant complexity of Ei?< Note that a feature that appears after feature f in the
lexicographical ordering of features either belongs to the same obstacle as f or to a
larger obstacle<

Lemma K<O bounds the number of feature pairs with small mutual distance< If
we charge each such close pair to the lexicographically smallest of the two involved
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features then+ ,rst of all+ each pair is counted+ but+ more importantly+ it turns out
that each feature gets charged only a constant number of times7 As a result the
total number of chargings+ and+ hence+ close feature pairs+ adds up to O9n:7

Lemma $%& Let k and b be positive constants and let E be a set of polygonal k1fat
constant1complexity obstacles with minimal enclosing circle radii at least $7 Then
the number of feature pairs :edges; corners< that lie less than b ! $ apart is O9n:7
Proof+ Let us count all lexicographically larger features f  that lie within a distance
b ! $ from a feature f 7 Clearly+ the distance from the obstacle Ei containing f to
the feature f  is bounded by b ! $ " b ! $i7 The lexicographically larger feature f  

belongs+ by de,nition+ either to Ei or to an obstacle Ej with j ( i7 By Corollary
A7BC+ the number of such obstacles Ej within a distance b ! $i from Ei is bounded by
a constant7 Combined with the constant complexity of these obstacles and of Ei+ it
follows that there is at most a constant number of choices for f  7 The O9n: bound
follows after summing over all f 7  

Lemma E7B proves that K F O9n:7 We obtain the following ,nal result7

Theorem $%. Sifrony and Sharir>s boundary1vertices retraction algorithm H!IJ
plans the motion of a ladder robot B with length + " b ! $ amidst the fat obsta1
cles of E in time O9n log n:; for any constant b $ C7

 !" Fatness)sensitive cell decomposition

This section considers the combinatorial and algorithmic consequences of fatness for
the famous Piano MoversN algorithm by Schwartz and Sharir H QJ7 Subsection E7A7B
shows that the complexity of the cell decomposition of FP computed by the method
is O9n:+ under the assumption of fat obstacles and a boundedSsize robot+ whereas
the bound is O9n : in the general case7 The algorithmic part in Subsection E7A7A
deals with the eTcient computation of the decompositionU the subsection improves
the direct bound of O9n!: to O9n log n:7

Schwartz and Sharir H QJ apply the cell decomposition technique to obtain an
O9n : algorithm for planning the motion of a ladder B moving amidst polygonal obS
stacles E in the plane7 Their method decomposes W F IR! into soScalled noncritical
regions+ lifts these regions into threeSdimensional cylinders 9in C F IR! % HC- A.::+
decomposes the free part of the cylinders into subcells+ and ,nally captures the adS
jacency of the subcells in a connectivity graph7 We will go into more detail on each
of these steps and+ while doing so+ focus on the consequences of fatness for each of
these steps7 We emphasize that we will not give an extensive explanation of the
ladder algorithm7 The reader is referred to the original paper H QJ or LatombeNs
book HE!J for a detailed description7

The noncritical regions in the robotNs workspace W F IR! are de,ned by critical
curves7 The meaning of these curves is not important in our analysis+ so we restrict
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ourselves to summarizing the di2erent types of critical curves7 We adopt the clas9
si:cation of the critical curves used in Latombe=s book ?@ A7 Let P and Q be the
endpoints of the ladder B and let " B jPQj be its length7 Choose P as the robot=s
reference point7

" An obstacle edge is a critical curve of type $7

" Let e be an obstacle edge7 The line segment at a distance " from e is a critical
curve of type %7 The length of the critical curve equals the length of e7

" Let x be an obstacle corner and let e and e! be the edges emerging from x7
The circular arc with radius "H centered at xH and running between the half9
lines starting at x and containing the edges e and e! respectivelyH is a critical
curve of type &7

" Let x be a convex obstacle corner and let e be one of the edges emerging from
x7 The line segment traced out by P while B slides along eH so that Q touches
e and x touches BH is a critical curve of type '7 The curve is the extension
with length " of the edge e at x7

" Let x and x! be convex obstacle corners such that the line passing through
x and x! is tangent to the obstacle set E in both x and x!7 The line segment
traced out by endpoint PH while B slides along x and x!H is a critical curve of
type (7 Note that the distance from x to x! must be less than "7

" Let x be a convex obstacle corner and let e be an obstacle edge such that x is
not an endpoint of e7 The curve traced out by P while Q slides along e and
while B remains in contact with xH is a Lfourth degreeM critical curve of type
)7 Note that again the distance from x to e must be less than "7

Figure @7O illustrates the various critical curve types7 The LintersectingM critical
curves partition W B IR!7 The part of a critical curve between two points of inter9
section with other critical curves is called a critical curve section7 A position Lx% yM
of the robot B is admissible if there exists an orientation 'H such that Lx% y% 'M $ FP7
A noncritical region is a maximal subset of admissible robot positions intersecting
no critical curves7 HenceH the critical curves determine a set of noncritical regions
in W7

Let Sx!y B f ' j Lx% y% 'M $ FP g be the set of free orientations of B with P :xed
at a point Lx% yM in a noncritical region R7 The set Sx!y consists of a :nite number of
open maximum connected intervals7 For each such interval L' % '!M $ Sx!yH both the
robot placement Lx% y% ' M and the robot placement Lx% y% '!M are placements in which
the robot touches the obstacle set7 The unique stop touched by B in the contact
placement Lx% y% ' M Lresp7 Lx% y% '!MM is denoted by sLx% y% ' M Lresp7 sLx% y% '!MM7 The
set of all pairs ?sLx% y% ' M% sLx% y% '!MA such that L' % '!M $ Sx!y is referred to as *Lx% yM7
The critical curves are de:ned so that for each pair of points Lx% yM and Lx % y M in a
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Figure ()!* The six types of critical curves in Schwartz and Sharir=s solution to the
Piano Movers= problem)

single noncritical region RB the sets !Cx# yD and !Cx # y D are equal FGHI) In the sequelB
we use the abbreviation !CRD K !Cx# yDB where Cx# yD is any point in R) Each pair
of contact positions Fs # s!I  !CRD deMnes a cell in the cell decomposition of FP)

Schwartz and Sharir=s method Mrst computes all critical curvesB and then all
intersections of the curvesB resulting in a collection of intersection points and a
collection of critical curve sections) With each intersection pointB we store the critical
curve sections that are incident at this intersection point) Each critical curve section
& separates two regionsO we arbitrarily call one of the regions left C&D and the other
one rightC&D) NextB we compute !CleftC&DD and !CrightC&DDB deMne a connectivity
graph node for each subcell Fs # s!I induced by the regions leftC&D and rightC&DB and
build the adjacency relation Cbased on the adjacency of the corresponding subcellsD
between the nodes induced by both regions) CNote that each node is generated by
a single critical curve section)D If we repeat this procedure for every critical curve
sectionB each subcell is represented in the connectivity graph as many times as there
are critical curve sections bordering the region that induced the subcell) All nodes
that correspond to the same subcell are circularly connected)
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 !"!# Complexity of the cell decomposition

We recall that the number of obstacle edges and corners is O4n56 First8 we observe
that the number of type =>? curves is not in@uenced by the fatness of the obstacles
and is O4n5 in both the arbitrary and the fat case6

In the general case of arbitrary polygonal obstacles8 the number of type B curves
is O4n 5 since each pair of corners may deCne such a curve6 The same number
applies to type E curves since each pair of one edge and one 4convex5 corner may
induce such a curve6 As a result8 the total number of critical curves is O4n 56 Each
pair of curves may intersect8 so that there can be up to O4n!5 intersections8 and8
hence8 O4n!5 critical curve sections6

Things change if we assume the obstacles to be k>fat6 Let us Crst observe an
important property of all critical curves8 following from the deCnitions of the curves6

Property '() Each point on a critical curve is less than the length # of the ladder
away from the obstacle features 6corners7 edges8 that de9ne this curve:

The other important tools in the analysis of the Jfat caseK are the low object density
results Theorem !6 8 Corollary !6N=8 and Lemma E6N6 Like in the previous section8
the length # of the robot B P PQ is bounded by # ! b " ' ! b " 'i8 for all N ! i ! n6

Lemma E6B bounds the number of critical curves of type B and E6 The lemma
follows more or less directly from the deCnition of the curves and Lemma E6N8 which
bounds the overall number of feature pairs8 and8 hence8 the number of feature pairs
deCning critical curves of type B and E6

Lemma '(- The number of critical curves of type < and = in the workspace is O4n5:

Proof/ Each pair of obstacle corners with mutual distance at most # may8 under
some additional conditions8 like relative angles of incoming edges8 deCne one critical
curve of type B6 The number of corner pairs lying less than # apart is bounded
by O4n5 by Lemma E6N6 Thus8 the number of type B curves is bounded by O4n56
Each pair of an obstacle corner and an obstacle edge with mutual distance at most
# may8 again under some additional conditions8 deCne one curve of type E6 Lemma
E6N bounds the number of such pairs and8 hence8 the number of type E curves8 by
O4n56  

Each of the ofO4n5 critical curves may be intersected by other critical curves and8
as a result of that8 be cut into a number of critical curve section6 Since each critical
curve ) is deCned by one or two obstacle features8 an intersection point p P ) $ )  

can be regarded as being implied by the union of the two sets of deCning features6
Each intersection is as such implied by a collection of two8 three8 or four obstacle
features6 If we now charge each intersection p to the lexicographically smallest of
these features8 then we Cnd again that each feature is charged at most a constant
number of times6 Adding up all contributions of features f leads to a total of O4n5
intersections and8 hence8 critical curve sections6
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Lemma $%$ The number of critical curve sections in the workspace is O"n#4

Proof* Let us bound the number of critical curve intersections p implied by f and
a set F of lexicographically larger features ": ! jF j ! !#; the features in ffg % F
de<ne the two curves $ and $ intersecting in p> By Property A>!B the distances from
the intersection point p to the de<ning features ffg % F of $ and $  do not exceed
%> As a resultB the distance from any feature f  & F to f is at most D%> MoreoverB
the distance from the object Ei containing f to any feature f  & F is bounded by
D% ! Db ' ( ! Db ' (i> Each lexicographically larger feature f  & F belongs either to
Ei or to an obstacle Ej with j * i> By Corollary D>:IB the number of such obstacles
Ej within a distance b ' ,i from Ei is bounded by a constant> Combined with the
constant complexity of these obstacles and of EiB we <nd that there is also at most a
constant number of candidates for inclusion in F > HenceB there exist only a constant
number of sets F of features thatB together with f B can imply a pair of intersecting
curves $ and $  > The low degree of the curves implies that the number of intersecL
tions of a pair of curves $ and $ is bounded by a constantB so any choice for F
can contribute no more than O":# intersections> Adding up the contributions of all
features f yields a total of O"n# intersections andB henceB critical curve sections>  

We have seen that the number of connectivity graph nodes added by the critical
curve section $ equals the number of subcells induced by the region left"$# plus the
number of subcells induced by the region right"$#> If $ is a type I curveB only one
of the two regions is noncriticalB in all other cases both regions will be noncritical>
A region that is not noncritical will induce no graph nodes>

NowB we analyze the number of subcells induced by a single noncritical region
R> In Schwartz and SharirSs methodB each pair Ts 0 s!U & 1"R# de<nes a subcell>
HenceB the number of subcells induced by a noncritical region R is determined by
the number of pairs in 1"R#B each pair in 1"R# consisting of two diVerent contact
placements for B with P <xed at some point in R> The number of subcells induced
by R is therefore determined by the number of diVerent contact placements for B
when we <x its endpoint P at some point "x0 y# in R and vary its orientation 5>
Note thatB due to the shape of the featuresB each feature can be touched by B in
at most two diVerent orientations while its endpoint P is <xed at "x0 y#> In the
case of arbitrary polygonal obstaclesB we can easily construct examples where the
robot can touch any of the O"n# obstacle featuresB each at a diVerent orientation
5> A noncritical region R can therefore induce O"n# subcells> Since the number of
noncritical regions is O"n"#B we obtain a total number of O"n## subcells> As beforeB
things are diVerent in a fat setting> It is easy to see that an obstacle feature f
touched by B with P <xed at "x0 y# in some contact position must lie close to "x0 y#>
Using the low density property of spaces with fat objectsB we can bound the number
of such features f >

Lemma $%+ Each noncritical region in the workspace induces only O":# subcells in
the con9guration space4
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Proof$ The number of subcells induced by a noncritical region R depends on the
number of obstacle features that can be touched by B 6 PQ while its endpoint P
is 8xed at some arbitrary point :x$ y; ! R< Obviously? such a feature intersects the
circular region S obtained by rotating B while keeping P at :x$ y;< The number of
objects Ei :i " B; intersecting the circle S with radius ) # b $ + is constant by TheoC
rem D< < As a consequence? the number of features f intersecting S? and potentially
touched by B? is O:B;< So? the number of subcells induced by a noncritical region
R is bounded by a constant<  

Lemma I<J shows that each critical curve section . adds at most twice a constant
number of nodes to the connectivity graph< By Lemma I<I? we conclude that the
total number of nodes is O:n;< Let us count the adjacencies of a single node N
added by some section .< Assume without loss of generality that N is induced by
the noncritical region left :.;< The nodes that are adjacent to N either correspond to
the same subcell? or are induced by the noncritical region right:.; and added by the
section .< As all nodes corresponding to a single subcell are circularly connected? the
number of adjacencies of the 8rst type cannot exceed two< The number of adjacent
nodes of the second type is constant by Lemma I<J< Hence? each subcell is adjacent
to a constant number of other subcells? resulting in a total of O:n; graph edges<

Theorem )*+ The connectivity graph corresponding to the cell decomposition of the
free space of a ladder moving amidst k3fat obstacles has O:n; nodes and edges5

 !"!" Computing the cell decomposition

Although the complexity of the connectivity graph corresponding to the cell deC
composition is O:n;? a straightforward application of Schwartz and SharirNs method
would result in O:n ; time to compute the decomposition< This bound turns up
in each of the three steps in the algorithmO the 8rst step where all critical curves
are computed? the second step where all critical curve :inter;sections are computed?
and the third step where all subcells induced by a single noncritical region are deC
termined< If we incorporate the plane sweep ideas by Bentley and Wood RB!S for
reporting geometric intersections in each of the three steps? then the eTciency of
each individual step is enhanced to O:n log n;< For a discussion of the main inC
gredients of a plane sweep? we refer to Section V<B< Here? we con8ne ourselves to
mentioning that the K intersections of n line segments in the plane can be reported
in timeO::nWK; log n;< The ideas are straightforwardly generalized to xCmonotone
constantCcomplexity curves< Below we rede8ne each of the three above steps as a
problem of reporting constantCcomplexity curve intersections<

We have shown in the previous subsection that the number of type ! or I curves
is linear in the case of fat obstacles< Each of these curves is determined by two
features< We could naively try all possible pairs of features to 8nd out which pairs
generate a curve< This strategy would require Y:n ; time to 8nd the O:n; curves<
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Instead we should use the knowledge that only two features that lie less than  apart
can de6ne a curve of type 8 or !9 Let us 6rst determine all pairs of features that lie
less than  apart9 By Lemma !9=> there exist O@nA such pairs9 After determining
the close feature pairs O@nA time suCces to 6nd which of the cornerDcorner and
cornerDedge pairs indeed de6ne curves of types 8 and !9

To determine the pairs of features with distance at most  > we use the ideas
of Sifrony and Sharir G HI> which in turn rely on the techniques from G=8I9 Sifrony
and Sharir wrap each obstacle edge and its two endpoints by a soDcalled envelope9
The envelope of an edge e is the set $@e SO!"# AL the boundary of the Minkowski
diNerence of e and the circle with radius  &O centered at the origin9 Hence> the
envelope of an edge e equals the set of points with distance  &O to e9 As such> it
consists of two straight segments parallel to e> and two circular arcs of arc length
' @halfDcirclesA about eQs endpoints @see Figure !9OA9 It is not too hard to see that

e

!" 

Figure !9OL The envelope of an edge e and its two endpoints9

the envelopes of the edges e S v!v and e S v 
!v

 
 intersect if and only if features

from fe) v!) v!g and fe ) v 
!) v

 
 g lie less than  apart9 As a result> we can 6nd the

close pairs of features by sweeping the @constantDcomplexityA envelope curves in the
plane9 To satisfy the input requirement that the curves are xDmonotone> we simply
cut the circular arcs into two subarcs at xDextremal points9 The envelope curves are
labeled with the corresponding edge and endpoints!9

Let us now consider the eCciency of the above sweep for envelope intersections>
and> hence> for close feature pairs9 By the convexity of the envelopes> two envelopes
can only intersect in a constant number of points9 Moreover> each reported interD
section of two envelopes leads to a nonDzero number of close feature pairs9 As a
result> the number of envelope intersections is of the same order of magnitude as the
number of close feature pairsL O@nA by Lemma !9=9 Reporting the K S O@nA enveD
lope curve intersections with the plane sweep takes O@@n V KA log nA S O@n log nA
time9 From the envelope intersections> the close feature pairs> and subsequently> the
critical curves of type 8 and ! can be computed in O@nA time9

!Note that envelopes of consecutive edges on the boundary of a single obstacle may partially
coincide5 Potential problems with these coinciding parts are avoided if we merge these parts into
a single curve8 labeled with all corresponding edges and endpoints5
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After having computed the critical curves in O5n log n6 time7 we encounter a
similar problem when computing the curve intersections 5and the resulting critical
curve sections6: We could7 naively7 spend O5n 6 by intersecting each curve with
any other curve7 although we know that the number of intersection is only O5n6 by
Lemma ?:?: An obviously better idea is to cut the 5constant@complexity6 critical
curves into a constant number of x@monotone subcurves and feed these to the plane
sweep: The sweep reports the K C O5n6 intersections in time O55n DK6 log n6 C
O5n log n6: The intersection points cut the critical curves into the desired critical
curve sections:

For each of the O5n6 critical curve sections $7 we have to compute %5left 5$66 and
%5right5$66: Computing %5left5$66 requires choosing a point 5x& y6  left 5$67 Hxing
the robotIs endpoint P at 5x& y67 and reporting all features that can be touched by
B and the orientations in which they are touched7 which seems rather diJcult to do
eJciently: Fortunately7 the set of features that are to be reported forms a subset
of the set of features of the O5K6 obstacles 5Theorem L: 6 that intersect the circular
region S!x!y"!# 5centered at 5x& y6 and with radius *6: Checking all O5n6 obstacles for
intersection with S!x!y"!# is surely not the most eJcient way of determining the O5K6
obstacles that intersect the circle: A better idea is to use the results on bounded
size range searching from Chapter N: The construction of the data structure storing
all obstacles of E takes O5n log n log log n6 time: The O5n6 queries with circles S
5with radius *6 induced by all critical curve section then take O5n log n6 in total:
The entire computation takes O5n log n log log n6: The following two@step approach7
however7 avoids the Olog log nI@factorP Hrst Hnd for all circles S the set V#5S6 of
obstacles that have a vertex inside S7 and then report for all circles S the set V 5S6
of obstacles E with edges that intersect the boundary -S of S: Notice that the
union of possibly overlapping sets V#5S6 and V 5S6 is clearly the set of all obstacles
intersecting S: Below we solve the subproblems one by one:

The computation of the 5constant@cardinality6 sets V#5S6 can be further simpli@
Hed by realizing that V#5S6 is a subset of the set of obstacles having a vertex inside
the axis@parallel minimal enclosing square C of S: The enclosing square C of the
circle S with radius * has side length L* # Lb $ 0: By Theorem L: 7 the number of
obstacles from E intersecting C is constant7 so deHnitely the number of obstacles
having a vertex inside C is constant: To solve the reduced problem we store all ob@
stacle vertices in a data structure that supports eJcient axis@parallel 5or orthogonal6
range searching queries: Preparata and ShamosI text book UV W on computational
geometry gives an appropriate data structure7 based on the layered range tree: The
characteristics of the 5layered range tree6 structure are given as Lemma ?:X:

Lemma $%& There exists a data structure of size O5n log n6 that answers planar
range search queries among points in time O5log nDK66 where K is the number of
answers to the query9 Building the structure requires O5n log n6 time9

After having spent O5n log n6 time to build the range searching structure7 we can
easily report all sets V#5S6 in time O5n log n6 by querying the structure with the
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enclosing squares and subsequently 2ltering out the obstacles that do not have a
vertex inside S6

The nature of the second subproblem; reporting intersections of circles and
obstacle edges; suggests the use of the plane sweep for reporting intersections of
constant=complexity curves6 By the proof of Lemma @6A or Theorem B6 ; each circle
S C S x!y!!# is intersected by only a constant number of edges6 This observation
not only implies that each set V"DSE has constant cardinality but also that the total
number of circle=edge intersections is ODnE6 Unfortunately; we do not only encounter
circle=edge intersections throughout the sweepG the circles also intersect each other6
These intersections are non=interesting events with respect to 2nding the subcells
induced by the non=critical regions; but they do aHect the eIciency of the plane
sweep6 The number of such DirrelevantE circle=circle intersections seems impossible
to bound without further provisions6

Before analyzing the number of circles intersecting a given circle; we recall that
each critical curve section $ de2nes two circles; centered in left D$E and rightD$E;
respectively6 If we allow these centers to be anywhere in left D$E and rightD$E; then
it seems impossible to bound the number of circle=circle intersections6 However; if
the centers of both circles are restricted to the vicinity of their implying critical
curve sections; then proving an ODnE bound on the number of intersections becomes
feasible6 In the modi2ed version of Schwartz and SharirNs algorithm; we therefore
take care to choose the circle centers within a distance; say; % from the originating
critical curve section $; thus allowing for an eIcient sweep of the arrangement of
curve and circle parts6

Lemma $%& If the centers of the circles implied by the ODnE critical curve sections
$ are chosen within a distance % from $6 then the number of circle7circle intersection
is ODnE8

Proof+ Let us consider a circle Sm!# and count the number of circles intersecting
Sm!#6 Any circle Sm !# intersecting Sm!# must clearly have its center m lying in the
circle Sm!"#6 As m was chosen within a distance % from the critical curve section
$  de2ning Sm !#; this de2ning section $ must intersect the again larger circle Sm!##6
By Property @6R in turn; any point on $ lies within a distance % from all its de2n=
ing features; which must therefore intersect the circle Sm!$#6 By Theorem B6 ; the
number of obstacles; and; hence; obstacle features; intersecting Sm!$# is bounded by
a constant6 This constant number of features can de2ne at most a constant number
of critical curves; that may possibly intersect Sm!##6 The Dconstant sizeE subset of
critical curves that intersect Sm!## de2ne only a constant number of critical curve sec=
tions $ 6 As each of the ODSE sections de2nes two circles the total number of circles
de2ned by such curve sections is constant6 The circles Sm !# that intersect Sm!# must
belong to this constant=size set of circles6 Hence; any circle Sm!# is intersected by
ODSE other circles; leading to theODnE bound on the total number of intersections6  
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The above lemma shows that the total number K of intersections encountered
during the sweep of the arrangement of the O7n8 7properly chosen8 circles and the
O7n8 7non:intersecting8 obstacle edges equals O7n8< The running time of the sweep
therefore amounts to O77n =K8 log n8 > O7n log n8< The output of the sweep are
the constant size sets V 7S8 of obstacles E  E< From the constant size unions
V!7Sm!"8 " V 7Sm!"8A the sets &7R8 with R # m can be computed in constant time<

The modiBed version of Schwartz and SharirDs algorithmA which is tailored to
fat obstaclesA now consists of three stepsE the Brst two are plane sweeps and the
third combines a sequence of range search queries with a plane sweep< Each of the
three steps runs in time O7n log n8A so that the running time of the entire algorithm
amounts to O7n log n8 as well< The result is summarized in the following theorem<

Theorem &'() Schwartz and Sharir+s cell decomposition algorithm G!HI can be
adapted to plan the motion of a ladder robot B with length ) % b & + amidst the
fat obstacles of E in time O7n log n85 for any constant b ' J7

 !"!# A polygonal robot

In the preceding two subsections we have restricted our attention to a ladder moving
amidst polygonal obstacles< Schwartz and SharirDs paper G!HIA howeverA also gives
an algorithm for a polygonal robot<

The algorithm for a polygonal robot is similar to the algorithm for a ladder<
The only diLerence concerns the deBnition of the critical curves< There are more
and diLerent types of critical curves in the polygonal case< Although the critical
curves are diLerentA the basic properties of these curves remain validE features that
are involved in the deBnition of a single critical curve are less than the diameter of
the robot apartA and each point on a critical curve is less than the diameter of the
robot away from the features that deBne it< The validity of these properties allows
us to use a similar proof strategy and a similar approach for an algorithm in the
case of a polygonal robotA resulting in the same O7n log n8 complexity for the cell
decomposition and for the motion planning algorithm<

 !" A fatness*insensitive cell decomposition

A diLerent example of the cell decomposition approach is the algorithm of Leven and
Sharir presented in GPHIA which also applies to a ladder moving in a two:dimensional
workspace amidst polygonal obstacles< Although the worst:case cell decomposition
size and running time of the algorithm for general obstaclesA O7n 8 and O7n log n8
respectivelyA are superior to the O7n"8 worst:case bounds for the Schwartz:Sharir
algorithmA a simple example shows that the Leven:Sharir algorithm is inferior when
the obstacles in the workspace are fat< More preciselyA the example shows that
motion planning problems with fat obstacles can still give rise to a decomposition
of the free space into S7n 8 subcells<
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The basis of the algorithm by Leven and Sharir is the fact that a simple O7n8
cell decomposition exists for the strictly translational version of the problem: This
cell decomposition is; o< course; a decomposition of the projective subspace IR of
the conAguration space IR  BC" D#8 of the original problem: The decomposition is
such that a small change in the orientation of the robot leads to an only slightly
di<erent 7and often topologically equivalent8 cell decomposition: In conAguration
space we conceptually obtain an inAnitely smallGgrain stack of such continuously
varying planar cell decompositions: If one would descend the stack; then; at certain
orientations; the planar cell decomposition changes topologically: These soGcalled
critical orientations divide the angular dimension BC" D#8 of the conAguration space
into intervals of similar planar cell decompositions: The oneGdimensional intervals
I ! BC" D#8 deAne slices IR  I in conAguration space; that cut the stack into subG
stacks: Corresponding regions in di<erent layers of the stack form a subcell in the
decomposition of the conAguration space: All threeGdimensional subcells in a slice
span the entire slice from its lower boundary % K %! to its upper boundary % K %":
Subcells appear or disappear only at slice boundaries: Moreover; assuming general
position of the obstacles; exactly one subcell appears or disappears at any slice
boundary:

The complexity of the resulting cell decomposition is determined by the number
of critical orientations; which form the interval endpoints; and; hence; the slice
boundaries: A critical orientation % is an orientation for which one of the three
conditions listed below is true 7& is the length of the ladder8: The identiAcation of
the conditions is adopted from the paper by Leven and Sharir BMNO:

7CN8 There exist two obstacle corners such that the open line segment connecting
them is entirely contained in the closure of W n 7#E EE8 and has orientation
%:

7CQ8 There exist an obstacle corner and a point on some obstacle edge such that the
open line segment connecting the corner and the point is entirely contained in
W n 7#E EE8 and has orientation % and length &:

7CM8 There exist two points on two obstacle edges and an obstacle corner c such
that the open line segment connecting the two points has orientation % and
length &; passes through c; and is entirely contained in W n 7#E EE8 except at
c:

Clearly; the number of critical orientations in the case of arbitrary polygonal obG
stacles is O7n 8: The resulting free space decomposition consists of O7n 8 cells: In
contrast to the algorithm in Section Q:D; the number of critical events is not inG
Ruenced by the possible fatness of the obstacles: This is most easily seen from a
situation where we have n square D#Gfat obstacles placed in circular fashion 7see
Figure Q:T8: In this example; the obstacle corner v can be connected to any of the
Dn $ D obstacle corners facing the interior of the circle by a line segment that is
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v

Figure ()*+ The number of critical orientations is not reduced by the fatness of the
obstacles)

wholly contained in the closure of W n <!E EE=) If we do the same for each of the
remaining ?n"  obstacle corners facing the interior of the circle@ we obtain a total
number of  

!
<?n"  =<?n" ?= A <?n"  =<n"  = diBerent line segments@ each of them

corresponding to an occurrence of condition <CE=) By small perturbations of the
obstacles we can establish that each of the line segments has a diBerent orientation@
which results in at least <?n"  =<n"  = critical orientations induced by occurrences
of condition <CE=) As a consequence@ the number of critical orientations is O<n!=)
Thus@ the fatness of the obstacles does not lead to a reduction of the complexity of
the cell decomposition in this case)

 !" Boundary cell decomposition

Avnaim@ Boissonnat@ and Faverjon L !M describe a variant of the cell decomposition
approach that@ rather than decomposing the free space itself@ decomposes the free
space boundary BFP A cl<FP= n FP into simple subcells or faces) The results in
Chapter E imply that the complexity of BFP in our realistic setting is O<n=) The
algorithm requires that the complement W n <!E EE= of the obstacles is bounded)
This requirement is easily met by enclosing the workspace obstacles in arbitrarily
large box) After the decomposition of the free space boundary@ additional faces are
created to establish suPcient connectivity among the faces to solve the pathQRnding



 !"! BOUNDARY CELL DECOMPOSITION  ! 

problem between two speci/c placements1 The initial and /nal placements determine
the faces that are added in this step1 The preceding decomposition of BFP: on the
other hand: is independent of the query1 The boundary faces and the additional
faces constitute the nodes of a graph in which two nodes are connected if their
corresponding faces share a common boundary1 The graph is subsequently searched
for a path connecting the initial and /nal robot placements1 The motion planning
algorithm has worst>case running time O?n log n@: but the authors claim that the
running time improves to O?n log n@ in workspaces of bounded local complexity DEEF1
Below: we see that the running time is O?n log n@ in the case of a polygonal robot
B with reach "B ! b " ": and: hence: diameter at most G"B: moving among the k>fat
polygonal obstacles of E1

The free space boundary decomposition is based on ideas borrowed from a paper
by Avnaim and Boissonnat DIF1 The authors decompose BFP into faces bounded
by two straight edges parallel to the plane % J ! and by two curved arcs1 They
essentially compute the O?n@ contact surfaces consisting either of all placements in
which a robot vertex v touches an obstacle edge e! or of all placements in which a
robot edge e touches an obstacle vertex v!: and subsequently subtract the collection
of placements in which a robot edge intersects an obstacle edge from each of these
contact surfaces1 A sweep of each contact surface computes the diKerence of the ini>
tial surface and the collection of placements corresponding to intersecting robot and
obstacle edges!1 The sweep simultaneously subdivides the resulting set diKerence
into faces bounded by two arcs and two straight edges1 A sweep of a single contact
surface takes worst>case O?n! log n@ time: resulting in a total time of O?n log n@
time for handling all surfaces1 The faces form a decomposition of the free space
boundary into simple subcells1 Determining the connectivity of the faces takes time
proportional to the cumulative complexity of the faces: provided that the bounding
curves of the faces are labeled with a characterization of the double contact that
they represent1

Let us now consider the consequences of fatness on the decomposition sketched
above1 Assume that f !" is the ?constant>complexity@ surface consisting of the place>
ments in which the robot feature ) touches the obstacle feature O1 The objective
is to subtract from f !" all placements Z in which an edge e of B intersects some
obstacle edge e!1 Such an obstacle edge e! must lie within a distance G"B ! Gb " "
from the obstacle feature ): because B simultaneously touches O and intersects e!1
By Lemma R1 : the overall number of such pairs is O?n@: and they can be computed
in time O?n log n@ using the technique by Sifrony and Sharir outlined in Subsection
R1G1G1 Provided that these O?n@ close feature pairs are computed in advance: it is
possible to determine the m edges e! within a distance G"B from ) in timeO?m@1 We
charge each edge e! to the close pair ?), e!@1 The m edges e! and the O? @ robot edges
e de/ne O?m@ ?constant>complexity@ collections of points that are to be subtracted
from f !"1 The computation of the diKerence of f !" and these O?m@ sets and the

 A suitable parametrization of the contact surface facilitates an e2cient sweep4
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simultaneous subdivision of the di2erence via the surface sweep takes O8m logm:
time; Repeating the arguments for all contact surfaces f leads to at most two charg=
ings of every close pair 8#$ e :? so it follows that

P
f mf @ O8n:; The cumulative

running time of all sweeps? and? hence? of the entire computation of all faces of BFP
equals

P
f O8mf logmf: @ O8n log n:; Extraction of the adjacency information for

the faces takes O8n log n: time; The resulting graph is denoted by GB;
Assume? for the second part of Avnaim? Boissonnat? and FaverjonJs algorithm?

that the goal is to Knd a path between the free placements Z @ 8x $ y $ + : and
Z! @ 8x!$ y!$ +!:; Let K and K! be the free cells containing Z and Z! respectively;
The boundedness of W n 8!E!EE: implies that all free cells are bounded as well;
The boundaries .K and .K! may well be non=connected; The boundedness of
the cells guarantees that one connected component of a cell boundary? the so=called
external boundary? encloses all other connected components; Let .K#

 and .K#
! be

the external boundaries of K and K! respectively; Furthermore? let K# be the
intersection of the plane + @ + and the free cell K and let K#! be the intersection
of + @ +! and K!; The placement Z is connected to any placement in .K#

 by a
8semi=free: path that is entirely contained in K# ! .K ; Similarly? Z! is connected
to any placement Z  " .K#

! by a path in K#! ! .K!; The key observation is that
Z and Z! are connected by a semi=free path if and only if both placements belong
to the same free cellO K @ K!; In that case? Z and Z! are connected by a path in
K# ! .K !K#! @ K# ! .K! !K#! ; A decomposition of K# and K#! into simple
faces facilitates path=Knding in these two subsets of FP;

The cross=section K# of the free cell K is a polygonal region; The complexity
of the polygonal region K# is bounded by the complexity of the intersection of
the FP and the plane + @ + ? which is O8n: by the results from Chapter R; A
vertical decomposition subdivides K# into O8n: faces bounded by at most four
edges; The computation of the decomposition and the adjacencies of the faces via
a sweep of K# takes O8n log n: time; 8For details on such a sweep? the reader is
referred to Section S; ;: Let G be the adjacency graph on the faces in the vertical
decomposition; A similar treatment of K#! results in an O8n: decomposition of K#!

and a corresponding graph G!; The faces containing Z and Z! are easily determined
during the sweeps; Notice that no face corresponding to a node in G is adjacent to
a face corresponding to a node in G!? unless + @ +!;

The Knal task is to merge the graphs GB? G ? and G! into a single graph G on the
faces in all three decompositions; Merging the graph G into GB requires a single
simultaneous scan of the nodes in GB corresponding to faces that are intersected
by + @ + and the nodes in G corresponding to faces on the boundary of K# ; A
node in GB and a node in G are connected by an edge if the corresponding faces
share a curve of non=zero length; A careful implementation of the merge requires
O8n: time; Finally? the graph G! is merged into GB !G using the same ideas and?
hence? within the same time bound;

A search of the graph G with size O8n: returns a sequence of faces connecting
the face containing Z and the face containing Z! if and only if Z and Z! lie in the



 ! ! TOWARDS A GENERAL METHOD  !"

same free cell+ The paper by Avnaim5 Boissonnat5 and Faverjon < != includes clues
on transforming the sequence of faces into an actual semiAfree path for the robot B+
Notice that5 contrary to most other exact algorithms5 part of the work is dedicated
to the speciFc query with the points Z G Hx " y " $ I and Z! G Hx!" y!" $!IJ another
query requires reAdoing the second part of the construction+

The most expensive step from a computational point of view of the algorithm
sketched above is the computation of the close feature pairs5 taking OHn log nI time+
The following theorem summarizes the result obtained in this section+

Theorem &'(( Avnaim& Boissonnat and Faverjon0s boundary cell decomposition
algorithm < != can be adapted to plan the motion of a polygonal robot B with diameter
' ! b " ) amidst the fat obstacles of E in time OHn log nI& for any constant b $ !;

 ! Towards a general method

The preceding sections include a variety of algorithms for the solution of the planar
motion planning problem amidst fat obstacles5 all running in OHn log nI time+ The
main goal of the Fnal chapters of this thesis5 however5 is to Fnd a more general
solution to the motion planning problem amidst fat obstacles+ Unfortunately5 the
algorithms presented here are dedicated to planar problems+

Algorithms for eMcient motion planning in threeAdimensional workspaces are
scarce+ Approaches in contact space5 like the algorithms by Sifrony and Sharir in
Section O+ and by Avnaim5 Boissonnat5 and Faverjon in Section O+P were never
shown to generalize to "D workspaces+ The problem in generalizing such methods
lies in the diMculty of establishing HsuMcientI connectivity among the nodes correA
sponding to vertices or faces in a single free cell to guarantee the exact solution of
the planning problem+

The general approaches to motion planning for robots with f degrees of freedom
are the cell decomposition method by Schwartz and Sharir <RO= running in time
OHn"

f !
I and the roadmap method by Canny <T!= running in OHnf log nI time+ The

general and recursive nature of these approaches makes it unlikely that they take
advantage of any special structure of FP if present5 like in our framework+ The
repeated projection of the free space in the Frst algorithm is likely to destroy any
structure of the free space and may lead to high complexities of the free space
projection5 regardless of the complexity of the original free space+ The number of
subcells in the resulting cylindrical decomposition can therefore be high5 despite
a possible low complexity of FP+ The recursive manner of introducing curves to
guarantee the connectivity of the roadmap in CannyVs method seems insensitive to
a special structure or low complexity of the free space+ The number of such curves
relates to some extent to the number of local extrema of the free space and in certain
lowerAdimensional subspaces of the free space5 and the fatness of the obstacles in
the workspace does not seem to reduce the latter quantity+
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The Piano Movers/ algorithm outlined in Section 89: deviates from the general
O<n 

f !
= cell decomposition approach in that it takes a decomposition of the twoA

dimensional subspace W D IR of C D IR  G!# :$= as the basis for a cylindrical
decompositionI while the general approach would take a decomposition of a oneA
dimensional subspace of C as a starting point9 The alternative of a cylindrical
decomposition based in a higherAdimensional subspace B of C oJers the opportunity
to use properties of the space B to obtain eKcient decompositions9 The projections
of B in the general approach aJect such beneMcial propertiesI so that they no longer
hold in the projective subspaces of B9

A closer look at the details of Section 89: learns that the O<n= workspace regions
R deMned by the critical curves are such that the intersection of the free space with
their liftings R  G!# :$= has constant complexity9 This property led to Lemma 89QI
stating that each regionR induces onlyO< = subcells in the free space decompositionI
andI henceI only O<n= subcells in the entire decomposition of the free space9 A
recursive decomposition of W into similar regions R could easily lead to R<n =
regionsI and thus to R<n = subcells9 The ability to deMne a decomposition like the
one in the Mrst sentences of this paragraph is rooted in the relative low obstacle
density in the workspace9 While the robot/s reference point is conMned to some
suKciently small region R ! WI the robot is able to touch only a constant number
of obstacle features9 This fact causes the free part of the conMguration space cylinder
R  G!# :$= to have constant complexity9

The validity of the low obstacle density property for workspaces of arbitrary
dimensions suggests that the ideas in the preceding paragraph are extendible to other
motion planning problems9 Chapter Q formalizes and exploits the ideas to obtain a
strategy for motion planning that reduces the problem of partitioning the free space
to the intuitively simpler problem of computing some constrained decomposition
of the <lowerAdimensional= workspaceI provided that the workspace is a projective
subspace of the conMguration space9 The eKciency of the approach depends on the
availability of small constrained workspace decompositionsI which is the topic of
Chapter U9 By demonstrating the existence of small decompositionsI the chapter
veriMes the validity of the approach9



Chapter '

A paradigm for motion planning

amidst fat obstacles

The aim of this chapter is to determine a general approach to planning the motion of
a not too large1 constant2complexity robot moving amidst k fat constant complexity
obstacles0 In Section 3034 we have seen that the existing planar motion planning
algorithms are not easily extendible towards other problems0 Moreover4 the existing
general approaches to motion planning <like those by Schwartz and Sharir ?@3A and
Canny ?CDAE are computationally expensive4 even for problems involving fat objects0

Motion planning problems in Euclidean workspaces of dimension three normally
imply at least three dimensional conIguration spaces0 A conIguration space con 
tains constraint hypersurfaces of the form f ! 4 consisting of placements of the robot
B in which a robot feature ! is in contact with an obstacle feature K0 We shall denote
the fact that " is a feature of some object or object set X by " !f X0 The arrange 
ment of all <constant complexityE constraint hypersurfaces f ! <! !f B$K !f EE
divides the higher dimensional conIguration space into free cells and forbidden cells0
Even in the case of fat motion planning4 the complexity of a single free cell can be
O<nE4 which illustrates that some additional processing is necessary to facilitate
eNcient motion planning0 Naturally4 the structure of a higher dimensional arrange 
ment like the arrangement of constraint hypersurfaces is complex to understand4 let
alone to subdivide the free arrangement cells into simple subcells or to catch their
structure in some one dimensional roadmap0 At this point4 however4 fatness comes
to our help to provide us with a very useful property of an f  dimensional conIgura 
tion space C of the form C P W#D4 where W is the d dimensional workspace and
D is some <f $ dE dimensional <rest Espace0 <Free Rying rigid robots4 for example4
It well in this framework0 For a free Rying rigid robot in W P IR!4 D is the space
deIned by the three rotational degrees of freedom of the robot0E The low object
density property of the workspace implied by the fatness of the obstacles can be
shown to result in a very interesting property of conIguration space4 namely that

TD3
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for each point p  W/

jff ! j"  f B $ 0  f E $ f ! & 1p'D2 (3 )gj 3 O1 2%

In words8 the 1f + d29dimensional subspace p'D obtained by lifting the workspace
point p into conAguration space is intersected by only a constant number of con9
straint hypersurfacesB An immediate consequence of this result is that the hyper9
surfaces deAne a constant9complexity arrangement in each cross9section p'D of the
conAguration space CB

At a more abstract level8 motion planning problems for free9Gying robots amidst
fat obstacles can be regarded as a subclass of the larger class of motion planning
problems with conAguration spaces C 3 B 'D that satisfy for each point p  B/

jff ! j"  f B $ 0  f E $ f ! & 1p'D2 (3 )gj 3 O1 2%

In general8 a conAguration space C that satisAes this constraint will be said to
be cylindri'ableB Furthermore8 we call the subspace B of C a base spaceB Hence8
motion planning problems involving a free9Gying robot among fat obstacles have
cylindriAable conAguration spaces in which the workspace constitutes a valid base
spaceB As a result of the cylindriAability of C8 it is possible to partition the subspace
B into closed regions R 1or C into cylinders R 'D2 such that

jff ! j"  f B $ 0  f E $ f ! & 1R 'D2 (3 )gj 3 O1 2%

We refer to such a decomposition of the conAguration space C into cylinders as a
constrained cylindri'cationB The partition of B that leads to the cylinders will be
called the base partition corresponding to the cylindriAcationB Figure "B illustrates
the terminologyB The Agure shows a three9dimensional cylindriAable conAguration
space C with a two9dimensional base space BB 1Hence8 the rest9space D is one9
dimensionalB2 In addition8 the Agure reveals a fragment of the base partition in the
subspace B and shows the conAguration space cylinder R'D corresponding to one
of the regions R in the partitionB The cylinder in this speciAc example is bounded
although in many cases 1eBgB D 3 IR8 D 3 IR!2 the cylinder will be unboundedB The
constraints on the base partition guarantee that the cylinder R ' D is intersected
by at most a constant number of surfaces like f ! B

Let us now consider the conAguration space cylinder R ' D corresponding to a
region R in a base partition in BB By the deAnition of a base partition8 the cylinder
R'D is intersected byO1 2 constraint hypersurfacesB These hypersurfaces subdivide
the cylinder R'D into a constant number of cells8 due to their constant complexityB
If we furthermore assume that the cylinders themselves have constant descriptional
complexity 1achievable by establishing that R has constant complexity2 then each
of the O1 2 1free or forbidden2 cells in R ' D has constant complexity as wellB In
conclusion8 the constraint hypersurfaces and the cylinder boundaries divide the free
space into constant9complexity8 and thus simple8 subcellsB
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Figure )* + A three/dimensional example of a cylindri<able con<guration space C
with a base space B? and a fragment of the base partition in B* The con<guration
space cylinder R  D? obtained by lifting the base partition region R into C? is
intersected by at most a constant number of constraint hypersurfaces f ! *

The preceding arguments suggest a two/step approach for computing a cell de/
composition for a motion planning problem with a cylindri<able con<guration space+
<rst? <nd a base partition in some appropriate base space B of C? and then tranform
the partition into a cell decomposition of the free space FP ! C? by computing a
decomposition of the free part of every cylinder* We shall see that the resulting
decomposition consists of cells that allow for simple motion planning within their
interiors? and? moreover? that the rules for crossing from one cell into another are
simple* The proposed approach follows a projection/like approach to cell decompo/
sition that is encountered in several other algorithms Fsee e*g* GHI? HJKL* Basically?
these methods FrecursivelyL decompose a lower/dimensional subspace of the con<g/
uration space C and lift the decomposition regions into C* The free part of the
resulting cylinders is subsequently partitioned into a number of simple subcells*

In Section )* ? it is shown how the latter part of the two/step approach outlined
above transforms a base partition into a cell decomposition of comparable size in
time proportional to the size of the base partition* Noting this? the problem of <nd/
ing a FsmallL cell decomposition of the free space FP ! C reduces to the problem of
<nding a Fsmall/sizedL base partition in an appropriate base space B ! C* Section
)*S exploits speci<c properties of the constraint hypersurfaces that follow from the
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shapes and relative positions of the obstacles to simplify the constraints on the par5
tition of the base space B 6 W for motion planning problems involving free59ying
robots: The new and simpler constraints combined with the transformation steps
result in a tailored paradigm for motion planning for free59ying robots amidst fat
obstacles: In the next chapter@ this paradigm is shown to lead to eAcient algorithms
for planning motions for free59ying robots amidst several types of obstacles in dif5
ferent workspaces: Moreover@ the ideas presented in this chapter prove useful for
motion planning problems that do not Dt neatly in the sketched frameworkE they
lead to an eAcient algorithm for planning the motion of a vacuum cleaning robot@
which is deDnitely not free59ying:

 !" Transforming a base partition into a cell de4

composition

We consider a motion planning problem for a constant5complexity robot B amidst
constant5complexity obstacles E ! E: Pairs of a feature " !f B and a feature G !f

E of matching dimension deDne constraint hypersurfaces f!" in the cylindriDable
conDguration space C 6 B#D: Furthermore@ we assume that we are given a graph
IVB' EBJ@ where VB is a set of constant5complexity closed regions R that partition
B and individually satisfy

jff!" j" !f B & G !f E & f!" ' IR #DJ (6 )gj 6 OI J'

and EB contains the adjacencies of VBLs regionsE EB 6 fIR'R J ! VB # VBj*R '
*R (6 )g:

The algorithm outlined below transforms the graph IVB' EBJ into a connectivity
graph CG 6 IVC ' ECJ@ consisting of a set VC of constant5complexity subcells that
collectively partition the set of free placements FP@ and a set EC 6 fIA'A J !
VC # VC j*A ' *A (6 )g of subcell adjacencies: The sizes of the sets VC and EC

are of the same order of magnitude as the sizes of VB and EB respectivelyE jVC j 6
OIjVBjJ@ jECj 6 OIjEBjJ: Note that the graph IVC ' ECJ supports simple path5Dnding
between two placements in subcells A ! VC and A ! VC E the constant complexity
of the individual subcells guarantee easy path5Dnding within a subcell@ and the
constant complexity of the shared boundary of two adjacent subcells 5 following
from the constant complexity of the involved subcells 5 caters for simple boundary
crossing rules: The transformation steps are@ contrary to the computation of the base
partition@ independent of the actual motion planning problem under consideration:

Transform Base Partition into Cell Decomposition

VC E6 )Q
EC E6 )Q
for all R ! VB do
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 # compute the arrangement A of surfaces f ! intersecting R!D3
4# use A to compute FP " 7R !D83
9# Desc7R8 :; #3
<# for all maximal connected components A of FP " 7R !D8 do

<# # VC :; VC $ fAg3
<#4# Desc7R8 :; Desc7R8 $ fAg3

for all 7R!% R"8 ' EB do
for all A! ' Desc7R!8 (A" ' Desc7R"8 do

if 'A! " 'A" ); # then EC :; EC $ f7A!% A"8g#

Figure @#4 gives a pictorial explanation of the transformation#

R

R 

R  

R   

Desc7R8

Desc7R 8

Desc7R  8

Desc7R   8

A 

A!

A"

A#

 VB " EB!

CG $  VC " EC!

Figure @#4: The relation between the base partition graph 7VB% EB8 in the subspace
B of C at the topE and the connectivity graph CG ; 7VC % EC8 in the conIguration
space at the bottom# Each nodeKregion R ' VB deInes at most O7 8 nodes A ' VC E
collected in a set Desc7R8# Two nodes A and A in VC can only be connected if
the corresponding nodes R and R in VB are connectedE soE for exampleE A! may be
connected to all nodes in Desc7R 8E but A! and A# can never be connected#

We review the diMerent steps of the transformation in more detail to verify their
validity and to determine the eNciency# Recall that the deInition of the set VB
and the constant complexity of the regions R ' VB together imply the constant
complexity of all subcells A ' VC #
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The %rst for)loop computes the O0 1 0constant)complexity1 maximal connected
components of FP 0R!D1; A possible way to compute this free part of the cylinder
R ! D in constant time could be to apply the techniques by Schwartz and Sharir
BCDE to the constant number of constraint hypersurfaces intersecting the cylinder
R !D; Each of the four steps in the loop is easily veri%ed to run in constant timeI
provided that the constraint hypersurfaces f ! intersectingR!D can be determined
in constant time; In future applications of the transformation algorithmI we shall
take care that this precondition is ful%lled; If the requirement is indeed settledI
the entire loop runs in time O0jVBj1; Upon termination of the %rst loopI each set
Desc0R1 stores all nodes in VC that correspond to free subcells in R!D; Note that
each set Desc0R1 has constant cardinality;

Two free subcells A! and A" are adjacent if they share a common boundary
0which allows for collision)free crossing from one subcell into the other1; Such sub)
cells A! and A" can only be adjacent if their containing cylinders R! ! D # A!
and R" ! D # A" are adjacent in C andI henceI R! and R" are adjacent in B;
An adjacency 0R!( R"1 gives rise to only a constant number of adjacencies of nodes
A! and A" in Desc0R!1 and Desc0R"1 respectively due to the constant cardinality
of Desc0R!1 and Desc0R"1; Two free subcells A! and A" in adjacent cylinders are
adjacent if they share a common boundary; Such a common boundary has constant
complexity since both involved free subcells have constant complexity; The nested
for)loop in the second for)loop takes constant time by the above considerationsI
implying a running time of O0jEBj1 for the latter loop;

If we combine the time)bounds of the three steps in the paradigmI then we %nd
that the running time of the entire paradigm depends solely on the size of the base
partition in a lower)dimensional subspace and on the time to compute the partition;
A small and eOciently computable partition is therefore crucial to the success of the
paradigm; We notice that the base partition is implicitly subject to constraints in
con%guration space 0not more than a constant number of constraint hypersurfaces
may intersect the con%guration space cylinder corresponding to the base partition
region1; We haveI howeverI already suggested the possibility of using hypersurface
properties to translate the constraints into simplerI lower)dimensional constraints;
In the next section we focus on the large class of motion planning planning problems
for free)Qying robots 0amidst k)fat obstacles1; We will see that these problems allow
for a unique choice of base space; EOcient partitions are likely to be achievable
in this subspace due to the possiblity to translate the implicit con%guration space
constraints into 0simpler1 constraints in the lower)dimensional subspace; In Chapter
SI we shall see that the resulting tailored paradigm really leads to eOcient algorithms
for planning motions for free)Qying robots;

FinallyI we mention that the problem of solving a motion planning query T%nd a
free path from a placement Z! U 0Z!B( Z!D1 to another placement Z" U 0Z"B( Z"D1V
basically reduces to a point location query with Z!B and Z"B in VB to %nd R! $ Z!B
and R" $ Z"B; SoI we need a structure for point location in the base space rather
than in the full con%guration space C; After having found R! and R"I it takes
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O! " time to (nd A  Z using Desc!R " and A!  Z! using Desc!R!"/ followed
by a search in the graph !VC ) EC" for a sequence of subcells connecting A to A!:
The constant complexities of the subcells and of the common boundaries of pairs of
adjacent subcells facilitate the transformation of the subcell sequence into an actual
free path for B:

 !" A tailored paradigm for free01ying robots

We now focus on a special instance of the class of motion planning problems with
cylindri(able con(guration spaces/ namely the problem of planning the motion of a
not too large constant?complexity robot B with f degrees of freedom moving amidst
n k?fat constant?complexity obstacles E " E/ where f and k are constants: The
restriction on the size of the robot is expressed by a bound on its reachB .B $ b % ./
where b is some positive constant and . is a lower bound on the minimal enclosing
hypersphere radii of the obstacles in E: For the moment/ we assume that the robot
B does not self?collide/ that is/ no part of B can collide with any other part of B:
Let O " B be the reference point of the robot: The tailored paradigm presented
below suits robots with con(guration spaces that can be written as the Cartesian
product of the d?dimensional Euclidean workspace W and some other !rest?"space
D !of dimension f & d"/

C H W'D)
such that the position of the robotIs reference point in the robotIs workspace is
part of the speci(cation of its placement: A placement Z of the robot can thus be
written as Z H !ZW) ZD"/ where ZW " W H IRd and ZD " D: Free?Mying robots
(t very naturally in this framework: Examples for the rest?space D are D H NO) P2"
for a free?Mying unsymmetric rigid robot in the plane/ and D H NO) P2"! ' NO) 2Q for
a similar robot in three?dimensional space:

If either the obstacles are non?fat or the robot is arbitrarily large/ the robot
B with its reference point O (xed at some point p " W may be able to touch
all obstacles E " E: The circumstances summarized above/ however/ make this
impossibleB the robot with its reference point (xed at p can only touch obstacles
within a distance .B from the point pR such obstacles clearly intersect the hypersphere
Sp$%

B

: Theorem P:S implies that the number of obstacles with minimal enclosing
hypersphere radii at least . intersecting any region with diameter P.B $ Pb % . is
bounded by a constant: As all obstacles in E have minimal enclosing hypersphere
radius at least ./ the robot B can touch no more than O! " obstacles while its
reference point remains (xed at p: This fact leads to the following lemma/ which
provides the theoretical feasibility of choosing W as a basis of the cylindrical cell
decomposition:

Lemma $%& For all p "W%

jff&$#j5 "f B * T "f E * f&$# + !p'D" ,H -gj H O! "6
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Proof$ The subspace p D of the con/guration space is intersected by constraint
hypersurfaces f ! 5 A point in f ! ! 7p  D8 corresponds to a placement of the
robot B in which its reference point is positioned at p and its feature # touches
an obstacle feature <5 This feature < must necessarily belong to one of the O7 8
constant=complexity obstacles that can be touched by B while its reference point
is /xed at p5 Combined with the constant complexity of B itself@ this implies that
there exist only a constant number of pairs 7#%<8 for which f ! intersects p  D5
 

In the sequel we de/ne a partition of the workspace that is subject to constraints
that are formulated exclusively in the workspace5 The partition subsequently turns
out to be a valid base partition for a cylindrical decomposition of the con/guration
space5

We de/ne the notion of grown obstacles to formalize the observation that the
robot B is unable to touch an obstacle E if the distance from the location of BHs
reference point to the obstacle E exceeds 'B5

De'nition +,- .grown obstacle G7E% '86
Let E be an obstacle in IRd and let ' # IR!, The '/grown obstacle E is de3ned as4

G7E% '8 J f p # IRd j d7p%E8 & ' g*

Note that@ as an alternative de/nition@ the '=grown obstacle G7E% '8 equals the
Minkowski diMerence of E and the hypersphere with radius ' centered at the origin@
so

G7E% '8 J E ( SO!$*

Clearly@ the robotHs reference point must lie inside G7E% 'B8 in order for the robot
B to be in contact with EN if the reference point lies outside G7E% 'B8 there is no
danger for B of colliding with E5 A formalization of these informal observations
leads to a very interesting property on the OlocationH of a constraint hypersurface in
con/guration space5

Lemma +,9 Let # #f B and < #f E, Then4

f ! ) G7E% 'B8 D*

Proof$ Figure Q5R illustrates the construction by means of a two=dimensional grown
obstacle G7E% 'B8 ) W J IR" and a one=dimensional rest=space D J ST% !,85 The
arguments of the proof are given in the workspace5

Let p J 7pW% pD8 # f ! @ such that pW # W and pD # D5 We must prove that
p J 7pW% pD8 # G7E% 'B8 D@ which may be reduced to proving that pW # G7E% 'B8@
since pD # D is trivially true5 This means that it should be proven that the reference
point of the robot B must be placed inside G7E% 'B8 when BHs feature # touches EHs
feature <5
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Figure -.!/ A grown obstacle and the corresponding con=guration space cylinder for
a robot with W A IR and C A IR  $%% &'#.

AssumeE for a contradictionE that pW !" G"E% &B#. ThenE by the de=nition of a
grown obstacleE the distance from pW to E exceeds &B. But thenE it is impossible
for B to reach "and touch# the obstacle EE by the de=nition of the reach of a robot.
In other wordsE no feature *! "f B can touch a feature I! "f E. SoE the point
p A "pW% pD# with pW !" G"E% &B# cannot lie on f#$" contradicting the assumption
of the lemma.  

The lemma supplies some kind of a simple outer approximation of the location of
a constraint hypersurface in con=guration space. If a workspace region R does not
intersect a grown obstacle G"E% &B# then certainly none of the constraint hypersurL
faces f#$" with I "f E intersects the con=guration space cylinder R D. If on the
other handE R intersects G"E% &B#E then one or more constraint hypersurfaces f#$"
with I "f may "but not necessarily must# intersect R  D. As a resultE the conL
=guration space cylinder R  D corresponding to a region R that is intersected by
O" # grown obstacles is itself intersected by at most O" # constraint hypersurfaces.
The following de=nition of the coverage of a workspace region facilitates a compact
statement of this interesting result.

De"nition '() *coverage Cov"R#0
Let R $W A IRd#

Cov"R# A fE " E jR (G"E% &B# !A ) g1

HenceE Cov"R# is the set of obstacles E whose corresponding grown obstacles
G"E% &B# intersect R. The de=nition allows for a compact formulation of the precedL
ing observations regarding the relation between the grown obstacles in the workspace
and the constraint hypersurfaces in the con=guration space.
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Lemma $%& Let R  W # IRd be such that jCov&R'j # O& ') Then

jff!" j& #f B % ( #f E % f!" ' &R (D' )# *gj # O& '(

Proof+ Take a constraint hypersurface f!" with f!" ' &R ( D' )# *: Now let
E be such that ( #f E: By Lemma A:BC f!"  G&E+ ,B' (D: HenceC necessarily
&R ( D' ' &G&E+ ,B' ( D' )# * and thus R ' G&E+ ,B' )# *: By the deFnition of
Cov&R' and the assumption jCov&R'j # O& 'C it follows that there are only O& '
obstacles E such that R ' G&E+ ,B' )# *: Due to the constant complexity of these
obstacles and the robotC there is only a constant number of hypersurfaces f!" with
f!" ' &R (D' )# *:  

The lemma states that any region R with jCov&R'j # O& ' is guaranteed to satisfy
the constraint on the regions of the base partition requiring that the correspondK
ing cylinder is intersected by O& ' constraint hypersurfaces: As a consequenceC a
decomposition of the workspace W into regions R with both jCov&R'j # O& ' and
constant complexity is a valid base partition of the base space B # W: We shall
refer to workspace partitions of this kind as ccKpartitions &constantKsize coverageC
constantKcomplexity':

De-nition $%$ 1cc3partition5
A cc-partition V of a workspace W with obstacles E is a partition of W into regions
R satisfying the following additional constraints:

, jCov&R'j # O& ';
, R has constant complexity)

The constantKsize coverage constraint jCov&R'j # O& ' replaces the constraint
jff!" j& #f B % ( #f E % f!" ' &R ( D' )# *gj # O& 'O the new constraint is
simpler because it is truly a constraint in the workspace: The result in Lemma
A:P and the deFnition of ccKpartitionsC howeverC would be completely useless if a
partition of W into regions R with jCov&R'j # O& ' does not exist: Note that the
existence of such a partition solely depends on the absence of points p #W that are
contained in 0& ' grown obstacles: FortunatelyC such points do indeed not exist by
Lemma A:R: The result follows immediately from Theorem S: SC noting that each
grown obstacle G&E+ ,B' is a constantKcomplexity ,BKwrapping andC by ,B - b . ,C
also a constantKcomplexity &b . ,'Kwrapping of the obstacle E itself:

Lemma $%6 Let E be a set of n non-intersecting k-fat obstacles in IRd with minimal
enclosing hypersphere radii at least ,) Furthermore; let ,B - b . ,; for some positive
constant b) Then

7a8 the complexity of the arrangement A&G' of all grown obstacle boundaries
4G&E+ ,B' @E # EA is O&n';
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 b" every point p  W # IRd lies in at most O& ' grown obstacles G&E$ %B' 1E  
E23

Lemma ,-.&b' shows that it is possible to partition the workspace W with the
k<fat obstacles of E into &constant<complexity' regions with constant<size coverage-
Notice that the arrangementA&G' even partitions W # IRd into O&n' regions R with
jCov&R'j # O& 'D as each d<cell of the arrangement is a subset of the intersection
of O& ' grown obstacles &by Lemma ,-.&b''- UnfortunatelyD the partition does not
suit our purposesD because the d<cells themselves may have more than constant
complexity- HenceD it is not a cc<partition &although it can be further reIned into
one'-

In summaryD we have found &Lemma ,-.' that a cc<partition of a workspace with
non<intersecting k<fat obstacles always exists- The cc<partition in the workspace
correspondsD by Lemma ,-!D to a decomposition of the conIguration space into
constant<complexity cylinders that are intersected by no more than a constant num<
ber of constraint hypersurfaces- As a resultD the cc<partition is a valid partition
of the base space W allowing for application of the transformation algorithm from
Section ,- -

The algorithm FatMot given below combines the search for a small cc<partition
with the transformation of that cc<partition into a cell decomposition of the free
space based on the transformation steps from the previous section- Besides the cc<
partition regionsD gathered in a set VWD the Irst step is to report the adjacencies of
the cc<partition regions in a set EWD and the function Cov Q VW $ P&E' mapping
each region R  VW onto the &constant<cardinality' set of obstacles E  E with
G&E$ %B' & R '# (- &OccasionallyD the pair &VW$ EW' will be referred to as a cc<
partition graph-' We denote the time required to compute the pair &VW$ EW' as
well as the coverage function Cov by T &n'D where the argument n represents the
number of obstacles in E-

The remainder of the algorithm FatMot is a copy of the transformation algorithm
from Section ,- with the exception of the reInement in step  - The reInement
shows how the precomputed sets Cov&R' aid in computing in constant time the
arrangement A of all constraint hypersurfaces that intersect the cylinder R ) D-
A closer look at the reInement learns that A is the arrangement of all constraint
hypersurfaces in a set F # ff!"!j2  f B , T  f Cov&R'gD which is a superset of
the set of hypersurfaces f!"! that satisfy f!"! & &R)D' '# (- FortunatelyD the easily
computable set F contains only a constant number of hypersurfacesD due to the
constant cardinality of Cov&R' and the constant complexity of B and the individual
obstacles E- Crucial to the validity of the approach of computing a somewhat larger
arrangement is the simple observation that A & &R )D'D i-e-D the restriction of the
arrangement A to the cylinder R )DD is equivalent to the restriction to R )D of
the arrangement of hypersurfaces f!"! with f!"! & &R)D' '# (- The techniques by
Schwartz and Sharir from VW!X may be useful to compute a decomposition of the free
part FP & &R )D' of a cylinder R)D-
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Algorithm FatMot

Find a cc(partition graph /VW! EW0 and compute Cov4
VC 56  4
EC 56  4
for all R ! VW do

 7 7 F 56  4
 787 for all ( !f B # 9 !f Cov/R0 do

 787 7 compute f"#!4
 78787 F 56 F $ ff"#!g4

 7:7 compute the arrangement A of all f ! F 4
87 use A to compute a decomposition of

FP ( /R)D0 into connected subcells4
:7 Desc/R0 56  4
@7 for all constant(complexity subcells A of FP ( /R )D0 do

@7 7 VC 56 VC $ fAg4
@787 Desc/R0 56 Desc/R0 $ fAg4

for all /R"! R#0 ! EW do
for all A" ! Desc/R"0 #A# ! Desc/R#0 do

if ,A" ( ,A# *6  then EC 56 EC $ f/A"! A#0g7

The reDnement of step  of the Drst for(loop veriDes the running time of O/jVWj0
for the Drst for(loop of the transformation7 The running time of the entire algorithm
FatMot becomes O/jVWj G jEWj G T /n00H because of the running time of T /n0 for
Dnding the cc(partition graph /VW! EW0 and computing CovH and the O/jEWj0 time
bound on the execution of the second for(loop /see Section !7 07 The O/jVWj G
jEWj G T /n00 time bound emphasizes once again that the eKciency of FatMot is
fully determined by the size of the graph /VW! EW0 and the time to compute the
graph and the function Cov 5 VW , P/E07 Since the time T /n0 to compute the
graph and the function dominates the time O/jVWjG jEWj0 to simply report bothH
we may conclude that the T /n0(factor dominates the running time of the algorithm
FatMotH which may therefore be said to equal T /n07

Theorem -./ Let b and k be positive constants. In addition0 let E be a set of k3fat
constant3complexity obstacles E in the robot9s workspace W with minimal enclosing
hypersphere radii at least 20 and let B be a constant3complexity robot with reach
2B / b 0 2. Furthermore0 let C 6 W ) D be the con?guration space of B. Then0
algorithm FatMot computes a decomposition of the free space FP 1 C into simple
subcells with a connectivity graph CG 6 /VC ! EC0 of size O/jVWj G jEWj0 in time
O/T /n000 where T /n0 is the time to compute a cc3partition of the workspace and the
corresponding function Cov 5 VW , P/E0.

Although the exact performance of the algorithm depends on the ability to Dnd
small and eKciently computable cc(partitionsH one mayH at this stageH expect the
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method to be rather e+cient since the paradigm reduces the problem of 5nding a
decomposition of certain f 6cells in an arrangement in f 6dimensional con5guration
space to the problem of 5nding some constrained partition of the d6dimensional
workspace 9d  f:; Besides the dimensional reduction= there is also the feeling
that the hypersurfaces in con5guration space have more complex shapes than the
obstacles in the workspace that are responsible for the partition constraints; A
major part of the next chapter is devoted to providing convincing and less intuitive
arguments for the validity of our approach= simply by deducing small and e+ciently
computable cc6partitions for workspaces with various kinds of obstacles; Another
part of that chapter exploits the more general ideas of this chapter 6 on cylindri5able
con5guration spaces 6 to obtain an e+cient algorithm for planning the motion of a
non6free Cying robot amidst fat obstacles;

In Chapter F= we have seen that= within our framework= self6collisions have no
major implications for the complexity of the free space; The O9 : self6collision con6
straint hypersurfaces do not increase the asymptotic complexity of the arrangement
of constraint hypersurfaces= and= hence= of the free space; Let us now reveal the
consequences of self6collisions for the motion planning paradigm given as the al6
gorithm FatMot; We have seen that self6collisions are independent of the position
of the robotMs reference point= as they can occur anywhere in the workspace; The
corresponding constraint hypersurfaces in C N W ! D are therefore of the form
W ! s= where s " D; As a result= any self6collision hypersurface fs intersects all
con5guration space cylinders R ! D; The constant number of such hypersurfaces
and their individual constant complexity= however= guarantee that the combinatorial
complexity of the arrangement A and the set FP$ 9R!D: in steps  ;P and Q of the
algorithm FatMot and the running time of FatMot are not aRected; The correctness
of the paradigm after the incorporation of self6collisions is established by replacing
the initialization of F TN % in step  ; by the initialization F TN Fs= where Fs is the
set of all self6collision constraint hypersurfaces;
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Chapter '

E)ciently computable base

partitions

This objective in this chapter is to /nd instances of the general paradigm presented in
Chapter 6 for a handful of di8erent settings of the motion planning problem9 Besides
a universal and nearly<optimal solution for planning in two<dimensional workspaces?
we shall consider four di8erent problems in three<dimensional workspaces9

Appropriate workspace decompositions for application of the algorithm FatMot
are shown to exist for problems involving a free<Dying robot moving among poly<
hedral and arbitrary obstacles9 The decompositions have sizes OFn G and OFn!G
and are computable in OFn log nG and HFn!G time respectively9 FatMot transforms
the workspace partitions into cell decompositions of asymptotically equivalent size9
Sections K9L and K9M discuss the details of the respective partitions and their con<
struction9

Nearly<optimal results are obtained for two classes of motion planning problems
in M<space with regularly encountered additional properties9 The /rst class consists
of problems involving a free<Dying robot and arbitrary obstacles from a bounded
range of sizes9 More precisely? the ratio of the minimal enclosing hypersphere radii
of any pair of obstacles is bounded by a constant9 The workspace with the obstacles
of this type of problem allow for a simple cc<partition of size OFnG9 Section K9O re<
ports the details of the partition and its computation9 The second class of problems?
discussed in Section K9P concerns a further constrained robot9 The robotQs reference
point is con/ned to a plane in the workspace W9 The class contains the realistic
problems where the robot moves on a workDoor9 Such problems are often encoun<
tered in industrial environments9 One example is the vacuum cleaner robot studied
in TUVVW9 Contrary to all other problem types dealt with so far? the workspace W is
not a projective subspace of the robotQs con/guration space C9 FClearly? the robot
is not free<Dying9G Thus? the paradigm of Section 69L does not apply directly to
this class of problems9 The plane to which the robotQs reference point is con/ned?
however? is a subspace of C? and it turns out that this plane is decomposable into
regions such that the free part of the con/guration space cylinders obtained after

UUX
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lifting the regions into C has constant complexity4 The algorithm in Section 74 
transforms the decomposition into an actual cell decomposition of the free space4
The base decomposition in the plane very strongly resembles the decomposition
outlined below in Section =4 4

 !" Arbitrary obstacles in 01space

In order to get a feeling for the di?erent aspects of computing an appropriate base
partition@ we Arst focus on planar motion planning before we move on to threeB
dimensional workspaces and obstacles4 The aim in this section is to And a small cell
decomposition of the free space for the class of motion planning problems with the
following characteristics4

A constant9complexity robot B with f degrees of freedom Hf ! !I with
reach "B moves freely in the workspace W E IR amidst a collection E
of k9fat constant9complexity obstacles E # W with minimal enclosing
circle radii at least "L for some constant k !  ( The system is constrained
by the inequality "B $ b % "L for some Oxed constant b ! "(

A substantial part of the speciAcation of a placement of the freeBHying robot B is
the position of its reference point O & B in the workspace B4 As a result@ the
conAguration space C of the problem is the Cartesian product of the !Bdimensional
Euclidean workspace W and some Kf'!LBdimensional space D@ hence C E W(D E
IR (D4 For a rigid robot Kf E NL@ the space D equals the oneBdimensional rotational
interval P"( !)LQ for freeBHying articulated robots Kf ! RL@ the space D models the
relative placements of the robotSs links4

The partition that is proposed below@ a vertical decomposition of the arrangeB
ment of grown obstacle boundaries@ is a simple example of a conceptually twoBlayer
approach that we will use more often in this chapter4 This twoBlayer approach Ands
a partition of W by Arst dividing W into regions with constantBsize coverage@ and
subsequently reAnes the regions to obtain constantBcomplexity regions4 Notice that
the instance of algorithm FatMot presented in this subsection provides a generalB
ization of the algorithm presented in Section W4!@ which is a modiAed version of
Schwartz and SharirSs algorithm PXRY and as such dedicated to a polygonal robot
amidst polygonal obstacles4

Our Arst step towards a ccBpartition comprises the computation of the grown
obstacle boundaries *GKE( "BL for all obstacles E & E4 Each boundary is obtained
in OK L time leading to OKnL time for computing all boundaries4 As a preparation
for the next step@ each grown obstacle boundary *GKE( "BL is cut up into OK L
arcs which are maximal connected@ xBmonotone boundary parts having no vertices
in their interiors4 Note that the arc endpoints are generally incident to two arcs4
For future purposes we label each arc from *GKE( "BL with E4 Lemma =4 repeats
earlier results on the arrangement AKGL in a formulation that better suits their
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present application- The 0b23part follows directly from Lemma :-; if one realizes
that all points p in a single !3cell A  A0G2 lie in exactly the same collection of
grown obstacles-

Lemma $%& Let A0G2 be the planar arrangement of all boundaries #G0E% &B2 2E  
E34 Then
'a( A0G2 has complexity O0n29

'b( jCov0A2j ? O0 2 for all :;faces A  A0G24

By Lemma ;- A the resulting O0n2 arcs deCne only O0n2 0yet unknown2 arc inter3
sectionsA and additionally subdivide W into regions with constant3size coverage-

In a second step we compute the vertical decomposition of the arrangement
A0G2 of grown obstacle boundariesA by sweeping the plane H IJ with the arcs with a
vertical lineA meanwhile extending walls in upward and downward vertical direction
from all O0n2 arc endpoints 0known in advance2 and all O0n2 arc intersections 0to
be determined during the sweep2- Figure ;- shows an example of the vertical
decomposition of an arrangement of x3monotone arcs- For simplicityA we assume

Figure ;- L The vertical decomposition of an arrangement of x3monotone arcsL walls
are extended in vertical direction from all arc endpoints and arc intersections-

that no two events pointsA that isA arc intersections or arc endpointsA lie on a vertical
line x ? X- The extended walls end on the Crst arc that is hit in the direction of the
extension- The walls subdivide the !3cells of the arrangement into regions bounded
by two 0possibly degenerate2 vertical walls and two arc sections- HenceA the regions
in the vertical decomposition of the arrangement A0G2 have constant complexity-
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Moreover' they inherit the constant0size coverage from the original 6enclosing7 !0cell
of A6G78 The arcs and their endpoints and pairwise intersections and the walls
and their endpoints collectively form a planar graph consisting of O6n7 edges and
vertices' subdividing the plane into O6n7 constant complexity regions@ the regions
of VW8 The set EW of pairs of adjacent vertical decomposition regions has size O6n7
as well' as each adjacency can be charged to one of the O6n7 edges in the planar
graph8 Moreover' it is clear that all possible sets EW and VW also have size B6n78

Lemma $%& VW is a cc$partition of size C6n7 of W with the obstacles E1 EW E
f6R&R 7 # VW $ VWj'R & 'R 'E (g has size C6n72

The plane0sweep algorithm must not only report the regions of VW' but also the cov0
erages Cov6R7 of all regions R # VW' and the region adjacencies of EW8 To achieve
this' the following invariant regarding the available data is maintained throughout
the entire sweep8

* VW contains all regions strictly left of the sweep0line and their descriptionsF
EW contains all adjacencies of regions left of the sweep0lineF Cov6R7 is assigned
for all regions R currently in VWF

* The sweep$line status is a top0to0bottom ordered cross0section of the vertical
decomposition of A6G7 at x E X8 As such' it is an alternating sequence of in0
tersected regions and intersected arcs8 The elements of the sequence are stored
in the leaves of a balanced binary tree8 The regions in the data structure are
accompanied by their coverages' and partial descriptions' i8e8' their 6possibly
degenerate7 left vertical bounding wall and upper and lower bounding arc8

* The event point schedule is the sequence of upcoming events' consisting of
all statically computable arc endpoints' and potential intersections of pairs
of consecutive arcs 6separated by a single region7 in the sweep0line status8
The summarized events are stored in a priority queue' ordered by increasing
x0coordinate8 The upcoming event is always either an arc endpoint of an
intersection of two consecutive arcs' so the Irst event in the queue is indeed
the upcoming event8

The creation of an artiIcial event point at x E J+ and the proper initialization
of the event point schedule and the sweep0line status causes the consistent main0
tainance of the invariant to eventually lead to the situation where the event point
schedule is empty' the set VW consists of all regions in the vertical decomposition of
A6G7' the set EW contains all pairs of adjacent region from VW' and the function
Cov is assigned appropriately for all arguments R # VW8

Figure L8! shows the diMerent kinds of events that are encountered@ 6a706c7 show
all possible endpoint events' 6d7 shows the intersection event8 Notice that the end0
point events are vertices joining two arcs originating from a single grown obstacle
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Figure )*!+ The di/erent types of event points*

boundary :and; hence; carrying the same label?* The dotted lines are the vertical
decomposition walls extended from the event points*

The upcoming event can be extracted in constant time from the event point
schedule* The event points; and more particularly the walls extended from it; mark
the end of at most three consecutive regions in the sweep line status :named R; R ;
R  in Figure )*!?* The ending regions and their descriptions; which are completed
by the addition of the right boundary :a wall or event point?; are deleted from
the balanced binary tree storing the sweepCline status and transferred to VW* The
corresponding coverages are assigned to the appropriate entries of Cov* The sepaC
rating arcs :f ; f  ? are deleted along with the ending regions* The deleted regions
are replaced by at most three new regions :named Q; Q ; Q  in Figure )*!?; and
their separating arcs* The regions are accompanied by their partial representations;
which involve the walls; the new separating arcs :g; g ?; and the two arcs u and l
bounding the upper new region from above and the lower new region from below*
The identiDcation of the latter two arcs requires two searches of the sweepCline staC
tus* The coverages of the new regions are easily computable from the coverages
of the old regions; using the simple observations that the coverages of regions on
opposite sides of a wall are equal; and the set di/erence of the coverages on opposite
sides of an arc with label E is exactly fEg* Finally; we must report the adjacenC
cies of the new regions* These adjacencies only involve the O: ? new regions; the
O: ? old regions; and the regions U bounding the old and new upper regions from
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above and L bounding the old and new lower regions from below5 The latter two
regions are found by two searches of the binary tree storing the sweep:line status5 In
summary< the processing of an event requires a constant number of searches< dele:
tions< and insertions in a balanced binary tree5 The data structure supports each of
these operations in time O>log n?5 The remaining computations in a single step a
constant:complexity data set< and therefore require constant time5

The O> ? newly obtained pairs of consecutive arcs in the sweep:line status< in:
volving the new separating arcs and u and l< may necessitate an update of the event
point schedule with the potential intersections of the new consecutive arc pairs5 The
insertion of an element in the priority queue storing the schedule takes O>log n? time5
As a result< the entire update of the event point schedule takes O>log n? time5

Throughout the plane sweep a total of O>n? events are encountered< each requir:
ing O>log n? processing time5 The entire sweep< and< hence< the computation of the
sets VW and EW and the function Cov< therefore takes O>n log n? time5

Lemma $%& The computation of the cc-partition graph >VW* EW? and the corre-
sponding function Cov C VW  P>E? takes O>n log n? time3

Lemma E5F shows that the time T >n? in Theorem G5H to compute the cc:partition
graph >VW* EW? and the function Cov is O>n log n?5 In addition< Lemma E5! bounds
the sizes of the sets VW and EW by O>n?5 Hence< the algorithm FatMot computes
a decomposition of FP of size O>jVWj N jEWj? O O>n? in time T >n? O O>n log n?5
>Note that the outlined vertical decomposition must be substituted for the Qrst step
of the algorithm in order to actually achieve this performance5?

Theorem $%+ Let k $  and b $ R be constants and let E be a collection of k-
fat constant-complexity obstacles E % W O IR! with minimal enclosing circle radii
at least .3 Algorithm FatMot solves the motion planning problem for any constant-
complexity robot B with f $ ! degrees of freedom and reach .B ' b(. amidst E in time
O>n log n?3 The connectivity graph CG O >VC * EC? of the resulting decomposition of
FP into simple subcells has optimal size O>n?3

 !" Polyhedral obstacles in 23space

In this section< we move on to three:dimensional workspaces where we study a
setting of a free:Wying robot amidst polyhedral obstacles5 The number of algorithms
for motion planning problems in a three:dimensional workspace with polyhedral
obstacles is limited5 The two methods that apply to robots with an arbitrary number
f $ F of degrees of freedom are the general O>n!

f !
? cell decomposition algorithm by

Schwartz and Sharir YHZ[ and the O>nf log n? roadmap method by Canny Y!R[5 More
speciQc results include O>n""? YHE[ and O>n# log n? YZR[ algorithms for a >Z:DOF?
ladder among polyhedral obstacles< and an O>n"$? algorithm YHE[ for a polyhedral
robot in the same environment5 This section presents an instance of the algorithm
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FatMot for a bounded/size robot among fat polyhedral obstacles with running time
O;n log n<= regardless of the number f of degrees of freedom of the robot> The
following description @xes the setting of the results>

A constant3complexity robot B with f degrees of freedom Hf ! BI with
reach #B moves freely in the workspace W D IR! amidst a collection E
of k3fat constant3complexity polyhedral obstacles E #W with minimal
enclosing sphere radii at least #L for some constant k !  ! The system is
constrained by the inequality #B $ b % #L for some Oxed constant b ! G!

The problem of @nding cc/partitions for three/dimensional Euclidean workspaces
is much harder than its two/dimensional equivalent= which is illustrated by the
relatively small number of results on partitioning BD arrangements into constant/
complexity subcells like tetrahedra or prisms> Moreover= the existing results ;see=
for example= papers by Aronov and Sharir OPQ= Chazelle O! Q= and De Berg= Guibas=
and Halperin O PQ< do not apply to arbitrary arrangements but instead only hold
for arrangements of planar faces= which makes their application to the arrangement
of ;arbitrarily/shaped< grown obstacles impossible> The two/step approach of @rst
decomposing the workspace into constant/size coverage regions and then re@ning
the regions to constant/complexity regions is likely to lead to O;n < regions= as the
application of any of the above methods gives O;n < subcells when applied to an
O;n< complexity arrangement of planar faces> Although a smaller decomposition
might be achievable by either this approach or a completely diVerent strategy= we
are currently unaware of such a decomposition and therefore choose to settle for
a cc/partition of size O;n <> The partition is obtained by following the two/step
approach>

Instead of using the grown obstacle boundaries to achieve the decomposition
into constant/size coverage regions= we now use the boundary of a polyhedral outer
approximation of these grown obstacles> The polyhedral approximations still achieve
a decomposition of W into regions of constant/size coverage= but additionally allow
for subsequent application of a vertical decomposition algorithm ;to the triangulated
polyhedral arrangement< to obtain O;n < constant/complexity regions> A tight outer
approximation of the grown obstacle G;E( #B< is the Minkowski diVerence H;E( #B<
of E and a cube with side length !#B>

De"nition '() Let W & SO;B< be some arbitrary rotation matrix- establishing that
none of the faces of the cube W % CO!"

B

is vertical5 Then

H;E( #B< D E ' ;W %CO!"
B

<,

The computation of a Minkowski diVerence H;E( #B< from the constant/complexity
obstacle E takes constant time> The Minkowski diVerence H;E( #B< encloses E
and= by its de@nition= no point in H;E( #B< has a distance larger than

p
B % #B to

E> Hence= H;E( #B< is a ;
p
B % #B</wrapping of E= and because #B $ b % #= also a
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 b
p

! ! !"#wrapping of E- The additional lower bound of ! on the minimal enclosing
sphere radii of all obstacles in E makes Theorem :-;: applicable to the arrangement
A H" of all Minkowski di=erence boundaries $H E% !B"  E $ E"- Thus> we obtain
Lemma @-A-

Lemma $%& Let A H" be the three&dimensional arrangement of all boundaries
$H E% !B" 2E $ E34 Then

'a( A H" has complexity O n":

'b( jfE $ EjH E% !B" 'A (B )gj B O ;" for all ;&faces A $ A H"4

The set of obstacles E whose Minkowski di=erences H E% !B" intersect a given region
R is a superset of Cov R"> the set of obstacles E whose grown obstacles G E% !B"
intersect R> due to the inclusion G E% !B" + H E% !B"- With the observation we
deduce the following interesting corollary from Lemma @-A b"-

Corollary $%$ jCov A"j B jfE $ EjG E% !B" ' A (B )gj B O ;" for all ;&faces
A $ A H"4

Hence> the O n" complexity polyhedral arrangement A H" subdivides W B IR into
regions with constant#size coverage-

The range searching results in Chapter ! facilitate a computation of the linear#
complexity arrangement A H" in time O n log! n log log n"- A naive and simpler>
but in the light of steps to come suMciently eMcient> computation of A H" takes
O n!" time and simply intersects all pairs of constant#complexity faces of Minkowski
di=erence boundaries $H E% !B" and stores the  potential" intersection segment with
both faces- After that> each face and the segments deNned by its intersection with
other faces undergo a constrained triangulation- The triangulation is constrained
in the sense that it incorporates all intersection edges as edges of triangles in the
triangulation- The triangulation introduces no new vertices- The constrained trian#
gulation can be done by a single sweep  comparable to the sweep in Section @-;" of
each face f in time O mf logmf"> where mf is the complexity of the respective face
and the corresponding intersection segments- As the cumulative complexity

P
f mf

equals  asymptotically" the complexity O n" of the arrangementA H"> the triangu#
lation of all faces of the arrangement takes O n log n" time- The result is a collection
TA"H# of non#intersecting triangles- Although the triangles are non#intersecting they
do touch each other> that is> they share edges and vertices- For future purposes>
we take care to label each triangle t $ TA"H# with the appropriate obstacle E to
indicate that t belongs to the Minkowski di=erence H E% !B"- The decomposition
of the workspace by the arrangement A H" is not a cc#partition> because the !#cells
of the arrangement may have more than constant complexity- To reNne the !#cells
into constant#complexity regions> we apply a full vertical decomposition algorithm
to the triangulated arrangement-
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De Berg( Guibas( and Halperin 4 56 give a rather simple algorithm for computing
a full vertical decomposition of an arrangement of triangles in >?space@ The general
position of the obstacles in E and the rotated cube B ! CO!"

B

establish that the
triangles in TA H! are in general position in the sense that no triangle is vertical(
no edge is parallel to a coordinate axis( and no two edges lie in a vertical plane
unless they coincide@ The fact that we deal with sets of touching triangles requires
some additional bookkeeping to prevent multiple extensions of equivalent walls@ The
bookkeeping is simple and does not aHect the eIciency of the algorithm@ We neglect
the bookkeeping in the description of the algorithm@ In the restricted case of non?
intersecting triangles( the vertical decomposition algorithm leads to a decomposition
of the arrangement of the triangles into OLn"M constant?complexity regions 45N6@
The computation takes OLn" log nM time 4 56@ Below we Orst briePy discuss the
algorithm and the structure of the full vertical decomposition@ After that( we show
that application of the algorithm to the set of triangles TA H! leads to a cc?partition
graph LVW% EWM( with jVWj R OLn"M but( unfortunately( a larger set EW@ To remedy
this( we will replace each triangle by a Pat tetrahedron and then show that the
resulting set F LTA H!M of triangular tetrahedron faces solves the problem as its full
vertical decomposition leads to jVWj R jEWj R OLn"M and T LnM R OLn" log nM@

The computation of the full vertical decomposition proceeds in two steps@ The
Orst step results in the vertical decomposition of the arrangement of non?intersecting
triangles@ The second step uses the speciOc shape of the resulting regions to subdi?
vide them further to obtain constant?complexity regions( which together constitute
the full vertical decomposition@ We discuss each step in more detail@

The vertical decomposition step partitions the arrangement of non?intersecting
triangles from a given set T into maximal connected collections of points with equal
vertical visibility with respect to the triangles of T ( both in upward and downward
z?direction@ More precisely( a region in the vertical decomposition is a maximal con?
nected set fx $ IR$jupLxM R t%%downLxM R t"g where t%% t" $ T and upLxMUdownLxM
denotes the Orst triangle in T that is hit by the vertical ray emanating from x in
upwardUdownward z?direction@ The decomposition is achieved by the extension of
vertical walls from all triangle edges( which end upon hitting other triangles@ The
representation of the vertical decomposition computed by the vertical decomposition
algorithm consists ofV LiM for each triangle edge e( the wall W LeM extended from it(
and LiiM for each triangle t $ T ( the two arrangements of ending walls on either side
of t@ The algorithm stores the walls and the triangle arrangements in a quad?edge
structure 4WX6 to facilitate future navigating through the decomposition and explicit
reporting of the regions and the region adjacencies@

The wall W LeM extended from the edge e is obtained by intersecting the vertical
surface HLeM through e( that is( the union of all vertical lines through e( with all
non?intersecting triangles( resulting in OLnM disjoint intersection segments in HLeM@
The upper boundary of W LeM is deOned by the lower envelope of all intersection
segments in HLeM lying above e@ Similarly( the lower boundary of W LeM is deOned by
the upper envelope of all intersection segments in HLeM lying below e@ The envelopes
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are alternating polygonal chains of parts of intersection edges and of vertical seg4
ments6 Both envelopes have complexity O9n:; since the upper=lower envelope of a
collection of disjoint line segments in the plane has complexity O9n:6 Each halfwall
9between an envelope and the edge: is divided into slabs by vertical line segments
connecting the vertices of the envelope to the edge 9see Figure C6D:6 The vertical seg4

e

Figure C6DF The grey face is the 9upper half of the: wall extended in vertical direction
from the edge e6 The line segments above e are the intersections of triangles with
the supporting plane of the vertical surface H9e:6

ments correspond to intersections with other walls6 Clearly; the vertical segments
do not increase the complexity of the wall6 The envelopes 9and the vertical line
segments: can be computed in O9n log n: time; using divide4and4conquer IJCK6 The
computation of all O9n: walls requires O9n log n: timeL the cumulative complexity
of the walls is O9n :6

Walls end as line segments on both sides of the triangles of T 6 The ending walls
on the upward4facing side of the triangle are 9non4vertical: portions of the lower
boundaries of walls W 9e:6 Similarly; the ending walls on the downward4facing side
are portions of upper boundaries of walls W 9e:6 Figure C6J shows an example of a
triangle side and the arrangement of walls ending on it6 By charging the complexity
of the arrangement of ending walls to the corresponding walls and by noticing that
the complexity of T is O9n:; we Ond that the asymptotic cumulative complexity of
all triangle arrangements equals the cumulative complexity of all wallsF O9n :6 A
single scan of all walls suQces to Ond for all triangle sides the segments that deOne
the arrangement on that speciOc side6 Next; a single arrangement can be computed
by a single sweep of the segments in time O9m logm:; where m is the complexity of
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t t

Figure )*+, The arrangement of walls ending on a side of a triangle9 and the planar
vertical decomposition of the arrangement*

the arrangement* As the cumulative complexity of all arrangements is O@n A9 the
computation of all arrangements takes O@n log nA time* The Coors and ceilings9
that is9 the bounding faces in vertical direction9 of the resulting regions are parts of
triangles* More precisely9 they are !Ffaces in an arrangement of ending walls on a
triangle side* Note that the Coor and ceiling of a vertical decomposition region have
equivalent projections onto the @x# yAFplane*

The second step reJnes the vertical decomposition into a full vertical decompoF
sition9 consisting of regions bounded by six @possibly degenerateA planar faces9 by
adding walls parallel to the @x# zAFplane* The reJning is obtained through a planar
vertical decomposition of all triangle arrangements9 in which segments are extended
within the triangles parallel to the yFaxis from every vertex of the arrangement @see
Figure )*+A* The additional walls connect corresponding extended segments @that is9
with equivalent projections on the @x# yAFplaneA in the upper and lower bounding triF
angles of a vertical decomposition region* The entire reJning takes O@n log nA using
a sweep of all triangle arrangements* Every region in the full vertical decomposition
has a trapezoidal Coor and ceiling with equivalent projections onto the @x# yAFplane*
The remaining four @possibly degenerateA bounding faces are vertical walls, two reF
sulting from the vertical decomposition and two added during the reJnement* The
representation of the full vertical decomposition computed in the reJnement step
consists of, @iA all walls W @eA extended from triangle edges e plus all additional
@paralleloidA walls parallel to the @x# yAFplane9 and @iiA for each triangle t  T 9 the
two arrangements of ending walls9 both extended from edges and added during the
reJnement9 on either side of t*

Lemma $%& Let T be a set of n non)intersecting triangles in IR!/ The full vertical
decomposition of T decomposes the arrangement of triangles in T into constant)
complexity regions/ The decomposition has complexity O@n A and can be computed
in time O@n log nA/

Application of the decomposition algorithm to the set of triangles TA"H# yields
a subdivision of the constantFsize coverage OFfaces of the arrangement A@HA into
constantFcomplexity regions* As a result9 the regions of the reJned subdivision
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collectively partition W with the polygonal obstacles E into O5n 6 regions with
constant7complexity and constant7size coverage< Hence> the collection of these re7
gions would make an appropriate choice for a set VW< Unfortunately> the decompo7
sition does not give us a low number of adjacencies as well<

The common boundary of two adjacent regions in the full vertical decomposition
is either embedded in a vertical wall or embedded in a triangle< Although the
number of adjacencies of the Frst type can be bounded by O5n 6> it seems impossible
to obtain a similar bound on the number of adjacencies of the latter type< Walls
extended from other trianglesG edges end on both sides of a triangle t ! TA"H# and
deFne arrangements of line segments on these sides< The complexity of a single
arrangement and its planar vertical decomposition can be as high as O5n 6> and>
hence> the number of H7faces in the vertically decomposed arrangement is bounded by
O5n 6 only< These H7faces are the Ioors 5or ceilings6 of the full vertical decomposition
regions< Each non7empty intersection of H7faces on either side of a single triangle
corresponds to an adjacency of two regions< In general> two subdivisions of a single
triangle t into mt and nt H7faces could easily give rise to O5mt " nt6 non7empty
intersections of pairs of H7faces< At present> it is unclear if the speciFc properties of
the full vertical decomposition make it possible to bound the cumulative number of
intersections on all O5n6 triangles> and> hence> the number of region adjacencies> by
anything close to O5n 6<

An elegant way to overcome the problem outlined above is by replacing all tri7
angles of TA"H# by tetrahedra that are suLciently Iat to prevent them from inter7
secting< The tetrahedra have the initial triangles of TA"H# as one of their faces<
The triangular faces of the tetrahedra are collected in the set F 5TA"H#6M F 5TA"H#6
satisFes F 5TA"H#6 # TA"H# and jF 5TA"H#6j N O " jTA"H#j< Hence> the size of F 5TA"H#6
is still O5n6< Moreover> F 5TA"H#6 is again a set of non7intersecting though touching
triangles> which now have the simple but beneFcial property that one of their sides
faces the interior of a tetrahedron ' 5consisting of four triangles from F 5TA"H#66<
The beneFt of this property lies in the fact that walls extended from triangles out7
side ' are unable to penetrate ' 5and> hence> to end on the inward7facing sides of its
triangular faces6 as they end upon hitting the outside of ' < The walls inside ' must
therefore either be extended from one of the six edges of ' itself> or added during
the subsequent reFnement of the O5 6 regions in the vertical decomposition inside
' < Clearly> the reFnement introduces no more than a constant number of walls as
well< As a result> the O5 6 ending walls on the inward7facing side of a triangle deFne
a constant7complexity arrangement on that side<

We Frst discuss how to replace each triangle t ! TA"H# by a tetrahedron ' having
t as one of its faces> such that the resulting tetrahedra are non7intersecting< Recall
that TA"H# is a set of triangles that may share a vertex or an edge but do not
intersect each othersG interiors< Let ( be the minimum distance between any pair
of disjoint 5non7touching6 triangles< Furthermore> let )$ be the minimum over all
dihedral angles between pairs of 5touching6 triangles that share an edge and ) be
the minimum over all angles between the supporting plane of a triangle t ! TA"H#
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and an edge of another triangle t incident to a vertex of t1 We de3ne ! 4 min6! " !!71
We construct a set F 6TA"H#7 by applying the following procedure to every t  TA"H#1
Let v " v!" v$ be the vertices of t1

 1 The planes & " &!" &$ through v " v!" v$ that make a positive angle !'A with the
top side 6facing z 4!7 of t intersect in a point v1 If the distance from v to t is
strictly less than )C then the tetrahedron is de3ned by the vertices v" v " v!" v$1

A1 If the distance from v to t is at least )C then we take the halfDline h through v
and perpendicular to and ending on t1 The tetrahedron is de3ned by v " v!" v$
and the unique point v on the halfDline h with distance )'A to t1

The application of the above twoDstep process to the triangles of TA"H# results in a
collection of tetrahedra with disjoint interiors1 Property H1I is a compact statement
of the result1 The property contains a minor abuse of the de3nition of the set
F 6TA"H#7 as it is interpreted to be the set of Jat tetrahedra instead of the triangular
faces of the tetrahedra1 Let the 6open7 interior of the closed set + be denoted by
int 6+ 71

Property '() " +" +   F 6TA"H#7 K int6+ 7 # int 6+  7 4 $#
Before applying the vertical decomposition algorithm to the triangles of F 6TA"H#7C

we must convince ourselves that these triangles partition the workspace W with the
obstacles E into regions with constantDsize coverage1 FortunatelyC this follows diD
rectly from the construction of F 6TA"H#7 from the triangles of TA"H#C which already
de3ne a partition of into regions with constantDsize coverage1 The addition of disD
joint triangles to the partition can only lead to a re3nement of the regions into
smaller regionsC with smaller or equallyDsized coverages1

Application of the decomposition algorithm to the O6n7 disjoint triangles of
F 6TA"H#7 yields a full vertical decomposition of complexity O6n!7 and therefore
consisting of O6n!7 regions with constant complexity1 The decomposition regions
are appointed to be the regions of VW1 The coverage of each region R  VW has
constant size as R is a subset of a region in the partition by the triangles of F 6TA"H#7C
which were shown to have constantDsize coverage in the previous paragraph1

Let us now bound the size of the set EW 4 f6R"R 7  VW ' VWj1R # 1R )4 $g1
The complexities of the triangle arrangements are crucial to the analysis of the
adjacenciesC so we 3rst study these complexities in more detail1 The complexity of
the entire full vertical decomposition is O6n!71 As a consequenceC the cumulative
complexity of all triangle arrangements is O6n!7 as well1 Each triangle t  F 6TA"H#7
has a side facing the interior of the tetrahedron + it belongs to and a side facing
outward1 The complexity mt of the arrangement on the inwardDfacing side of t is
constantC because we have seen that only a constant number of walls de3ne this
arrangementK mt 4 O6 7C for all t1 The complexity nt of the arrangement on the
outwardDfacing side of a single triangle tC howeverC can be as high as O6n!71 The
number of adjacencies of ADfaces in a triangle arrangement is of the same order of
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magnitude as the complexity of the arrangement 6because a triangle arrangement
is a planar graph89 Hence; the numbers of adjacencies on the inward> and outward>
facing sides of a triangle t are O6mt8 and O6nt8 respectively9

We recall that two adjacent regions share a common boundary that is either
embedded in a triangle or embedded in a vertical wall9 Each non>empty intersection
of two ">faces in arrangements on either side of a triangle represents an adjacency of
the Brst type9 The number of non>empty intersections on opposite sides of a triangle
t is O6mt  nt8 D O6nt8 due to mt D O6 89 Hence; the number of adjacencies in EW
of the Brst type equals

P
t O6nt8 D O6n!89 To Bnd the number of adjacencies of

the second type; note that two adjacent regions whose common boundary is part of
a vertical wall have adjacent Foors or adjacent ceilings in a triangle arrangement9
Hence; the total number of adjacencies of ">faces in all triangle arrangements supplies
an upper bound on the number of pairs of regions in VW that share a vertical
face9 The total number of adjacencies of ">faces on a triangle t is O6mt G nt8 D
O6nt89 Hence; the number of adjacencies in EW of the second 6and last8 type equalsP

t O6nt8 D O6n!8 as well9 Lemma I9 J summarizes the bounds on the sizes of VW
and EW9

Lemma $%&' VW is a cc$partition of size O6n!8 of W D IR" with the polyhedral
obstacles E3 EW D f6R'R 8 # VW $ VWj(R & (R 'D (g has size O6n!84

After applying the O6n! log n8 vertical decomposition algorithm; we traverse the
O6n!8 constant>complexity regions of the decomposition using the quad>edge struc>
ture storing the triangle arrangements and the walls; starting from an arbitrarily
chosen region9 The aim of the traversal is to extract explicit descriptions of the
regions in VW; report the region adjacencies of EW; and compute the coverages
Cov6R8 of the regions R # VW9 The latter part of the computation deserves some
additional explanation9 Instead of attempting to compute the constant>size cover>
ages Cov6R8 D fE # EjG6E' -B8 & R 'D (g directly; we Brst compute the constant
cardinality sets fE # EjH6E' -B8 & R 'D (g9 The constant cardinality of these set is
due to the property that each region R # VW is a subset of a !>face A of the arrange>
ment A6H8; which satisfy jfE # EjH6E' -B8&A 'D (gj D O6 8; by Lemma I9O9 The
necessary data for the computation of the sets fE # EjH6E' -B8& R 'D (g are avail>
able from the decomposition; contrary to the data for the computation of Cov6R89
Throughout the traversal of the decomposition we use the fact that adjacent re>
gions are intersected 6or actually enclosed8 by the same set of Minkowski diRerences
H6E' -B8 unless their common boundary is contained in a triangle t that is part of
some Minkowski diRerence boundary (H6E' -B8; in which case the sets of intersect>
ing Minkowski diRerences diRer by exactly fEgS the label of the triangle t9 The set
fE # EjH6E' -B8 & R 'D (g is a superset of Cov6R8 D fE # EjG6E' -B8 & R 'D (g;
since G6E' -B8 + H6E' -B89 The latter set is obtained in constant time from the
former set by elimination of the O6 8 obstacles E # fE # EjH6E' -B8&R 'D (g that
satisfy E & G6E' -B8 D (9 The traversal of the O6n!8 regions in the decomposition
requires; taking into account the limited amount of work per traversed region; time
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proportional to the number of regions2 As a consequence6 the time to compute the
cc7partition graph 8VW! EW9 and the function Cov is dominated by the running time
of the vertical decomposition algorithm= O8n! log n92

Lemma $%&& The computation of the cc-partition graph 8VW! EW9 and the corre-
sponding function Cov = VW  P8E9 takes T 8n9 > O8n! log n9 time3

Substitution of the computation of 8VW! EW9 and Cov outlined above for the
@rst 8abstract9 step of the algorithm FatMot yields6 by Theorem D2E and Lemmas
G2 H and G2  6 a motion planning algorithm with running time O8n! log n92 The
algorithm decomposes the free space of a robot amidst fat polyhedral obstacles into
O8n!9 subcells of constant7complexity6 de@ning O8n!9 pairwise adjacencies2

Theorem $%&+ Let k #  and b # H be constants and let E be a collection of k-fat
constant-complexity obstacles E $ W > IR" with minimal enclosing sphere radii
at least +3 Algorithm FatMot solves the motion planning problem for any constant-
complexity robot B with f # ! degrees of freedom and reach +B & b'+ amidst E in time
O8n! log n93 The connectivity graph CG > 8VC ! EC9 of the resulting decomposition
of FP into simple subcells has size O8n!93

The gap between the 8linear9 complexity of the free space and the 8quadratic9 size
of the connectivity graph of the FP decomposition shows that the cell decomposition
is not optimal2 An interesting open problem is therefore to attempt to bridge the
gap by exploring alternative cc7partitions of the workspace2 A smaller cc7partition
would probably require a partitioning strategy that diTers completely from the two7
step approach of @rst subdividing the workspace with the obstacles into regions with
constant7size coverage and then re@ning the regions in the subdivision to constant7
complexity regions2 The next two sections show examples of cc7partitions that are
not obtained via the two7step approach2

 !" Arbitrary obstacles in "0space

The setting that is considered in this section diTers from the setting of the previous
section in that the obstacles are not required to be polyhedral6 but instead only
assumed to be of constant complexity2 The only general methods that could solve
such a problem are those by Schwartz and Sharir UEVW and Canny UXHW2 Here6 it is
shown that an instance of the algorithm FatMot for a bounded7size robot among
fat obstacles exists with running time Z8n"96 independent of the actual number f of
degrees of freedom of the robot2 The setting is @xed by the following description2

A constant/complexity robot B with f degrees of freedom Ef # !F with
reach +B moves freely in the workspace W > IR" amidst a collection
E of k/fat constant/complexity obstacles E $ W with minimal enclos/
ing sphere radii at least +I for some constant k #  ! The system is
constrained by the inequality +B & b ' +I for some Lxed constant b # H!
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The main implication of the fact that the obstacles in the workspace have arbi6
trary shape is that they cannot be tightly wrapped by some polyhedron of constant
complexity; A consequence is that we are no longer able to construct a low complex6
ity arrangement in a ?rst decomposition step which partitions the workspace into
regions with constant6size coverage; InsteadB we propose a simple direct cc6partition
of the workspace leading to a cubic number of regions;

The axis6parallel bounding boxes BCGCE# $BDD of the grown obstacles GCE# $BD
CE  ED partition the workspace with the obstacles E into regions with constant cov6
erage Cwhich is not completely obviousD; The arrangement of boxes has complexity
OCn D; UnfortunatelyB the !6cells of the arrangement may very well have more than
constant complexity; IfB howeverB we replace the arrangement of bounding boxes
by the arrangement of the supporting planes of all bounding box facesB then we
obtain rectangloid Cconstant6complexityD !6cells without increasing the asymptotic
worst6case complexity of the arrangementF the cc6partition of the workspace by the
supporting planes has complexity GCn D;

Each obstacle E  E contributes six planes to the arrangement de?ning the
cc6partition; The constant complexity of the obstacle E allows us to compute the
supporting planes x I x!B x I x!!B y I y!B y I y!!B z I z!B and z I z!! of the
grown obstacle GCE# $D in constant time; For simplicityB we assume that none of
the supporting planes is tangent to any other grown obstacle GCE!# $BD CE! "I ED;
This extra assumptionB howeverB can be avoided quite easily; After having computed
all Kn planes parallel to the Cy# zD6planeB we sort the resulting planes by increasing
x6coordinatesB yielding a sequence x! * + + + * x"n; The sequence partitions the real
line into Kn L  intervals Xh CM # h # KnD with X# I C$%# x!NB Xh I Oxh# xh$!N
for all  # h * KnB and X"n I Ox"n#L%D; A similar treatment of the planes
parallel to the Cx# zD6plane and Cx# yD6plane results in sequences y! * + + + * y"n and
z! * + + + * z"n and two partitions of the real line into intervals Yi CM # i # KnD
and Zj CM # j # KnD respectively; The strictly increasing nature of the sequences is
due to the assumption that no plane is tangent to two grown obstacles; The three
ordered sequences de?ne a cc6partition graph consisting of a set VW of regions

VW I fXh ' Yi ' Zj j M # h# i# j # Kn g#

and a set EW of adjacenciesF

EW I f CXh ' Yi ' Zj # Xh$! ' Yi ' ZjD j M # h * Kn * M # i# j # Kn g
+ f CXh ' Yi ' Zj # Xh ' Yi$! ' ZjD j M # i * Kn * M # h# j # Kn g
+ f CXh ' Yi ' Zj # Xh ' Yi ' Zj$!D j M # j * Kn * M # h# i # Kn g

Lemma $%&' VW is a cc$partition of size GCn D of W with the obstacles E1 EW I
fCR#R!D  VW ' VWj4R , 4R! "I -g has size GCn D2
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Proof$ VW and EW are easily seen to have size 12n!34 The remaining task is to
prove that the regions of VW partition the workspace W into regions with constant
complexity and constant?size coverage4 The @rst part is trivial as a rectangloid has
constant complexityA the second part is less obvious4

The structure of the partition by the supporting planes of the bounding boxes
of the grown obstacles is such that an arbitrary rectangloid region R  VW either
lies in the exterior of all bounding boxesD in which case it has empty coverageD or it
lies entirely in the interior of a number of bounding boxes of grown obstacles4 LetD
in the latter caseD D be the set of all obstacles E for which R ! B2G2E' (B334 D
may have more than a constant number of elements4

Let E! be the obstacle in D with the smallest minimal enclosing sphere radiusD
sayD (!4 We @rst prove that no obstacles with minimal sphere radii smaller than
(! belong to Cov2R34 AssumeD for a contradictionD that E" has minimal enclosing
sphere radius (" , (! and satis@es E"  Cov2R34 By the de@nition of coverageD this
means thatD R " G2E"' (B3 #H $4 But thenD since G2E"' (B3 ! B2G2E"' (B33D also
R "B2G2E"' (B33 #H $4 SoD E" must belong to DD violating the assumption that E!

is the obstacle in D with the smallest minimal enclosing sphere radius4

From E!  D it follows that R ! B2G2E!' (B334 The minimal enclosing hyper?
sphere radius (! of E! implies that the length of none of the sides of B2G2E!' (B33
exceeds K(! L K(B % K(! L Kb( % 2KbL K3(!4 As a resultD the length of none of the
sides of R ! B2G2E!' (B33 exceeds 2Kb L K3(! as well4 An obstacle E# with mini?
mal enclosing sphere radius (# & (! whose corresponding grown obstacle G2E#' (B3
intersects RD must itself intersect the enclosing rectangloid RG ' RD obtained by
growing R by (B % b( % b(! in all 2six3 axis?parallel directionsD so RG H R(CO"#

B

4
The edges of RG have length at most 2Mb L K3(!4 By Theorem K4ND the number
of obstacles E# with mes?radius (# & (! intersecting the rectangloid region RG is
bounded by a constantD and hence the number of grown obstacles G2E #' (B3 inter?
secting R is bounded by a constantD meaning that jCov2R3j H O2 34  

The single algorithmic issue that is to be solved concerns the computation of the
coverage Cov2R3 * E of each region R  VWD because the regions of VW and the
adjacencies of EW can be trivially extracted in time 12n!3 from the the three ordered
sequences of planes4 Instead of taking a single region R  VW and computing all
grown obstacles G2E' (B3 that intersect itD we choose a more or less inverse approach
hereR we take a grown obstacle region G2E' (B3 and compute all regions R  VW that
are intersected by itD and add E to all corresponding sets Cov2R3 under construction4
In other wordsD we want to determine all regions R with Cov2R3 , E4 The approach
is to identify a single region R intersected by G2E' (B3 and then use this region as a
basis for searching the adjacency graph EW to @nd the entire connected set of regions
intersected by G2E' (B34 The correctness of the approach relies on the connectedness
of G2E' (B3D which is implied by the connectedness of E4
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To %nd an arbitrary region R intersected by G2E# $B34 we take a point p  
G2E# $B38 Next4 we perform a point location query with p A 2px# py# pz3 in the
partition VW4 which4 by the orthogonality of the partition can be decomposed into
three binary searches to %nd Xh ! px4 Yi ! py4 and Zj ! pz in time O2log n38 The
Cartesian product Xh"Yi"Zj contains the point p4 and4 hence4 intersects G2E# $B34
so we add E to Cov2R38

In preparation for a second phase4 we create a set Ev yet consisting of just one
elementE R8 We repeatedly extract an element R from Ev for further processing4
until Ev is empty8 We compute the O2 3 neighbors of R and verify for each neighbor
R! if R! intersects G2E# $B38 If this is the case and the neighbor has not been treated
yet 2which can be tested by marking the regions visited34 then we add E to Cov2R!3
and the neighbor R! itself to Ev 8

The above search through the regions considers a superset of the collection of
mE regions R  VW satisfying R # G2E# $B3 $A %8 More precisely4 it also considers
all regions adjacent to regions R with R # G2E# $B3 $A %8 Still4 the total number of
regions that are considered is O2mE38 As the amount of work per region is constant4
the total time spent in the search is O2mE38

It remains to bound the number mE of regions R  VW with R # G2E# $B3 $A %8
For each region R with R # G2E# $B3 $A %4 we add E to Cov2R38 Hence4 the sum
of all mE over all grown obstacles G2E# $B3 equals the sum of all jCov2R3j over all
regions R8 As jCov2R3j A O2 3 for all R  VW4 the latter sum amounts to O2n!38
As a result4 the sum of all mE equals O2n!34 and4 hence4 all searches together take
O2n!3 time8 The n point location queries 2in the orthogonal ccMpartition3 to identify
a starting region for each of the n searches require additional O2n log n3 time in
total8 As a result4 the ccMpartition graph 2VW# EW3 and the corresponding function
Cov can be computed in N2n!3 time8

Lemma $%&' The computation of the cc/partition graph 2VW# EW3 and the corre/
sponding function Cov E VW ' P2E3 takes N2n!3 time5

The substitution of the computation of the ccMpartition graph 2VW# EW3 and the
function Cov in the %rst step of the algorithm FatMot leads4 by Theorem "8O4 to a
motion planning algorithm that decomposes FP into constantMcomplexity subcells
in time T 2n3 A N2n!3 time8 The number of subcells and subcell adjacencies is in the
worst case of the same order of magnitude as the number of regions and adjacencies
in the ccMpartition8

Theorem $%&, Let k *  and b * Q be constants and let E be a collection of k/fat
constant/complexity obstacles E + W A IR! with minimal enclosing sphere radii at
least $5 Algorithm FatMot solves the motion planning problem for any constant/
complexity robot B with f * ! degrees of freedom and reach $B - b . $ amidst E in
time N2n!35 The connectivity graph CG A 2VC # EC3 of the resulting decomposition
of FP into simple subcells has size O2n!35
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 !" Similarly*sized arbitrary obstacles in 4*space

The motion planning algorithm in the previous section for a robot amidst arbitrary
obstacles has a relatively high running time compared to the free space complexity9
It is therefore interesting to see what realistic additional assumptions may lead
to a relevant improvement of the performance9 This section shows an interesting
example of such a realistic assumption< namely that the obstacles have comparable
sizes9 The assumption is realistic because in many practical situations< the largest
obstacle in the workspace will not be more than a constant factor bigger than the
smallest obstacle9 The addition of the assumption to the mildly constrained setting
of the previous section leads to a surprising improvement of the performance9 The
resulting motion planning algorithm computes an optimal O?n@ cell decomposition
in nearlyAoptimalO?n log n@ time9 The following problem statement Bxes the setting
of the results in this section9

A constant*complexity robot B with f degrees of freedom If ! !J and
reach #B moves freely in the workspace W D IR amidst a collection E
of k*fat constant*complexity obstacles E # W with minimal enclosing
sphere radii in the range F#& u#GM for some constants k !  and u !  !
The system is constrained by the inequality #B $ b % #M for some Pxed
constant b ! H!

Again< the goal is to compute a ?small@ ccApartition of the workspace9 The
bounded ratio between the size of the smallest and largest obstacle in E provides
the opportunity of a simple and structured ccApartition< consisting of axisAparallel
rectangloid regions9 The corners of the rectangloid regions are restricted to the
points of the regular orthogonal grid G?#@ ?with resolution #@9 More speciBcally<
the rectangloid regions of the subdivision are either cubes with side length #< or
?possibly semiAinBnite@ rectangloids of width and height #< or rectangloids that are
unbounded in both zAdirections9 All regions of the latter two types have empty
coverage9 The number of each of the three types of regions in the subdivision is
bounded by O?n@9 Moreover< the number of adjacencies is equally lowM O?n@9 The
rectangloid subdivision is as such an optimal partition of the workspace9

The basic idea behind the rectangloid subdivision is to embed the bounding
boxes B?G?E& #B@@ of all grown obstacles G?E& #B@ in cubes of the form Fh#& h# N
#G ' Fi#& i#N #G ' Fj#& j# N #G< where h& i& j ( Z9 The idea seems promising for two
diOerent reasons9 On the one hand< the cubes are small enough to certify constantA
size coverage< while< on the other hand< the cubes are large enough to be able to
embed each of the ?boundedAsize@ grown obstacles in a constant number of cubes
with pairAwise disjoint interiors9 As a result< the total number of cubes is linear in
the number obstacles9 The complement of the cubes clearly has empty intersection
with the grown obstacles9 The regions of the two nonAcubic types serve as a means of
eQciently subdividing this complement9 All these regions have empty coverage9 The
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subdivision is such that the regions can be ordered lexicographically6 This ordering
on the regions simpli9es many of the computations6

Let V be the set of cubic cc<partition regions= V is de9ned by

V >
 
E E

V ?E@"

where

V ?E@ > fBh$" h$C $D! Bi$" i$C $D! Bj$" j$C $D
jh" i" j # Z $ Bh$" h$C $D! Bi$" i$C $D! Bj$" j$C $D %B?G?E" $B@@ &> 'g6

Lemma E6 F proves the linear bound on the number of regions in V 

Lemma %&'( jV j > O?n@ 

Proof- Let us bound the number of cubes in V ?E@G for some E # E6 The minimal
enclosing sphere radius of E lies in the range B$" u$D6 As a resultG no two points in
E are more than Iu$ apartG andG henceG no two points in G?E" $B@ are more than
Iu$CI$B * I?uCb@$ apartG which in turn implies that the lengthG width and height
of the bounding box B?G?E" $B@@ do not exceed I?u C b@$6 Such a box is certainly
embedded in an orthogonal cluster of ?I?uC b@C  @! cubes of side length $G which is
a constant number6 The number of elements in V ?E@ is bounded by this constant6
Summing over all sizes of set V ?E@G yields a bound of O?n@ on the size of the set
V 6  

Lemma E6 E con9rms the intuition that the cubes of V are so small that they can
only be intersected by a constant number of grown obstacles6

Lemma %&'% For all R # V & jCov?R@j > O? @ 

Proof- Any obstacle E # EG for which G?E" $B@ intersects R # V G must itself
intersect the enclosing cube R# of R obtained by growing R by $B in all three axis<
parallel directions6 The resulting R# is a cube with side length $CI$B * ?IbC @ +$G
andG henceG with diameter at most ?Ib C  @

p
! + $6 By Theorem I6MG the number of

obstacles in EG which all have minimal enclosing sphere radi at least $G intersecting
the cube R# is constant6 SoG jCov?R@j > O? @6  

The de9nition of V as the union of all sets V ?E@ ?E # E@ gives a clue on a
straightforward but eNcient computation of the set V 6 A 9rst step computes all
constant<cardinality sets V ?E@6 Each set V ?E@ of cubes intersecting the grown
obstacle G?E" $B@ is trivially computable in constant time from E and $B6 The
resulting sets of cubes are not disjoint= a cube R may occur in more than one set
V ?E@6 To eliminate multiple copies of a single cubeG we simply sort the cubes of all
sets V ?E@ lexicographically6 Multiple copies of a single cube appear consecutively
in the ordered sequenceG and are easily 9ltered out6 In conclusionG the O?n log n@
time to sort the O?n@ cubes of the sets V ?E@ determines the time bound for the
computation of V 6
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Lemma $%&' V consists of O#n$ constant(complexity regions R with jCov#R$j %
O# $3 the computation of V takes O#n log n$ time6

At this stage0 the remaining task is to 5nd a way of e:ciently partitioning the
closure of the complement IR!n#"R V R$ into a small number of constantAcomplexity
regionsC The e:cient subdivision of the complement outlined below proceeds in
two phasesC The 5rst phase will be such that0 upon its completion0 all workspace
columns of the form Fh() h( G (H # Fi() i(G (H # IR that contain a cube R $ V are
partitioned into regions with constant complexity and constantAsize coverageC This
approach reduces the remaining step0 that is0 the subdivision of the complement of
the columns0 to the essentially twoAdimensional problem of subdividing the planar
complement of the intersections of the columns with the plane z % JC Both phases
result in a collection of O#n$ additional regions0 which are computable in time O#n$
time using the ordered sequence of cubes from V C

The 5rst of the remaining two steps completes the partition of the union of the
zAcolumns through the cubes of V C A zAcolumn through a cube Fh() h(G(H#Fi() i(G
(H#Fj() j(G(H is the in5nite extension Fh() h(G(H#Fi() i(G(H#IR of that cube in the
zAdirectionC The complement c n #"R V R$ of the cubes in each zAcolumn c through
a cube of V consists of a collection of #possibly semiAin5nite$ maximal connected
components of height and width ( #see Figure NCO$C The regions that constitute
the set V" are the closures of all such maximal connected components in the O#n$
zAcolumns through cubes of V C To understand the contribution to V" of a single
zAcolumn c0 consider the example of Figure NCOC The grey cubes v ) . . . ) v# in the
zAcolumn c all belong to V C The complement of the cubes0 that is0 the white space
between the cubes0 consists of three connected components w ) w") w! of height and
width (C The closures of these regions form the contribution of the zAcolumn c to
V"C

From the construction of the regions of V" it is clear that the number of regions
R! $ V" contributed by a zAcolumn c can exceed the number of cubes R $ V in c
by at most one0 as each pair of subsequent regions from V" in c must be separated
by at least one cube from V C As a consequence0 the total number of regions in V"
is of the same order of magnitude as the number of cubes in V C The computation
of the regions of V" contributed by a single zAcolumn c is simple if the ordered
sequence of cubes #from V $ in c is givenC Fortunately0 this cube sequence appears
as a subsequence in the lexicographical ordering of all cubes of V C As a result0 the
regions of V" contributed by all zAcolumns can be computed by a single scan of the
full O#n$Alength sequenceC

Lemma $%&( V" consists of O#n$ constant(complexity regions R with Cov#R$ % %3
the computation of V" takes O#n log n$ time6

Note that the computation time of O#n log n$ incorporates the ordering of the cubes
from V C
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Figure )*+, The column c contains cubes v " # # # " v!8 all being elements of V : the
regions w 8 w"8 and w# are members of V"*

The problem of =nding a partition of the complement IR# n @!R V !V!RA of the
zBcolumns is a problem that can be solved in the plane z D "8 as such a partition can
be obtained by orthogonally lifting a planar subdivision of the complement of the
square intersections of the columns with z D "* The lifting preserves the asymptotic
complexity of the regions in the partition8 so it suIces to =nd a partition of the
plane into constantBcomplexity regions*

Consider the plane z D "* The column crossBsections are squares of the form
Kh)" h) L )M " Ki)" i) L )M8 with h" i # Z* Figure )*N shows an example of a plane
z D " with column crossBsections* To partition the complement of the squares into
constantBcomplexity regions8 we simply extend vertical walls8 parallel to the yBaxis8
through the vertical edges of the squares* Note that no more than O@nA walls
are extended8 partitioning the complement of the squares into at most O@nA conB
stant complexity regions* The orthogonal liftings of these regions into PBspace are
constantBcomplexity regions that collectively partition the threeBdimensional comB
plement of the columns*

The ordered sequence of cubes of V again turns out a useful tool in the compuB
tation* The restriction of the cubes to the =rst two coordinates turns the sequence
into the lexicographical ordering of the squares resulting from the intersection of the
zBcolumns with the plane z D "* Hence8 the squares appear from left to right @see
Figure )*NA and8 within a vertical slab of the plane8 from bottom to top* Using this
sequence of squares8 it is not hard to compute the decomposition of the plane by
a single scan of the sequence of squares, adding an unbounded region @like q#A for
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Figure ()*+ The regions q ! " " " ! q! are regions in the vertical decomposition of the
complement of the column cross:sections ;the grey squares>) The liftings of these
regions are elements of V")

every consecutive pair of squares in non:adjacent slabsA adding semi:inBnite regions
;like q! and q#> for all Brst and last squares in a slabA and adding a bounded region
;like q$> for every consecutive pair of non:adjacent squares in a single slab) The
sketched computation of V" takes O;n> timeA provided that the ordered sequence of
cubes from V is given)

Lemma $%&' V" consists of O;n> constant(complexity regions R with Cov;R> D  3
the computation of V" takes O;n log n> time6

The results obtained so far show that the regions of V ! V$ ! V" have constant:
complexity and constant:size coverage) In additionA the regions collectively partition
IR"A which makes V !V$ !V" an adequate choice for a cc:partition of the workspace
W D IR"A so we choose VW D V ! V$ ! V")

Lemma $%&( VW D V !V$!V" is a cc(partition of size O;n> of W with the obstacles
E3 the computation of VW takes O;n log n> time6

The cc:partition of W D IR" by the regions of VW has a recursive structure
which turns out to be useful in the sequel) At the upper levelA the workspace W
is divided into slicesA separated by planes x D h, ;h # Z>) A slice is either a
region from V" ;like q ! q" in Figure ()*> or it is divided into levels by planes y D i,
;i # Z> and has width ,) A level is either a region from V" ;like q$! q#! q!> or it
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is a z&column of width and height !4 Recall that a z&column contains no regions
from V 4 The recursive structure of the subdivision shows that all regions in VW
can be stored lexicographically= that is= slice by slice by increasing x= level by level
by increasing y within a single slice= and by increasing z within a single level4 The
above structuring makes it easy to distinguish three di?erent types of adjacencies4
Two adjacent regions are x&adjacent if they lie in di?erent AsubsequentC slicesD two
adjacent regions are y&adjacent if they lie in di?erent AsubsequentC levels of a single
sliceD two adjacent regions in a single level Aor z&columnC are z&adjacent4

We are now ready to prove an upper bound on the number of region adjacencies
in the cc&partition4

Lemma $%&& EW F fAR'R C ! VW " VWj(R $ (R %F &g has size OAnC&

Proof+ The proof uses case analysis with respect to the types of the regions
involved in the adjacency4 The number of adjacencies in each case is bounded by
OAnC4

Let us Hrst count the adjacencies involving a region= say R= from V"4 A region
R adjacent to the cube R entirely covers one of the six sides of R= regardless of
the type of R 4 Charging the adjcency to the covered side leads to at most OAnC
chargings= and= hence at most OAnC adjacencies involving a region from V"4

Now consider an adjacency AR'R C ! V# " V D R is a Apossibly semi&inHniteC
part of a z&column= and R is unbounded in the z&direction4 R and R must be
either x&adjacent or y&adjacent4 The restriction on the type of adjacency and the
unboundedness of R in the z&direction establish that R completely covers one of the
four sides of R parallel to the Ax' zC& or Ay' zC&plane4 Charging the adjacency to the
entirely covered side of R implies that the number of adjacencies AR'R C ! V# " V 
is OAnC4

The regions involved in an adjacency AR'R C ! V " V are both obtained by
lifting a rectangular region in the Ax' yC&plane orthogonally into the z&dimension4
Hence= the rectangular intersections of R and R with the plane z F M must be
adjacent in the planar subdivision of z F M4 The planar arrangement in z F M is
a planar graph with OAnC edges and vertices= dividing the plane into OAnC regions
with a total of OAnC adjacencies4 Hence= the number of adjacencies AR'R C ! V "V 
is OAnC4

The number of the remaining adjacencies AR'R C ! V# " V# is more diNcult to
bound4 Both R and R are Apossibly semi&inHniteC parts of di?erent z&columns4 R
and R must be either x&adjacent or y&adjacent4 It is easily seen that R and R are
in one of the two relative positions depicted in in Figure R4R4 In the left case= one
side involved in the adjacency is contained in the other involved one4 We charge
the adjacency to the covered side Athe dashed one in Figure R4RC4 Each side can
only be charged once4 The number of sides of regions of V# is OAnC= so the number
of adjacencies AR'R C ! V# " V# of the Hrst kind is OAnC4 In the complimentary
case= neither one of the sides is completely contained in the other one4 In this case=
however= one edge bounding the involved side of R is contained in the interior of the
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Figure )*)+ Two types of adjacencies 9R!R :  V ! V *

involved side of R and vice versa* We can charge the adjacency to either edge 9the
bold edges in Figure )*):* Each edge can only be charged onceA because it can lie in
the interior of only one face* The number of edges of regions of V is O9n:A so the
number of adjacencies of two regions from V of the second kind is O9n: as well*

Combination of all linear bounds yields that jEWj E O9n:*  

For the computation of the set EW of adjacenciesA it is convenient to have
the O9n: regions of VW ordered lexicographically* Such can be achieved in time
O9n log n:* The computations of the zHadjacenciesA the yHadjacenciesA and the xH
adjacencies proceed as outlined below*

The zHadjacencies can be extracted from the sequence of regions in a straightH
forward single scanA taking O9n: time* Two regions that are zHadjacent appear
consecutively in a zHcolumnA and also in the lexicographical order* Any pair of conH
secutive regions in the sequence lying in the same zHcolumn should be reported as
an adjacency*

At the heart of the computation of the xH and yHadjacencies lies a basic operation
that reports pairs of adjacent regions in two adjacent levels 9either in a single slice
or in two subsequent slices:* Assume that the adjacent levels are divided into m
and n regions respectively* ThenA it is easily veriKed that the number of adjacencies
involving one region from either level is L9mMn:* MoreoverA the adjacencies can be
reported in time L9mMn: by a simultaneous scan of the two levels from z E #$ to
z E$* In conclusionA the region adjacencies in two adjacent levels can be reported
in time proportional to the number of adjacencies*

The yHadjacencies are restricted to pairs of regions in subsequent levels of a sinH
gle slice* To identify all pairs of subsequent levels 9and to compute all adjacencies
induced by their regions: we traverse the lexicographical order of regions with two
pointers* The pointers invariantly point to the start of the subsequences correspondH
ing to two subsequent levels* At any combination of pointer positionsA we apply the
techniques of the previous paragraph to compute the adjacencies induced by the
two levels in time proportional to the number of adjacencies* After this computaH
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tion& both pointers are forwarded to the start of the next level4 As the number of
y8adjacencies is bounded by O<n= and both pointers make a single traversal of the
sorted sequence of regions& the total time for computing the y8adjacencies equals
O<n=4

The computation of the x8adjacencies& Bnally& resembles the computation of the
y8adjacencies4 Recall that x8adjacencies are restricted to pairs of regions in sub8
sequent slices4 Again we traverse the sorted sequence of regions with two pointers
which now invariantly point to the start of Dcomparable8heightE levels in subsequent
slices4 <Comparable8height levels in subsequent slices share a common face paral8
lel to the <y$ z=8plane4= As a result& pairs of regions in the comparable levels are
x8adjacent4 The x8adjacencies induced by the two levels can be computed by the
basic strategy outlined above in time proportional to the number of adjacencies4
After the computation& the pointer corresponding to the level with the lowest upper
boundary with respect to the y8coordinate is forwarded to the next level4 As the
number of x8adjacencies is bounded by O<n= and both pointers make a single traver8
sal of the sorted sequence of regions& the total time for computing the x8adjacencies
equals O<n=4

To compute the coverage of the regions of VW& we borrow the ideas from Section
H4I4 Thus& the approach is to consider obstacle by obstacle and compute all regions
R  VW <in fact R  V!= intersected by the corresponding grown obstacle4 One
arbitrary region R  VW intersecting the grown obstacle can be determined in
O<log n= time& using the ordered sequence of regions4 Starting from that region& the
other O< = regions intersected by the grown obstacle are identiBed in O< = time&
using EW4 <See Section H4I for the details4= The approach amounts to O<n log n=
for computing Cov4

Lemma $%&' The computation of EW and Cov takes O<n log n= time0

If we substitute the above computation of the cc8partition graph <VW$ EW= and the
corresponding function Cov for the abstract Brst step of algorithm FatMot& then we
obtain an eNcient algorithm for computing a cell decomposition of the free space4
The algorithm yields a decomposition into O<n= constant8complexity cells in time
T <n= O O<n log n= by Theorem P4Q& as T <n= stands for the time required to compute
VW& EW& and Cov4

Theorem $%&, Let k !  2 b ! R2 and u !  be constants and let E be a collection
of k5fat constant5complexity obstacles E # W O IR" with minimal enclosing sphere
radii in the range T0$ u0U0 Algorithm FatMot solves the motion planning problem for
any constant5complexity robot B with f ! I degrees of freedom and reach 0B % b & 0
amidst E in time O<n log n=0 The connectivity graph CG O <VC $ EC= of the resulting
decomposition of FP into simple subcells has optimal size O<n=0
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 !" Planar motion amidst arbitrary obstacles in

23space

With the present technological state1of1the1art3 one rarely encounters free16ying
three1dimensional robots in industrial environments; Instead3 many robots move in
three1dimensional workspaces amidst spatial obstacles while their motion is con?ned
to a @planarA work6oor; A realistic example of such a setting is a vacuum cleaner
moving in a room in which objects hang from the ceiling and stand on the 6oor
E FFG; Sometimes3 the nature and positions of the obstacles does not allow to reduce
such problem to purely planar motion planning; The vacuum cleaner3 for example3
can easily pass under a table; An approach to solve the problem by projecting the
vacuum cleaner and the obstacles onto the 6oor and then ?nding a @planarA path
for the projected vacuum cleaner amidst the projected obstacles would forbid such
paths; In this section we study a general formulation of the type of problem outlined
above in the context of fat obstacles;

We consider a workspace W J IR with k1fat constant1complexity obstacles; The
motion of the robot B in this workspace is constrained by the assumption that a
speci?c point p in B is restricted to a work6oor F ! fFg J IR! ! fFg $ IR M the
workspace W is the Cartesian product of the projection F of the work6oor and the
real lineO W J F! IR; For convenience3 we choose the robotPs reference point O % B
to be equal to the point p that is restricted to the work6oor; Hence3

OEZG % F! fFg
for all placements Z % C of the robot B; The following problem statement ?xes the
setting of this section;

A constant3complexity robot B with f degrees of freedom Hf & SI and
reach &B moves with some point O % B restricted to a plane F in the
workspace W J F ! IR J IR amidst a collection E of k3fat constant3
complexity obstacles E (W with minimal enclosing sphere radii at least
&L for some constant k &  ! The system is constrained by the inequality
&B ) b * &L for some Oxed constant b & F!

Note that the problem statement does not restrict the robot to rotate around an
axis perpendicular to the work6oor only @as for the vacuum cleanerA; The robot is
allowed to rotate arbitrarily and can have more degrees of freedom; @An example of
such a robot is a moon vehicle3 equipped with several arms to grasp stones etc;A

Planar motion planning in V1space is sometimes referred to as two1and1a1half1
dimensional motion planning3 for understandable reasons; A solution to this type
of path1?nding for a polyhedral robot amidst polyhedral obstacles is given by Wen1
tink and Schwarzkopf in E FFG; Their algorithm3 which is a generalization of the
boundary cell decomposition algorithm by Avnaim3 Boissonnat3 and Faverjon E FG3
runs in time O@n log nA; Under the realistic assumptions of a bounded1size robot



 !" CHAPTER '( EFFICIENTLY COMPUTABLE BASE PARTITIONS

and fat obstacles. the free space is shown below to be decomposable into O5n6
simple subcells in time O5n log n6. using the general ideas of Section ": . yielding
an O5n log n6 motion planning algorithm:

Choosing the position of the robot=s reference point as a part of the speci>cation
of the robot placement. similar to the preceding sections. seems a bad idea: The
fact that the position 5x# y# z6 of the robot=s reference point is restricted by z @ A.
would have unclear implications for pathC>nding in the resulting con>guration space.
as not all free placements are valid placements according to the constraint on the
position of the robot=s reference point: Finding a free path for the robot would
require some constrained pathC>nding in such a con>guration space: Instead. we
choose the con>guration space to be

C @ F D @ IR  D#

where D is again some restCspace: Any point Z @ 5ZF# ZD6 @ 55x# y6# ZD6. with
ZF ! F# ZD ! D. in con>guration space corresponds to a placement of B in which
its reference point is positioned at 5x# y# A6 in the workspace W: A possible restCspace
for a vacuum cleaner would be D @ KA# L)6: The con>guration space C formulated
above makes the application of the tailored paradigm from Section ":L for solving the
motion planning problem impossible. as the con>guration space is not a superspace
of the robot=s workspace:

A possible strategy for computing a cell decomposition of the free space would be
to temporarily discard the restriction on the position of the reference point and act
as if the robot is freeCMying. and. hence. has con>guration space C  @ W D @ F 
IR D: We may borrow the ideas of Section N:L to decompose the free part FP of C  

into O5n 6 simple subcells in O5n log n6 time: The free part FP of the con>guration
space C @ F D of the constrained problem can be regarded as the projection onto
the space F D of the subset FP #5F fAg D6 of the free part FP & C  @ 5W D6:
To obtain a cell decomposition of the free part FP & C @ F  D. we simply
intersect all subcells and common boundaries in the decomposition of FP & C  @
W  D with the space F fAg  D and subsequently project the intersection onto
the subspace F  D: Regardless of the 5possibly unnecessarily large6 complexity
of the resulting decomposition. the computation takes O5n log n6 time. which is
inferior to the approach that we follow below leading to a decomposition of sizeO5n6
in time O5n log n6: The approach exploits the general paradigm for cylindri>able
con>guration spaces. which is given in Section ": as an algorithm for transforming
a base partition of some appropriate base space into a cell decomposition of the free
space:

The projected workMoor F turns out to be a good choice for a base space for the
cylindrical decomposition of the free space: The subdivision that we propose strongly
resembles the partition of the workspace W @ IR by the grown obstacles discussed in
Section N: : Consider the planar arrangement in F fAg de>ned by the intersection of
the grown obstacle boundaries *G5E# -B6 &W and the workMoor F fAg: It will be
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shown that this arrangement partitions the plane F into regions whose corresponding
con4guration space cylinders are intersected by a constant number of constraint
hypersurfaces9 The O;n< curves resulting from the intersection of grown obstacle
faces with F f g have constant complexity0 due to the constant complexity of the
grown obstacles8 The arrangement of curves has complexityO:n;8 To obtain a valid
base partition in the base space F we compute0 inspired by resemblance with Section
>8?0 the vertical decomposition of the planar arrangement of intersection curves in
time O:n log n; time8 The resulting base partition graph has complexity O:n;8
The computation of the constraint hypersurfaces that intersect the con@guration
space cylinders is supported by sets that resemble the region coverages0 and are
computed along with the vertical decomposition in a way that strongly resembles
the computation of the coverages8 Below0 we settle the details of the informally
described approach8

A restriction on the applicability of the general paradigm is that the con@guration
space C is cylindri@able0 that is0 decomposable in some B and D such that for all
p ! BC

jff ! j' !f B % D !f E % f ! ' :p(D; )E *gj E O:?;(
Lemma G8? states that the condition is satis@ed for B E W0 but W is not a subspace
of C8 Fortunately0 the property is inherited by the subset F ( f g + W leading to
the following property8

Property '()* For all p ! F%

jff ! j' !f B % D !f E % f ! ' :p(D; )E *gj E O:?;(
As a result0 the twoIdimensional Euclidean space F is a feasible base space for a
cylindrical decomposition of FP , C E F ( D8 The algorithm in Section G8?
transforms the graph :VF* EF; corresponding to a base partition in F into a cell
decomposition of the free part of C0 provided that all regions R ! VF have constant
complexity and satisfyC

jff ! j' !f B % D !f E % f ! ' :R (D; )E *gj E O:?;(
In the previous chapter we have formalized the informal observation that a robot

can only touch an obstacle lying within its reach using the notion of grown obstacles8
A robot with its reference point at some point p ! W is only able to touch an obstacle
E if p ! G:E* .B;8 In our constrained case0 the position p of BNs reference point for
potential collision with E ! E is further restricted to p ! G:E* .B; % p ! F ( f g8
In other words0 the reference point of B must be positioned at some point in the
intersection of the grown obstacle G:E* .B; and the plane F(f g E IR"(f g8 Notice
that the emptiness of the intersection implies that B cannot collide with E during its
constrained motion8 We de@ne GF:E* .B; to be the intersectionG:E* .B;':F(f g;8
:Actually0 it is the intersection restricted to the @rst two coordinates0 to make it lie
in F8;
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De"nition '()* GF#E" #B$ % f#x" y$j#x" y" &$ " G#E" #B$g 
The restriction on the position of the reference point of the robot B for being able
to touch an obstacle E has implications for the location in con9guration space of
the constraint hypersurfaces de9ned by a contact of a feature of B with a feature of
E=

Lemma '()' Let & "f B and > "f E Then)

f!"! % GF#E" #B$&D)

Proof1 Let p % #pF" pD$ % ##px" py$" pD$ " f!"!@ such that pF " F and pD " D= We
must prove that p % ##px" py$" pD$ " GF#E" #B$&D@ which may be reduced to proving
that #px" py$ " GF#E" #B$ as pD " D is trivially true= Proving #px" py$ " GF#E" #B$ is@
in turn@ equivalent to proving #px" py" &$ " G#E" #B$= This means that BFs reference
point must be placed inside G#E" #B$ when BFs feature & touches >=

Assume@ for a contradiction@ that #px" py" &$ '" G#E" #B$= Then@ by the de9nition
of grown obstacles@ the distance from #px" py" &$ to E exceeds #B= But then@ it is
impossible for B to reach and touch the obstacle E@ by the de9nition of the reach
of a robot= In other words@ no feature &! "f B can touch a feature >! "f E= So@
the point p % #pF" pD$ % ##px" py$" pD$ with #px" py" &$ '" G#E" #B$ cannot lie on f!"!
contradicting the assumption of the lemma=  

Lemma L=ML provides@ similar to Lemma N=O in Section N=M for freePQying robots@
some simple outer approximation on the location of any constraint hypersurface
f!"! in the con9guration space C % F&D= If R % F does not intersect GF#E" #B$@
then no constraint hypersurface f!"! with > "f E intersects the con9guration space
cylinder GF#E" #B$= The following de9nition simpli9es a more general formulation
of the consequences of Lemma L=ML=

De"nition '()2 Let R % F % IR" 

CovF#R$ % fE " EjR )GF#E" #B$ '% *g)

CovF#R$ is the collection of obstacles E whose corresponding regions GF#E" #B$
intersectR= Now@ if a regionR % F is intersected by a collection of regions GF#E" #B$
then the con9guration space cylinder R &D can only be intersected by constraint
hypersurfaces induced by the corresponding obstacles E@ or@ more formallyT

ff!"!j& "f B + > "f E + f!"! ) #R &D$ '% *g
% ff!"!j& "f B + > "f CovF#R$g

The set inclusion directly shows that if R is chosen such that jCovF#R$j % O# $@
then jff!"!j& "f B + > "f E + f!"! ) #R & D$ '% *gj % O# $@ due to the constant
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complexities of the obstacles and the robot4 Hence6 any partition of F into constant9
complexity regions R with jCovF<R=j > O< = is a valid base partition for a cylindrical
cell decomposition of FP ! C6 and as such6 a valid input to the transformation
algorithm4 Let us now focus on the arrangement of regions GF<E' (B= in the plane
F4

The planar arrangement A<GF= of all boundaries )GF<E' (B= <E # E= subdivides
F into maximal connected sets of points p # F with equivalent collections CovF<p=4
Lemma E4F" states that the arrangement has complexityO<n=4 In addition6 it states
that each F9cell A in A<GF= satisHes jCovF<A=j > O< =4 F % fIg4
Lemma $%&' Let A<GF= be the planar arrangement of all boundaries )GF<E' (B=
2E # E34 Then
(a) A<GF= has complexity O<n=9

(b) jCovF<A=j > O< = for all :;faces A # A<GF=4

Proof/ Theorem F4 F yields for the spatial arrangement A<G= of all grown ob9
stacles G<E' (B= <E # E=J <i= the complexity of A<G= is O<n=6 and <ii= every point
p # W > IR! lies in at most O< = regions G<E' (B= <E # E=4 The intersection of
the linear complexity arrangement A<G= with the plane F % fIg results in a planar
arrangement in F% fIg with complexity O<n=4 Hence6 A<GF= has complexity O<n=4
To prove <b= it suMces to pick a point p # A and prove that it lies in at most O< =
regions GF<E' (B=6 because all points in a single face A lie in exactly the same re9
gions4 By expression <ii=6 every point p # F% fIg ( W lies in at most O< = regions
G<E' (B= ) <F % fIg=6 yielding <b=4  

The arrangement A<GF= partitions the base space F into regions whose cor9
responding conHguration space cylinders are intersected by only O< = constraint
hypersurfaces4 The regions6 however6 do not have constant complexity6 but thanks
to the planarity of the subdivision6 such is easily remedied by vertical decomposition
of the arrangement4 The resulting vertical decomposition regions are the regions of
VF4 The set EF > f<R'R!= # VF%VFj)R))R! *> +g consists of all adjcencies of pairs
of regions4 Section E4 explains why the vertical decomposition of an arrangement
of complexity O<n= consists of O<n= regions and region adjacencies4

Lemma $%01 VF consists of O<n= constant;complexity regions R that partition F
and satisfy jCovF<R=j > O< =< EF has size O<n=4

The transformation algorithm in Section R4 transforms the base partition rep9
resented by the sets VF and EF into a decomposition of the free space in time
O<jVFj S jEFj= provided that for every region R the collection of constraint hyper9
surfaces ff !"j/ #f B - T #f E - f !" ) <R %D=g is computable in constant time4
Fortunately6 we have found that ff !"j/ #f B-T #f E-f !")<R%D=g ! ff !"j/ #f

B - T #f CovF<R=g > O< =6 which shows that a constant time computation of
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the appropriate hypersurfaces is possible when the function CovF 4 VF  P5E6 is
given9 Therefore; we decide to compute the function CovF along with the vertical
decomposition9 The similarity of the present triple 5VF$ EF$ CovF6 and the triple
5VW$ EW$ Cov6 in Section ?9 suggests the use of the plane sweep from that section
for the simultaneous computation of VF; EF; and CovF in O5n log n6 time9 The
input to the sweep are the O5n6 5labeled6 maximal connected xAmonotone arcs of
the boundaries )GF5E$ +B6 5E # E6 having no vertices in their interiors9 The arcs
of a single boundary )GF5E$ +B6 are obtained in constant time by intersecting the
constantAcomplexity grown obstacle G5E$ +B6 with the plane F $ f"g; and subseA
quently cutting the projection of the intersection into the appropriate xAmonotone
arcs9 The generation of all input arcs takes O5n6 time; so the entire computation of
the base partition 5VF$ EF6 and the function CovF from the grown obstacles takes
O5n log n6 time9

Lemma $%&' The computation of the base partition VF0 the set EF0 and the function
CovF takes O5n log n6 time3

The computation of a cell decomposition consists of two steps4 the Frst step
which computes a valid base partition; and the second step which transforms the base
partition into a decomposition of the free space9 The second step takes timeO5jVFjG
jEFj6 H O5n6; because the function CovF supports the constant time computation
of ff !"j- #f B )I #f E ) f !" * 5R$D6g for any region R9 The combination with
the O5n log n6 running time for the Frst step justiFes the following theorem; which
formulates the main result of this section9

Theorem $%&, Let k +  and b + " be constants and let E be a collection of k6fat
constant6complexity obstacles E , W H IR# with minimal enclosing sphere radii at
least +3 Algorithm FatMot solves the motion planning problem for any constant6
complexity robot B with f + M degrees of freedom and reach +B - b . + amidst E
whose reference point O # B is con?ned to the planar work@oor F $ f"g in time
O5n log n63 The connectivity graph CG H 5VC $ EC6 of the resulting decomposition of
FP into simple subcells has optimal size O5n63
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Concluding remarks

This $nal chapter recaptures some of the main results in this thesis and gives some
re4ections on possible extensions and improvements7 The reader is warned that
most re4ections are based on intuitive feelings and not supported by indisputable
proofs7

We have studied the motion planning problem for a constant;complexity robot
B with f degrees of freedom amidst n constant;complexity k;fat obstacles E ! IRd>
for some constants d% f " ? and k " @7 In addition> the reach &B of the robot B
is assumed to be bounded from above by a constant multiple b " ? of &> where
& is a lower bound on the minimal enclosing hypersphere radius of any obstacle
E7 The mild assumptions are considered to provide a realistic framework for many
practical motion planning problems7 The complexity of the free space for problems
that satisfy the assumptions was proven to be OBnC> whereas the complexity can
easily be as high as DBnf C when both the fatness assumption on the obstacles and
the bounded;size assumption on the robot are dropped7 This remarkable gap makes
it interesting to study the individual in4uence on the free space complexity of each
of the two assumptions in more detail> which we leave as an open question7

The basis of the linear complexity result is a low obstacle density property Brela;
tive to the robot sizeC of the workspace W G IRd> which is implied by the combination
of the two assumptions7 As such> the low obstacle density property imposes a weaker
restriction for obtaining linear complexity free spaces7 BTo see that the latter condi;
tion is weaker> imagine a workspace with non;fat obstacles that are far apart7C All
algorithmic motion planning results in this thesis> however> apply equally well to
problems that satisfy the relaxed condition7

Besides having a low combinatorial complexity> the free space for a motion plan;
ning problem that $ts in our framework also has a bene$cial structure7 The structure
allows for a decomposition of the con$guration space into cylinders> with bases in
some projective subspace> the so;called base space> such that the free space part of
every cylinder has constant;complexity7 In other words> the cylinder walls partition
the free space into constant;complexity parts7 The maximal connected components
of the free parts make perfect subcells in a cell decomposition of the free space> as

@K@
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they allow for simple path12nding in their interiors due to their constant complexity
and connectedness9 The validity of a projective subspace as a base space is veri2ed
by a proof that the lifting back into con2guration space of every point in the base
space is intersected by at most a constant number of constraint hypersurfaces? which
are sets of contact placements of a robot and an obstacle feature9 The preceding
considerations reduce the problem of 2nding a cell decomposition of the free space
to the problem of 2nding some constrained decomposition of the lower1dimensional
base space? in which the regions are appropriate cylinder bases9 A uniform sequence
of operations then suBces to transform the base partition into a cell decomposi1
tion of the free space of asymptotically equal size9 The running time of the entire
paradigm is determined by the time to compute the base partition9 A small and ef1
2ciently computable base partition is therefore of obvious importance to the success
of the approach9 Finding a small and eBciently computable base partition may seem
a hard problem at 2rst sight? because the regions are constrained by a restriction
on their liftings? hence in con2guration space9

The extensive and interesting class of motion planning problems with con2gu1
ration spaces C E W  D? which includes for example all problems that involve
a free1Gying robot? allows for choosing the robotHs workspace W as a base space9
Moreover? any so1called cc1partition of W? which is subject to constraints that are
formulated exclusively in W? turns out to be a valid base partition of the base space
W9 A cc1partition decomposes the workspace into constant1complexity regions that
intersect at most a constant number of cells of the arrangement of grown obstacle
boundaries 9 A grown obstacle is the collection of points within a distance "B from
the original obstacle9 The arrangement of grown obstacle boundaries has complex1
ity OJnK and each point p ! W lies in no more than a constant number of grown
obstacles simultaneously9

Optimal OJnK size cc1partitions exist for three out of 2ve practical instances
of the motion planning problem amidst fat obstacles studied in this thesis9 These
instances are motion planning in the plane amidst arbitrarily1shaped obstacles? mo1
tion planning in M1space amidst arbitrarily1shaped obstacles of comparable sizes? and
motion planning on a workGoor in M1space amidst arbitrarily1shaped obstacles9 The
reason for treating restricted instances of the motion planning problem in M1space
lies in the failure to 2nd an optimal partition for the general version of the problem
and in the frequent occurrence of these speci2c instances in real1life motion planning
problems9 All three cc1partitions are computable in nearly1optimal OJn log nK time9
In conclusion? we have obtained OJn log nK motion planning algorithms for each of
the three classes of problems9 The algorithms yield a cell decomposition of optimal
size OJnK9 Notice that these results do not depend on the number of degrees of
freedom of the robot9

 Note that this description of a cc.partition seems somewhat di1erent from the formal de3nition
in Chapter 56 Nevertheless8 it is essentially equivalent8 due to the constant.size coverage of the
arrangement cells6
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The cc'partitions that are obtained for the two remaining instances6 motion plan'
ning in "'space amidst polyhedral obstacles and amidst arbitrarily'shaped obstacles6
have sizes O;n < and O;n!< and are computable in time O;n log n< and >;n!< re'
spectively? The partitions give rise to motion planning algorithms with running
times O;n log n< and >;n!< that compute cell decompositions of sizes O;n < and
O;n!< for the respective problems6 regardless of the number of degrees of freedom of
the robot? These results might be improvable? The challenge is to @nd subquadratic
and subcubic partitions of the workspace W such that each region has constant com'
plexity and intersects no more than a constant number of cells of the arrangement
of grown obstacle boundaries?

Besides attempting to improve the latter two results6 it is also interesting to see
if the paradigm for motion planning amidst fat obstacles applies to other classes
of motion planning problems involving fat obstacles? Let us give some thoughts
on some possible extensions6 like motion planning with moving obstacles6 multiple
robots6 and anchored robot arms?

Motion planning problems involving moving obstacles are normally solved in
con@guration'time space? The con@guration'time space CT is the Cartesian prod'
uct of the con@guration space C of the stationary version of the problem and the
time dimension T ? The fact that motion back in time is impossible is reIected by the
additional requirement that any solution curve between a pair of query placements
in the con@guration'time space must be strictly monotone in time? The requirement
imposes restrictions on the search of the connectivity graph of a cell decomposition of
the free part of CT and on the simple motions within each subcell of the decomposi'
tion? The complexity of the free part of the con@guration'time space CT can increase
rapidly when many obstacles are non'stationary and travel along complicated tra'
jectories? The ideas of the preceding two chapters will de@nitely not be applicable
in such cases? Things seem diKerent when we assume that only a constant number
c out of the n obstacles move along simple trajectories6 that is6 algebraic curves of
bounded degree? Let us assume furthermore that a cc'partition of the d'dimensional
workspace with the n c stationary obstacles is given? Now6 the cylinders obtained
by lifting the d'dimensional cc'partition into the ;f M <'dimensional con@guration'
time space are intersected by only a constant number of constraint hypersurfaces
de@ned by contacts of the robot and the stationary obstacles? The overall number
of constraint hypersurfaces due to contacts of the robot and the moving obstacles
is constant? The simplicity of the motion supposedly implies that the intersection
of each such constraint hypersurface with a cylinder consists of a constant number
of constant'complexity connected components? Hence6 the constraint hypersurfaces
de@ne constant'complexity arrangements in every cylinder? Therefore6 the results of
the previous chapter seem to generalize directly to environments in which a constant
number of the obstacles are non'stationary? When the number of moving obstacles
is not constant6 the preceding arguments no longer hold? It is though to be expected
that6 still6 a large complexity reduction is achievableP from the fatness of the ;mov'
ing and stationary< obstacles it follows that any cross'section of the free part of CT
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at a particular time t has linear complexity3
The usual approach to the exact solution of a motion planning problem with

c robots B " # # # "Bc with con9guration spaces C " # # # " Cc of dimensions f " # # # " fc is
centralized planning3 In centralized planning= the c robots are regarded as one multi>
body robot B ? B ! ! ! Bc3 Planning the motion of the multi>body robot B takes
place in the composite con9guration space C ? C "# # #"Cc3 There= collisions of the
robots Bi B # i # cC turn into collisions of the multi>body robot B3 BThe alternative
to centralized planning= decoupled planning= plans the motions of each of the robots
independently= and then considers the interactions of the resulting paths3 Decoupled
planning is not guaranteed to 9nd a solution to the problem3C The complexity of
the free part of the composite con9guration space C can= for fat obstacles= easily be
as high as FBncC= even when the reaches (Bi of the individual bodies Bi B # i # cC
are bounded by (Bi # b ! (= for some constant b $ G3 The key observation here is
that the reach (B of the composite robot is in no way boundedH two bodies Bi and
Bj can be in9nitely far apart3 Figure J3 shows a single c>fold contact of B3 Clearly=
there are FBncC such contacts3 Still= there is a considerable gap between the FBncC

Bk Bi Bj

E E! E" En! En

Figure J3 H Each of the c robots B " # # # "Bc touches one of the n obstacles E " # # # " En3
This corresponds to a single c>fold contact of the composite robot B ? B ! ! ! Bc3 The
total number of such contacts is FBncC3

lowerbound construction and the obvious upperbound of OBnf C= with f ?
P

 "i"c fi=
on the complexity of the free space3 We believe the complexity of the free space to
be close to the lowerbound3 The ideas of cylindrical decomposition of the free space
seem applicable to some extent if the workspace W ? IRd is a projective subspace
of each of the con9guration spaces Ci B # i # cC3 Then the Qcomposite workspaceR
Wc is a projective subspace of the composite con9guration space C3 A point p %Wc

9xes the positions of the reference points of all bodies Bi3 The low obstacle density
of the workspace and the bounds on the sizes of the individual bodies yield that
each body can touch only a constant number of obstacles while its reference point
is 9xed3 Provided that c is a constant= the lifting of p into C is intersected by OB C
constraint hypersurfaces3 Hence= C is a cylindri9able con9guration space and W is a
valid base space3 The existence of a small and eUciently computable base partition
remains an open question3

The straightforward application of the framework of assumptions in the second
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paragraph of this chapter to an anchored robot arm does not give rise to an inter3
esting motion planning problem5 Even though the number of obstacles can be high8
the total number of obstacles touched by the robot in any placement is at most con3
stant8 due to its bounded size5 The free space of the anchored robot has constant
complexity and a rigorous cell decomposition method =>!? su@ces to compute a cell
decomposition of the free space in constant time5

A more interesting problem formulation follows when we take a closer look at
industrial robot arms5 Typically8 the links close to the base of the arm are long
Dmajor axesE whereas the links close to the tip8 or hand8 are short Dminor axesE5
Figure >5G shows a robot arm with two major axes L and L! and two minor axes
L" and L#5 Now consider an f 3link robot arm B of which the m links closest to the

L 

L!

L" L#

Figure >5GJ A robot arm with two major axes L and L! and two minor axes L" and
L#5

tip are not too large compared to the obstacles5 The sizes of the f !m major axes
are not bounded5 Assume that C is the Df ! mE3dimensional conKguration space
corresponding to the major axes and that C! is the m3dimensional conKguration
space corresponding to the minor axes5 Hence8 C M C " C! is the f 3dimensional
conKguration space of B5 A point p # C Kxes the placements of all major axes5 Ifm
is a constant8 then the m minor axes can only touch a constant number of obstacles
while the major axes are Kxed8 due to the low obstacle density5 As a result8 the
lifting of the point p # C into C will be intersected by only a constant number of
constraint hypersurfaces5 So8 the conKguration space C is cylindriKable and C is a
valid base space5 Again8 however8 the existence of a small and e@ciently computable
base partition in C remains uncertain5 Nevertheless8 we expect the complexity of
the free space to be closer to ODnf mE then to the obvious upperbound of ODnf E5

We can conclude that the paradigm presented in this thesis might lead to many
more e@cient motion planning algorithms for a variety of instances of the problem5
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complexity of the free space for motion planning amidst fat obstacles 9:;< used a
di=erent notion of fatness> which is introduced as @thicknessB in Chapter '2 The
failure to prove a low free space complexity for motion planning problems involving
non"convex @thickB obstacles has led to the current> slightly more restrictive> fatness
notion2

Chapter D generalizes earlier reported results 9F;< on point location and range searchG
ing among sets of fat objects in 'G and DGspace to spaces of arbitrary dimension d>
by applying di=erent tools2 The general results are reported in 9FI<2

The results of Chapter ; on the complexity of the free space for a robot moving
amidst fat obstacles appeared in 9:I<2

The OJn log nK time bound on the running time of a fat version of the Piano MoversB
algorithm 9N;< in Section I2' improves the earlier reported bound of OJn log nK in
both 9:P< and 9:F<2 The basis of the gain lies in a more eQcient way of searching for
pairs of neighboring obstacle featuresR through a plane sweep of @envelopedB features
9:D< rather than by orthogonal range searching Jor windowingK among obstacle edges
9F'<2

An extended abstract of the contents of Chapters P and F can be found in 9:N<2 A
full version of the paper is in preparation2

SPF



 !"



Index

Ackermann function
inverse/ 00

admissible position 56
algebraic decomposition 89
arm 8
arrangement :/ ;:/ 9<

cell/ :/ =6
j>face/ =6/ 0?

axis
major/ 8::
minor/ 8::

base 8
base partition 86=
base space 86=
binary space partition ?6
binary tree :8

balanced/ 8??
bounded local complexity 0/ 88
bounding box 8;9

cc>partition 889
graph/ 88:

cell =6/ 08
complexity/ 0?

cell decomposition method 9/ 860
approximate/ 9
boundary/ 8;/ 866
exact/ 9/ 8;

centralized planning 8:9
closed <
closure 5
collision 8
computational geometry :
conEguration <
conEguration space ;/ <

cylindriEable/ 86=
dimension/ <

conEguration space obstacle 06
conEguration>time space 5/ 8:;
connected components 85
connectivity graph 9

edge/ 9
vertex/ 9

constrained cylindriEcation 86=
constraint hypersurface 06

self>collision/ 09
coverage 88;
critical curve <5

section/ 56
critical orientation 55

Davenport>Schinzel sequences 00
decoupled planning 8:9
degrees of freedom IDOFL ?/ <
depth order ?6
divide>and>conquer 8?<

ellipsoid ::
volume/ ::

envelope 5:
upperMlower/ 8?<

event>point schedule 8??

fat subdivision 95
!>fat 85
k>fat ??
FatMot 88:
fatness =/ 8?/ 85/ ??/ 9?

lack of/ ;<
feature 86/ 06
forbidden cell 08

8=5



 !" INDEX

fractional cascading /0
dynamic3 40

free cell ! 
free space 7FP: ;3 <3 !"

boundary 7BFP:3  ;
complexity of the3 43  "3 !0

general position B 3  0!
grown obstacle   0

hand 0
hidden surface removal 0"
hypercube /<
hypersphere 00

volume3 0/
hypersphere volume multiplier 0/

incremental construction /;
interior <

joint  
prismatic3  
revolute3  

kFfat 00

ladder !0
link  
list / 
low obstacle density !3   3 ;0

mesFradius ;;
minimal enclosing hypersphere 0/
minimal enclosing hypersphere radius

;;
Minkowski diIerence /B
molecule model 0 3 ;!
motion  "

collisionFfree3  "
motion planning method ;

approximate3 ;
exact3 ;3  ;

motion planning problem  3  0"3  0/3
 ;;3  ;!3  J/

general3 B

move !!
multiple contacts  "3 !0
multiple robots <

nonFholonomic constraint <
noncritical region B<

obstacle  3 <
nonFstationary3 <

obstacle feature  "
open B

paradigm   "K   
path  3  "

collisionFfree3  3  "
physical space B
Piano MoversL algorithm B<
placement  3 B

contact3 !"
forbidden3 !"
free3 <3 !"
semiFfree3 <

point location problem J!3 /"
potential Meld method /
priority queue  00

quadFedge structure  0!

range searching problem JB3 /;3 <4
range tree

layered3 <4
reach B"
reference point !;3 B"
regular orthogonal grid /J

resolution3 /J
retraction  J
retraction function  J
retraction method  J

Voronoi3  J
boundaryFvertices3  J3 BB

rigid B
roadmap J3  J
roadmap method J3  J
robot  3 B



INDEX  ! 

articulated+  
free-.ying+ 2

robot arm  
robotics  

segment tree
multi-level+ 8 

self-collision  9+ !:+   !
semi-free space <SFP@ A+ !9
single cell !8
slab 82
sparsity   
subcell B+  :
sweep A8+  22
sweep-line status  22

k-thick 2F
thinness :G
tip 2

union boundary complexity  2+  AI29+
:8

vacuum cleaner  B8
vertical decomposition

full+  2!
planar+  2 
three-dimensional+  2!

Voronoi diagram 8

wall  2 +  2!
wedges  A

double+  A
!-wide 29
work.oor  B8
workspace  + G
wrapping :8



 !" INDEX



Acknowledgements

I thank all people that have contributed1 directly or indirectly1 in making this thesis
into what it is7 In particular1 I wish to thank

my supervisor Mark Overmars: he has been available for inspiring discussions at
almost any moment: it has been a pleasure working for and with him:

the present and former members of the Vakgroep Informatica at Utrecht University
and particularly those in the >eld of computational geometry for creating a pleasant
research environment:

the people at the School of Mathematical Sciences at Tel Aviv University1 and esB
pecially Dan Halperin Ecurrently at Stanford UniversityF1 for making my stay in Tel
Aviv in March and April GHHI both instructive and enjoyable:

Marko de Groot and Maarten Pennings for being pleasant roommates during diMerB
ent periods of my stay at the Vakgroep Informatica:

the members of the reviewing committeeN Prof7 J7 van Leeuwen EUtrecht UniversityF1
Prof7 F7 Groen EUniversity of AmsterdamF1 Prof7 C7 Erkelens EUtrecht UniversityF1
and Dr7 J7BD7 Boissonnat EINRIA B Sophia Antipolis1 FranceF for reviewing this
thesis:

my parents for support and for their interest in my work:

and1 >nally1 Petra1 for support and care: spending almost IW hours a day together
turned out to be so easyX

GYZ



 !"



Samenvatting

Het groeiende aantal toepassingsgebieden voor robots en de toenemende verschei2
denheid in hun taken vereist steeds meer autonomie van de robots5 Een autonome
robot accepteert complexe taken en voert die uit zonder hulp van zijn omgeving5
Een voor de hand liggende opdracht voor zo:n autonome robot is om van een begin2
positie naar een eindpositie te bewegen< waarbij botsing met de aanwezige obstakels
vermeden dient te worden5 Het vinden van een dergelijk pad wordt het motion
planning probleem genoemd5

Het motion planning probleem wordt in het algemeen opgelost in de con*gu,
ratieruimte5 Dit is de ruimte van de representaties van alle mogelijke robotposities<
ofwel con*guraties5 Het aantal vrijheidsgraden van de robot bepaalt de dimensie van
de con?guratieruimte5 Een con?guratie is vrij wanneer de robot in de overeenkom2
stige positie geen enkel obstakel doorsnijdt5 Indien de robot in een positie een of
meerdere obstakels doorsnijdt< dan is de betreAende con?guratie verboden5 De vrije
ruimte BFPE is de deelruimte van de con?guratieruimte die bestaat uit alle vrije con2
?guraties5 Het oplossen van het motion planning probleem in de con?guratieruimte
komt neer op het vinden van een continue curve die de begincon?guratie met de
eindcon?guratie verbindt en bovendien volledig is bevat in de vrije ruimte5 De con2
tinue curve in de con?guratieruimte komt overeen met een botsingsvrij pad voor de
robot in zijn werkruimte5 Het is tamelijk eenvoudig om in te zien dat de moeilijkheid
van het vinden van een continue curve in de vrije ruimte Bofwel< het oplossen van het
motion planning probleemE sterk afhankelijk is van de complexiteit Bbeschrijvingsg2
rootteE van die ruimte5 Op haar beurt hangt de complexiteit van de vrije ruimte in
hoge mate af van het aantal meervoudige contacten van de robot met de obstakels5
Helaas kan in theorie het aantal meervoudige contacten< en dus de complexiteit van
de vrije ruimte< erg hoog zijn5

Motion planning algoritmen trachten een continue curve in de vrije ruimte te
vinden5 De vrije ruimte is daarbij indirect gegeven door middel van de robot en
de obstakels5 Aangezien zo:n continue curve door het complexe karakter van de
vrije ruimte Bzelfs voor eenvoudige motion planning problemenE onmogelijk direct te
bepalen is< is verdere verwerking van de vrije ruimte noodzakelijk5 De verschillende
motion planning algoritmen onderscheiden zich door de manier waarop zij de vrije
ruimte verwerken tot een structuur waarmee men in staat is om op eIciJente wijze
een pad te vinden tussen twee con?guraties5

KLM
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In de huidige praktijk worden vrijwel altijd benaderende methoden gebruikt om
het motion planning probleem op te lossen8 Benaderende methoden verwerken de
vrije ruimte tot een structuur die de vrije ruimte benadert8 Ze vinden in veel gevallen
snel een pad voor de robot< doch in sommige lastige gevallen zullen ze er niet in slagen
om een oplossing te vinden8 Sinds een aantal jaren bestaan er ook een aantal exacte
methoden8 Deze methoden< die hun oorsprong voornamelijk in de computationele
geometrie gemeenschap hebben< vinden gegarandeerd een pad wanneer er een pad
bestaat8 Dit proefschrift concentreert zich op exacte methoden8

Exacte methoden kunnen op grond van hun aanpak grofweg in twee categorieCen
worden ingedeeldD cel-decompositiemethoden en retractiemethoden8 CelFdecomposiF
tiemethoden verdelen de vrije ruimte in eenvoudige subcellen8 Deze subcellen vormen
de knopen van een graaf8 Twee knopen van de graaf zijn met elkaar verbonden
wanneer de overeenkomstige subcellen aan elkaar grenzen8 De aanpak reduceert
het motion planning probleem tot het vinden van een pad in de graaf8 Door de
vereiste eenvoud van de subcellen is het aantal benodigde subcellen om de vrije
ruimte te verdelen in hoge mate afhankelijk van de complexiteit van de ruimte8
Retractiemethoden trachten de structuur van de vrije ruimte vast te leggen in een
eenFdimensional netwerk van curves in diezelfde ruimteD het wegennet8 Dit houdt
in dat elke vrije conIguratie via een eenvoudig pad verbonden dient te zijn met
het wegennet< en dat alle curves in een samenhangende component van de vrije
ruimte met elkaar een samenhangende component van het wegennet vormen8 Deze
voorwaarden reduceren het motion planning probleem wederom tot het vinden van
een pad in een graaf< namelijk het wegennet8 De beide eisen aan het wegennet
maken de grootte van het wegennet sterk afhankelijk van de complexiteit van de
vrije ruimte8 Uiteraard beCKnvloedt de grootte van de berekende structuur LgraafM de
rekentijd van de exacte algoritmen8

De conclusie uit het voorgaande is dat de eNciCentie van exacte algoritmen sterk
afhangt van de complexiteit van de vrije ruimte8 Aangezien die complexiteit in
theorie erg hoog kan zijn< lijken exacte methoden ongeschikt voor toepassing in
praktijksituaties8 De literatuur toont echter dat de omstandigheden Ldat wil zeggen
vorm en posities van de obstakels en vorm van de robotM die leiden tot de hoge
complexiteiten vaak een kunstmatig karakter hebben en vrijwel nooit voorkomen in
praktische motion planning problemen8 In praktijkgevallen zal de complexiteit van
de vrije ruimte ver beneden de theoretische grenzen blijven8 Voor dergelijke gevallen
zal de toepassing van exacte algoritmen dan wellicht realistisch worden8 Een studie
naar milde voorwaarden die een bewijsbaar lage complexiteit van de vrije ruimte
tot gevolg hebben is daarom van groot belang voor de toepasbaarheid van exacte
methoden8

Dit proefschrift toont dat de combinatie van vette obstakels en een niet al te
grote robot leidt tot een drastische reductie van de complexiteit van de vrije ruimte8
Een vet obstakel is een obstakel dat niet lang en dun is en ook niet dergelijke delen
heeft8 Vetheid vormt in een aantal problemen uit de computationele geometrie een
realistische aanname die resulteert in lage complexiteiten en eNciCente algoritmen8
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Veel praktische motion planning problemen combineren een niet te grote robot met
een zekere vetheid van de aanwezige obstakels7 zodat vetheid ook in motion planning
een waardevol begrip is8

De bovengenoemde omstandigheden leiden tot een verlaging van de rekentijd van
een aantal bestaande cel;decompositie; en retractiemethoden8 De kern van de ef;
=ci>entiewinst voor deze methoden ligt in een lage obstakeldichtheid in de werkruimte7
die een direct gevolg is van de vetheid van de obstakels8 De eigenschap vormt de basis
voor een nieuwe algemene aanpak7 of paradigma7 voor motion planning problemen
tussen vette obstakels8 Het paradigma volgt de cel;decompositie;aanpak8

Het gepresenteerde paradigma voor motion planning tussen vette obstakels is
toepasbaar op problemen waarvoor de werkruimte een projectieve deelruimte is van
de con=guratieruimte8 Wanneer de robot vrij beweegt in de werkruimte7 en dus
niet is verankerd7 dan zal in het algemeen aan deze voorwaarde voldaan zijn8 De
aanpak reduceert het probleem van het vinden van een cel;decompositie van de vrije
ruimte tot het probleem van het vinden van een verdeling van de werkruimte met de
vette obstakels die aan bepaalde voorwaarden voldoet8 Een aantal uniforme stappen
berekenen vervolgens een cel;decompositie van de vrije ruimte uit de verdeling van
de werkruimte8 Het aantal subcellen is direct afhankelijk van de grootte van de
werkruimte;verdeling8 Optimale verdelingen blijken te bestaan voor motion planning
problemen in het vlak7 voor motion planning in een drie;dimensionale ruimte met
obstakels van vergelijkbare grootte7 en voor motion planning op een werkvloer in
een drie;dimensionale werkruimte met obstakels8 De inpassing van de verdeling en
de berekening ervan in het paradigma resulteert in zeer eDci>ente algoritmen voor de
betreEende problemen8 Goede verdelingen en dus eDci>ente algoritmen bestaan ook
voor motion planning problemen in een drie;dimensionale ruimte met polyhedrale en
willekeurige obstakels van onbeperkte afmetingen8 Verbeteringen van deze laatste
resultaten lijken echter mogelijk8 De eDci>entie van elk algoritme dat volgt uit het
paradigma is onafhankelijk van het aantal vrijheidsgraden van de robot Hofwel de
dimensie van de con=guratieruimteI7 in tegenstelling tot de meeste andere exacte
motion planning algoritmen8

Naast motion planning besteedt het proefschrift ook aandacht aan de rol van
vetheid in twee kernproblemen in de computationele geometrieL point location en
range searching8 Het point location probleem vraagt om7 gegeven een aantal niet;
snijdende objecten7 voor een willekeurig punt te rapporteren welk object het punt
bevat of om te concluderen dat geen enkel object het punt bevat8 Het range searching
probleem vraagt om voor een willekeurige regio de verzameling doorsneden objecten
te rapporteren8 Het proefschrift laat zien dat7 wanneer de objecten vet zijn7 MeMen
enkele datastructuur volstaat om beide problemen eDci>ent op te lossen8 De oplossing
werkt in willekeurige dimensie8
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