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Chapter 1

Introduction

A robot is a machine capable of carrying out a complex series of actions automati-
cally (the Concise Oxford dictionary [77]). Over the past years, the use of robots has
become common in an increasing number of areas. With the wider range of appli-
cations comes a growing need for autonomy of the robots. The earlier generations
of robots, encountered for example in assembly lines, mostly execute prescribed
(repeating) sequences of uniform actions. As such, they often effectively replace
human-beings in routine tasks. More recent and advanced application domains for
robots include operation in environments that are dangerous or inaccessible to hu-
mans. Among such domains are space exploration, (nuclear) waste handling, and
medical surgery. The nature of the robot tasks in these environments requires a
high degree of autonomy of the operational robot. The series of actions performed
by the robot tends to become less uniform and the descriptions of the tasks will be
formulated at a higher level. An ultimate goal in the field of robotics® inspired by
this growing need for autonomy is the development of robots that accept high-level
descriptions of tasks and execute these tasks with as little intervention as possible,
and ideally without further intervention at all. A fundamental task for such an au-
tonomous robot would be to move from a current placement to another placement
while avoiding collision with the obstacles on its way. The motion planning problem,
that is, the problem of finding such a collision-free path, is the subject of this thesis.

A robot is a movable mechanical device operating in a physical world, the robot’s
workspace. Robots generally consist of one or more bodies, or links, that are, in
most practical situations, in some way attached to each other. These couplings
of the links, which are referred to as joints, constrain the relative placements and
motions of the attached links. Typical joints are the revolute (or rotating) joint and
the prismatic (or sliding) joint. An articulated robot consists of several links that
are all connected by joints. If the links of an articulated robot are arranged in a
chain and one of the two ends of the chain is fixed at some position, then the robot
is an arm. The fixed end of an arm is referred to as the base of the arm; the other

'Robotics is the study of robots or the art or science of their design and operation [77].



2 CHAPTER 1. INTRODUCTION

end is the tip, or hand [102]. Robots at assembly lines are, in general, robot arms.
(Typical assembly robots have approximately six links.) The robots in the difficult
environments sketched in the previous paragraph are often not fixed. If, except for
possible collisions with the obstacles in the workspace or with itself, the motion of
the robot in the workspace is unconstrained, then the robot is free-flying. In this
thesis, we will mainly deal with free-flying robots.

The unique characterization of any placement of a robot in its workspace involves
a certain minimum number of parameters. These parameters are the degrees of
freedom (DOF) of the robot. Let us consider the examples of robots in Figure 1.1
to get a feeling of the various degrees of freedom of robots. The robot arm By moves

Ly
v

: / S de
A
| Y

Bl 82 BS

Figure 1.1: Three examples of robots: By is a robot arm in the plane consisting of
three links, By is a free-flying articulated robot in the plane consisting of two links,
and Bs is a free-flying rigid robot in three-dimensional space.

in a two-dimensional workspace and consists of three links L1, Lo, and Ls; the lower
end of Ly is fixed at the origin O, L1 and L, are attached to each other by a revolute
joint, and L, and L3 are connected by a prismatic joint; the ‘overlap’ of the links L,
and L3 at the prismatic joint varies between 0 and (. The angle between the links
Ly and L5, and the length of the overlap of Ly and L3 uniquely define any placement
of By, so By has two degrees of freedom. Any pair (a,w) € [0,27) x [0, ] represents
exactly one placement of By. As a result, the set of points in the workspace covered
by By can be calculated from («, w), provided that the shapes of the individual links
are known. The articulated robot By with links L4 and Ls which are joined by a
revolute joint moves in a two-dimensional workspace. Assume, for the moment, that
the link L4 is constrained to move at a fixed orientation. In that case, the coordinates
(x,y) € R? of, for example, the joint uniquely specify the points covered by the
link L4. The orientation of the link L5, however, is still variable. An additional



parameter 3 € [0,27), being the angle between both links Ly and Ls completes a
unique characterization of the placement of By. So, the constrained robot By has
three degrees of freedom. Any triple (z,y,3) € IR* x [0,27) represents exactly one
placement of the By. The triple (x,y, ) no longer suffices to uniquely specify a
placement of By if the link L4 is allowed to rotate as well. Then, the robot can take
infinitely many placements while its joint is placed at (x,y) and the angle between its
links L4 and L5 equals 3. The addition of an extra parameter v € [0, 27 ), giving the
angle between, for example, the link L4 and the positive z-axis, solves the problem.
Any quadruple (z,y,3,7) € IR* x [0,27)? specifies exactly one placement of this
unconstrained version of By. The robot By has four degrees of freedom. The robot
B3 moving in a three-dimensional workspace is a so-called rigid robot consisting of
one solid non-deformable link. A triple (z,y, z) € R” fixes the position of some point
p € Bs. While p is placed at (x,y, z), the point ¢ can be chosen to lie anywhere on
the sphere with radius |pg| centered at (x,y, z). A pair (8, ¢) € [0,27) x [0, 7] suffices
to identify a point on a sphere. Even though the quintuple (x,y, z, 0, ¢) fixes both
p and ¢, the robot Bj can still be in infinitely many different placements as it is free
to rotate around the supporting line of the segment pg. One additional parameter
¢ € [0,27) is enough to model this rotational freedom. Hence, the robot B3 has six
degrees of freedom. Any tuple (z,y,z2,0,¢,%) € IR> x [0,27) x [0,7] x [0,27) is a
parametric representation of exactly one placement of B;. We refer to the tuple as
a configuration of the robot.

The motion planning problem is commonly tackled in the space of these para-
metric representations of robot placements, or configuration space for short. As we
will see, the configuration space formulation transforms the motion planning prob-
lem into the problem of finding a continuous curve within a subspace, the free space,
of the configuration space. The free space consists of all placements of the robot in
which it intersects no obstacle. The continuous curve in the free space corresponds
to a continuous free motion of the robot in the workspace.

Motion planning methods process the free space for the efficient solution of one
or more path-finding queries. The methods can be classified according to two, more
or less orthogonal, criteria. First al all, a method is either exact or approzimate.
Approximate methods, which originate mainly from the robotics community, are of-
ten fast and simple to implement. On the other hand, they may occasionally spend
a lot of time and storage in finding a path or, worse, fail to find a path, even if one
exists. Exact methods, which originate mainly from the computational geometry
community, are guaranteed to find a path if one exists. The price to pay for this
completeness is generally a considerable increase in computation time. A second
subdivision classifies the methods by the type of technique that is used to find a
path. Latombe [59] distinguishes three different motion planning approaches: cell
decomposition methods, roadmap methods, and potential field methods. The next
few paragraphs briefly discuss the essential features of each of the three approaches.
Exact and approximate examples of each of the approaches are mentioned, if avail-

able.
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The cell decomposition approach subdivides (a conservative approximation of)
the free space FP into a finite number of simple connected subcells, such that plan-
ning a motion between any two placements within a single subcell is straightforward
and such that uniform crossing rules can be defined for the robot crossing from
one subcell into another. Fach cell defines a vertex in the connectivity graph CG.
Two vertices in CG are connected by an edge if their corresponding subcells share
a common boundary allowing direct crossing of the robot. Given the connectivity
graph CG, the problem of finding a motion between the placements Zy, and Z; is
reduced to a graph problem: find the subcells Cy and 4 in which Zy and Z; lie
and determine a path in CG between the vertices corresponding to the subcells
and (', or report that no such path exists. Next, the resulting sequence of subcells
and the crossing rules for each pair of subsequent subcells are used to transform the
sequence into a path for the robot B from Z, to Z;. To this end, a point is chosen
on the common boundary of each pair of consecutive subcells in the sequence. (The
points correspond to unique placements of the robot.) As a result, two points are
given in every subcell of the sequence. The imposed simplicity of the subcells facili-
tates the identification of a continuous curve between the two points that is entirely
contained in the subcell. The concatenation of all such curves is a continuous curve
between the 7y and Z;, representing a continuous collision-free motion for the robot
between the corresponding placements.

Ezxact cell decomposition methods partition the free space into simple subcells,
so that the union of the subcells equals exactly the free space. Examples of exact
cell decomposition applied to varying instances of the motion planning problem are
found in [43, 50, 64, 84, 85, 86, 87, 91]. Section 1.2 discusses the examples in more
detail. Approzimate cell decomposition methods [19, 35, 48, 60, 103] approximate the
free space by a collection of subcells with uniform shapes, for example rectangloids.
The union of the subcells is a subset of the free space. Occasional failure to return
a path is evident from the difference between the free space and the subcell union.
Most approximate methods decompose the free space in a recursive manner, stopping
when a subcell is entirely free or entirely non-free and further refining when a subcell
contains both types of placements. Physical limitations, like the amount of storage
that is available, require the recursive process to stop at a certain level.

The roadmap approach to motion planning aims at capturing the structure
and connectivity of the free space in some one-dimensional network of curves, the
roadmap. The availability of the roadmap reduces the planning problem to de-
termining motions between the initial and final robot placements Zy; and Z; and
two placements on the roadmap, and subsequently searching the roadmap for a se-
quence of curves connecting these two placements. The latter problem is again a
graph searching problem if the network of curves is represented as a graph. The
sequence of curves resulting from the graph search corresponds directly to a contin-
uous path for the robot in its workspace. Nearly all known roadmap algorithms are
exact [20, 62, 70, 71, 93]. They share the property that all roadmap curves in a sin-
gle connected component of the free space are connected in the roadmap (through



a sequence of curves). Section 1.2 reveals some details of certain exact roadmap
methods. Brooks [18] presents an approximate roadmap method for a translating
and rotating polygonal robot among polygonal obstacles. The basis of the roadmap
is an approximation of the Voronoi diagram [8] on the obstacles in the workspace.
Conservative assumptions used in its construction may cause disconnected roadmap
components in a single connected component of the free space, leading to potential
failure to determine a path between two placements within a connected component
of the free space. The method works well if the obstacles are not too much clut-
tered. Another approximate roadmap method, due to Overmars and Svestka [76],
constructs a graph on randomly chosen configurations in free space. Two config-
urations are connected by an edge if a simple collision-free motion exists between
them.

Potential field methods [52, 53, 56] direct the motion of the robot through an
artificial potential field set up by the goal placement and the obstacles. The goal
configuration pulls the robot towards it by generating a strong attractive (negative)
potential, while the obstacles push the robot away through a repulsive (positive)
potential. The search is guided by trusting the intuitive feeling that the direction
of the steepest descent of the potential is the best direction towards the goal: the
search proceeds to a neighboring placement that achieves the maximum decrease of
the potential. The success of the method clearly depends on adequate choices for
the attractive and recursive potential functions. Unfortunately, the search might
get stuck in a local minimum of the potential. Considerable efforts are devoted to
finding ways to deal with these minima. One direction of research attempts to spec-
ify potential functions that cause no or few local minima [55, 82, 83, 53]. Another
approach is to develop techniques to escape from local minima [12, 13], for example
by random motions. Despite the observed complications due to local minima, po-
tential field methods are efficient in many practical situations. All (known) variants
of the potential field approach are approximate, due to fact that steps of a certain
minimum size are taken.

Over the past decade, the motion planning problem has attracted the interest
of researchers in the field of computational geometry [10, 38, 43, 50, 51, 62, 64,
70, 71, 84, 85, 87, 91, 93]. The explanation for this interest lies in the geometric
flavor of the problem which is not only inherent in its statement, but also present
in the space in which the motion planning problem is most conveniently solved,
the configuration space. The number of degrees of freedom of the robot determines
the dimension of this space. The configuration space formulation transtorms the
motion planning problem into the problem of finding a curve within a subspace, the
free space, of the configuration space. The subspace is the union of specific cells in
an arrangement of hypersurfaces which are defined by robot-obstacle contacts [39].
The study of arrangements and arrangement cells [32] is one of the main subjects
in computational geometry.

The research efforts in motion planning in computational geometry are aimed
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at the exact solution of the problem so that a path for the robot is returned if one
exists. It is obvious that the theoretical complexity of finding such a path depends
highly on the complexity of the free space. The high bounds on the cumulative
complexity of a collection of cells in an arrangement of hypersurfaces established in
computational geometry demonstrate the potentially high complexity of the motion
planning problem. Even though the hypersurfaces that define the arrangement in
the, say, f-dimensional configuration space are not arbitrary (as they represent sets
of contact placements), they still allow for the construction of worst-case arrange-
ments of, roughly, at least Q(n/~!) complexity, where n is the number of obstacles.
Exact motion planning methods process the appropriate arrangement cells into a
structure capable of providing an exact answer to a path-finding query. The cumu-
lative complexity of the cells is reflected in the size and computation time of the
query structure. Since the number of degrees of freedom f of practical robots is often
as large as five or six, exact methods suffer from impractically high computational
costs and are therefore not feasible for practical motion planning problems.

On the other hand, the worst-case arrangements mentioned in the previous para-
graph involve artificial constructions with a robot and obstacles with extreme and
often uncommon shapes. The complexity of the free space for many real-life mo-
tion planning problems tends to remain far below the theoretical worst-case bounds.
Exact motion planning methods might become feasible for such realistic problems,
provided that their performance is positively affected by reductions of the free space
complexity. Unfortunately, only few of the existing exact motion planning exhibit
such a dependency. The preceding observations show that it is interesting to seek for
mild constraints on the robot and the obstacles that lead to a provable low free space
complexity. To make the outcome practically useful, it is necessary to find motion
planning methods that benefit from low free space complexities in the sense that
they process the free space in time comparable to its complexity into a path-finding
query structure of size comparable to the free space complexity.

A bound on the relative sizes of the robot and the obstacles and a certain ‘fatness’
of the obstacles are shown to be sufficient to get a free space with a complexity that
is only linear in the number of obstacles. Fatness has been studied in the context of
several problems in computational geometry, but, so far, not in the context of motion
planning. Under the sketched circumstances, it will be shown that certain existing
exact motion planning algorithms show a considerable performance enhancement.
Moreover, the realistic assumptions cause the linear complexity free space to have a
structure that allows for a new and simple motion planning paradigm based on the
so-called cell decomposition approach. The paradigm basically reduces the planning
problem to a partitioning problem in a lower-dimensional subspace. Instances of
the paradigm lead to almost linear-time (in the number of obstacles) algorithms
for general planar motion planning and for restricted cases of three-dimensional
motion planning, namely where the robot is confined to a workfloor or where the
sizes of the obstacles differ by at most a constant factor. Quadratic and cubic time
algorithms are obtained for three-dimensional motion planning among arbitrarily-



sized polyhedral and general obstacles respectively. The results are independent of
the number of degrees of freedom and extend towards any environment with low
obstacle density.

We are aware of only few (related) results on exact motion planning methods
with provable efficiency or free space complexity-sensitive behavior for realistic mo-
tion planning problems (with low complexity workspaces or free spaces). Sifrony
and Sharir [93] present a motion planning algorithm for a line segment in a planar
workspace with polygonal obstacles. The reported running time of the algorithm
depends (nearly exclusively) on the number of pairs of obstacle corners that lie less
than the length of the ladder apart. This number gives some idea of how cluttered
the obstacles in the workspace are and is furthermore closely related to the com-
plexity of the free space. Sifrony and Sharir’s algorithm is the only algorithm with
a running time that is reported to depend on complexity-related variables. A few
other algorithms (see Chapter 5) have some hidden dependency on the complexity
of the free space.

Schwartz and Sharir [88] consider workspaces with obstacles of so-called bounded
local complexity. Any (imaginary) ball with radius r in such a workspace inter-
sects no more than a constant number of obstacles. The property resembles a
workspace property that follows from the fatness of the obstacles (see Chapter 2).
The bounded local complexity is shown to have implications for the free space com-
plexity. The authors give directions on how to solve the motion planning problem
in such workspaces.

Pignon [78] structures workspaces with polygonal obstacles for a polygonal robot
to easily detect certain simple and impossible path-finding queries. The author uses
the maximal inscribed circle and minimal enclosing circle of the robot to define the
so-called safe and impossible spaces, which are both efficiently computable subspaces
of the workspace. The safe space consists of all workspace positions that the robot
can occupy at any orientation without intersecting the obstacles. More precisely,
the safe space is the collection of center points of the enclosing circle in which that
circle does not intersect any obstacle. The impossible space consists of all positions
in which the robot always intersects some obstacle, regardless of its orientation.
Hence, the impossible space is the collection of centers of the inscribed circle in
which that circle intersects some obstacle. The possible space is the complement of
the impossible space. Now, two types of simple queries can be easily detected. If
the workspace positions of the robot in the initial and final placements belong to a
single connected component of the safe space, then both positions are connected by
a path for the enclosing circle of the robot. As a result, it suffices to find a motion
for the circle, which is a simpler motion planning problem (with two instead of
three degrees of freedom). If the positions lie in different components of the possible
space, then no motion for the inscribed circle of the robot exists between the query
placements, and therefore certainly no motion exists for the robot itself between
these placements. In all other cases, the exact solution of the problem requires the
application of an exact method to the original problem.
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Alt et al. [5] introduce the tightness of a motion planning problem for a rectangle
among polygonal obstacles as a measure for its complexity. The tightness of a
problem is closely related to the scaling factor for the rectangular robot to make
the problem unsolvable if the original problem is solvable, or to make the problem
solvable if the original problem is unsolvable. The authors present an approximate
motion planning algorithm for the rectangular robot with a tightness-dependent
running time.

1.1 The general motion planning problem
This thesis focusses on the following version of the general motion planning problem.

Given a robot B moving amidst a collection of obstacles £, and an initial
placement Zy and a desired final placement 7y for B, find a continuous
motion for B from Zy to Z; during which the robot avoids collision with
the obstacles, or report that no such motion exists.

A single robot B moves around in a workspace, or physical space, W. The robot’s
workspace W usually equals the Euclidean space of dimension two or three (IR’
or IR?), since these are the most interesting cases from a practical point of view.
Throughout the thesis, the robot B is assumed to be a collection of closed rigid links
(attached to each other by joints) of constant total complexity. A rigid body is a
non-deformable compact connected set. A closed set incorporates the set boundary
as part of the set (contrary to an open set which excludes the set boundary). The
assumption that the robot is a collection of rigid bodies is liberal, as many papers
require the robot to be a single rigid body.

The motion planning problem is commonly modeled and solved in the so-called
configuration space of the problem. The configuration space C is the space of para-
metric representations of robot placements. A configuration Z € C is a unique
(compact) specification of the position of every point of the robot B at a certain
placement in the workspace W2. Each placement of the robot B in its workspace W
corresponds to exactly one point Z in the configuration space C. In the sequel, the
subtle difference between the configuration Z and the represented robot placement
is generally ignored. The parameters that are required for a unique specification of
a robot placement fix the dimensions of the configuration space. These parameters
are referred to as the degrees of freedom of the robot. The number of degrees of
freedom determines the dimension of the configuration space C'. At each placement
7 € C the robot B covers a set of points in the workspace W which is denoted by
B[Z].

2For a more concise formulation of the notions of configuration space and configuration in
terms of rigid transformations and relative positions of reference frames, the reader is referred to
Latombe’s book [59] on the state-of-the-art in robot motion planning.



1.1. THE GENERAL MOTION PLANNING PROBLEM 9

Another substantial ingredient of the motion planning problem is the set &£ of
obstacles in the workspace W. Fach obstacle £/ € £ is a closed connected, possibly
unbounded, subset of W. The obstacles are stationary, that is, they do not move
or change shape in time. Moreover, the obstacles of £ are assumed to be known, so
that the robot B does not have to explore the workspace W and detect the obstacles
through certain sensing devices. The presence of the obstacles in the workspace
causes some placements to be inaccessible. A point Z in the configuration space '
can correspond either to a placement of the robot B in the workspace W in which
it intersects no obstacle, B[Z]N (Uges ) = 0, or to a placement of B in W in which
is has non-empty intersection with the obstacle set €. The first type of placement
is called a free placement. The free space FP is the open set of all free placements
of the robot B, hence

FP = {Z€C|B[Z]N (UpeeB) =01,

If the placements of the robot B are restricted to FP then B is not allowed to move
in contact with the obstacles of £. Sometimes, however, allowing motion in contact,
or compliant motion, results in more efficient motion planning algorithms [10, 93]. A
semi-free placement of the robot is either a free placement or a placement in which
it touches one or more obstacles but intersects the interior of no obstacle. More
formally, a semi-free placement 7 satisfies B[Z] N (Ugesint(F)) = 0, where int(FE)
stands for the interior of the closed set F, i.e., F without its boundary dF. The
semi-free space SFP is the set of all semi-free placements of the robot B, hence

SFP = {Z € C|B[Z]N (Upeeint(E)) =0},

Actually, the quoted results [10, 93] solve the motion planning problem in the closure
cl(FP) of the free space which is formally a subset of SFP. Except for some very
specific circumstances (see [59]), the closure ¢/(FP) of the free space equals the
semi-free space SFP.

The presented problem formulation is extendible in many directions. Most of
the generalizations are hardly studied in exact motion planning. One extension
is to have non-stationary obstacles, either moving autonomously (see e.g. [81]) or
movable by the robot. The dynamic behavior of the collection of free placements in
the case of autonomously moving obstacles is adequately modeled by adding a time
axis to the f-dimensional configuration space resulting in an (f 4 1)-dimensional so-
called configuration-time space. (The intersection of this configuration-time space
at some time ¢t = T shows the free and non-free placements at t = T.) The case
of movable obstacles raises additional problematic issues like how to grasp objects.
Another generalization would be to allow multiple robots. An appropriate choice for
the configuration space of such a system of robots is the Cartesian product of the
configuration spaces of the individual robots (see e.g. [86]). Although the results of
this thesis are generalizable towards multiple robots, we restrict ourselves to a single
robot. Other extensions are unknown obstacles and non-holonomic constraints.
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Non-holonomic constraints are relations between the degrees of freedom of the robot.
The relations impose restrictions on the shape of the collision-free robot motions.

A collision-free path or collision-free motion, or path or motion for short, for
a robot B from an initial placement Z;, € FP to a final placement 7, € FP is a
continuous map:

7:[0,1] — FP,

with
7(0) =7y and 7(1)= 7.

Semi-free motion can be allowed by changing the range of the map 7 into SF'P. Hence,
the problem of motion planning is equal to the problem of finding a continuous
curve between two query points, completely lying inside the free portion FP of the
configuration space. No quality restrictions with respect to length, curvature etc.
are imposed upon the reported path. The effort that is to be invested in finding
such a curve obviously highly depends on the complexity of the free space FP. The
discussion of motion planning algorithms below confirms this statement.

The complexity of the free space, as we will see in Chapter 4, is determined by
the number of multiple contacts of the robot B. A multiple contact of the robot B is
a placement in which it touches more than one obstacle feature, that is, a basic part
of the obstacle boundary like a vertex, edge, or face. Besides the collisions of the
robot with the obstacles, parts of the robot can also collide with other robot parts.
Although these so-called self-collisions are often ignored in our considerations, we
shall return to them at appropriate moments to demonstrate the validity of the
results when self-collisions are taken into account. Unfortunately, the number of
multiple contacts, and, hence, the complexity of the free space, can be very high.
It n is the number of obstacle features and f is the constant number of degrees of
freedom of the robot (that is, the dimension of the configuration space) and the
number of robot features is bounded by some constant, then this complexity can be
Q(n'). As a generic example, consider the robot arm in Figure 1.2. If the lengths
of the links and the distances between the obstacles are appropriately chosen, then
each of the f links can be placed against any of the n/ f obstacles in the vertical row
that it cuts through, yielding (n/f)’ combinations of obstacles and therefore leading
to Q(n') multiple contacts. As a consequence, the complexity of the free space for
the robot arm is Q(n/). Slightly lower worst-case free space complexities have been
obtained for specific free-flying rigid robots among certain classes of obstacles. The
reader is referred to Chapter 4 for an overview of some relevant results. These bounds
generally remain close to an order of magnitude, i.e., a factor n, below the Q(n/)
bound. Hence, even in such beneficial cases, the theoretical worst-case bounds are
high. Fortunately, in many practical situations the complexity of the free space is
much smaller, as artificially constructed workspaces with e.g. a very large robot and
small obstacles are hardly encountered in real life. When extreme shapes and sizes
of the robot and the obstacles do not occur, high free space complexities tend to be
harder to obtain. Consider for example the realistic motion planning environment of
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Figure 1.2: An (f-DOF) robot arm consisting with f links and f revolute joints
with Q(n’) f-fold contacts, and, hence, with free space complexity Q(n?).

Figure 1.3 where the ‘spider’ robot and the obstacles have constant complexity and
roughly the same sizes. The robot has six degrees of freedom: two for its position
in the workspace, and four for each of the legs that are free to rotate around the
central joint. While being in contact with a certain obstacle, the robot is unable to
touch more than a constant number of other obstacles (on the average). Then, the
number of multiple contacts can impossibly exceed O(n). Hence, the free space for
this robot has complexity O(n) and thus remains far below the free space complexity
obtained with the construction of Figure 1.2. The impressive gap between the Q(n/)

Figure 1.3: A (6-DOF) robot with few multiple contacts, and, hence, with low free
space complexity.

construction and the realistic O(n) example immediately raises the question what
specific properties of the robot and the obstacles lead to low free space complexities.
What natural mild assumptions would for example lead to the relative low obstacle
density of the above example, in which the robot is unable to touch more than
a constant number of obstacles simultaneously? (Circumstances that resemble the
relative low obstacle density have been studied by Schwartz and Sharir [88] who refer
to it as bounded local complexity and by Pignon [78] who calls it sparsity.) The
case of the 6-DOF robot strongly suggests that a bound on the relative sizes of the
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robot and the obstacles is necessary to obtain the low obstacle density, given that
the obstacles may lie arbitrarily close to each other. Comparable robot and obstacle
sizes alone, however, are insufficient to achieve really low free space complexities.
A very interesting additional assumption for the obstacles is fatness. The fatness
assumption forbids the obstacles to be long and thin themselves or to have long or
thin parts.

Fatness is an interesting phenomenon in computational geometry. It has received
quite some attention over the past few years. Several papers study the surprising
influence of fatness of the objects under consideration on combinatorial and algorith-
mic complexities. Examples of combinatorial complexity reductions include papers
by Alt et al. [5], Matousek et al. [67], Efrat, Rote, and Sharir [34], and Van Kreveld
[58] which all show that the complexity of the union of certain geometric figures is
low if the objects are fat. Overmars [73] presents an efficient algorithm for point
location in subdivisions consisting of fat cells. For a discussion of these and some
other results, the reader is referred to Chapter 2. For the moment, the impact of
fatness is illustrated by a single, though very attractive, example: the complexity
of the union of n triangles in the plane. If the triangles are unconstrained then a
quadratic union size can be obtained by arranging the triangles in a grid-like fashion
as shown in Figure 1.4. Matousek et al. [67] show that the complexity of the union
of n triangles is only O(nloglogn) if the angles of all triangles are at least §, for
some fixed constant § > 0.

Figure 1.4: The union boundary of n arbitrary triangles can have complexity Q(n?);
if the triangles are fat (see right), then the complexity is nearly linear.

Chapter 2 proposes a new notion of fatness that, contrary to previous notions
like the d-fatness for triangles, deals with arbitrary shapes in any dimension. The
definition involves a parameter k that gives a qualitative indication of the fatness of
an object. The fatness of the obstacles of £ according to this definition, along with
a bound on the relative sizes of the obstacles and the robot 5, and a bounded com-
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plexity assumption for the robot and the individual obstacles, provide a practical
framework for many real-life motion planning problems. The free space for all prob-
lems that fit in this framework is shown to have only linear complexity in Chapter
4. The linear complexity result opens the way to devising efficient algorithms for
solving many motion planning problems in realistic environments.

1.2 Exact motion planning algorithms

Exact algorithms process the free space into a representation that captures all the
necessary details of (the structure of) the free space to guarantee completeness.
The efficiency of such methods is usually expressible in terms of the complexity of
the motion planning environment (see below). Judging purely on the worst-case
complexities for exact motion planning, exact methods do not seem to be practical
alternatives for approximate methods in real-life situations. The constructions that
lead to these complexity bounds, however, are hardly encountered in practice. In-
spired by this observation, this thesis shows that under certain realistic assumptions
(on fatness and size ratios), some exact algorithms do become feasible as their run-
ning times are reduced considerably. Moreover, these realistic assumptions result
in a very beneficial structure of the free space that allows for an efficient general
paradigm for the exact solution of the motion planning problem.

Let us now briefly review the two main classes of exact algorithms: cell decom-
position algorithms and retraction or roadmap algorithms. In general, the existing
exact motion planning algorithms process the free space into a structure that is
capable of efficiently handling multiple (arbitrary) path-finding queries. The run-
ning time of an exact motion planning algorithm is actually the time to process the
free space into such a query structure. Both exact approaches reduce the motion
planning problem to a graph searching problem. Exact cell decomposition meth-
ods partition the free space FP into a finite number of simple connected subcells,
such that planning a motion between any two placements within a single subcell is
straightforward and such that uniform crossing rules can be defined for B crossing
from one subcell into another. Applications of the cell decomposition technique in-
clude the famous O(n®) Piano Movers’” algorithm by Schwartz and Sharir [84] for
planning the motion of a polygonal robot B moving amidst polygonal obstacles &
in the plane (with a total number of n edges). This early result has been improved
to O(n*logn) for a ladder (line segment) robot by Leven and Sharir [64]. Halperin,
Overmars, and Sharir [43] decide in time O(n?log® n) on the existence of a collision-
free path for an L-shaped (non-convex) robot among polygonal obstacles. Avnaim,
Boissonnat, and Faverjon [10] apply a variant of the cell decomposition technique to
a translating and rotating polygon among polygonal obstacles. Instead of decom-
posing the free space, they decompose the free space boundary BFP = ¢/(FP) \ FP
in time O(n”logn). The motion obtained with this algorithm is semi-free rather
than free: except from the first and last portion, the robot moves in contact with
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the obstacles. When increasing the configuration space dimension beyond three,
the results deteriorate rapidly. Schwartz and Sharir [87] decompose the free space
of a robot moving amidst polyhedral obstacles in 3-space. The algorithms for a
(5-DOF) ladder robot and for a (6-DOF) polyhedral robot yield connectivity graphs
with O(n'') and O(n'?) nodes/subcells respectively and have at least corresponding
running times, where n is the total complexity of the obstacles. Ke and O’Rourke
[50] give a cell decomposition algorithm that improves the O(n'') bound for a lad-
der in 3-space to O(n®logn). In a different paper [85] in the Piano Movers’ series,
Schwartz and Sharir give a general cell decomposition algorithm, based on algebraic
decomposition techniques by Collins [30]. The running time of the algorithm for a
robot with f degrees of freedom and constant complexity amidst obstacles with cu-
mulative complexity n is O(n2f+6), which amounts e.g. to O(n*%®) for a free-flying
rigid robot in 3-space. Needless to say is that the known results for motion planning
problems with more than three degrees of freedom are far from practical due to their
performance. Further examples of cell decompositions are found in the two other
papers in the Piano Movers’ series [86, 91].

An alternative exact approach to motion planning is the retraction method or
roadmap method. The approach recursively ‘retracts’ the free space FP into a lower-
dimensional subspace FP’. The crucial aspect of the approach is the retraction
function Im : FP — FP’, mapping each placement in FP onto a placement in the
subspace FP’. A simple collision-free motion must exist between every point Z € F'P
and its mapping Im(Z) € FP’. Provided that such simple motions exist, the problem
of planning a motion between 7, and Z; in FP is reduced to the problem of finding a
motion between their retractions Im(Zy) and Im(Z;) in the lower-dimensional space
FP’. Hence, motion planning in FP is reduced to lower-dimensional motion planning
in FP’. The objective is to obtain, after repeated retractions, a one-dimensional
network, or roadmap, N C FP. There, motion planning is reduced to graph searching
if we represent the one-dimensional network N as a graph. O’Dfmlaing and Yap [71]
and O’Dfmlaing, Sharir, and Yap [70] present algorithms for planning the motion of
a disc and a ladder, based on retractions onto curves in two- and three-dimensional
Voronoi diagrams. The algorithms run in time O(nlogn) and O(n*lognlog™n)
respectively®. Leven and Sharir [64] use generalized Voronoi diagrams to extend
the former O(nlogn) result to a translating convex robot. Sifrony and Sharir [93]
apply a variant of the retraction technique to a translating and rotating ladder
robot among polygonal obstacles. They use a retraction that maps placements in
FP onto particular vertices on the boundary of FP. The resulting algorithm runs in
O(K logn), where K is the number of feature pairs that are less than the length of
the ladder apart. Kedem and Sharir [51] present a variant of the retraction approach
for a convex polygonal robot in which they construct a graph on the edges of the
boundary BFP of the free space. The algorithm runs in time O(nAg(n)logn), where

3log*n = min{i > 0] log(i) n < 1}, where log(i) stands for the logarithm function applied i
times in succession [31].
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As(n) is a nearly-linear function related to Davenport-Schinzel sequences [4, 90].
The resulting motions are once more semi-free rather than free. A general roadmap-
based algorithm is due to Canny [20]. The algorithm computes a roadmap in the free
part of an f-dimensional configuration space in roughly O(n/ log n) time, assuming a
robot and obstacles with bounded complexity. The time-bound is close to worst-case
optimal.

The description of the ideas behind both exact planning approaches exhibits how
the complexity of the free space influences the efficiencies of the algorithms. As it is
impossible to decompose the free space into subcells with a cumulative complexity
that is lower than the free space complexity, or to capture the combinatorial structure
of FP in a roadmap with complexity below the complexity of FP, the complexity of
the free space clearly provides a lower bound on the complexity (and computation
time) of any of the motion planning algorithms.

A question that immediately comes to mind when considering the linear free
space complexity result is whether it opens the way to efficient motion planning
algorithms for realistic environments that fit in the framework sketched in the pre-
vious section. The sensitivity to the actual free space complexity of many existing
algorithm is unclear: algorithms may e.g. construct wasteful decompositions or
roadmaps in cases of low FP complexity, or may construct small decompositions
and roadmaps but at relatively high computational cost. Two algorithms, however,
vield a more or less immediate result, namely the O(K logn) boundary-vertices
retraction algorithm by Sifrony and Sharir [93] and the O(rn®logn) boundary cell
decomposition by Avnaim, Boissonnat, and Faverjon [10]. The relative low obstacle
density causes the number K of close corner pairs to be only O(n) resulting in a
running time of O(nlogn) for a not too large ladder among fat obstacles. Avnaim,
Boissonnat, and Faverjon claim that the running time of their algorithm decreases
considerably if the obstacle density is low. No other papers claim enhanced perfor-
mance of algorithms under certain circumstances.

Most of the exact motion planning algorithms discussed in this section have never
been implemented. One of the few exceptions is Schwartz and Sharir’s O(n®) algo-
rithm. Banon [11] discusses an implementation for a ladder robot that is reported to
perform surprisingly well, contrary to expectations based on the theoretical complex-
ity analysis. This observation may be due to a hidden sensitivity of the algorithm’s
running time to the complexity of the free space, which is far below O(r®). Schwartz
and Sharir do not give any clues in this direction. Nevertheless, the surprising per-
formance of the exact algorithm motivates a more precise theoretical analysis of its
performance under the realistic assumptions sketched in the previous section. In
Chapter 5, it is proven that the algorithm by Schwartz and Sharir runs, unmodified,
in time O(n?) if the obstacles are fat and the robot is not too large, whereas a minor
modification even enhances the efficiency to a running time of O(nlogn). The same
chapter also shows examples of algorithms that do not benefit from the fatness of
the obstacles.
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Algorithms for efficient motion planning in 3D workspaces are scarce: approaches
in contact space, like the algorithms mentioned above by Sifrony and Sharir, and
by Avnaim, Boissonnat, and Faverjon, were never shown to generalize to higher
dimensions. General approaches to motion planning (for example by Canny [20]
and Schwartz and Sharir [85]) are computationally expensive, particularly for the
low free space complexity motion planning problems from the realistic framework.
Three-dimensional workspaces imply at least three-dimensional configuration spaces
with arrangements defining the free portions. Naturally, the structure of such higher-
dimensional arrangements is considerably more complex to understand, let alone to
subdivide the free arrangement cells into simple subcells or catch their structure in
some one-dimensional roadmap. At this point, however, fatness comes to our help
to provide us with a very beneficial property of the workspace, which in fact also led
to the enhanced performance of Schwartz and Sharir’s algorithm mentioned in the
previous paragraph: the bounded local complexity of the workspace implied by the
fatness of the objects makes it possible to partition (a subspace of) the workspace
W rather than the configuration space into regions R such that the free part of
the configuration space cylinder obtained by lifting R into configuration space has
constant complexity. Moreover, the bounded local complexity also establishes the
existence of small partitions into such regions.

We formalize and exploit the workspace properties outlined in the preceding
paragraph and obtain a paradigm in Chapter 6 for planning the motion of a not too
large constant-complexity robot moving amidst constant-complexity fat obstacles.
The paradigm follows the cell decomposition approach to motion planning and re-
duces the problem of finding a decomposition of the free space to the problem of
finding a partition of an appropriate lower-dimensional subspace of the configuration
space, subject to some constraints. The robot’s workspace turns out to be a valid
choice for the subspace under the general circumstances of a free-flying robot. The
size of the free space decomposition into simple subcells is determined by the size
of the partition in the lower-dimensional subspace of the configuration space. The
running time of algorithms based on the paradigm depends on the time to find such
a partition.

In Chapter 7, the paradigm is shown to lead to efficient algorithms for many
motion planning problems among constant-complexity fat obstacles both in IR* and
IR®. We briefly review the results. Unless stated otherwise, the bounds apply to
free-flying robots. The algorithm for solving the planar problem among arbitrarily-
shaped obstacles in the plane runs in O(nlogn) and outputs an optimal (linear)
size decomposition of the free space. The same optimal bounds are obtained for
two practical instances of spatial motion planning. The first case concerns settings
in which the obstacles have roughly the same size, that is, where the ratios of the
obstacle sizes are bounded by a constant. In the other, often encountered case, the
obstacles are unconstrained but the motion of the robot is confined to a plane in
the spatial workspace: the robot’s workfloor. Many examples of such constrained
robots can be found in industrial environments. Chapter 7 furthermore reports an
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O(n?logn) algorithm for motion planning among polyhedral obstacles in 3-space.
The algorithm computes a cell decomposition of size O(n?). Non-polyhedral obsta-
cles require a totally different algorithm. The simple algorithm presented in Chapter
7 for motion planning amidst arbitrarily-shaped obstacles in 3-space runs in O(n?)
time and yields a decomposition of size O(n”*). The results are not restricted to
the specific circumstances of fat obstacles and a bounded-size robot but hold in all
workspaces with relative low obstacle densities. Note that all bounds are indepen-
dent of the number of degrees of freedom of the robot, which can easily be as high
as six or more.

1.3 Fatness in geometry and thesis outline

The first chapters of this thesis introduce a new notion of fatness and discuss its role
in a broader geometric context than motion planning. From Chapter 4 onward, the
emphasis is on the influence of fatness on different aspects of the motion planning
problem.

Chapter 2 introduces a new and general notion of fatness. The new notion is
subsequently compared with previous and less general notions. The chapter fur-
thermore reports two properties of scenes of fat objects in IR? that are both key
tools in many proofs throughout the thesis. The first property applies to scenes of n
non-intersecting fat objects. It is shown that any region of size proportional to the
smallest among the objects intersects at most a constant number of objects in the
scene. This property is for obvious reasons repeatedly referred to as the low object
density property. If n non-intersecting objects are grown then they eventually start
intersecting. The second property states that if the growth is again proportional
to the smallest object, then the arrangement of intersecting boundaries of the (not
necessarily fat) grown objects has complexity O(n). Besides its role as a tool, the
latter property has interesting consequences for complexities of union boundaries
of geometric figures. In addition to these results, Chapter 2 studies the relation
between the (lack of) fatness of an object £ and the (lack of) fatness of objects
Ey, ..., B, with Ui<j<,, /; = E. The main conclusion from the obtained results
is that an object with low fatness cannot be split into (or covered by) a constant
number of objects with high fatness.

In [73], Overmars discusses a data structure for efficient and simple point location
in fat subdivisions or sets of disjoint fat objects with total complexity n. The
structure supports point location queries in time O(log”™ n) and uses O(n log®™ n)
storage. Chapter 3 shows that the data structure can be used to answer range
queries with arbitrarily-shaped but bounded-size ranges. To this end, it is proven
that, under the condition of fatness of the stored objects, each bounded-size range
query can be solved by a constant number of point location queries with carefully
chosen points, leading to a range query time of O(logd_1 n). It is furthermore shown
that such range queries facilitate the efficient construction of the data structure (a
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problem left open in [73]) in time O(nlog®™' nloglogn).

Chapters 4-7 focus on the role of fatness in motion planning. A quick glance
of the chapters learns that Chapter 4 concentrates on the combinatorial aspects of
motion planning. Besides giving an overview of combinatorial complexities of var-
ious motion planning problems (in terms of worst-case free space complexities), it
formulates the mild assumptions that, along with the fatness of the obstacles, yield
a linear free space complexity. The remaining chapters deal with the algorithmic
aspects of motion planning. In Chapter 5, the impact of fatness on a representa-
tive selection of existing (planar) motion planning algorithms is considered. The
algorithms show varying sensitivity to the low free space complexity induced by the
fatness of the obstacles. Chapter 6 presents an efficient general paradigm for motion
planning amidst fat obstacles that exploits the specific structure of the free space
(of motion planning problems amidst fat obstacles) to reduce the problem of finding
a cell decomposition of the free space to the problem of finding some constrained
partition of a lower-dimensional subspace. In Chapter 7, the value of the paradigm
is demonstrated, as it leads to efficient algorithms for a number of realistic motion
planning problems.



Chapter 2

Fatness in computational
geometry

Many combinatorial and algorithmic worst-case complexity bounds in computational
geometry follow from rather artificial constructions that are not very likely to occur
in practice. Often, such constructions include extremely small, large, or thin ob-
jects, like lines, line segments, infinitely long simplices, and points. In many cases,
the artificial worst-case constructions become impossible if the objects under con-
sideration are not allowed to have ‘extreme’ shapes, but are assumed to have some
fatness property. Over the past few years, researchers in computational geometry
have not only noted that certain constructions become impossible for objects with a
certain fatness but, more surprisingly, also that combinatorial and algorithmic com-
plexities of certain problems are provably lower if the objects satisfy specific fatness
constraints.

A sequence of recent papers considers the influence of fatness in computational
geometry. Alt et al. [5], Efrat, Rote, and Sharir [34], and Matousek et al. [67] study
the complexity of the union of §-fat triangles, wedges (that is, regions bounded by
two half-lines emanating from a single point), and double wedges (that is, regions
bounded by two intersecting lines), for a fixed constant §. Either one of the regions
is 0-fat if all its internal angles are at least ¢ (see Figure 2.1). Note that quadratic-
complexity constructions exist for all union sizes if the objects in the union are
non-fat (see for example Figure 1.4). Alt et al. [5] show that the complement of the
union of n d-fat double wedges consists of O(n) components. In addition, they prove
an O(n) bound on the boundary complexity of n homothetic (that is, scaled and
translated) or reflected (with respect to a vertical line) homothetic copies of a single
d-fat triangle. Matousek et al. [67] generalize the results by Alt et al. [5]. The authors
study the union of n 4-fat triangles and prove that its boundary has complexity
O(nloglogn). The complement of the union consists of O(n) components. If the
triangles have roughly the same size or if they are replaced by d-fat wedges, then
the complexity of the union boundary becomes O(n). Efrat, Rote, and Sharir [34]
prove a similar result for the union boundary of d-fat wedges with a nearly inverse
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Figure 2.1: The triangle, wedge, and double wedge are d-fat for some constant § > 0
if the indicated angles are at least 4.

quadratic instead of inverse cubic dependence on the constant . Van Kreveld [58]
extends the O(nloglogn) boundary complexity result to so-called é-wide polygons,
where § (0 < § < 1) gives the minimal ratio of the width and length of any corridor
(narrow passage) in the polygon. Finally, Alt et al. [5] report an O(n) bound for
the complexity of the union boundary of n translated copies of a bowtie. A bowtie
is the rotation figure of a rectangle. The linear bound holds if the rotation angle
does not exceed 2arctan(b/a), where a, b: a > b, are the lengths of the rectangle’s
sides. Note that the aspect ratio of a rectangle, that is, the ratio of the length of its
sides, intuitively provides a good qualitative measure of its compactness or fatness.

Papers by Katz, Overmars, and Sharir [49], Overmars [73], De Berg, De Groot,
and Overmars [15], and Agarwal, Katz, and Sharir [1] report algorithmic conse-
quences of the fatness of the objects under consideration. Katz, Overmars, and
Sharir [49] present an algorithm for efficient hidden surface removal for scenes of ob-
jects with small union size. The algorithm computes the visibility map from z = oo
of a set of n d-fat triangles in 3-space, each of which is contained in a plane parallel
to the (x,y)-plane, in time O((nloglogn + k)log®n), where k is the complexity of
the output. Results for comparable scenes of non-fat triangles are, among others,
an O(n\/Elog n) algorithm by Sharir and Overmars [92] and an O(n'** —|—n2/3+5k2/3)
algorithm, for any ¢ > 0, by Agarwal and Sharir [3]. Overmars [73] gives a simple
data structure for point location in d-dimensional subdivisions consisting of fat cells
with query time O(log?™' n) and storage requirement O(nlog?™'n). For a detailed
discussion of Overmars’ results and an overview of results on point location for non-
fat objects, the reader is referred to Chapter 3. There, it is also shown how the point
location structure can be used for range searching and how the data structure is built
efficiently. Overmars uses the notion of fatness that is introduced in this chapter.
De Berg, De Groot, and Overmars [15] show that an O(n) size orthogonal subdi-
vision of a set of n planar non-intersecting fat objects exists in which each region
is intersected by a constant number of objects. The subdivision can be computed
in time O(nlog®n) using O(nlogn) storage. The result leads to efficient binary
space partitions for scenes of fat objects. Agarwal, Katz, and Sharir [1] study depth
orders of non-intersecting fat objects in 3-space. They show that the depth order of
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n triangles with fat zy-projections can be computed in time O(nlog®n). The com-
putation takes O(n*/3+), for any € > 0, if the triangles are non-fat [17]. In addition,
they prove that the depth order of n convex objects with fat xy-projections and sizes
within a constant ratio from one another is computable in time O(nA!/?(n)log* n),
where As(n) is related to the length of so-called Davenport-Schinzel sequences [4];
the parameter s equals the maximum number of intersections of the boundaries of
any two xy-projections of the convex objects. The fatness of the object projections
boils down to a constant ratio between the size of the smallest enclosing square and
the largest inscribed square of any projection. Halperin and Overmars [42], finally,
use ideas from the study of fatness to obtain efficient algorithms for manipulating
a molecule model of loosely inter-penetrating spheres, representing the atoms that
constitute the molecule.

The notions of fatness encountered so far mostly apply to a limited set of objects
in two-dimensional space. For our aim, a study of the role of fatness in motion
planning, we need a more general notion that at least applies to planar and spatial
objects. The notion of k-fatness that is introduced in Section 2.1 applies to arbitrary
objects in any dimension and forbids objects to be long and thin or to have long and
thin parts. This type of fatness imposes a sufficient requirement on the obstacles
to obtain a low free space complexity result. The parameter k gives a qualitative
indication of the fatness: the lower the value of k, the fatter the object. In the
sequel, a fat object is an object that is k-fat for a constant k. Section 2.1 furthermore
compares our notion of fatness with alternative notions.

The remainder of the chapter is mainly devoted to deducing properties that
serve as tools elsewhere in the thesis. Nevertheless, some of these results are also
interesting in their own right as they have applications outside motion planning.

Section 2.3 contains the low object density result for scenes of non-intersecting
fat objects. The property plays a crucial role throughout the thesis. Within the
same section, it forms the basis of a linear complexity result for the arrangement
obtained by growing the fat object boundaries by an amount proportional to the size
of the smallest object. Besides its applications in motion planning, the latter result
is also interesting in relation to the complexity of the union boundary of figures in
arbitrary dimension.

In Section 2.4, it is shown that the union of two (intersecting) fat objects is
at most a constant factor less fat than the least fat of its two constituents. As a
result, it takes at least Q(log(k/k")) pieces to partition an object that is not k-fat
(so ‘thinner’ than k-fat) into k’-fat pieces for any &' < k. The failure to subdivide
a thin object into a constant number of fat objects makes it impossible to extend
the results in this thesis to thin objects by partitioning the objects into fat objects,
as such an approach would increase the asymptotic size of the object set. The last
section of this chapter presents a generalization of the notion of fatness, and states
the relations between the different types of fatness that fit in the generalization.
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2.1 Fatness

Our definition of fatness in a d-dimensional Euclidean space involves d-dimensional
closed hyperspherical regions centered at some arbitrary point in an object £. The
closed hyperspherical region with radius r centered at m will be denoted by 5, ., so

Sy =11 € 1Rd|d(:1;,m) <r};
the boundary of S, , will be denoted by 95, ,, so
S, = {z € RYd(x,m) =r}.

Hyperspherical regions with boundaries that have non-empty intersection with an
object F play a central role in our notion of fatness. Therefore, the following defi-
nition is useful.

Definition 2.1 [U,, g, Ug]
Let E CTR? be an object. The set Uy is defined as

Us= ) Unpg,

meR

where

Upi =1{Sm, CR|0S,,, N E #0}.

So, Ug 1s the set of all hyperspherical regions with center inside £ that do not fully
contain F. Figure 2.2 gives two-dimensional examples showing two circular regions
Sp and 57 that belong to Ug and two circular regions Sy and S3 that do not belong
to Ug. The region Sy lies completely inside the object F and is therefore easily seen
to be an element of Ug. The region 57 is only partly covered by E but, since its
center lies inside the object £ and its boundary has non-empty intersection with
E, the region 57 is a member of Ug. The circular region S, does not belong to Ug
because its boundary has empty intersection with £, whereas S35 is not a member
of Ug because it has its center outside F.

We define fatness in a way such that objects are not only ‘compact’ but also
do not have extremely thin protuberances. The definition of fatness involves some
positive number k. This number is a measure for the actual fatness of the object.
If the value of £ is increased then the object is allowed to be less fat. For objects
with a boundary with infinitesimally thin protuberances (e.g. line segments) it is
impossible to find such a k, so these objects can never be fat.

Definition 2.2 [k-fat]
Let E CTR? be an object and let k be a positive constant. The object E is k-fat if:

VS e Ug k- volume(£ N S) > volume(S).
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Figure 2.2: Illustration of the definition of Ug: Sy, 51 € Ug, S2 € Ug because
0Sy N E =10, S3 & Ug because its center m ¢ F.

te

Informally, an object E' is k-fat if the part of any hyperspherical region S with a
boundary that intersects F and its center inside F covered by the object £ is at least
a 1/k-th of S. Hence, the relatively emptiest hypersphere among all hyperspheres
centered inside £ and with a boundary intersecting £ determines the fatness of K.
Figure 2.3 gives a collection of two-dimensional objects. Below, an indication of
the fatness of the these objects is given, along with an indication of the relatively
emptiest circle. The diverse character of the various emptiest circles gives a first
indication that the fatness of an object may be hard to compute. The object Fj is
not fat due to the infinitely thin part on the upper edge. No finite bound exists on
the ratio of the area inside the dashed circle and the area of £ inside the circle. The
fatness of a convex object like Fy is computable from its area and its diameter (see
Section 2.2); Fy is (507 /13)-fat. The object 5 may seem quite thin (i.e. not very
fat) at first sight. The closeness of the teeth of the ‘comb’ though makes it hard to
draw relatively empty circles centered inside Fs. Fs is (47)-fat. The object Ej is
(27 4 27/3)-fat. Like in many other cases, the relatively emptiest circle is centered
on the object boundary and enclosing the object entirely. If one of the angles is
chosen smaller, then the emptiest sphere is centered at the corresponding vertex
and passes through the edges incident to the vertex. In such a case (see e.g. FEj),
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Figure 2.3: A single non-fat object £y and five objects Fs, ..., Fg of varying fatness.
The width of a tooth of the ‘comb’ 3 equals the distance between two successive
teeth. The width of the narrow bar of the ‘H’-shaped object Eg is 100 times smaller
than the width of both wide bars. The length of the narrow bar equals the width
of the wide bars. The dashed circles are the relatively emptiest circles in Ug,, (1 <
i <6); the black dots are the circle centers.

the sharpest angle determines the fatness. The object Fs5 is 20-fat. The object Fjg,
finally, is not very fat, due to the narrow bar; Fg is (257 )-fat. Here, the narrowest
corridor determines the fatness of the object. Note that the emptiest circle slightly
penetrates the wide bars. (See the next section for some information on computing
the fatness of objects.)

We list a few straightforward properties of fat objects without proof, as the
validity of each of the properties is easily verified.

Property 2.3 Let E C IR? be a k-fat closed connected object. Then
(a) E is K'-fat, for any k' > k;
(b) R-E is k-fat, for any rotation matriz R € SO(d);
(c) E+1tis k-fat, for any translation vector t € R?;

(d) \E is k-fat, for any scaling factor A € RY.
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The choice for hyperspherical regions in the definition of fatness is rather ar-
bitrary. In fact we could have used any compact region (with non-zero volume),
like hypercubic regions, regions bounded by simplices etc. Section 2.5 examines the
relation between definitions of fatness with respect to different shapes. From the
results presented there, it is clear that if an object is k-fat with respect to a given
compact shape A, it is k’-fat with respect to another compact shape B for some &’
that is only a constant multiple of £.

The lower bound on % in the definition of fatness equals 1 in any dimension d.
The maximal 1-fatness in dimension d is achieved by the ‘object’ IR? as it covers 100
% of any hypersphere. A half-space in any dimension d is 2-fat as is covers at least
half of any hypersphere centered inside the half-space. Determining a lower bound
on the value of k is a lot more interesting if we restrict ourselves to bounded objects.
Then, the lower bound differs from dimension to dimension. There are for example
no (bounded) 1-fat objects at all; there can be 5-fat objects in a two-dimensional
workspace but 5-fat objects in a three-dimensional workspace do not exist. Suppose
we have a k-fat object I/ with diameter §. The volume of this object is bounded from
above by the volume of a hypersphere with diameter ¢ (or radius 6/2). The diameter
of I/ is 4, so there is a pair of points on the boundary of I that are a distance § apart;
let m,m’ € I be these two points. The hyperspherical region S, 5 is an element of
Ug since m' € 05,5 and m’ € E. (Similarly, the hyperspherical region S, s is an
element of Ug.) Hence, the set Ug contains an element S with radius 6. We know
that volume(E N S) < volume(E) < wy - (§/2)% and volume(S) = wy - 6%, where
wy is the dimension-dependent multiplier in the volume formulae for hyperspheres!.
Combination with Definition 2.2 (F is k-fat and S € Ug) yields k& > 2¢. The
boundary value 2¢-fatness is only obtained for hyperspherical objects; hyperspherical
objects have maximal fatness among the bounded objects.

The definition of k-fatness has a ‘local’ character: a certain portion of the prox-
imity of every point in the object must be covered by the object as well. As stated
before, this locality prohibits objects with infinitesimally thin protuberances, even
if these protuberances are extremely short. A huge spherical object with a very
short line segment sticking out of its boundary will not be k-fat for any value of k.
This might contradict with our intuitive idea of fatness. An alternative is the more
‘global” type of fatness given in Definition 2.4. For convenience, we will refer to it
as thickness*. Here, we only compare the volume of the entire object to the volume
of its minimal (volume) enclosing hypersphere: the volume of the object should be
at least a certain portion of the minimal enclosing hypersphere of the object. This
more liberal definition allows objects with small protuberances. If F is an object
then we denote the minimal enclosing hypersphere of £/ by MESE.

'For even dimension wg = way, = 7™ /m!. For odd dimension wg = wam11 = 2(27)™/(2m+1)!.
See, e.g., [36, Section 394].

2Thickness is equivalent to our initial notion of fatness, as presented in [94]. Its shortcomings
with respect to the ability to obtain a low free space complexity led to the present definition of
fatness, given as Definition 2.2.
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Definition 2.4 [k-thick]
Let E CTR? be an object and let k > 1 be a constant. The object E is k-thick if:

k- volume(E) > volume(MESE).

The definition of k-thickness involves just one hypersphere instead of infinitely many.
Note that not necessarily MESE € Ug: the minimal enclosing hypersphere of an
object can have its center outside the object. Again we have the straightforward
property that an object that is k-thick is also &’-thick for &' > k. Spherical objects
are 1-thick, because the minimal enclosing hyperspheres of such objects are the
objects themselves.

Even though the notion of k-thickness seems more natural, it is not very useful
for our purposes because it does not result in low complexities of the free space, due
to the impossibility to prove a low object density property for scenes of such objects
(similar to Theorem 2.9), which turns out to be the basis of the low free space
complexity result presented in Chapter 4. We could restrict ourselves to convex
objects but, as we will see below, in that case thickness is equivalent to fatness.
Therefore, we have chosen to use the definition of fatness stated as Definition 2.2
because it also allows for non-convex objects. The property of the set U, g for
a convex region F given in the next lemma is a useful tool in the proof of the
equivalence of thickness and fatness for convex objects.

Lemma 2.5 Let E C IR be a convex object and m € E. Let S,,, € U, p and
Sm.r € Uy g with v < R. Now the following inequality holds:

volume (FE N Sy,.) < volume(FE N Sy r)
volume(S,,,) —  volume(Sy.Rr)

Proof: We use a polar coordinate frame with origin m and angles ¢,6q,...,60; 5,
with 0 < ¢ < 27,0 < 6q,...,04_5 <m. Each (d—1)-tuple of angles (¢,01,...,04_2)
specifies a viewing direction from m. Since the object E is convex, each point on
the boundary of F can be seen from m. Therefore, the relation between the viewing
direction and the distance to the boundary of £ is a function. The same obviously
holds for both spheres. So, there are three functions pg, ps,, . ps, , : [0,27) %
[0,7]%% — IR* U {0}, that give the distance from m to the boundary of F, S,,,,
Sm.r respectively. The latter two functions are constant: pg, (¢,01,...,04-2) =7

and ps,, o (0,01,...,04_2) = R. Let f, F':[0,27) x [0, 7]972 — [0, 1] be defined as:

PE(@ Oryonns 9d—2)
r

PE(@ O,... 70d—2) 1)
7 ,1).

The left-hand side volume(FE N Sy, )/volume(S,, ) is obtained by integrating the

product of some determinant function ® and the function f to some power p over

f(,01,...,04-2) = min(

71)7

F(¢, 01, ce ,ed_g) = mm(
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the full angular domain. The right-hand side volume(E N Sy, r)/volume(Sy, r) is
obtained by integrating the product of the same ® and the function F' to the power
p over the same domain. The determinant ® is a product of (sin 6;)’-terms. Since
0<6b,...,0,_2 <7, function ®’s range is restricted to [0,1]. Functions [ and F
have the same range. If we can prove that f(¢,01,...,04-2) > F(¢,01,...,04_2),
forall 0 < ¢ < 27 and 0 < 0y,...,0;_5 < 7, then, because ®, f, and F' only have
non-negative function values, the integral containing f will yield a larger value than
the one containing F', and hence the inequality involving the volumes will be proved.

Relevant changes in the values of f and F' appear at pg(¢,61,...,04-2) = r and
pE(¢,01,...,042) = R. Therefore, we consider three different ranges for the value

W

—

Figure 2.4: The angular interval [¢1, ¢2] is an example of case (1), interval [¢2, @3]
is an example of case (2), and the angular interval [¢s, ¢4] is an example of case (3).

of pE(¢7017 .. '70d—2)-

Lo If pp(é,01,...,04-9) <1 then
f(¢,01, .. .,ed_g) = pE(¢,01, .. .,ed_g)/r
Z pE(¢7017 .. '70d—2)/R = F(¢7017 oo 70d—2)-

2. Ifr < pp(é,01,...,04-2) < R then
f(¢,01,. . .,ed_g) =1 Z pE(¢,01,. .. 70d—2)/R == F(¢,01,. . .,ed_g).
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3. f R< pg(é,01,...,04-2) then
f(¢,01,. . .,ed_g) — 1 — F(¢,01,. . .,ed_g).

Figure 2.4 shows a two-dimensional example of each of the three cases given above.
Combining the three different ranges, we obtain

F(0,01,....04-2) > F(¢,01,...,04_2),
forall 0 < ¢ <27 and 0 < 60q,...,0,_ 5 < 7. O

Lemma 2.5 shows that in each set U,, i the portion of a hyperspherical region that is
covered by the object £ does not increase as the radius of the hyperspherical region
increases. The ratio is therefore minimal for the region ES,, p € U, p with maximal
volume, which is the enclosing hypersphere of F centered at m. The region ES,,
is uniquely defined by following expression

ESmp €Unre N Vseu, S C ESnE.

A consequence of Lemma 2.5 is that if & - volume(E N ES,, ) > volume(ES, i)
holds then we can conclude that k- volume(F N S) > volume(S) for all S € U, g.
Define the set ESE of all enclosing hyperspherical regions centered at some point in
the object:

ESg ={ES,, glm € E}.
It is clear that ESEp C Ug. Lemma 2.5 makes a simplification of the condition in

Definition 2.2 possible for convex objects. Note that for all S € ESg, the obvious
equality £ NS = F holds. Hence, a convex object F is k-fat if:

VS € ESg k- volume(E) > volume(S).

The preceding lemma and considerations provide useful tools in the proof of the
equivalence of thickness and fatness for convex objects.

Theorem 2.6 Let £ C IRY be a convex object. Then
E is k-fat = E is K -thick A E is l-thick = F is I'-fat,
with k' = c-k and I" = ¢ -1, for some constants ¢ and .

Proof:
FE is k-fat = F is k'-thick:

Choose some hyperspherical region S € ESp. The object E is k-fat and
ESE CUg, so k- volume(FE) = k- volume(FE N S) > volume(S). Region
S is some enclosing hyperspherical region of £ and MESg is defined as
the minimal volume enclosing hyperspherical region of E. so obviously
volume( MESE) < volume(S) holds. Combining both inequalities results
in k- volume(E) > volume( MESE), proving k’-thickness of F, with &' =
k.
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F is [-thick = I is I'-fat:

The convex object F is [-thick, so [ - volume(F) > volume( MESE). By
Lemma 2.5 and the convexity of F we know that it suffices to prove that
VS € ESg - volume(E) > volume(S), for some constant . Let §
be the diameter of MESE and let € be the diameter of the object K.
The obstacle I fits inside MESE so trivially € < 6. The diameter of the
object £ is determined by two points m and m’ on its boundary. The
radius of a hyperspherical region in ESg is at most e. This is the radius
of the largest regions ES,, p and ES, g.

We have volume( MESE) = wy-(§/2)? and for all S € ESg: volume(S) <
wq - €1, where wy is the dimension-dependent multiplication factor men-
tioned earlier in this section. Combination of all equalities and inequal-
ities yields for all S € ESg:

24 . ] volume (F)

> 2. polume( MES )
= Wq- (Sd
> wy e
> wvolume(S),
proving [fatness of the convex object F, with I’ = 2¢ .. O

Fatness and thickness are definitely not equivalent for non-convex objects as can be
concluded from the object F; in Figure 2.3 which is not fat but very thick.

A consequence of Theorem 2.6 is that the complexity results that we prove for
convex objects that are k-fat also hold for convex objects that are &’-thick. In the
sequel, we will only consider fatness, not thickness.

The notion of fatness proposed in this section also relates to most of the other
notions summarized in the introductory part of this thesis, for the specific classes
of objects to which these other notions apply. A d-fat triangle [5, 67] is also fat
according to our definition. Assume that we are given a d-fat triangle with a longest
edge e. The triangle has minimum area if the other two angles have magnitudes ¢
and 7 — 26. This minimal area is (|e|*tand)/4. Using a result from Chapter 2.2 on
the fatness of convex objects, we find that this triangle is 47 /(tan §)-fat according
to our fatness definition. Maximum fatness is achieved for equilateral triangles
and there is no fatness if & = 0. The latter triangle will also be non-fat in [67].
Furthermore, it is easily verified that a é-fat wedge is (27/4)-fat and a d-fat double
wedge is (7/d)-fat. Van Kreveld’s notion of wideness for polygons [58] is related for
c-gons only, where ¢ is some constant. It is, however, rather difficult to determine a
relation between the fatness and wideness of a c-gon.
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2.2 Computing the fatness of an object

Section 2.1 provides a definition of k-fatness, stating when an object is k-fat. The
fact that an object is k-fat however does not give a clue on how fat the object really
is, due to the property that a k-fat object is also &'-fat, for all £ > k. The minimum
k for which F is k-fat provides a realistic qualitative measure for E’s fatness. Let
F(F) be this minimum, so

F(F)=min{k|F is k — fat}.

We will occasionally refer to F'/(F) as ‘the fatness of E’. Substitution of the definition
of k-fatness in the definition given above yields the following formulation for F'(F):

F(F) = min{k|Vscu k- volume(FE N S) > volume(S)}
volume(S)
volume(F N S)

volume(S)
volume(E N S)

_ volume(S)
= max{ volume(F N S) |5 € U}

== min{k|‘v’5€UE S k}

1S € Ug} <k}

= min{k| max{

The equation shows that the minimum % for which E is k-fat is achieved by the
hypersphere S € Ug that maximizes the ratio fg(.S) = volume(S)/volume(E N 5).
Informally, this hypersphere S is the relatively emptiest among the hyperspheres
of Ug. Figure 2.3 shows that the relatively emptiest hyperspheres for the objects
FEy, ..., Eg are very different.

We will now derive an explicit formula for F/(F) in the case that £ C R? is an
arbitrary convex shape with volume V' and diameter 4. We were unable to express
the fatness F/(F) of an object F as a function of parameters that are related to the
shape of E, and to characterize the corresponding relatively emptiest hypersphere(s)
in Ug, for non-convex objects.

The basis for an explicit fatness formula for convex objects E lies in Lemma 2.5,
which, after minor manipulations, states that the inequality

volume (S, Rr) < volume(Sy, ;)

Fe(Sm.p) = volume(E N Sy p) — volume(£ N Sy, )

= fB(Sn,)

holds for any pair Sy, ,, Sy.r € Ug with r < R. Like in Section 2.1, we abbreviate the
largest member of Ug centered at m to £S5, g. Notice that £S5, i is the enclosing
hypersphere of I/ centered at m. All enclosing hyperspheres F.S,, i centered at some
m € E are collected in a set F.Sg. A consequence of the above inequality is that for
all S,,, € Ug:

Je(ESnE) > f5(Sm,).
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Informally, the inequality says that the largest of the hyperspheres from Ug centered
at m is the emptiest among all such hyperspheres. As a result, the relatively emptiest
hypersphere belongs to the set £Sgp C Ug of enclosing hyperspheres, so

max{fg(9)|S € Ug} = max{fe(9)|S € ESg}

volume(S)
= F .
max{ volume(FE N S) [5€ S}

Each hypersphere in FSg fully encloses the convex object K, hence EN S = K
for all S € ESg. This identity and the assumption volume(F) = V allow for the
following reformulation.

max{fg(95)|S € Ug} = maX{M

|S € ESE}

The constant denominator V' of the fraction in the right-hand side of the equality
justifies the conclusion that the maximum fraction is obtained when the numerator
volume(S) is chosen as large as possible. Therefore, the largest hypersphere in £Sg
is the relatively emptiest hypersphere in Ug. Since the diameter of E equals ¢,
the maximum distance between any pair of points in F is . Let p,¢ € E be such
that the distance from p to ¢ is . Then 5,5 € FESg and S,s € FESg because
q € 05,5 and p € 05,5 respectively. For obvious reasons, the set FSg contains
no hyperspheres with radii larger than §. Combining these considerations with
volume (S, s) = volume(S,5) = wy - 0¢ yields max{volume(S)|S € ESg} = wy - 84,
and thus

Wy - (Sd

F(F) =max{fg(5)|S € Ug} = T

This leads to the following theorem on the fatness of convex objects.

Theorem 2.7 Let E C RY be a closed convex object with volume V and diameter
§. Then E is (wg - V71 6%)-fat.

The problem of maximizing the ratio fr(S) = volume(S)/volume(E N S) for
general F or, less ambitious, for different classes of F (like polytopes) is very hard.
The difficulty lies both in the shape and (implicit) dimension of the domain of
fr and in the analytic form of fz. The continuous domain Ug of hyperspheres
of the function fg can be seen as a subset of the (d + 1)-dimensional Cartesian
product of the d-dimensional space of hypersphere centers m = (mq,...,my) € R?
and the one-dimensional space of radii € IRT. The complex shape of the domain,
constrained by the two dependent expressions m € F and 05, ,NE # 0, contributes
to the difficulty of the problem. Another complicating factor is that the (analytical)
description of fr(S,,,) in terms of m = (my,...,my) and r is not unique throughout
the entire domain of hyperspheres, due to the changing topology of the intersection

of S, and E.
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The problem of computing the fatness for any class of objects beyond convex
shapes remains open. A relaxed version of the problem, aimed at finding an upper
bound on the fatness that is not more than a constant multiple of the ‘real” fatness
(that is, the maximum ratio volume(S)/volume(E N S)), is also largely unsolved.

2.3 Properties of scenes of fat objects

In this section we prove two important results for scenes of fat objects. The results
form the basis of many proofs throughout this thesis. In the first subsection we show
that a scene of non-intersecting k-fat objects satisfies a certain low density property,
saying that the number of objects within a ‘neighborhood’ is at most constant. The
exact interpretation of ‘neighborhood’ is shown to be dependent on the sizes of the
objects that are involved. The low density property resembles the notion of bounded
local complexity introduced by Schwartz and Sharir in [88].

The complexity of the arrangement of the boundaries of n disjoint constant-
complexity objects is clearly O(n). If we expand the objects in some way then they
will start intersecting, and eventually the asymptotic combinatorial complexity of
the arrangement will increase. In the case of general objects, a drastic increase of
the complexity can occur soon after the expansion has started. We may expect, on
the grounds of the low density property of the original disjoint objects, that such a
sudden increase does not take place if the objects are fat: one gets the feeling that an
expansion by some bounded amount does not increase the asymptotic complexity of
the arrangement. The second subsection provides the circumstances that do indeed
lead to this result. The results have immediate consequences for complexities of
union boundaries, like those in [58] and [67].

2.3.1 Fatness implies low density

This subsection discusses a certain low object density property implied by the fatness
of the objects under consideration. The property has a large impact in the rest of
this thesis, as many proofs apply it in some form. The result can be paraphrased
in many different, but essentially similar, ways. We decide to give two alternative
formulations, to save ourselves from repeatedly deducing either one of the two from
the other one in the future. As remarked earlier, the result, like many others in this
thesis, includes a notion of neighborhood depending on the size of the objects under
consideration. Therefore, we shall first introduce a convenient way to express the
size of an object.

Clearly, there are many ways to express a bound on the size of an object. The
size, that is, the radius, of the minimal enclosing hypersphere of an object is felt to
be the most convenient measure for our purposes. The size of the minimal enclosing
hypersphere can be seen to relate closely to other measures of the size of the fat
object, like the diameter of the object, and, because of the fatness, also the volume.
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The choice for the minimal enclosing hypersphere as a measure of size, implies that
if we say that ‘an object X is larger than another object £’ we implicitly mean to
say that ‘the (radius of the) minimal enclosing hypersphere MESx of X is larger
than the (radius of the) minimal enclosing hypersphere MESE of E’. Similarly, ‘the
smallest object £’ means ‘the object with the smallest (radius) minimal enclosing
hyperspere MESE’.

Definition 2.8 [minimal enclosing hypersphere (or mes-) radius] The min-
imal enclosing hypersphere radius, or mes-radius, of an object X s the radius of the
minimal enclosing hypersphere of the object X.

Theorem 2.9 states the low object density property for scenes of non-intersecting
k-fat objects.

Theorem 2.9 Let k > 1 and ¢ > 0 be constants and let £ be a set of non-
intersecting k-fat objects in IRY with minimal enclosing hypersphere radii at least
p. Then the number of objects £ € & intersecting any region R with minimal en-
closing hypersphere radius c - p is bounded by the constant k- (¢ + 1)%.

Proof: The approach is to identify a region 7" with bounded volume such that
each object I intersecting R has a certain minimum volume inside the region 7'
The combination of the volume of 7" and the lower bound on the volume of £ NT
results in a bound on the number of objects F that intersect R.

Define T' = MESRr © So,,, the Minkowski difference of the minimal enclosing
hypersphere MESE of R and the hypersphere with radius p, centered at the origin
O. The radius of the hypersphere T  equals ¢- p+ p = (¢4 1) - p, which implies that
the volume of T is

volume(T) = wq - ((¢+1) - p)d =wy-(c+ 1)d : Pda

where wy is the dimension-dependent multiplier for hypersphere volumes.

Now consider an object F intersecting the region R. Let m be a point in the
non-empty intersection £ N K. The point m lies inside F so it definitely lies in the
minimal enclosing hypersphere MESE as well. As a consequence, the hypersphere
Sim,p 1s completely contained in T' = MESr© So,,. In order to be able to give a lower
bound on the volume of E lying in 5, , and hence in T', we show that 5, , € Ug.
The object E has non-empty intersection with S, , because m € E. Moreover,
the object £ cannot lie entirely in the interior of 5, , as this would contradict the
assumption that the minimal enclosing hypersphere of £ has radius at least p. So,
the boundary of S, , is intersected by I and therefore S, , € Ug. From S, , € Ug
and the containment of 5, , in 7' it follows that

d

volume(E N'T) > volume(E N S,, ) > — - volume(S,, ,) = k™" - wy - p*.

!
F
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The combination of volume(T) = wy-(c+1)*p? and volume(ENT) > k=t wy-p?
for any I intersecting R, results in an upper bound of k- (¢ + 1) on the number of
objects F intersecting R. O

Informally, the theorem states that the number of k-fat objects intersecting a region,
that is not too large compared to the objects, is constant. The weakness of the notion
of thickness, as defined in the previous section, lies in the impossibility to deduce
a similar property for scenes of such objects. This impossibility is illustrated by
the two-dimensional example of Figure 2.5, where an extremely small rectangular
region is intersected by n very thick, namely 4-thick, objects. In a motion planning
context, this would imply that even an extremely small robot is able to touch many
obstacles simultaneously, which potentially leads to a high complexity free space.

ol

i
R

Figure 2.5: The small rectangular region R intersects n 4-thick objects.

The following alternative formulation of the low density property in terms of
distances can be given. It bounds the number of larger k-fat objects that can lie
close to a given k-fat object.

Corollary 2.10 Let £ > 1 and ¢ > 0 be constants and let € be a set of non-
intersecting k-fat objects in RY. Let E € £ be an object with minimal enclosing
hypersphere radius p. Then the number of object E' € & with larger minimal en-
closing hypersphere radii within a distance ¢ - p from E s bounded by the constant

k-(c—l—Z)d.

Proof: Any object £’ within a distance ¢ p from E must also lie within the same
distance ¢- p from the minimal enclosing hypersphere MESE of E, which has radius
p. Necessarily, such an object £’ must then intersect the region bounded by the hy-
persphere concentric to MESE but at a distance ¢- p from MES g, hence with radius
(¢c+1)-p. So, application of Theorem 2.9 with R chosen to be the region bounded
by the concentric hypersphere, with mes-radius (¢+1)-p yields the claimed result. O
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2.3.2 Arrangements of fat object wrappings

This subsection studies the complexity of the arrangement of boundaries of ex-
panded fat objects. Clearly, the arrangement of the boundaries of n non-intersecting
constant-complexity objects has O(n) complexity. Let us see what happens if the
objects are expanded. While expanding the fat objects, each of the boundaries will
eventually start intersecting other boundaries. Intuitively, the first boundaries that
are to be intersected belong to neighboring objects. As there is only a constant num-
ber of objects closeby, the contribution of each boundary to the complexity of the
arrangement of boundaries does, again intuitively, not increase asymptotically as it
starts intersecting the boundaries of these objects. Below, these informal ideas are
made concrete by giving accurate bounds on the expansion of the k-fat objects such
that the combinatorial complexity of the arrangement of the boundaries of these (in-
tersecting) expansions equals O(n). The so-called e-wrappings that are introduced
first provide a convenient means of expressing the expansion of an object.

Sufficiently tight wrappings of fat objects play a crucial role in providing the
justification that the paradigm for motion planning amidst fat obstacles presented
in Chapter 6 indeed works. Besides that, the wrappings also help in finding efficient
instances of the paradigm, for specific classes of motion planning problems. More-
over, the theorem on wrappings that we prove below is interesting in its own right,
as 1t implies nice complexity bounds for certain arrangements and for the boundary
of the union of specific families of shapes.

Definition 2.11 [¢-wrapping]
Let B CIRY and let ¢ € RT. Any object A D I satisfying d(p, E) < ¢ for all p € A
is an e-wrapping of F.

An e-wrapping of an object £ is an enclosing shape of F, with the property that
the distance from the wrapping to £ never exceeds e.

Theorem 2.12 states the circumstances that lead to a linear complexity arrange-
ment of expanded fat object boundaries. An obvious way to express a bound on the
expansion of an object F is to state that the expanded object is some e-wrapping
of the object F itself, for some bounded positive ¢. Note that the object expansions
need not necessarily be fat.

Theorem 2.12 Let k > 1 and ¢ > 0 be constants and let € be a set of n non-
intersecting k-fat objects in IR with minimal enclosing hypersphere radii at least p.

Assume that a constant-complexity (¢ - p)-wrapping A(E) is given for every object
Ee&. Then:

(a) the complexity of the arrangement A(A) of all wrapping boundaries OA(FE) is
O(n),

(b) every point p € RY lies inside at most O(1) wrappings A(F).
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Proof: To prove the (a)-part, let us assume that the objects in £ are ordered
by increasing size: FEi,..., F,, and that py,...,p, are the corresponding minimal
enclosing hypersphere radii, so p < p; < ... < p,. We intend to count for each
object F; the subspaces of dimensions 0 to d — 1 that are defined by the intersection
of OA(FE;) and wrapping boundaries A(FE;) with j > ¢. A (¢-p)-wrapping boundary
OA(FE;) can only be intersected by (¢ - p)-wrapping boundaries dA(F;) (¢ < j) if
the distance from F; to F; does not exceed 2¢ - p < 2¢ - p;. (See Figure 2.6 for a
2D example of intersecting wrappings.) Application of Corollary 2.10 yields that

Figure 2.6: The bold lines are the boundaries of (¢ - p)-wrappings, and (because
p < p;) also (¢- p;)-wrappings, of the objects F;, E;, and Fj. The set of objects
with wrapping boundaries that intersect the wrapping boundary of F; is a subset
of the object within a distance 2¢ - p < 2¢- p; from E;. Although FEj} lies a distance
x < 2¢-p; from F;, FEp’s wrapping (boundary) does not intersect F;’s wrapping
(boundary).

there can only be a constant number of such F;’s within a distance 2¢ - p; from £,
so there is at most a constant number of wrapping boundaries A(FE;) (j > ¢) that
intersect JA(F;). By the additional assumption that all wrappings have constant
complexity, there is only a constant number of subspaces of dimension between 0
and d — 1 defined by the intersection of JA(F;) and wrapping boundaries dA(FE})
(j > ¢). Adding the contributions of all wrappings amounts to a total of O(n)
subspaces of dimensions 0 to d — 1 in the arrangement A(A). The linear bounds
on the number of these subspaces imply the same bound of O(n) on the number
of d-faces in A(A), making the total combinatorial complexity of the arrangement
O(n).
The (b)-part follows immediately from the proof of the (a)-part. Let E; be the



2.4. ASSEMBLING AND DISASSEMBLING FAT OBJECTS 37

smallest object for which the point p € IR? lies inside the wrapping A(FE;). Since
there is only a constant number of wrappings of larger objects intersecting £;’s wrap-
ping, the point p can be in no more than a constant number of additional wrappings.
O

Besides applications in motion planning that become clear later in this thesis,
Theorem 2.12 has interesting implications for complexities of union boundaries of
certain geometric figures. The relation between the complexity of an arrangement
of wrapping boundaries and the complexity of the boundary of the union of the
wrappings becomes clear if one realizes that the faces of the union boundary form
a subset of the faces of the arrangement of wrapping boundaries. So, under the
circumstances sketched in Theorem 2.12, the boundary complexity of UgesA(FE)
is O(n). An alternative, more or less inverse, informal formulation of the result
is the following. The boundary complexity of the union of (intersecting) constant-
complexity objects is linear in the number of objects if k-fat sub-objects can be
identified in all objects, such that the sub-objects are mutually non-intersecting and
not more than some bounded amount smaller than the original objects. The bounded
amount must be proportional to the size of the smallest object. As an example, the
ideas are applicable to the molecule model in the paper by Halperin and Overmars
[42]. The atoms that constitute a molecule are assumed to satisfy the hard sphere
model. The hard sphere model describes atoms by spheres and forbids any sphere
center to penetrate another sphere too far. This property makes it possible to regard
the atoms as wrappings of certain non-intersecting smaller spheres, which are only
a bounded amount smaller than the original atoms. The construction provides an
alternative proof for the linear (in the number of atoms) descriptional complexity
of the molecule surface.

2.4 Assembling and disassembling fat objects

The objective in this section is to show that it takes more than a constant number
of cuts to partition a thin object into fat parts. In fact, we show that the minimum
number of parts that is needed to cut up a thin object into fat subobjects is at
least logarithmically dependent on a measure of the lack of fatness of the object.
The main impact of this result is that it is impossible to extend the results in the
remainder of this thesis for fat objects to thin objects by simply partitioning the
thin object into fat objects without increasing the total number of objects.

To get to the above result we study the implications for fatness of splitting an
object into two subobjects. We subsequently observe that a very fat object can be
split into two extremely thin objects, that a thin object can be split into two object
of which one can be very fat, and finally, that at least one of the parts resulting
from splitting a thin object cannot be more than a constant factor fatter (or less
thin) than the original object. The latter result forms the basis of the main result



38 CHAPTER 2. FATNESS IN COMPUTATIONAL GEOMETRY

mentioned in the first paragraph.

Before we move on to examine the effect of splitting, we must first find an
appropriate way of expressing the bound on the lack of fatness, or ‘thinness’; of an
object, as the observations include thin objects as well as fat objects. A problem
lies in the fact that the remark that an object is k-fat does not say exactly how fat
the object is, but only that the object is not less fat, or thinner, than k-fat. On
the opposite, we would now also like to have a means of expressing that an object
is not less thin, or fatter, than a certain amount. Similarly, saying that an object
is 1,000, 000-fat does not necessarily mean that it is very thin, because the object
might still be 10-fat as well. Fortunately, the negation does supply a bound on the
extent to which an object is fat. The fact that an object is not k-fat tells us that it
is definitely not less thin or fatter than k-fat. Hence, the negation of fatness supplies
an appropriate means of expressing a certain guaranteed amount of thinness, or lack
of fatness.

A simple example shows that it is possible to partition a very fat object into two
unboundedly thin subobjects. Take the (4-fat) circle F of Figure 2.7. The circle is

By E

Fr

Figure 2.7: The left 4-fat circle £ is split into two arbitrarily thin objects F; and
FE5. The right relatively thin object FE is split into a 4-fat object £ and another
object Fs.

split equivalent parts, each one being halt a circle with a thin needle sticking into the
opposite half. The needle can be made as thin as one likes, resulting in extremely
thin subobjects of the circle S. The example straightforwardly generalizes to higher
dimensions. Obviously, it is also possible to partition a very fat objects into two
parts of which exactly one is unboundedly thin.

A second observation is that a very thin object can be split into two parts of which
one is extremely fat. Consider the second example in Figure 2.7 of a rectangle I in
2D with very large aspect ratio, i.e., the ratio of its side lengths. The partitioning
into two parts of which one is extremely fat can be obtained by simply cutting an
(arbitrarily) small 4-fat circle Fy out of the rectangle. Again, the 2D example is
straightforwardly generalizable.
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Partitioning a thin object into two fat objects, however, is impossible. We shall
prove that any split of an object £ that is not n-fat (for some large n) results in
two parts of which one is not (en)-fat, for some (dimension-dependent) constant
¢ between 0 and 1. In fact, we even give a more general result stating that the
union of two intersecting objects cannot be more than a constant factor less fat, or
thinner, than the least fat of its two constituents. This statement does not appear
strange at all: if we superimpose two objects, the result does not seem to be a lot
thinner than the original objects. Before we prove the corresponding lemma, we
first define a dimension-dependent constant (;. The constant plays a role in the
upcoming lemma:

G = min{f(p)lp > 1},

where
Ly
f(p) = ﬁ + Pd
(=Tt
- (2p)

An analysis of the function f learns that it has a single minimum for p € [1,0);

this minimum is reached at p = 2% + 1, hence:
Co= f7T +1) = (277 + 1)

Example values are ¢, = 1/5 and (3 = (9 — 41/2)/49 ~ 0.068.
Now we are ready to formulate the lemma concerning the fatness of the union of
two intersecting fat objects.

Lemma 2.13 Let E; € R? be a closed connected ky-fat object and let Fy C RY be
a closed connected ky-fat object such that Ey N Ey # ). Then the union Ey U Ey is

(Cr ' - max(k, ky))-fat.
Proof: The proof obligation is that

max(ky, ks)

VS e UE1UE2 C
d

-volume((Fy U Fy) N S) > volume(S),

or

Ca
max(kq, ko)

Let us consider a randomly chosen S = 5,, . € Ug,ug,. By definition, the center m
must lie in at least one of Ky and F,. Assume without loss of generality, that m € F;

vS € Ugug, volume((E1 U Ey) N S) > - volume(S).

and recall that S, g, is the Ej-enclosing hypersphere centered at m. Define rpg
to be the radius of ES,, i, so ES, g = Spm.ru- We distinguish two different cases:
r < rgg orr > rgg and analyze them separately, starting with the first, and easiest,
one.
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In combination with the connectedness of Ky, the assumptions r < rgg and
m € Fy yield S € Ug,. Using the ky-fatness of Iy and 0 < (4 < 1, we then get

volume((E1 U FE3) N S)

> wvolume(ky N S)
1
> — - volume(5)
ky
> L - volume(S)
~ max(ky, k2) ’

proving the inequality for all hyperspheres in Ug, g, that do not fully contain
F| in their interior.

In this case the hypersphere S has E; completely in its interior. The assump-
tion that S € Ug,ug, then implies that the boundary of S must intersect Fs.
On the other hand, the non-emptiness of the intersection £y N FEy and the
connectedness of I; yield that F; must also intersect the boundary of £S,, g,.
For the same pair of reasons, finally, £5 must also intersect the boundary of the
hypersphere Sy, (;4,,)/2 Which lies precisely halfway 0FS,, g, and 95. Now let
m' € EyNOSy (r4rp)2 and define the hypersphere L = S, (,_;,6)/2. Note that
this hypersphere touches 9ES,, g, from the outside and 95 from the inside.
Because L and ES,, g, are disjoint and both contained in S, we get that

volume ((FE1 U FE3) N S)
volume((Ey U E3) N ES,, g, ) + volume((F£y U Ey) N L)

>
> wolume(FEy N ES,, g )+ volume(FEy N L).

ES,, g, 1s the largest hypersphere centered at m whose boundary still inter-
sects Fy, so ES,, g € Ug,. The hypersphere L has its center m’ in Fy and,
in addition, its boundary L is intersected by F, because F, intersects the
boundaries 0ES,, g, and 95 which, in turn, both have non-empty intersection
with the interior of L. Hence, L € Ug,. The memberships ES,, g, € Ug, and
L € Ug, combined with the k;-fatness of £y and the ky-fatness of s result in

volume(Fy N ES,, g, ) + volume(FEy N L)
1 1
— - volume(E S, g, ) + — - volume(L)

>
- kl k?
1
m - (volume(F Sy, g,) + volume(L))
1 TES 4 (r—rgs)/2.,
7max(k1,k2) - ) - volume(S) + (77“ ) - volume(S)).

The latter expression is simplified considerably by the definition p := r/rgs.
Note that p > 1 by the assumption r > rgg. Substitution of p and subsequent
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application of the definition of (; yield:

m ) ((r%)d : UOlume(S) + (w)d . Uolume(S))
= i (G votune() + (PR cotune(s)
I (p— 1) +21
B max(ky, ks) - (2p)" ) - volume(S)
1

m . Cd . UOZUTI’LG(S).

Combination of all inequalities gives

Cd

S 6
volume((Iy U Ey) N S) > max(ky, k2)

- volume(5),
proving the inequality for all hyperspheres in Ug, g, that completely contain
Es.

The fact that S was randomly chosen from all hyperspheres in Ug, g, centered in
FE; and the symmetry of the construction with respect to £ and Fy imply that the
inequality

Ca
max(ky, ks)
holds for all hyperspheres S € Ug,ug,- O

volume((Ey1 U Ey) N S) > - volume(S)

Informally, Lemma 2.13 states that if we place two fat objects in overlapping posi-
tions, then the resulting union is not more than a constant factor less fat than the
least fat of the two united objects.

Corollary 2.14 is a generalized version of the result mentioned earlier and saying
that a thin object cannot be split into two (relatively) fat parts. The result of the
corrolary is more general because the object is not decomposed into two subobjects
but covered by two subobjects. Note that a decomposition is a restricted type of
covering in which the subobjects only overlap at their boundaries. Corollary 2.14 is
essentially a reformulation of Lemma 2.13 where k; = ky = k.

Corollary 2.14 Let F£ € IR? be a closed connected object that is not k-fat, Any
covering of E by two closed connected parts results in at least one part that is not

(Ca - k)-fat.

Corollary 2.14 supplies a crucial tool for proving the main result of this section.
Assume we are given an object F that is not k-fat. Our aim is to partition it into, or
cover it by, a preferably small number of k'-fat parts, for some &' < k, provided that
it is possible to do so. Theorem 2.15 repeatedly applies Corollary 2.14 to eventually
end up with k'-fat parts.
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Theorem 2.15 Let E € R be a closed connected object that is not k-fat, and let
kK <k. Any covering of E by k'-fat parts consists of Q(log(k/k')) parts.

Proof: Let P be such that each P € P is k'-fat and UpepP = E, so P is a
covering of I by k'-fat parts. The union Upep P is not k-fat. Now divide P into
two (non-empty) subsets Py and Py such that Upep, P and Upep, P are connected
sets. By Corollary 2.14, at least one of Upep, P and Upep, P is not ((y - k)-fat. We
recursively apply the above procedure to the subsets that contain more than one
part. As a result, it takes at least ¢log(k/k’) + 1 recursive set divisions to end up
with subsets P’ C P such that Upep: P is k'-fat. Hence P must contain Q(log(k/k))
parts. O

Theorem 2.15 gives a lower bound on the number of parts that is involved in any
covering of a thin object by fat parts. The existence of an upper bound on the
same number, on the other hand, seems unlikely. Especially for small values of £, a
covering of the object £ (which is not k-fat) by &'-fat parts may require many small
parts.

2.5 Fatness defined with respect to other shapes

This section presents a proof of the supposition from Section 2.1 concerning the
close relation between fatness definitions with respect to different compact shapes,
that is, if an object is k-fat with respect to a compact shape A then it is k'-fat
with respect to some other shape B for some k' that is only a constant multiple of
k. This supposition sounds rather vague, as it is yet unclear what exactly ‘fatness
with respect to a shape A’ means. We define fatness with respect to A by rather
straightforward generalization of Definition 2.2.

Let A C IR be a closed connected subset containing the origin O (O € A).
Any scaled translate X of A can be described by X = AA + m, where A € RY is
a scaling parameter and m = (mq,...,my) € IR a translation vector. (So X =

{(Aar + my, ... ag + mg)|(aq,...,aq) € A}.)

Definition 2.16 [U}} 5, U]
Let m € RY and let E C R be an object. The set Uné,E is defined as:

Ut p={A+m|dAA+m)NE #0}

The set Ug is defined as:
UEL‘ = U U;g,E

meR

The following definition is a generalization of the notion of fatness given in Definition
2.2.
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Definition 2.17 [k-fatness with respect to shape A]
Let E CTR? be an object and let k be a positive constant. The object F is k-faty if:

VS € Ué k- volume(£ N S) > volume(S).

Note that fatness with respect to some arbitrary shape A is not invariant under rota-
tion like the regular fatness (with respect to hyperspheres). Property 2.3(a),(c),(d)
hold for the generalized notion of fatness.

Theorem 2.18 establishes a relation between the fatness of an object with respect
to a shape A and with respect to a shape B. The fatness of the object £ with respect
to B depends on its fatness with respect to A and the relative fatness of B with
respect to A.

Theorem 2.18 Let A € R and B € IR? be shapes with O € A and O € B. Let
E C RY be a closed connected object. If the object E is k-faty and A itself is k'-fatg,
then the object E is (k- k')-fatp.

Proof: We must prove that for each S € UE, the inequality k- &'~ volume(ENS) >
volume(S) holds. We choose some arbitrary m € E. In addition, we choose some
arbitrary A, such that J(AB +m) N E # 0. The set AB + m will be denoted by
Y. We define X = NA + m such that A is the largest positive real for which
XN (R*—=Y)=0. In words, X is the largest positive real for which X fits in Y.
Note that point m not only lies in F, but, because O € A and O € B, also lies in
X and Y. The intersection £ N X NY is therefore non-empty. (See Figure 2.8 for
a two-dimensional example of the construction.)

Our first step is to prove that X = A+ m € Uz. The intersection of I and X
is non-empty. Object FE will therefore either lie completely in the interior of X or
the boundary X of X is intersected by E. The assumption that Y € UZ implies
that the boundary dY of Y is intersected by K. As dY lies completely outside the
interior (X — 0X) of X, this means that the object £ must lie partly outside the
interior of X. Combining the facts that the intersection of £ and X is non-empty
and that F lies partly outside the interior of X with the assumption that £ is
connected implies that dX N F = (. Together with the fact that m € £ we obtain
that X = NVA+m € Ujé.

The object F is k-fat,, which, by definition of fatness, means that for each
S € Uit k- volume(E N S) > volume(S). Since X € U}, we yield

k- volume( £ N X) > volume(X).

In a second step we prove that Y = AB +m € UZ. We know that m € X,
so the only thing that remains to be proven is that dY N X # . Assume for a
contradiction that Y N X = . Since m € X NY, this would imply that X lies
completely in the interior (Y — dY) of Y. But then we can grow X = NA 4+ m,
by increasing A, while it remains fitting in Y. This ability to grow X contradicts



44 CHAPTER 2. FATNESS IN COMPUTATIONAL GEOMETRY

Figure 2.8: Construction of ¥ = AB 4+ m and X = M A + m, for some arbitrary
m € I and some arbitrary A establishing 0Y N E # 0.

the assumption that X is the largest positive real such that X = M + m fits in Y.
Hence, we obtain that Y = AB +m € U)]?.

The object A is k'-fatg. By the property that the generalized fatness of an object
is not affected by translation and scaling of the object, the object X = MA 4+ m
is also k’-fatp. By the definition of fatness, this means that for each S € UZ:
k' - volume(X N S) > volume(S). Since Y € UR and X C Y, we get

k' - volume(X) = k' - volume(X NY') > volume(Y').

Combining both inequalities with the straightforward inequality volume(F N
Y) > volume(F N X) induced by Y O X, results in the following lower bound on
the part of Y covered by F

k-k"-volume(ENY) >k -k - volume(ENX) >k - volume(X) > volume(Y').

Recalling the fact that ¥ was chosen randomly from all members of UE, we may
conclude that in fact

VS e UE k- k- volume(E N S) > volume(S),
holds. So, the object E is (k- k')-fatp. O
A two-dimensional example illustrates the use of the above theorem. Assume

we are given an object E that is k-fat, i.e., F is k-fat with respect to the (unit)-
circle centered at O. For some reason (see for example Chapter 3), our interest is
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to determine what part of any axis-parallel square with the intersection point of its
diagonals inside £ and not fully containing £ in its interior is covered by F. In
other words, we wish to know E’s fatness with respect to the square C' = {(x,y) €
R*| — 1 < 2,y < 1}. Now, with the theorem available, the only thing that remains
to be done is to determine the fatness of the square (w.r.t. the circle). With the
additional knowledge that the square is 2x-fat, Theorem 2.18 yields that £ is (27k)-
fate, and, hence, also that any axis-parallel square with its diagonals intersecting in
FE and not fully containing F is covered for at least 1/(27k)-th by FE.
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Chapter 3

Range searching and point
location among fat objects

In this chapter we study two fundamental problems in computational geometry in
a context of fat objects: point location and range searching. The point location
problem aims at preprocessing a set of disjoint geometric objects for efficiently re-
porting the specific object containing a query point. The objective of the (general)
version of the range searching problem is to preprocess a set of geometric objects
for quickly reporting all objects intersecting some query range (e.g. rectangloid,
simplex, hypersphere). It is shown that arbitrary convex objects and/or non-convex
polytopes in d-dimensional space can be preprocessed in time O(n log®™! nlog log n)
into a data structure of size O(n log?~! n) which supports point location queries and
range searching queries with arbitrarily-shaped but bounded-size regions in time
O(logd_1 n). The data structure is based on Overmars’ structure for point location
in fat subdivisions [73]. Let us briefly review some relevant results in both point
location and range searching to place our result in a broader perspective.

Point location in 2-space has been studied extensively and solved in a satisfac-
tory way for many types of scenes, as several solutions achieve logarithmic query
time and (near-)linear storage, after (near-)linear preprocessing time [29, 33, 54]. In
higher-dimensional spaces, on the contrary, efficient solutions are available only for
restricted problem instances. In 3-space, Chazelle [22] obtains O(log® n) query time
and an O(n) storage requirement for the case where the stored geometric objects
are the 3-cells of a spatial subdivision, consisting of a total of n facets and satisfying
the restrictive constraint that the vertical dominance relation on its cells is acyclic.
Preparata and Tamassia [80] consider point location in a set of disjoint convex poly-
hedra with total complexity n. (The polyhedra subdivide R” into a number of
convex cells - the polyhedra - and a single non-convex cell - the complement of the
polyhedra.) Their data structure uses O(nlog®n) storage and is capable of answer-
ing point location queries in time O(log”n) after O(nlog®n) preprocessing time.
Goodrich and Tamassia [37] improve the storage requirement for sets of disjoint
convex polyhedra to O(nlogn) without affecting the query time. The results for

47
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arbitrary dimension d are further restricted, applying only to arrangements of hyper-
planes or hypersurfaces of bounded degree. Clarkson [28] presents a data structure
for point location in an arrangement of n hyperplanes in d-dimensional space. The
structure supports queries in time O(log n) and requires roughly! O(n?) storage and
preprocessing. (Chazelle and Friedman [24] improve the storage to exactly O(n?) at
the cost of an increase of the preprocessing time to O(n?**?%)). Chazelle et al. [23]
achieve the same O(logn) query time for point location in arrangements of hyper-
surfaces of constant degree with a data structure of size roughly O(n?¥=3), which is

24=2) time. Apparently, efficient solutions for sets of non-

computable in roughly O(n
convex objects or non-polyhedra in 3-space and for scenes other than arrangements
of hyperplanes or hypersurfaces of bounded degree in higher-dimensional spaces are
lacking.

Nearly all papers on range searching discuss how to preprocess a very elementary
class of geometric objects, namely points, for efficiently answering range search
queries with specific range types. The most extensively studied type of query range
is the orthogonal range, and a long-established result says (see e.g. [79]) that a
set consisting of n points can be preprocessed in time O(n log?™? n) into a data
structure of size O(n log®™! n), which is capable of answering an orthogonal range
query in time O(log*n)?. (Some small improvements are possible.) Different
range types give rise to more complicated solutions. In general, the solutions to e.g.
simplicial range searching only provide low query time at the cost of a relatively
high storage requirement and preprocessing time or vice versa. At the one end, one
finds solutions providing polylogarithmic query time and roughly O(n?) storage and
preprocessing (see [26, 66]), whereas, at the other end of the spectrum, solutions
require only O(n) storage, but guarantee only a larger query time of O(n'~/?) (see
[65, 66]). Van Kreveld [57] gives similar bounds for the problem of reporting all
simplices that are entirely contained in a query simplex. In between the previous
results are the trade-off solutions which allow for exchanging storage for query time.
An example of such a solution is given by Matousek [66]: the presented structure
supports queries in time O((n/m'/?)log®™*(m/n)) at the cost of an O(m) storage

4. Alternative trade-off solutions provide similar

requirement, where n < m < n
bounds. More specific results (with respect to dimension) are reported by Chazelle
and Welzl [27] who give a solution with O(y/nlogn) query time and O(n) storage
for triangular range searching in 2-space and a solution with O(n*?log®n) query
time and a storage requirement of O(nlog n) storage for tetrahedral range searching
in 3-space. Semi-algebraic query ranges are considered by Agarwal and Matousek
[2], resulting in a data structure of size O(n) with preprocessing time O(nlogn)
which supports range queries with a region I' in d-space in time O(n'~'/"+%) where
d is some arbitrarily small value and b is bounded by d < b < 2d — 3, although its

L All quoted rough bounds are adequate up to a factor nlog® n, for some arbitrarily small ¢ and
some constant c.

?In all quoted time bounds we neglect the dependence of the query time on the size of the
answer to the query. All results actually have the form O(f(n) + h), where h is the output size.
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precise value depends on I'.

Overmars [73] discusses a data structure for efficient and simple point location
in fat subdivisions or sets of fat objects with total complexity n. The structure
supports point location queries in time O(log”™™ 1) and uses O(nlog?™' n) storage.
In his paper, Overmars does not touch the issue of efficiently computing the data
structure, that is, in time comparable to the storage requirement. It is shown in
this chapter that for arbitrary convex objects and for non-convex polytopes, the
structure can be built incrementally in time O(n log?™! nloglog n). Besides sup-
porting efficient point location queries, the data structures storing the arbitrary
convex objects and/or polytopes can, surprisingly, also be used for range search-
ing with arbitrarily-shaped but bounded-size ranges. In fact, we show that each
bounded-size range query can be implemented by a constant number of point loca-
tion queries, thus leading to a time bound of O(logd_1 n) for range search queries.
Chapter 6 gives an important application of bounded-size range searching. The mo-
tion planning paradigm presented there requires the a priori knowledge of all pairs
of neighboring obstacles, where the notion of neighboring is related to the size of the
smallest obstacle. The results presented in this chapter facilitate the computation
of all pairs in time O(nlog®™" nloglogn).

The main contribution of our results with respect to the point location prob-
lem lies in their dimensional generality, where previous results in higher dimensions
are restricted to arrangements of hyperplanes or hypersurfaces of bounded degree,
and to severely restricted subdivisions and scenes of non-intersecting convex poly-
hedra in 3-space. We find that point location queries in scenes of non-intersecting
(or mildly intersecting) fat convex objects and/or fat polytopes can be performed
in polylogarithmic time at the cost of near-linear storage and preprocessing. To
see the contribution for range searching we recall the results by Van Kreveld [57]
quoted earlier. A query with a simplex in d-space for all contained simplices takes
logarithmic query time at the cost of roughly O(n?) storage or linear storage at the
cost of polynomial query time. The solutions to range searching among points have
similar performance. Although the range searching results apply only to fat objects
and small query ranges, they succeed in combining polylogarthmic query time with
near-linear storage and query time for simplicial range searching among arbitrary
convex shapes and non-convex polytopes. Moreover, the data structure caters for
arbitrary query ranges.

The first section below discusses Overmars’ data structure for efficient point
location among fat objects, while the next section shows how the structure can
be used for simple and efficient range searching among classes of fat objects. In
the third section, the range searching results are used to support the incremental
construction of the multi-purpose data structure, starting from the largest object
and repeatedly adding the next largest object. Finally, we summarize the results
and point out the various potential generalizations.
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3.1 Point location among fat objects

This section discusses a data structure for point location among disjoint fat objects
by Overmars [73]. The author presents the data structure as a structure for solving
the problem of point location in subdivisions of d-dimensional space into fat cells.
The answer to the query is the specific cell containing the query point. The point
location problem in fat subdivisions can be seen as an instance of the following,
more general, formulation of the point location problem:

Given a set £ of non-intersecting constant-complexity k-fat objects in
IR and a query point p € IR?, report the object El € £ that contains p,
or report that no such object exists.

Figure 3.1 shows two point location queries in a set of five non-intersecting fat
objects. The query with the point p should yield the answer E;, whereas the query
with ¢ must result in the answer that no object contains ¢. If the objects in &

: j ) %
Figure 3.1: Two point location queries in the set {Fy,..., Es}; the query with p
yields the answer £y, while ¢ is reported to lie in no object.

entirely cover IR? then we obtain a fat subdivision like in Overmars’ paper. In the
more general setting, the complement of the objects need not be fat, nor does it
have constant complexity. The ideas from [73] are discussed below in the context of
this more general problem formulation.

Overmars’ paper only presents a data structure for efficiently answering point
location queries; the issue of building the structure remains untouched. Later in this
chapter, a solution for this problem is given for arbitrary convex objects and non-
convex polytopes. The solution relies on the ability to do efficient range searching
queries among these objects. Before discussing range searching and its application
to building the point location structure, this section simply summarizes the results
of Overmars presented in [73].

Let us assume in this chapter that the constant-complexity k-fat objects in
Ey, ..., E, € £ are ordered by radius of their minimal object enclosing hyperspheres.
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Let furthermore p; be the radius of F;’s minimal enclosing hypersphere. Let us de-
note the axis-parallel enclosing hypercube of the minimal enclosing hypersphere of
an object F; by ;. By construction, the hypercubes are ordered by increasing size.
Note that the side length of the hypercube C; is 2p;. Notice that the hypercubes
C; may be overlapping, although the objects F; are disjoint. Furthermore, let V; be
defined as follows:

‘/ZZ{E]65|E]QCZ7£®AJZZ}

Hence, V; is the set of objects that are larger than £, i.e., with larger minimal
enclosing hypersphere, intersecting the box ;. Theorem 2.9 immediately supplies
a useful property of the sets V;, 1 <7 < n.

Lemma 3.1 Forallv:1 <:i:<n: |Vi|=0().
A second crucial lemma from [73] is the following.
Lemma 3.2 Let p € E; and i« = min{h|p € C,}. Then E; € C,.

In words, the lemma states that if the query point p lies in an object £}, then F; is
an element of the set of objects V; associated to the smallest hypercube C; containing
p. This suggest the approach outlined below.

Assuming that the hypercubes C; and the sets V; for all 1 <: < n are available,
we proceed as follows to find the answer to a point location query with a point
p € RY. Determine the smallest hypercube, if any, containing p. If no hypercube
contains p than p lies in no object; if, on the contrary, C; is the smallest hypercube
containing p, then the set V; must contain the answer to the query. To this end, we
check the objects in V; for containment of p. Note that the check for containment
of a point in an object E; € V; takes constant time due to the constant complexity
of the objects. The constant cardinality of V; yields that the entire inspection of
all objects in V; takes O(1) time. If no object in V; contains p then no object in
& contains p; otherwise the unique object F; € V; containing p obviously is the
answer to the query. As the inspection of V; takes constant time, the point location
query time is dominated by the time to find the smallest hypercube C; containing
the query point p. An appropriate data structure that solves this problem is given
below.

The point location problem is now essentially reduced to the following priority
point stabbing problem among (intersecting) hypercubes:

Given a set of hypercubes C in R? and a query point p € R, report the
smallest hypercube C' € C containing p, or report that no hypercube in
C contains p.

To solve a priority point stabbing query among hypercubes, Overmars proposes a
d-level data structure in which the upper d — 1 levels are based on the segment tree
and the lowest level is a list or a balanced binary tree.
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d =1 The hypercubes C4,...,(, are intervals on the real line. The interval end-
points partition the real line into 2n + 1 so-called elementary intervals. All
points within a single elementary interval are covered by exactly the same one-
dimensional hypercubes. We organize the intervals as an ordered list and label
each elementary interval with the index of the smallest of all one-dimensional
hypercubes covering it. The list structure requires O(n) storage. The answer
to a point stabbing query is provided by the label of the elementary interval
containing the query point. The interval can be identified in time O(log n).

d > 1 The d-dimensional hypercubes are stored in a segment tree T' on their pro-
jections onto the d-th coordinate axis. The endpoints of the hypercube pro-
jections partition the d-th coordinate axis into a number of elementary inter-
vals. An interval [, is associated with each node v in 71: [, is the union of
all (consecutive) elementary intervals associated with the leaves of the sub-
tree rooted at v. With v we store in an associated structure the intersec-

=1 I, N C; for hypercubes C; that entirely span the slab

x I, but do not entirely span the slab [—oc,c0]?"! x I, corre-

sponding to the parent v’ of v in T. The projection of such an intersection

[—o00, 0047t x I, N C; onto the subspace spanned by the first d — 1 coordi-

nate axes is a (d — 1)-dimensional hypercube. We store these hypercubes in

a (recursively defined) similar (d — 1)-level data structure on the first d — 1

coordinates, that is, it d — 1 > 1. If d = 1 = 1 we use the one-dimensional

tions [—o0, o]
[—OO, Oo]d_l

construction outlined above to store the intersection of the squares and the
planar slab. The structure suffices because the squares intersect the vertical
slab perpendicularly, and can therefore be represented as intervals. So, the
bottom-level structure is a list or ordinary balanced binary tree instead of a
segment tree.

Searching the multi-level data structure with a query point p proceeds in the
following recursive manner: start at the root and repeatedly continue towards the
child corresponding to the slab containing p. (Testing only the last coordinate is
sufficient.) The search ends at the leaf corresponding to the elementary interval
containing the last coordinate. We have now obtained O(logn) nodes on the search
path, each corresponding to a slab containing p. The search is continued recursively
in the substructures associated to each of these nodes. The entire search from top to
bottom in the multi-level data structure takes therefore O(logd n) time, resulting in
O(log®' n) candidate answers. The minimum among these candidates is the final
answer to the query. The query time can be improved by applying fractional cas-
cading [25] to the two lower levels of the data structure. This is possible because the
bottom-level structures are ordered lists (a sequence of intervals). Fractional cascad-
ing improves the query time in a 2-level data structure consisting of a segment tree
with the one-dimensional ordered lists as substructures from O(log?n) to O(logn).
Hence, a priority point stabbing query among hypercubes takes O(logd_1 n) time.
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The structure uses O(nlog?' n) storage. The result is summarized in the following
theorem.

Theorem 3.3 A set £ of non-intersecting constant-complexity k-fat objects in IR?
can be stored in a data structure of size O(n log#~? n), such that, for a query point
p e RY, it takes O(logd_1 n) time to report the object E € & that contains p, or to
conclude that no object contains p.

The remaining open problem concerns the preprocessing phase, that is, the
computation of the data structure: given a set of non-intersecting k-fat constant-
complexity objects Fy,..., I, ordered by increasing radii of their minimal enclosing
hyperspheres, compute the multi-level data structure storing the enclosing hyper-
cubes (4, ...,C, of the minimal enclosing hyperspheres of these objects plus the
sets Vi,...,V, of larger objects intersecting the respective hypercubes Cy,...,C,,.
Building the multi-level data structure can be accomplished in time O(n log®™! n)
using standard techniques. Another option, that is exploited in Section 3.3, is to
build the structure in an incremental way. It is well-known that a hypercube can be
inserted in a d-level segment tree in time O(log?n). Moreover, if we use dynamic
fractional cascading [68] instead of ‘regular’ fractional cascading, the insertion time
can be further reduced to O(log?™' nloglogn) (see Section 3.3).

The computation of the sets V;, on the other hand, seems to pose more problems.
Finding the objects F; with 57 > ¢ intersecting the hypercube C; requires a range
search query with ;. The query is not an ordinary range search query, since we
are only interested in objects with a certain minimal size (or index). Performing
a range search query among all objects and subsequently filtering out the smaller
objects is not a good idea, as the answer to the range query might by orders of
magnitude larger than V;. A better idea would be to perform a range search query
with V; only among objects that are larger than F;. Surprisingly, we show in the
next section that it is possible, in most interesting cases, to use the point location
structure itself for solving the range search query. This suggests an approach where
we add the hypercubes from large to small, meanwhile computing the sets V; in
the following (incremental) way: use, before insertion of the hypercube C,_,,, the

sets Vi—ma1,--., Vaem and the multi-level data structure storing the hypercubes
Cremsty---,Cy to compute V,,_,, by a range query with C,_,, among the objects
K mi1s..., E,. Next, insert C,,_,, into the structure and continue with C,,_,,_1.

Section 3.3 contains the details of the approach.

3.2 Range searching by point location

In this section we use the point location data structure to tackle the following general
version of the range searching problem:

Given a set £ of non-intersecting constant-complexity k-fat objects in IR?
with minimal enclosing hyperspheres with radii at least p and a constant-
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complexity query region R of arbitrary shape with diameter at most h-p
for some positive constant h, report all objects I/ € € that intersect R.

Figure 3.2 shows a bounded-size range query in a set of five non-intersecting fat
objects. The query with the range R must yield the answer {F,, 5, F5}. Using

Figure 3.2: A range query in the set {Fy,..., F5}; the query with R yields the
answer {Fy, Fs3, Fs}.

Theorem 2.9 it is easy to verify that the answer to the query with a region R,
satisfying the diameter bound, is a set of objects of constant cardinality. Let us
define the set Q(R) of objects intersecting the region R:

Q(R) = {E € §|EN R+ 0}

It is shown how the point location structure can be used to solve the range
searching problem in time O(logd_1 n) in the case that & is a set of arbitrary convex
objects and/or non-convex polytopes. The solution relies on local properties of fat
objects. The definition of fatness requires a k-fat object F to have a large ‘density’
in the vicinity of any point p in the object: 1/k-th of a hypersphere centered at p
is covered by F. It turns out that this property makes it possible to hit any object
or object part with a certain minimum size, regardless of its exact location, with at
least one point from a sufficiently dense, but not too large, pattern of sample points,
whereas this would clearly be impossible if the obstacle is non-fat: the chance to hit
a line segment by an extremely dense pattern of sample points is practically zero.
To structure the problem and the shape of its solution, we restrict the sample points
to be arranged as a regular orthogonal grid.

Definition 3.4 A regular orthogonal grid G(r) with resolution r is defined by:

G(r) = {(zr, ..., zar)|21,. .., 2a € Z}.
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This section focuses on the problem of finding a grid resolution such that a small
subset of the corresponding regular orthogonal grid is guaranteed to hit any object
FE having non-empty intersection with the query region K. We shall first determine a
suitable grid resolution for convex objects, and subsequently use the results obtained
there to find an appropriate resolution for general polytopes.

The main implication of these results is that the range query with the bounded-
size range R C IR? can be solved by a sequence of point location queries, each taking
O(logd_1 n) time, using the data structure for point location among fat objects.
Under the assumption that the diameter of the query region does not exceed & - p,
the sequence of point location queries will have constant length.

The aim is to find a grid resolution r establishing that each object F € Q(R) is
hit by at least one point in some subset Il C G(r), where, preferably, the size of 11
depends on k and h (and the complexity of the individual objects) only. Before we
focus on the different types of objects, we first give some basic results that ease the
task to find a grid resolution.

To simplify the approach, we will define for each object a large hypersphere that
is contained in the object £ € Q(R). For the hypersphere, it is easy to determine
the grid resolution r such that the hypersphere is always hit by at least one of the
grid points.

Property 3.5 Any hypersphere with radius at least %r\/g contains at least one point
of the orthogonal grid G(r).

The hypersphere itself is determined in two steps. First, a result by Leichtweif[61]
makes it possible to identify a large ellipsoid inside a convex part of the object F.
Due to the fatness of the object F. the ellipsoid, in turn, indeed contains a large
hypersphere.

Ellipsoids play an important role throughout this section. Let us therefore briefly
review some relevant properties of these shapes. Any ellipsoid L C R? can be re-
garded as a translated and rotated copy of an ellipsoid in so-called standard position.
An ellipsoid L; in standard position has the following form

[}

L5
Ly: >, =<1,
ielt,dr U
where a4, ..., aq are constants. The segment connecting the points 077! x —a; x 097" €

L, and 07! x a; x 097" € L, which has length 2a;, is referred to as an axis of Lg;
L, has d such axes. If w < a; for all 1 < < d, then the hypersphere with radius w
centered at the origin is entirely contained in L; (see Figure 3.3). The volume of an
ellipsoid can be given as a function of the lengths of its axes; the volume of L, (and
of its translated and rotated copies L) is given by (see e.g. [99])

volume(Ls) = wy - H a;,

te{l,...,d}
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Figure 3.3: The ellipse I with half-axes ay > a3 contains a circle with radius as.

where wy is again the dimension-dependent constant multiplier from the volume
formulae for hyperspheres (see Chapter 2).

A lower bound V' on the volume of an ellipsoid L alone does not suffice to prove
that L encloses a large hypersphere, as it is possible to construct a very ‘long and
thin’ ellipsoid. An additional upper bound on the diameter of the ellipsoid, and,
hence, on the a;’s (1 <@ < d), however, makes such a construction impossible. This
follows easily from the volume formula for ellipsoids.

Lemma 3.6 Let L C R? be an ellipsoid with volume(L) > V and let § be an
upper bound on its diameter. Then L contains a hypersphere with radius at least

oo (2/8)

Proof: Assume without loss of generality that L is in standard position, and, hence,
of the form > ,cqy  p2f/ai = 1. Then, its volume is volume(L) = wy - [Lieqr,. ) @i-
The upper bound of § on the diameter of L implies that none of the axes of L is
longer than 4, and, thus, for all 1 <7 < d:

Now assume, for a contradiction, that a; < wld -(2/8)%71. Subsequent application of
this inequality and the upper bound a; < §/2 (1 < i < d) yields

volume(L) = wy-aj- H a;

i€{1,...,d} i)
< Wy (2/9) H i
wq ie{1,...,d}i#]
%
< wgs— - (2/8) - (6/2)
Wy
=V

contradicting the assumption volume(L) > V.
The ellipsoid L entirely contains the hypersphere with radius wld - (2/8)%* cen-
tered at the origin. O
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In the two subsections below, we use the property and lemma to find a valid grid
resolution, and identify a small subset of that grid that suffices to hit all objects
intersecting the query region R C R®.

3.2.1 Searching among convex objects

Let £ C IRY be a convex k-fat object intersecting the query region R C RY, and
let m € £N R. The hypersphere 5, , belongs to Ug as it is centered inside £ and

can impossibly have F entirely in its interior. The membership S5, , € Ug and the
k-fatness of E yield:

k- volume( £ N Sy, ;) > volume(S,,,) = wy - ot (3.1)

The shape £'N .S, , is convex as it is the intersection of the convex objects F and
Sm,p- The following result due to Leichtweif[61] holds for any convex shape.

Lemma 3.7 Let E C IR be a convex object. There exist ellipsoids L', L° C IR?
such that L' C F C L9 and

d* - volume(LI) > volume(LO).

Corollary 3.8 is a trivial consequence of Lemma 3.7.

Corollary 3.8 Any convex object E C RY contains an ellipsoid L with
d? volume(L) > volume(FE).

Application of Corollary 3.8 to the shape £ N S, ,, satisfying (3.1), implies the
containment of an ellipsoid L C NS, , such that

d
volume(L) > wdp

> 2 (3.2)

The diameter of L is bounded by 2p, because L is contained in the hypersphere 5, ,
with diameter 2p. The application of Lemma 3.6 to the ellipsoid L with diameter
at most 2p and volume bounded by (3.2) yields that L contains a hypersphere
with radius at least k='d~%p. Property 3.5 subsequently implies that such a hyper-
sphere is hit by at least one point from the regular orthogonal grid with resolution
2k=1d~ (3 p. or Q(Zk_ld_(d"'%)p). Hence, at least one point from Q(Zk_ld_(d"'%)p)
hits SC L C ENS,,,.

So far, we have only bothered about finding a sufficiently high resolution for a
grid to hit all objects FF € Q(R). Clearly, it is unnecessary and even undesirable
to perform point location queries with a too large subset of the grid, both because
it increases the query time and because it would lead to many accidental hits of
objects £ ¢ Q(R). Fortunately, the size of the sample set (and the number of
accidental hits) can be adequately limited by a quick glance at the deduction of the
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grid resolution: the resolution is chosen such that any object £ € Q(R) is hit inside
a hypersphere 5, , with m € R. This hypersphere lies entirely inside the region
R © So,, where O is the origin of the Euclidean coordinate frame and & denotes
the Minkowski difference operator. The Minkowski difference of two sets A and B
is defined by A B ={a—bla € ANb€E B}. Hence, at least one of the grid points
hitting £ lies in R© So ,. As a result, it suffices to restrict the set of sample points
IT to be the set of grid points in the grown query region:

= G(2k'd"“3)p) N (RO So.,).

The result is summarized in the following lemma.

I=¢G n(Re So,)

Figure 3.4: A two-dimensional example of the construction of the set of sample
points II for a query with a region R with diameter i - p among a set £ of objects
with minimal enclosing circle radius p. The resolution r of the orthogonal grid is
determined by the type of the objects in &.

Lemma 3.9 Let € be a set of convex k-fat objects E C IR with minimal enclosing
hyperspheres with radii at least p and let R C RY be a region with diameter h - p,
for some constant h. The set Q(R) of objects E € € intersecting R can be found by
point location queries with the points from Q(Zk_ld_(d"'%)p) NRSSo,.
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The data structure presented in the previous section allows us to perform point
location queries among the objects of € with all points in II in time O(|1I]log™™" n).
The resulting set {F € E[IINE # 0} of query answers, which clearly has at most [II|
elements, is a superset of the answer Q(R) to the range query with R. For each of
the objects £/ € {F € E|IIN E # 0}, additional constant time suffices to verify the
membership £ € Q(R) by a simple test for the non-emptiness of £ N R, provided
that R and all £ € &£ have constant complexity. Hence, the computation of Q(R)
takes O(|1]log®™' n) time.

It remains to bound the size of II. Clearly, the Minkowski difference R © So ,
fits entirely in the hypercube [l — p, 2l + (h 4+ 1)p] x ... x [2f — p, 2B + (h + 1)p],
where l’ﬁ (1 < ¢ < d) is the minimal x;-coordinate occurring in R. As a result, the
number of elements in II is bounded by the number of grid points in the enclosing
hypercube, leading to

) = |Gk d™Dp) N (RS So,)|

< G2k d D))
N[al = poal + (h+1)p) x ... x [yl — p,yf + (h + 1)p]]

= (G +2)
= O((kd'h)")

In a setting where all objects are k-fat for some constant £ and the diameter of the
query region R does not exceed a constant multiple & of p it follows that |II| = O(1),
which implies an O(log?™' n) time bound for range searching with a bounded-size
region .

Theorem 3.10 Let k> 0 and h > 0 be constants, and let € be a set of convex k-fat
constant-complexity objects E C IR with minimal enclosing hyperspheres with radii
at least p. A range searching query with a region R C R? of diameter at most h - p
among € takes O(log™™' n) time.

3.2.2 Searching among polytopes

Having solved the range searching problem among convex objects we now turn
our attention to (non-convex) polytopes. We assume that all polytopes £ C R?
in &€ are bounded by ¢ hyperplanar faces, that is, each face is part of a (d — 1)-
dimensional hyperplane. Let F be a k-fat polytope intersecting R, and let m € ENRK.
Inequality (3.1) applies to the intersection of the polytope F and the hypersphere
Sm.p € Ug, on exactly the same grounds as in the convex case. Unfortunately, the
intersection £ N S, , is not a polytope as its boundary contains portions of the
hyperspherical boundary of S, ,. This can be remedied by replacing 5,,, by its
(axis-parallel) enclosing hypercube C,, , (with ‘center’ m and side length 2p) with



60 CHAPTER 3. RANGE SEARCHING AND POINT LOCATION

volume (C,, ,)/volume(S,, ,) = 2¢/wy. The ratio of the volumes, the inequality (3.1),
and the obvious inequality volume(FE N Cy, ,) > volume(E N S, ,), together yield

29 i d

o -volume( £ N Cp, ;) > volume(C, ,) = 2%p°. (3.3)

The intersection &£ N C,, , is a collection of polytopes. The arrangement of the

¢+ 2d supporting hyperplanes of the ¢ faces of F and the 2d faces of the hypercube
Cin,p subdivide IR? and, more importantly, £ N Cin,p into convex regions: the d-faces
(or cells) of the arrangement. Edelsbrunner’s book on combinatorial geometry [32]
supplies bounds on the numbers of faces of various dimensions in arrangements of
hyperplanes. Lemma 3.11 reproduces the bounds.

Lemma 3.11 The maximum number f,gd)(n) of k-faces in an arrangement of n
hyperplanes in R is given by

o 5 (£)(2)
' ie{0,..k} k-1 d—q

We are interested in the maximum number of d-faces in an arrangement of ¢ + 2d
hyperplanes in R?, or fc(ld)(c + 2d) for short. By Lemma 3.11, we have that

Fet2d) = % (Z:ﬁ)(cfffl)

i€{0,...,d}
B Z ( c+2d )
FEe{0rmnd) J
< L 5 ( ¢+2d )
2 J
7€40,...,c+2d}
< 2c—|—2d—1‘

The basis of the first of the above inequalities lies in the simple observation that
d < %(c +2d). Note that the bound of 2¢+?¥=1 on the number of d-faces is probably
not very tight, as the ¢+ 2d hyperplanes include many parallel pairs of hyperplanes.
The c+2d hyperplanes subdivide the collection of polytopes ENC,, , into g < 2¢+24-1
convex regions. The largest region £’ C F N (), , of these g convex regions clearly
satisfies

1
volume(E") > — - volume(ENC,,,)
g

wdpd
- 20-|—2d—1 k '

> s volume(FE N Cy, )

(3.4)

The convexity of the subshape £’ C E N C,, , allows for the subsequent appli-
cation of Corollary 3.8, Lemma 3.6, and Lemma 3.5. First of all, Corollary 3.8 tells
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us that the convex shape F’ contains an ellipsoid L with

d
volume(L) > wdp

= Serad—T gl (3.5)

As the ellipsoid L lies entirely inside the hypercube C,, ,, the diameter of L is
bounded by 2pv/d. Lemma 3.6 now implies that L contains a hypersphere S with
radius at least 2_(C+2d_1)k_1d_%(3d_1)p. Property 3.5, finally, shows that any such
hypersphere S is hit by at least one point from the regular orthogonal grid with
resolution 2_(C+2d_2)k_1d_%dp. Hence, at least one point from Q(Z_(C"'zd_z)k_ld_%dp)
hits S C L C ' C ENCy,,,. Notice that in the case of polytopes, unlike for convex
objects, the required grid resolution depends on the complexity ¢ of the objects of
E.

By the considerations of the previous paragraphs, one of the grid points that
hit any object £ € Q(R) lies inside a hypercube C,, , with m € E N R. This
hypercube must therefore lie completely inside the Minkowski difference R © Co .
As a consequence, the set II may be restricted to

=g 214~ N RE o,
Lemma 3.12 summarizes the results obtained so far in this subsection.

Lemma 3.12 Let € be a set of k-fat polytopes E C RY bounded by ¢ hyperplanar
faces and with minimal enclosing hyperspheres with radii at least p. Furthermore,
let R C RY be a region with diameter h - p, for some constant h. The set Q(R) of

objects £ € & intersecting R can be found by point location queries with the points
3
from Q(Z_(C+2d_2)k_1d_5dp) NR& So,.

Similar to the convex case, the sequence of point location queries with all points

in 1 takes O(|II]log?™™ n) time and results in the set {£ € EIINE # 0}. The
extraction of Q(R) from this set takes O(|II|) time under the additional assumption
that R and all £ € £ have constant complexity, so ¢ must be constant. To bound
the number of elements in II, we notice that B © Cp , also fits completely in the
hypercube [z — p, 2l + (h+1)p] x ... x [2F — p, 2l + (h+1)p], where zI* (1 <1 < d)
is once again the minimal z;-coordinate in R. The number of grid points in the
hypercube bounds the number of elements in II:

| = (G2 n(Re Co )|
S
Nlzg — poal + (h+1)p] x ... x [y = p,yi + (h+ 1)p]|
= (2"kd3([h] +2))°
= O((2°kd?h)?)
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If, besides ¢, the parameters k and h are also constant, then we get |lI| = O(1),
which induces polylogarithmic query time for range searching with bounded-size
ranges among fat objects.

Theorem 3.13 Let k£ > 0 and h > 0 be constants, and let € be a set of k-fat
constant-complezity polytopes £} C IR with minimal enclosing hyperspheres with
radii at least p. A range searching query with a region R C RY of diameter at most
h-p among & takes O(log”™' n) time.

3.3 Building the data structure

The results of the previous section can be used for the incremental construction of
the point location (and range searching) data structure. Let us assume we are given
the d-level data structure for priority point stabbing queries among hypercubes from
Section 3.1, storing the m largest hypercubes C,,_,,11, ..., C,, and the corresponding
constant cardinality sets V,_,,41,...,V,. We refer to this partial priority point
stabbing structure as T,,. Hence, the objective is to eventually compute T,, from
some initial structure 7y. The outline of the incremental construction is as follows.

compute Tp;
m = 0;
while m < n do
1. compute V,,_,, by a range query with C,_,,
(using T, and the sets V;, n —m < j < n);
2. compute T, 11 by inserting C,_,, into T,,.

We study both steps in the loop in more detail, starting with the second step, as
the implications of its solution influence the first step as well.

Computation of 7,4

The problem with the insertion of a hypercube into the d-level priority point stab-
bing structure lies in the use of fractional cascading, which was incorporated to im-
prove the point location and range search query time from O(log? n) to O(log™™" n).
Unfortunately, insertions into the multi-level data structure do not benefit from
fractional cascading, so an insertion into the structure 7, would require O(logd n)
time instead of O(logd_1 n). Moreover, a sequence of insertions into the multi-level
data structure with the static fractional cascading part is likely to increase the time
for a query back to O(log?n) as the fractional cascading part no longer ‘suits’ the
updated multi-level data structure. Building the data structure would, even with
fractional cascading, require O(n log? n) time. Fortunately, Mehlhorn and N&her
describe in [68] a dynamic version of fractional cascading. Incorporation of dynamic
fractional cascading in the data structure during the construction phase improves
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the preprocessing time to O(nlog®* nloglogn). The alternative requires only mi-
nor modifications. We give the main result from [68] in a formulation that is tailored
to our applications.

Theorem 3.14 Let T be a tree with t nodes and let an ordered list L(v) of elements
from a given domain D be associated to each node v. Furthermore, define [ to be

the total length of all lists L(v), sol =%, |L(v)].

(a) Let T" be a connected subtree of T' with s nodes. Location of a query value x
in L(V') for every v' € T', that is, finding the position in L(v') of the smallest
value larger or equal than x, takes O(log(l+1)+sloglog(l+1)) time worst-case.

(b) The deletion of a value x from a list L(v) takes, given x’s position in L(v),
amortized time O(loglog(l+1)).

(c) The insertion of a value x from a list L(v) takes, given the position in L(v)
of the smallest value larger than x, amortized time O(loglog(l +1)).

To simplify the process of incrementally building the objective structure T,
we observe that all hypercubes that are to be added throughout the construction
process can be computed in advance. This observation facilitates a less complex
semi-dynamic (instead of dynamic) preprocessing. The prior knowledge of all n
hypercubes means that the endpoints of the projections of the hypercubes on the
i-th coordinate axis are from a fixed finite universe U; of size O(n). We act, however,
as if we only know the projections of the hypercubes on the last d—1 coordinate axes;
hence each corner (2, x9,...,24) is assumed to be a point from R x Uy x ... x Uy.
The static nature of the hypercubes with respect to the last d — 1 axes is used
to compute the major part of the d-level data structure in advance by recursively
building a segment tree on the projections of the hypercubes onto the last d — 1
coordinate axes. The resulting (d — 1)-level segment tree, which can be regarded as
the initial tree Ty in our incremental construction, differs from our objective d-level
data structure, 7T, only in that the one-dimensional ordered lists in the nodes of
the substructures at level d — 1 are missing. These lists are built incrementally
by ‘inserting’ the hypercubes from large to small into the skeleton provided by the
(d — 1)-level segment tree. Note that the substructures at level d — 1 represent
decompositions into vertical slabs of the plane spanned by the second and first
coordinate axes.

Let us now consider the intermediate structure T, , obtained after inserting the
largest m hypercubes C)_,,41,...,C), into the skeleton Ty. Following the standard
insertion procedure for multi-level segment trees, the insertion of the hypercube
Cp—m nto T, boils down to the insertion of a square, that is, the projection of
Cp—m onto the plane spanned by the first two coordinate axes, into O(logd_2 n)
substructures T' at level d — 1. Note that the prior computation of the skeleton Ty
guarantees that no new nodes have to be created in any of the higher-level structures
during the insertion of a hypercube.
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We move on to study the reduced problem of inserting the planar projection
[:E, i) x [i%,4d1] of C,_,, into a level-(d — 1) substructure T' of T,,. The upper level
of T is a segment tree on the projections onto the second coordinate axis of all,
at most n, planar hypercube projections stored in T'. The associated (ordered list)
structure L(v) of a node v of T stores the sequence (from 1 = —o0 to 1 = +00)
of disjoint slab intervals [a, 3] x [, within which all points share the same smallest
containing hypercube. The intervals are labeled with the respective hypercube index.

The hypercube C,_,, must be stored in the ordered list substructures L(v) at
nodes v of T' corresponding to slabs IR x [, that are entirely spanned by the projection
[F, ] x i}, 2d1] of C,,_,, onto the plane spanned by the first two coordinate axes, but
with parents parent(v) corresponding to slabs R x Lyarent(v) that are not spanned by
[:E, ] x [iL,411]. Alternatively phrased, the hypercube C,_,, must be stored in the
ordered lists L(v) at nodes v corresponding to intervals [, that are entirely spanned
by [:%,42] and have parents parent(v) corresponding to intervals Lyarent(v) that are
not spanned by [iL,:17]. Although the resulting nodes do not form a connected
subtree of T' they are in fact never more than one node off the search path from
root to leaf in 7' for either the endpoint % or the endpoint :%'. Hence, we can
apply Theorem 3.14(a) to the connected subtree T” of T' consisting of all nodes on
and just off both search paths and therefore efficiently search all L(v') for v' in T"
simultaneously for the location of the left endpoint ¥ of the projection of C,_,,
onto the first coordinate axis. The search time depends (see Theorem 3.14) on the
number of nodes (s) in the connected subtree 7", the cumulative length (1) of all
associated ordered lists in 7', and the number of nodes (¢) in 7. First of all, the tree
T is a priorly built tree on a subset of the projections of all hypercubes Cy,...,C,,
so t = O(n). The subtree T" consists of two root-leaf paths in T' plus all nodes that
are only one node off these search paths, thus s = O(logn). Moreover, an ordered
list L(v) (before insertion of C,_,,) stores only projections of the m hypercubes
Cremtts - Cuy so |[L(v)] = O(m). Because (a part of) each projection appears
at no more than two nodes at a single height-level in T', we have [ = 3 |L(v)| =
O(mlogm) = O(nlogn). Application of Theorem 3.14(a) to the subtree T" of T
and the query value I yields that the location of the query value is identified in
all lists L(v') for v" in T" in time O(log nloglog n) worst-case. Note that the set of
nodes in 7" is a superset of the set of nodes in whose associated substructures C'),_,,
must be inserted.

The problem that remains is to, given the interval [s1,i1’] and pointers to the

location of &' in all lists L(r) with v in T’ insert the interval [i¥, 1] only into
the lists L() of nodes in which C,_,, must be inserted, i.e., [¢}, 7] spans I, but
00t [y4pent(v). Let us consider a node v in 7". Verifying whether [zf,z{[] must be
inserted into L(v) is easily done in constant time by comparing [i%, 2] with I, and
Lyarent(v)- Assume that [¢F,i1] must indeed be inserted into L(v), labeled with the
index ‘n —m’. After insertion of the interval, a query with a point p € [¢¥, 5] x I,
for the smallest, or lowest indexed, covering hypercube (projection) must obviously

yield the answer ‘n —m’. Hence, the interval [i%, 1] must overwrite all parts of
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intervals that have non-empty intersection with [+, 1] and are present in L(v)

upon insertion of the latter interval. Using the pointer into L(v) we can identify the

subsequence of intervals that have non-empty intersection with the interval [i¥, ;1]
in time proportional to its length. Let [aq, F1], ..., [ay, B,] be this sequence and note

that only [ay, 3] may contain % and only [a,, 3,] may contain ii’. The update
of L(v) proceeds in four simple steps, in which we scan all intervals intersected by
it it']:

L if i € (ar, A then replace [a1, 4] by [ar, /]
else delete [ay, f];

2. for all 2 < h < ¢g — 1 do delete [ay, 34];

3. if i € [a,, 3,) then replace [ay, 3,] by [, 3,]

else delete [a,, 3,];

4. insert [if 1]

As [ = O(nlogn) and t = O(n), the amortized time spent on each of the above
deletions or insertions is, by Theorem 3.14(b),(c), O(loglogn). The four steps in-
clude one insertion and ¢ deletions in L(r). The fact that some varying number of ¢
deletions take place during a single update of a list L(r) is not a problem, due to the
observation that each deletion must follow an earlier insertion of the same interval.
Hence, at any time during the preprocessing, the number of insertions so far exceeds
the number of deletions. So, the amortized number of deletions per list update is
one as well, which implies that the amortized time spent in updating a single list
with a new hypercube is O(loglog n). Within each level-(d — 1) substructure T', the
required associated list updates are restricted to a subset of the O(log n) nodes of the
subtree 77, so the time spent on all necessary list updates in T is O(log nloglogn).
Combined with the O(log nloglogn) time bound for the simultaneous search in all
lists L(v') with v’ in T” for the locations of the value i¥ this implies that the total
time spent on the update of a single level-(d — 1) substructure is O(log n loglogn).
Since the total number of level-(d — 1) substructures that have to be updated is
bounded by O(logd_2 n), the insertion of C,,_,, into T,, to obtain T,,;; takes time
O(log® " nloglogn).

Lemma 3.15 The insertion of the hypercube C,,_,, into T, to obtain T,, 11 requires
O(log® ' nloglogn) amortized time.

The computation of the structure 7,41 by inserting the hypercube C,_,, into the
intermediate structure 7T}, is independent of the actual shape of the objects under
consideration. The efficiency of this part is therefore guaranteed, irrespective of the
object shape. The efficiency of the computation of V,,_,,, however, relies on the
fact that the objects under consideration are convex or polytopes. The dependence
follows from the use of the results from Section 3.2.
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Computation of V,_,,

The computation of V,,_,, = {F; € E|E; N Chpy #= O AJ > n—m} is based
on a sequence of point location queries. In the static point location structure,
the query time was found to be O(logd_1 n) due to the incorporation of fractional
cascading. Throughout the incremental construction of the point location structure,
however, we use dynamic fractional cascading instead of fractional cascading to
achieve efficient insertions, which leads to a query time of O(logd_1 nloglogn). Let
us analyze a point stabbing query in the intermediate structure 7),.

Like in the static case described in Section 3.1, a query with a point p in the
intermediate structure T,, proceeds recursively in the substructure associated to
the O(logn) nodes on the search path from root to leaf. This eventually leads
to a search of O(logd_2 n) substructures at level d — 1, the level where dynamic
fractional cascading is incorporated. The upper level of such a substructure T' is
a segment tree on the projections onto the second coordinate axis of the locally
stored hypercubes. The query point p will therefore again be contained in the
slabs corresponding to the nodes v on the search path from the root to the leaf of
the elementary interval containing p’s projection. Hence, we must search all lists
L(v) of nodes v on the search path. Fortunately, the nodes on the path form a
connected subtree T" of T' with O(log n) nodes, so, by Theorem 3.14(a) these nodes
can be searched simultaneously in worst-case time O(lognloglogn). The entire
point stabbing query time amounts to O(log”™ nloglog n). Note that a single search
with p yields O(log®™' n) candidate answers: one for each list L(r) that is searched.
The ultimate answer to the query is clearly the minimum among all hypercube
indices found.

The computation of the set V,,_,, benefits from the fact that the hypercubes are
inserted into the data structure from large to small in the sense that at the time of
the set’s computation, the intermediate data structure only stores hypercubes and
objects from the appropriate index range [n — m 4 1,...,n]. Therefore, we may
restrict ourselves to finding the hypercubes in the data structure that intersect the
query hypercube C,_,, without having to bother about the sizes of these hypercubes.
Moreover, note that future additions of hypercubes and their corresponding objects
do not affect the earlier computed sets V;. To apply the range searching results from
Section 3.2, we must verify the validity of the constant ratio between the diameter
of the search region (the hypercube C,_,,) and the lower bound on the radii of
the minimal enclosing hyperspheres of the stored objects. The radii of the minimal
enclosing hyperspheres of the objects in {E,_,11,..., F,} are bounded from below
by pp—m+1, and, by the ordering on the radii, also by p,_,,. The query region
Cr—m 1s the axis-parallel enclosing hypercube of the minimal enclosing hypersphere
of K,_,, with radius p,_,,. As a result, the diameter of C,,_,, is N/d - Pr—m- The
application of Theorems 3.10 and 3.13, yields, taking into account the modified point
location query time due to dynamic fractional cascading, a worst-case time bound
of O(log™™ nloglogn) for the computation of V,,_,,.
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Lemma 3.16 Let, for alln—m < j <n, V; be a set of convex objects or polytopes.
Then the computation of the set V,_,, from T, and {Vjjn —m < j < n} takes
O(log®™ nloglogn) time.

Lemmas 3.15 and 3.16 show that each of the O(n) steps in the incremental
construction of the d-level data structure for point location and range searching
among convex objects or polytopes takes O(log”™ nloglogn) time, resulting in a
time bound of O(nlog® ' nloglogn) for the computation of T, from the skeleton
Ty. Adding to this bound the O(nlog™ " n) time bound for building the (d— 1)-level

segment tree Ty, we obtain the desired result.

Theorem 3.17 Let £ be a set of non-intersecting constant-complexity k-fat convex
objects or arbitrary polytopes. Then the d-level point stabbing structure can be built
in time O(nlog® " nloglogn).

After the construction of the data structure, the query time can be improved back to
O(log® ' n). To this end, it suffices to rebuild the structure using static fractional
cascading. As all the sets V; are now known, this can easily be achieved in time

O(nlog?'n).

3.4 Summary of results and extensions

In this chapter we have presented a data structure for both point location and range
searching with bounded-size ranges in certain scenes of fat objects. Theorem 3.18
summarizes the results by combining Theorems 3.3, 3.10, 3.13, and 3.17.

Theorem 3.18 Let k& > 0 and h > 0 be constants and let € be a set of non-
intersecting constant-complexity k-fat arbitrary convex objects and/or non-convex
polytopes . C RY with minimal enclosing hypersphere radii at least p. Then the set
& can be stored in time O(nlog® ' nloglogn) in a data structure of size O(nlog”™' n)
which supports point location queries and range searching queries with ranges R C
IR of diameter at most h - p among the objects of € in time O(logd_1 n).

The theorem does not apply to scenes of arbitrarily-shaped non-convex objects.
It is though believed that a similar result holds in that case as well. Preliminary re-
sults in that direction with two-dimensional objects bounded by algebraic polygonal
curves of bounded degree are promising.

Throughout the entire chapter, the assumption that the objects in £ are non-
intersecting only plays a role in showing that the number of larger objects £’ inter-
secting the enclosing hypercube C' of some object F is bounded by a constant. No
other lemma or theorem relies on the disjointness of the objects. As a consequence,
all results in this chapter remain valid if we drop the requirement of disjointness
and instead impose the weaker restriction upon & that each enclosing hypercube '
of F € & is intersected by at most a constant number of objects £’ larger than F.
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In the generalized setting of intersecting objects, a query point may be contained
in more than one object. The answer to a point location, or point stabbing, query
should therefore be the collection of objects containing the query point. Note that
the new restriction on the data set & prevents more than a constant number of
simultaneous containments. An interesting example of such a set is a collection &,
of (¢- p)-wrappings of non-intersecting k-fat objects. If the wrappings £ € &, are
k-fat for some constant k£ and convex or polytopes, then Theorem 3.18 applies to
the set &, of intersecting objects.

The results of this chapter have an important application in the motion planning
part of this thesis. The running time of the general paradigm for motion planning
amidst fat obstacles in Chapter 6 depends on the time spent in computing the
pairs of obstacles within a distance b - p from each other, where b is a constant
and p is a lower bound on the minimal enclosing hypersphere radii of the obstacles
in the workspace. By Corollary 2.10 there are only O(n) such pairs. The result
in this chapter allow for the computation of all pairs in time O(n log?"log log n)
time instead of the trivial O(n?) time. As a related application, it is possible to
compute the linear complexity arrangement (by Theorem 2.12) of tight wrappings
of non-intersecting fat objects in time O(nlog?"loglogn).



Chapter 4

The complexity of the free space

In this chapter, we return to the motion planning problem and start the investiga-
tion on how fatness influences the problem and its solution. The problem of finding
a collision-free motion for a robot in a workspace with obstacles is commonly trans-
formed into the problem of finding a continuous curve in the free space. In Chapter
1, we have argued that the complexity of finding such a curve highly depends on
the complexity of the free space. This chapter studies the influence of fatness on
the free space complexity. More specifically, it shows that the complexity of FP
for a constant-complexity robot moving amidst constant-complexity fat obstacles is
linear in the number of obstacles, provided that the size of the robot is proportional
to the size of the smallest obstacle and provided that the constraint hypersurfaces
defined by the robot-obstacle contacts are algebraic of bounded degree.

Section 4.1 studies the structure of the free space in detail and establishes the
relation between the complexity of the free space and the number of multiple contacts
for the robot with the obstacles in the workspace. Section 4.2 gives an overview
of known results on free space complexities. The overview gives an idea of the
conditions that typically lead to high complexities. The observations are used in
Section 4.3 to formulate a realistic framework of motion planning problems with a
linear complexity free space.

4.1 The structure of the free space

The configuration space C' is the space of parametric representations of all robot
placements. The number of degrees of freedom f of the robot B determines the
dimension of the configuration space. We classity the points in the configuration
space according to the robot placements that they represent, resulting in three
different types of points'. Let Z € (' be a placement of the robot B, and let
B[Z] C W be the collection of points in the workspace covered by B when placed at

'In the sequel, we generally do not distinguish between the point Z € C and the placement
that 7 represents.

69
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7. Furthermore, we denote the interior of a closed set X by int(X). Assume that
7 € C, then

e 7 is a free placement when Vgee B[Z]NE = (),
e 7 is a contact placement when Igee B[Z]NE # 0 and Vgee B{Z]Nint(E) = 0,
e 7 is a forbidden placement when Igee B[Z] N int(E) £ 0.

Informally, a free placement is a placement in which B does not intersect any obsta-
cle, a contact placement is a placement in which B is in contact with the boundary
of some obstacle but does not intersect the interior of any obstacle, and a forbid-
den placement is a placement in which B intersects the interior of some obstacle.
Clearly, any point Z € (' satisfies exactly one of the three expressions and corre-
sponds therefore to either a free placement, or a contact placement, or a forbidden
placement.

The subset of configuration space of all free placements can, according to the
above classification, be obtained by subtracting the union of all sets Cp = {Z €
CIB[ZINE # 0} with £ € € from C: FP = C \ UgesCg. A set Cg is sometimes
(see e.g. [59]) referred to as a configuration space obstacle (of F), as it consists of
all placements of B in which it intersects £. The boundary dCg consists of robot
placements Z such that B[Z]N E # 0 and B[Z] N int(F) = 0, or, in other words, of
all placements in which B touches E. The set of placements 0Cg in which B touches
E separates the placements of C'g in which B intersects the interior of £ from the
placements of '\ Cg in which B does not intersect F. On a more global level,
we find that the union boundary 9(UgesCg) separates the forbidden placements
from the free placements. The union boundary equals exactly the set of all contact
placements. (Notice that the semi-free space SFP defined in Chapter 1 consists of
all free placements and all contact placements.)

The boundary dCg of a configuration space obstacle C'y in the f-dimensional
configuration space can be regarded as a collection of (f — 1)-dimensional hypersur-
faces consisting of contact placements of a single robot feature and a single obstacle
feature of appropriate dimension. We use the term feature to describe a basic part
of the boundary of a geometric object whether an obstacle or the robot. An (f —1)-
dimensional hypersurface of contact placements is called a constraint hypersurface.
The lower-dimensional features on the boundary of a configuration space obstacle
are common boundaries or intersections of two or more constraint hypersurfaces.
For example, in the two-dimensional configuration space C' = IR* of a translating
polygonal robot amidst polygonal obstacles, each constraint curve is induced either
by the contact of a robot vertex with an obstacle edge or by the contact of a robot
edge with an obstacle vertex. Figure 4.1 shows both types of contact. If the robot is
allowed to rotate as well, then both combinations define constraint surfaces in the yet
three-dimensional configuration space €' = IR® x [0,27). In the three-dimensional
configuration space C' = IR® of a translating polyhedral robot amidst polyhedral
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Figure 4.1: The two types of contacts inducing a constraint curve in the configuration
space of a polygonal robot translating amidst polygonal obstacles: a robot vertex
sliding along an obstacle edge, and a robot edge sliding along an obstacle vertex.

obstacles, each constraint surface is induced by the contact of either a robot vertex
and an obstacle face, or a robot edge and an obstacle edge, or a robot face and an
obstacle vertex.

The constraint hypersurtaces in configuration space allow for an interpreta-
tion of the free space with a more computational-geometry-like flavor. The (f —
1)-dimensional constraint hypersurfaces partition the f-dimensional configuration
space into f-dimensional cells. A cell is a maximal connected f-dimensional subset
of the configuration space containing no part of a constraint hypersurface. The cells
consist either exclusively of free placements of exclusively of forbidden placements.
The cells are referred to as free cells and forbidden cells respectively. The free cells
in the arrangement of constraint hypersurfaces collectively constitute the free space
FP. We are therefore interested in studying a collection of cells, namely, the free
cells, in the partitioning of f-dimensional space by a collection of ( f—1)-dimensional
hypersurfaces. Note that, by the definition of a cell, no two points in two differ-
ent free cells are linked by a free path, that is, a path that is entirely contained in
the free space. The definition of the free space via the arrangement of constraint
hypersurfaces links the study of the motion planning problem to a basic study in
computational geometry, namely, the study of arrangements of hypersurfaces.

Before we define the complexity of a cell in an arrangement, we first formulate
an assumption regarding the constraint hypersurfaces in configuration space. The
assumption stands throughout all of the remaining chapters.

The hypersurface in configuration space corresponding to the set of place-
ments in which a certain robot feature is in contact with a certain ob-
stacle feature of appropriate dimension is algebraic of bounded degree.

The assumption on the shape and complexity of the constraint hypersurfaces mainly
means that the boundaries of the robot and the obstacles are not too irregularly
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shaped. A direct consequence of the assumption is that the intersection of any mul-
tiple of hypersurfaces consists of only a constant number of connected components.
Moreover, it implies a first simple upper bound of O(n') on the complexity of the
entire arrangement of constraint hypersurfaces.

The complexity of a cell in an arrangement of algebraic hypersurfaces of bounded
degree is defined to be the number of faces of various dimensions on the cell’s bound-
ary. A j-dimensional face, or j-face is a maximal connected j-dimensional part of the
arrangement containing no lower-dimensional faces in its interior. A j-dimensional
face of the specific arrangement of constraint hypersurfaces is a maximal connected
component of the intersection (or common boundary) of f — j constraint hypersur-
faces. For example, the complexity of a two-dimensional cell in an arrangement of
line segments in the plane is the number of edges (1-faces) and vertices (0-faces) on
the cell’s boundary, where a vertex is either an endpoint of a line segment or the
intersection point of segments, and an edge is a maximal portion of a line segment
meeting no vertex of the arrangement.

The complexity of the free space is the sum of the complexities of the free cells
and, hence, bounded by the complexity of the entire arrangement of constraint
hypersurfaces, that is, the total number of faces of any dimension in the arrangement.
As each constraint hypersurface is induced by a contact of a robot feature and an
obstacle feature, the intersection of j such surfaces corresponds to the simultaneous
occurrence of j contacts for the robot. Because each intersection of j hypersurfaces
consists of a constant number of connected components by the assumption on the
shape and complexity of the hypersurfaces, the number of j-fold contacts is of the
same order of magnitude as the number of j-dimensional faces in the arrangement.
Thus, the complexity of the free space is determined by the total number of different
single and multiple contacts for the robot, since they determine the complexity of
the arrangement of constraint hypersurfaces (which bounds the complexity of FP).

To get a feeling of what a multiple contact is, consider the case of a ladder
(line segment) translating among polygonal obstacles in the plane. This is a mo-
tion planning problem with two degrees of freedom and the constraint curves that
it induces in the configuration space C' = IR? are straight line segments. Each of
these constraint segments is induced either by the contact of a ladder endpoint with
an obstacle edge, or by the contact of the interior of the ladder with an obstacle
vertex. Consider now the case where each ladder endpoint touches a distinct obsta-
cle edge (and assume further that these two edges have different directions). The
contact of each ladder endpoint with an obstacle edge is expressed as a segment in
the configuration space, and this double contact will manifest itself as the meeting
point of these two segments, namely as a vertex in the configuration space. The
fact that the double contact occurs at an isolated point in configuration space can
be easily understood by observing that it is impossible to maintain the double con-
tact while slightly moving the ladder. If the ladder is also allowed to rotate then
the single contacts mentioned above define constraint surfaces in the configuration
space IR* x [0,27). The double contact of the robot in which its two endpoints touch
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two different non-parallel edges now defines a curve in the configuration space: the
intersection of the two constraint surfaces corresponding to both contacts of the
endpoints. The fact that the double contact defines a curve can be understood by
the observation that it is possible to slide both robot endpoints along the respective
obstacle edges that they touch, thus maintaining the double contact. The continu-
ously changing robot placements lie on a curve in configuration space. An additional
third contact for the ladder robot, for example when its interior touches an obstacle
vertex fixes the position of the robot in the sense that is unable to move without
losing at least one of the three contacts. Triple contacts therefore occur at isolated
points in configuration space; they correspond to intersections of three constraint
surfaces.

In the preceding paragraphs we have implicitly assumed that the robot can only
collide with the obstacles and not with itself. In other words, we have assumed that
no part of the robot can collide with another part of the robot. Although the absence
of such so-called self-collisions (or self-intersections) is a common assumption in
motion planning, we choose to give some thought to the possible consequences when
self-collisions are not neglected. Self-collisions clearly only occur when the robot
under consideration is not a single rigid body but instead consists of a number of such
bodies linked together by revolute or prismatic joints. A specific property of self-
collisions is that they depend solely on the relative positions of the robot parts; the
location of the robot in the workspace is irrelevant for determining if a certain robot
placement causes self-collision. Figure 4.2 illustrates the observation. Consider the
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Figure 4.2: An example of a self-colliding (4-DOF) robot.

robot consisting of a triangle and a line segment attached to each other by a revolute
joint J; the triangle edges incident to J define an angle A. The joint J serves also
as the robot’s reference point. A placement of this 4-DOF robot is specified by the
position (z,y) of the reference point in the workspace W = IR?, and by the angles o
and /3 between the positive z-axis and the line segment and the triangle respectively.
Clearly, the two linked parts of the robot intersect in any placement (x,y,a, 3)
satisfying 3 < o < 8+ A (mod 2r). Hence, the entire subspace IR* x {(a, ) €
[0,27) x [0,27)|f <a < B+ A (mod 27)} consists of forbidden placements due to
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self-intersections of the robot. Robot-robot collisions can be dealt with in exactly
the same way as the robot-obstacle collisions, so that we end up with a number of
self-collision constraint hypersurfaces that separate placements in which parts of the
robot intersect each other from placements in which the robot does not self-intersect.
A self-collision constraint hypersurface is induced by the contact of a robot feature
with another robot feature of appropriate dimension. The self-collision constraint
hypersurfaces in the linked 4-DOF robot example are the two three-dimensional
surfaces @ =  and a = f + A. The arrangement of all ‘regular’ and self-collision
constraint hypersurfaces subdivides the f-dimensional configuration space in free
and forbidden cells w.r.t. the obstacles and the robot itself. Below we search for
conditions for the self-collisions that prevent an increase of the complexity of the
arrangement and, hence, of the complexity of the free space.

The shape of the self-collision constraint hypersurfaces differs somewhat from
the shape of the regular constraint hypersurfaces in the sense that they are ‘larger’.
The bounded range of reference point positions in the workspace in which a specific
robot feature touches a specific obstacle feature is reflected in a certain compactness
of the corresponding constraint hypersurface in configuration space. On the con-
trary, a collision of two robot features is independent of the position of the robot’s
reference point so that the corresponding constraint hypersurface can be unbound-
edly large (see for example the surfaces of the above example). The size of the
self-collision constraint hypersurfaces causes such surfaces to (possibly) intersect all
other surfaces. If, however, the number of self-collision constraint hypersurfaces is
constant and each hypersurtface is algebraic of bounded degree, then certainly these
additional surfaces will not increase the asymptotic complexity of the arrangement
of constraint hypersurtaces. Because of our general assumption that the robot is of
constant complexity, this is always the case. Hence, in bounding the free space com-
plexity, we may neglect self-collisions. We briefly revisit self-collisions in Chapter 6
to examine their algorithmic consequences.

Unfortunately, the worst-case number of multiple contacts, and, hence, the com-
plexity of the free space, can be high. If n is the number of obstacle features and
f is the number of degrees of freedom of the robot (i.e., the dimension of the con-
figuration space) and the number of robot features is bounded by some constant,
then this complexity can be Q(n’). So, theoretically, motion planning techniques
whose performances depend on the size of the free space are expensive. Fortunately,
in many practical situations the complexity of the free space FP tends to be much
smaller and, as a result, such methods might become feasible. A study of proper-
ties that limit the number of multiple contacts for the robot (and consequently the
complexity of FP) is therefore of obvious importance.

In many practical cases the relative positions and the shapes of the obstacles are
such that the number of multiple contacts for the robot B is very low. Obstacles
that lie far apart clearly result in less multiple contacts for B than obstacles that
are cluttered. Similarly, obstacles that have long and skinny parts will induce more
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multiple contacts than (fat) obstacles that do not have such parts. Before we for-
malize these intuitions in the Section 4.3, we first review some known bounds on the
complexities of the free space for motion planning problems.

4.2 Results on free space complexities

Research in motion planning throughout the last few years has concentrated on
studying the structure and complexity of the free space rather than on developing
new motion planning algorithms. This trend can be explained from the fact that a
thorough insight in the structure and complexity of the free space is evidently very
important for the design of algorithms that efficiently preprocess FP into a small
structure capable of providing fast answers to motion planning queries.

Besides studying the entire free space, several papers also focus on the complexity
and computation of a single connected component, or single cell, of the free space.
The motivation for this direction of research lies in the simple observation that a
robot can only reach placements that lie in the free space component containing the
initial robot placement. The complexity of a single free cell is sometimes an order
of magnitude smaller than the complexity of the entire free space.

In the preceding section, we have seen that the complexity of an arrangement
of O(n) constraint hypersurfaces in f-dimensional configuration space is bounded
by O(n/), by standard arguments on arrangements of algebraic hypersurfaces of
bounded degree. For certain motion planning problems, that is, for certain robots
and obstacle types, the shapes of the constraint hypersurfaces are such that the
arrangement of hypersurfaces, and, hence, the complexity of the free space, has a
worst-case complexity smaller than O(n’). Given the upper bounds obtained by
combinatorial arguments, it is interesting to see if examples of motion planning
environments, that is, a robot in a workspace with obstacles, can be constructed
that do indeed achieve these worst-case free space complexities. When trying to do
so, it turns out that it is often difficult to construct settings of robots in workspaces
with obstacles that establish or even approximate the upper bound on the free
space complexity (or single cell complexity), thus leaving a gap between theoretical
worst-case bounds obtained by combinatorial arguments and complexities obtained
by constructed difficult (complex) motion planning environments. The existence of
such a gap clearly raises uncertainty on the tightness of the upper bound.

The lower bound constructions of difficult motion planning environments found
in literature are often very artificial and as such rarely encountered in real-life situ-
ations: they often involve robots and obstacles that are extremely thin and/or have
exorbitant relative sizes. If the extreme properties of the robot and the obstacles
that are necessary to construct these difficult settings do not occur, then most of
the artificial lower bound constructions become impossible. This illustrates that the
complexity of the free space for practical motion planning problems is likely to stay
far below the worst-case complexities obtained by combinatorial arguments and ap-
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proximated by artificial settings. Below we review some of the known lower bound
constructions and upper bounds on free space and single cell complexities for motion
planning problems. The currently available results are restricted to problems with
at most three-dimensional configuration spaces. We consider motion planning prob-
lems involving a constant-complexity robot amidst n constant-complexity obstacles.

The trivial upper bound on the complexity of the free space of a translating
polygonal robot (f = 2) amidst polygonal obstacles is O(n?). If the robot is convex,
then the worst-case complexity of the free space remains an order of magnitude
below the trivial bound (see e.g. [89]). The linear bound is clearly optimal. Things
change if the robot is allowed to be non-convex. Figure 4.3 shows an L-shaped
robot amidst n/2 vertical line segments close to each other and n/2 horizontal
line segments arranged similarly on a horizontal line. If the robot’s horizontal bar

Figure 4.3: A planar translational motion planning problem with free space com-
plexity Q(n?).

is placed between two consecutive horizontal line segments and its vertical bar is
placed between two vertical segments, then both bars of the ‘L are stuck between
these two pairs of segments and the reachable positions of the vertex incident to
the two bars are restricted to a small (dotted) square of points. These position
constitute a separate connected component of the free space. As there are n*/4
combinations of a vertical and horizontal segment, the free space consists of (n?)
free cells. Hence, the complexity of FP is Q(n?). Let us try to find out what
specific properties of the construction in Figure 4.3 lead to the quadratic free space
complexity. First of all, it turns out that a similar constructions can be obtained
for any combination of sizes of the robot and the segments, simply by appropriately
choosing the distance between any pair of consecutive parallel segments. Thus, a
restriction on the relative sizes alone does not make the construction impossible.
On the other hand, a minimal fatness restriction on the obstacles alone is also
insufficient. In the case that the line segments are replaced by squares of equal size,
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the above construction can be obtained by choosing the robot sufficiently large. More
obstacles though necessitate a larger robot, so the size of the robot is proportional
to the number of obstacles. This observation indicates that the combination of a
minimal fatness requirement and a bound on the relative sizes of the robot and the
obstacles make the construction impossible. The results in the next section confirm
the supposition. For the sake of completeness, we mention that the complexity of
a single free cell for a polygonal robot amidst polygonal obstacles is O(na(n)) [38],
where a(n) is the extremely slowly growing inverse of the Ackermann function.
The complexity of the free space of a translating and rotating polygonal robot
(f = 3) amidst polygonal obstacles is trivially bounded by O(n?®). Leven and Sharir
[63] report an O(nAs(n)) bound on the complexity if the robot is a convex polygon,
where Ag(n) is a near-linear function depending on the length of certain so-called
Davenport-Schinzel sequences. (For a discussion of Davenport-Schinzel sequences
and more detailed bounds on A;(n) for various values of s, the reader is referred
to [4].) Ke and O’Rourke [50] show that Q(n?) moves, that is, constant complexity
curves, may be necessary to connect two placements in a single free cell. This
result gives an indication of the potential complexity of finding a path in a single
cell; the cell complexity alone does not give full insight in this matter (finding a
path between two points in a convex cell, for example, is simple, regardless of its
complexity). Figure 4.4 gives an {(n?) lower bound construction for the single cell
complexity, and, hence, for the complexity of the entire free space that approximates
the near-quadratic upper bound of O(nAs(n)), thus leaving a relatively small gap
between the theoretical upper bound and achievable lower bound construction. The

" EEEEEEE 4—71/2

" E N EEEEN 4—71/2

Figure 4.4: A planar motion planning problem for a convex robot with free space
and single cell complexity Q(n?).

robot B, which is a simple line segment moving among small (point or square)
obstacles, can be in simultaneous contact with any combination of obstacles from
the top and bottom row, yielding n*/4 obstacle pairs. Any simultaneous contact
with features of such a pair defines a one-dimensional face on the boundary of the
free space, resulting in ©(n?) one-dimensional faces. All double contact placements
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are connected by (semi-)free paths and belong therefore to the boundary of a single
connected component of the free space. Thus, the complexity of this free cell, and
obviously also of the entire free space, is (n?). Like in the purely translational case,
it is possible to build the construction if the obstacles have a certain minimal fatness,
simply by making the robot sufficiently large. A restriction on the relative sizes of
the robot and the obstacles, however, seems to make the construction impossible.
Once more, the combination of both assumptions implies a linear upper bound on
the complexity of FP, as will be shown in Section 4.3.

Contrary to the case of a convex robot, the trivial upper bound of O(n®) on 3-
DOF motion planning can be achieved for some construction involving a non-convex
robot. Figure 4.5 shows an L-shaped robot moving among two horizontal rows of n/3
obstacles and one vertical row of n/3 obstacles. The example is taken from a paper
by Halperin, Overmars, and Sharir [43] on motion planning for an L-shaped robot.
For appropriately chosen distances between the three rows and between consecutive
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Figure 4.5: A planar motion planning problem for a non-convex robot with free
space complexity Q(n?).

obstacles within a single row, it can easily be verified that it is possible to place
one bar between any combination of pairs of consecutive obstacles in the upper and
lower horizontal rows and the other bar between any pair of consecutive obstacles in
the vertical row. Once the bars are placed between consecutive pairs of obstacles in
each of the three rows, the robot is ‘stuck’ between these pairs: it is not connected
by a free path to a placement of the bars between different obstacle pairs. As the
number of combinations is about n®/27, the free space consists of Q(n?) free cells
and has complexity (rn?). Like in the previous examples, the construction can be
built for fat obstacles as well. A restriction on the relative sizes of the robot and
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the obstacles probably makes the construction impossible; the worst setting that is
then achievable seems to be the setting of Figure 4.3, yielding quadratic size free

290(log?/? ”)) on the

space. Halperin and Sharir [44] present an upper bound of O(n
complexity of a single connected component of the free space. This bound 1s almost
tight as a quadratic lower bound construction is given by Figure 4.4 if we apply a
minor modification to the robot to turn it into a non-convex shape (see also [41]).
Finally, we briefly consider a translating polyhedral robot (f = 3) among poly-
hedral obstacles in a three-dimensional workspace, with a trivial upper bound of
O(n?) on the complexity of the free space. A rather straightforward generalization
([89]) of the construction of Figure 4.3 shows that the cubic complexity can indeed

by achieved if the robot is non-convex. Figure 4.6 shows the three-dimensional con-

S / .

Figure 4.6: A spatial translational motion planning problem for a non-convex robot
with free space complexity Q(n?).

struction; the orientations of the three sets of parallel planes restrict the position
of the meeting point of the three bars of B to a small cube, similar to the planar
example. The construction becomes impossible upon addition of a minimal fatness
requirement for the obstacles, for reasons similar to those of the corresponding pla-
nar case. Other results on the complexity of the free space are restricted to convex
robots. Results by Wiernik and Sharir [101] imply the existence of a lower bound
construction of size Q(n*a(n)) for a translating convex polyhedral robot among
polyhedra, based on Davenport-Schinzel sequences. Halperin and Yap [46] prove an
upper bound of O(nr*a(n)) for the free space complexity of a translating box, con-
firming the more general conjecture of Sharir [89] that the same upper bound holds
for any convex polyhedral robot. Recently, Aronov and Sharir [7] have shown that
the worst-case complexity of FP for a convex polyhedral robot amidst polyhedral
obstacles is O(n?log®n). Halperin and Sharir [45], finally, prove an upper bound on
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the complexity of a single cell in an arrangement of n low-degree algebraic surface
patches in 3-space of O(n?*¢), for any € > 0, where the constant of proportionality
depends on e. The result bounds the complexity of a single connected component of
the free space for motion planning problems with three degrees of freedom involving
a robot and obstacles of constant complexity.

Ke and O’Rourke [50] report a lower bound for a more complicated spatial motion
planning problem, namely that of a translating and rotating ladder (f = 5) among
polyhedral obstacles. They show that (n') distinct moves, or constant degree
curves in configuration space, may be necessary to connect two placements of the
ladder. It is not hard to understand that Q(n*) moves can only be necessary within
a free cell with at least the same complexity 2(n?), and, hence, also in a free space
with complexity Q(n?).

4.3 Fat obstacles and the free space complexity

In this section, we deduce a linear bound on the complexity of the free space for a
robot moving amidst fat obstacles, and formulate the necessary additional assump-
tions that lead to the result. The considerations in the first section of this chapter
show that the number of multiple contacts is of the same order of magnitude as the
complexity of the free space, provided that the constraint hypersurfaces are algebraic
of bounded degree. Under this assumption, we may therefore settle for a bound on
the number of multiple contacts to bound the complexity of the free space. A very
useful observation now is that two obstacle features that are far apart (more than
the maximum diameter of the robot) cannot be involved in any multiple contact for
B, simply because B is unable to touch both simultaneously. Hence, obstacles that
do induce such a contact must lie in each other’s proximity.

As the notion of proximity depends on the size of the robot, we must first de-
termine a convenient way of expressing this size. The fact that the robot may be
articulated implies that its diameter is variable, so a more general notion is needed.
Let O € B be the robot’s reference point. The reach pg of a robot B is defined to
be the maximum distance from the reference point O € B to any point in B in any
placement Z of 5. More formally:

Definition 4.1 [reach pz of a robot B]
Let Zyw be some arbitrary position of the reference point O of the robot B. Then the
reach pg of the robot B is defined as

= su max d(p, Zw).

ps ZDEPD pEB[(Zw.Zp)] (p7 W)
In words, the reach pg of a robot B is the maximum distance in the workspace that
any point in the robot B can ever have to the reference point, which is also equal
to how far the robot can reach, measured from its reference point. Naturally, the
reach is independent of the actual position of the reference point. The definition
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involves a ‘sup’ instead of a ‘max’ because the rest-space ) might be open, like e.g.
D = [0,27) in the case of the planar rotating and translating rigid robot. Notice
that the definition of the reach causes any robot with reach ps and its reference
point O placed at p € W to be completely contained in the hypersphere S5, ,, with
radius pp centered at p, regardless of the actual placement Z of the robot. Note
furthermore that the maximum diameter of a robot with reach pg is 2pg. In the
remainder of the thesis, the reach of the robot will be used as the main means of
expressing the robot size.

A convenient strategy for bounding the number of multiple contacts is by charg-
ing each multiple contact to the smallest obstacle involved in the contact, and sub-
sequently bounding the number of chargings to any obstacle £. The observation in
the previous paragraph learns that all features involved in a contact of B with FE
and larger obstacles must lie in the proximity of F. Corollary 2.10 supports this
strategy by supplying a valuable bound on the number of obstacles (and, hence, on
the number of features of obstacles) larger than F that lie in E’s proximity. The
corollary, which we recall below as Property 4.2 in a form that is tailored to our
current needs, also gives clear indications on what additional assumptions on the
workspace W and obstacles £ are required for obtaining a linear number of multiple
contacts.

Property 4.2 Let k > 1 and b > 0 be constants and let £ be a set of non-
intersecting k-fat objects in RY. Let E € £ be an object with minimal enclosing
hypersphere radius p. Then the number of objects E' € £ with larger minimal en-
closing hypersphere radit within a distance 2b - p from F is bounded by the constant

k- (2b+2)%.

The importance of the property becomes clear if we realize that a robot with reach
pp < b p can only simultaneously touch obstacles that are less then 2p5 < 2b- p
apart. The features involved in a multiple contact of B (with minimal enclosing
hypersphere radius pg < b-p) with £ and larger must clearly be among the features
of the at most k- (2b 4+ 2)? = O(1) obstacles in the proximity of £.

Before we focus on the problem of finding an upper bound on the number of
multiple contacts, we briefly reconsider the notion of multiple contact itself. What
kind of subspaces of the configuration space are defined by multiple contacts and
how many obstacles can participate in a multiple contact?

The set of placements of the robot B in which a certain feature of B is in contact
with a boundary feature (of an obstacle) in & of appropriate dimension forms an
(f — 1)-dimensional subspace (or hypersurface) in the f-dimensional configuration
space. An intersection of j of these hypersurfaces corresponds to a simultaneous
contact of the robot with j obstacle boundary features in €. Such an intersection
is an (f — j)-dimensional subspace of the configuration space. Consequently, the
f-told contacts appear at isolated points in the configuration space, and, hence, fix
the position of the robot. Contacts that involve more than f obstacle features do
not appear if we assume that the obstacles are in general position. Such contacts
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can be discarded without affecting the complexity of the free space. We see that a
robot B with f degrees of freedom can have up to f simultaneous contacts with the
boundaries of the obstacles in &.

We consider the situation where a robot B moves amidst n k-fat obstacles £ € £
in general position, where k£ > 1 is a constant. The robot as well as the individual
obstacles are assumed to have constant complexity, so the number of robot features
is O(1) and the number of boundary features in the obstacle set € is O(n). As
a consequence, the total number of hypersurfaces is O(n). The hypersurfaces are
assumed to be algebraic of bounded degree, so that the intersection of any j hy-
persurfaces consists of at most a constant number of connected components. To
successfully apply Property 4.2, the robot B is assumed to be not too big compared
to the obstacles. Let p be a lower bound on the minimal enclosing hypersphere radii
of all obstacles. The reach pg of the robot B is constrained by pg < b- p, where b
is some positive constant. This assumption regarding the size of the robot is not
very restrictive: it basically rules out the situation where the robot B is so large
that it would make the obstacles into point obstacles relative to its own size. The
assumption will be satisfied in most practical cases. (In the previous subsection we
already saw that such a restriction is required to obtain low free space complexities.)
We summarize the assumptions below.

e The workspace W of the robot B is the d-dimensional Euclidean space IR,

e The workspace W of the robot B contains a collection £ of n k-fat obstacles
E C IR in general position, for some constant & > 1.

e The reach pp of the robot B is bounded by pzg < b- p, where b > 0 is a
constant and p is a lower bound on the minimal enclosing hypersphere radii

of all obstacles F € £.
e The robot B has constant complexity.
e Each obstacle ' € £ has constant complexity.

e The hypersurface in the configuration space corresponding to the set of robot
placements in which a certain robot feature is in contact with a certain obstacle
feature is algebraic of bounded degree.

The assumptions remain valid throughout the remaining chapters.

The proximity result given in Property 4.2 is the key to successful application
of a proof strategy that repeatedly considers an obstacle E and counts the number
of multiple contacts for the robot B involving E and obstacles with larger minimal
enclosing hypersphere radii. Property 4.2 guarantees that we find a constant upper
bound on this number for each obstacle £. The resulting overall number of multiple
contacts will be linear, which is stated in Theorem 4.3.
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Theorem 4.3 Let d,k > 1 and b > 0 be constants and let € be a set of n k-fat
obstacles in RY of constant complexity each and with minimal enclosing hypersphere
radii at least p. The robot B with constant complexity, f degrees of freedom, and
reach pg < b- p moves in W = R? amidst the obstacles of . Then, for each
2 < j < f, the number of j-fold contacts of the robot B is linear in the number of
obstacles: O(n).

Proof: Consider some obstacle I/ € &€ and let pg > p be its minimal enclosing
hypersphere radius. Let us count the number of j-fold contacts of B that involve E
and obstacles E’ with larger minimal enclosing hypersphere radii. Such an obstacle
E" must lie within a distance 2pg from E in order to allow B to touch £ and F’
simultaneously (because the reach pg of B bounds B’s maximum diameter by 2pz).
Let p be the number of obstacles £’ that lie within a distance 2pg from E. Since
2p5 < 2b-p < 2b- pg, we know by Property 4.2 that p < k- (2b+2)? = O(1).

A single j-fold contact is determined by j different pairs, each pair consisting
of a robot feature and an obstacle feature. Let us assume that the robot has zz
different features and that the number of features of each obstacle £ is bounded
by xe. The first contact is a contact between a robot feature and a feature of the
obstacle £/. We have at most x5 - x¢ choices for this contact. For each of the 7 — 1
remaining contacts we can choose the obstacle feature on each of the p obstacles in
the proximity of F, which gives a total number of z¢ - p possibly involved obstacle
features. For each contact we can again choose from all xz robot features. Hence,
the total number of j-fold contacts involving £ is bounded by (x5-ze-p)' ™' x 25- ze,
which is a constant.

Adding all the n constant upper bounds results in an overall upper bound on
the number of j-fold contacts of n - ((z5 - e - p)’~! X x5 - x¢), which is O(n), since
xg, xe, p, and j are constants. O

Note that the value of j in Theorem 4.3 ranges from 2 to f. The number of single
contacts is of course also linear, because the number of pairs of a robot feature and
an obstacle feature is linear. The case j = 1 is deliberately excluded from Theorem
4.3 to emphasize that fatness ‘only’ reduces the number of multiple contacts, and
not the number of single contacts.

The (f — j)-dimensional subspace defined by a single j-fold contact is not nec-
essarily connected. Figure 4.7 shows an example for f = 3 and j = 2, where it 1s
impossible for the robot to move from Zy to Z; without losing contact with either
the upper or the lower obstacle feature. The 1-dimensional subspace induced by
the contact with both features is therefore non-connected. Our assumption that all
contact hypersurfaces are of bounded degree, however, implies that the number of
different connected subspaces induced by a single multiple contact is bounded by
some small constant. The complexity of the free space is now solely determined by
the number of multiple contacts, since the contribution of a single multiple contact
to the free space apparently has constant complexity. Variable j in Theorem 4.3 can
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Figure 4.7: There is no continuous motion of the robot from Z, to Z; during which
it remains in contact with both features.

only have f — 1 different values, so the total number of multiple contacts is linear
and, hence, the free space has linear complexity.

Corollary 4.4 Let d,k > 1 and b > 0 be positive constants and let £ be a set
of n k-fat obstacles in R of constant complexity each and with minimal enclosing
hypersphere radii at least p. The robot B with constant complexity, [ degrees of
freedom, and reach pz < b- p moves in W = IR? amidst the obstacles of E. Then,
the free space for the robot B moving amidst the k-fat obstacles of set £ has linear
complexity.

The linear upper bound on the free space complexity obviously imposes an equal
bound on the complexity of a single free cell.

The constant that we obtained in Theorem 4.3 can be quite high: the first contact
for the robot is a feature of F, but each of the other j — 1 contacts are chosen from
all features in the proximity of F£. In practice, this approach yields a bound that
is far from tight because many of the features in E’s proximity cannot be touched
by B while it touches some feature of E. Figure 4.8 shows an example of such a
situation. Even though the distance between two features alone may allow the robot
to touch both of them simultaneously, the positions of the obstacles in the workspace
may prevent the robot from actually doing so. So, only a subset of all theoretical
combinations of features really implies a multiple contact in the configuration space.
Clearly, the number of actual j-fold contacts for B will remain far below the upper
bound of Theorem 4.3.

The framework of assumptions that leads to the linear free space complexity
includes a general position assumption for the obstacles. The assumption basically
simplifies the analysis by allowing us to neglect multiple contacts involving more
than f pairs of features. The upper bound of f on the value of j in counting
the number of j-fold contacts involving a feature of some obstacle F and features
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Figure 4.8: The robot B touching the edge e of obstacle F is long enough to touch
e and the edge ¢’ of E’ simultaneously. Nevertheless, it is unable to do so, because
the obstacle E” is in its way.

of larger obstacles E’, however, seems in no way relevant in obtaining a constant
bound. The general position assumption, although common in motion planning, is
therefore not very essential to the validity of our result.

A second glance at the proof of Theorem 4.3 learns that most of the assumptions
are not used explicitly. Instead, the combination of the assumptions leads to a low
obstacle density in the workspace, which basically means that any workspace region
with size comparable to the reach of the robot intersects only a constant number
of obstacle features. This implied workspace property, rather than the individual
assumptions, is essential to the proof of Theorem 4.3. The linear bounds on the
numbers of j-fold contacts can therefore be extended to motion planning problems
for constant-complexity robots in workspaces that satisfy the low density property.
If, in addition, the constraint hypersurfaces defined by the robot-obstacle contacts
are algebraic of bounded degree, then the linear free space complexity result of
Corollary 4.4 extends to such motion planning problems as well.
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Chapter 5

Existing algorithms and fat
obstacles

Exact motion planning algorithms process the free space FP for answering path
finding queries. The linear complexity result for FP does not directly imply that
the outcome of the processing, a representation of FP, has linear complexity as well.
Moreover, if an algorithm succeeds in supplying a linear complexity representation,
then it may still take far more time to compute this representation.

Before we focus on a general paradigm for motion planning amidst fat obsta-
cles in the next chapter, we study the influence of fatness on a number of existing
algorithms for moving a translating and rotating rigid robot among polygonal ob-
stacles. This specific problem has been studied extensively in the mid-80’s which
has resulted in a number of algorithms with varying efficiency. (In fact, planar
motion amidst polygonal obstacles is the most extensively studied motion planning
problem.) The algorithms that are discussed below constitute an interesting cross-
section of the available algorithms and illustrate as such the differences between the
various approaches to solving the problem. We consider examples of both major
exact approaches to motion planning: cell decomposition and retraction. The aim
of studying the algorithms is to learn the specific combinatorial and algorithmic
properties that lead to efficient motion planning algorithms, so that we can use the
results in finding an efficient paradigm for general fat motion planning.

The running time of the boundary-retraction algorithm for a ladder among poly-
gons by Sifrony and Sharir [93] is sensitive to the number K of pairs of obstacle
corners that lie less than the length of the ladder apart. Section 5.1 confirms the in-
tuitive feeling that the low obstacle density implied by the fatness and the bound on
the relative sizes of the robot and the obstacles cause K to be only O(n) instead of
O(n?). The performance of the Voronoi-based retraction algorithms [70, 71] though
is not enhanced by our assumptions as the worst-case size of the respective Voronoi
diagrams does not benefit from them.

Sections 5.2 and 5.3 consider two cell decomposition algorithms. The famous
Piano Movers’ algorithm for planning the motion of a ladder or polygon among
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polygons by Schwartz and Sharir [84] appears to be surprisingly sensitive to the
complexity of the free space. The algorithm outputs a decomposition of the free
space into O(n) subcells for problems involving a bounded-size robot amidst fat ob-
stacles, whereas the worst-case number of subcells for general settings can be as high
as O(n®). Without modifications, the algorithm computes such a cell decomposition
in time O(n?). A number of adaptations enhance the running time to O(nlogn).
We discuss these results quite thoroughly as they provide the main ideas for the
general paradigm of Chapter 6. The algorithm by Leven and Sharir [64] for a lad-
der among polygons does not benefit from the fatness of the obstacles, although its
worst-case behavior is superior to that of Schwartz and Sharir. We give an example
with fat obstacles that leads to a cell decomposition consisting of Q(n?) subcells,
which equals the worst-case number of subcells for general obstacles.

In Section 5.4, the claim of Avnaim, Boissonnat, and Faverjon [10] that their
boundary cell decomposition algorithm performs considerably better than the worst-
case O(n” logn) running time if the workspace has a low obstacle density is confirmed
for workspaces that satisfy our assumptions. We find that the running time of the
algorithm indeed reduces to O(nlog n).

Throughout the entire chapter, it is assumed that a constant-complexity rigid
robot B moves in a two-dimensional Fuclidean workspace amidst a collection & of
n polygonal k-fat obstacles, for some positive constant k. Each individual obstacle
E € & has constant complexity and a minimal enclosing hypersphere radius of at
least p. As an exception, the bounds on the sizes of ladder robots are expressed in
terms of their lengths instead of their reaches, to conform to the original papers.
Needless to say is that the length of a ladder is closely related to its reach. Note
that the robot itself need not be fat. The assumptions are generally omitted in the
formulation of the results of this chapter.

5.1 Boundary-vertices retraction

Let us first consider the boundary-vertices retraction method of Sifrony and Sharir
[93] for planning the motion of a ladder amidst polygonal obstacles, which runs in
time O(K logn), where K is the number of pairs of obstacle corners (vertices) that
lie less than the length of the ladder apart. We will prove that in the indicated
setting K = O(n), yielding an efficient O(nlogn) algorithm.

For simplicity, we assume that the polygonal obstacles in Fy,.... E, € &£ are
ordered by increasing minimal enclosing circle radii py, ..., p,, and furthermore that
the features of each object F; are ordered in some way fi,..., fi. (¢ = O(1) by the
constant complexity of E;). Note that a feature that appears after feature f in the
lexicographical ordering of features either belongs to the same obstacle as f or to a
larger obstacle.

Lemma 5.1 bounds the number of feature pairs with small mutual distance. If
we charge each such close pair to the lexicographically smallest of the two involved
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features then, first of all, each pair is counted, but, more importantly, it turns out
that each feature gets charged only a constant number of times. As a result the
total number of chargings, and, hence, close feature pairs, adds up to O(n).

Lemma 5.1 Let k and b be positive constants and let € be a set of polygonal k-fat
constant-complexity obstacles with minimal enclosing circle radii at least p. Then
the number of feature pairs (edges, corners) that lie less than b- p apart is O(n).

Proof: Let us count all lexicographically larger features f’ that lie within a distance
b- p from a feature f. Clearly, the distance from the obstacle E; containing f to
the feature f’ is bounded by b-p < b+ p;. The lexicographically larger feature f’
belongs, by definition, either to F; or to an obstacle F; with j > :. By Corollary
2.10, the number of such obstacles I; within a distance b- p; from £; is bounded by
a constant. Combined with the constant complexity of these obstacles and of £}, it
follows that there is at most a constant number of choices for f’. The O(n) bound
follows after summing over all f. O

Lemma 5.1 proves that K = O(n). We obtain the following final result.

Theorem 5.2 Sifrony and Sharir’s boundary-vertices retraction algorithm [93]
plans the motion of a ladder robot B with length { < b- p amudst the fat obsta-
cles of £ in time O(nlogn), for any constant b > 0.

5.2 Fatness-sensitive cell decomposition

This section considers the combinatorial and algorithmic consequences of fatness for
the famous Piano Movers’ algorithm by Schwartz and Sharir [84]. Subsection 5.2.1
shows that the complexity of the cell decomposition of FP computed by the method
is O(n), under the assumption of fat obstacles and a bounded-size robot, whereas
the bound is O(n®) in the general case. The algorithmic part in Subsection 5.2.2
deals with the efficient computation of the decomposition; the subsection improves
the direct bound of O(n?) to O(nlogn).

Schwartz and Sharir [84] apply the cell decomposition technique to obtain an
O(n?) algorithm for planning the motion of a ladder B moving amidst polygonal ob-
stacles £ in the plane. Their method decomposes W = IR? into so-called noncritical
regions, lifts these regions into three-dimensional cylinders (in C' = R* x [0, 27)),
decomposes the free part of the cylinders into subcells, and finally captures the ad-
jacency of the subcells in a connectivity graph. We will go into more detail on each
of these steps and, while doing so, focus on the consequences of fatness for each of
these steps. We emphasize that we will not give an extensive explanation of the
ladder algorithm. The reader is referred to the original paper [84] or Latombe’s
book [59] for a detailed description.

The noncritical regions in the robot’s workspace W = IR* are defined by eritical
curves. The meaning of these curves is not important in our analysis, so we restrict
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ourselves to summarizing the different types of critical curves. We adopt the clas-
sification of the critical curves used in Latombe’s book [59]. Let P and @ be the
endpoints of the ladder B and let ¢ = |PQ| be its length. Choose P as the robot’s

reference point.
o An obstacle edge is a critical curve of type O.

o Let e be an obstacle edge. The line segment at a distance ¢ from e is a critical
curve of type 1. The length of the critical curve equals the length of e.

o Let = be an obstacle corner and let e; and e; be the edges emerging from x.
The circular arc with radius ¢, centered at x, and running between the half-
lines starting at # and containing the edges e; and e, respectively, is a critical
curve of type 2.

o Let 2 be a convex obstacle corner and let e be one of the edges emerging from
x. The line segment traced out by P while B slides along e, so that ) touches
e and x touches B, is a critical curve of type 3. The curve is the extension
with length ¢ of the edge e at z.

o Let x1 and x5 be convex obstacle corners such that the line passing through
x1 and x5 is tangent to the obstacle set £ in both x; and x,. The line segment
traced out by endpoint P, while B slides along x; and x4, is a critical curve of
type 4. Note that the distance from a1 to x5 must be less than /.

o Let x be a convex obstacle corner and let e be an obstacle edge such that « is
not an endpoint of e. The curve traced out by P while () slides along e and
while B remains in contact with x, is a (fourth degree) critical curve of type
5. Note that again the distance from = to e must be less than (.

Figure 5.1 illustrates the various critical curve types. The (intersecting) critical
curves partition W = IR®. The part of a critical curve between two points of inter-
section with other critical curves is called a critical curve section. A position (x,y)
of the robot B is admissible if there exists an orientation 6, such that (z,y,6) € FP.
A noncritical region is a maximal subset of admissible robot positions intersecting
no critical curves. Hence, the critical curves determine a set of noncritical regions
in W.

Let ©,, = {0]|(x,y,0) € FP } be the set of free orientations of B with P fixed
at a point (x,y) in a noncritical region R. The set 0, , consists of a finite number of
open maximum connected intervals. For each such interval (61,6:) € ©,,, both the
robot placement (x,y,6;1) and the robot placement (x,y, 62) are placements in which
the robot touches the obstacle set. The unique stop touched by B in the contact
placement (x,y,61) (resp. (z,y,02)) is denoted by s(x,y,61) (resp. s(x,y,8;)). The
set of all pairs [s(x,y,61), s(x,y,8,)] such that (61,60,) € O, , is referred to as o(x,y).
The critical curves are defined so that for each pair of points (z,y) and (2/,%') in a
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Figure 5.1: The six types of critical curves in Schwartz and Sharir’s solution to the
Piano Movers’ problem.

single noncritical region R, the sets o(x,y) and o(a’,y') are equal [84]. In the sequel,
we use the abbreviation o(R) = o(x,y), where (z,y) is any point in R. Each pair
of contact positions [sq1, s3] € o(R) defines a cell in the cell decomposition of FP.

Schwartz and Sharir’s method first computes all critical curves, and then all
intersections of the curves, resulting in a collection of intersection points and a
collection of critical curve sections. With each intersection point, we store the critical
curve sections that are incident at this intersection point. Each critical curve section
3 separates two regions; we arbitrarily call one of the regions left(/3) and the other
one right(/3). Next, we compute o(left(3)) and o(right(/3)), define a connectivity
graph node for each subcell [s1, s3] induced by the regions left(/3) and right(3), and
build the adjacency relation (based on the adjacency of the corresponding subcells)
between the nodes induced by both regions. (Note that each node is generated by
a single critical curve section.) If we repeat this procedure for every critical curve
section, each subcell is represented in the connectivity graph as many times as there
are critical curve sections bordering the region that induced the subcell. All nodes
that correspond to the same subcell are circularly connected.
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5.2.1 Complexity of the cell decomposition

We recall that the number of obstacle edges and corners is O(n). First, we observe
that the number of type 0-3 curves is not influenced by the fatness of the obstacles
and is O(n) in both the arbitrary and the fat case.

In the general case of arbitrary polygonal obstacles, the number of type 4 curves
is O(n?) since each pair of corners may define such a curve. The same number
applies to type 5 curves since each pair of one edge and one (convex) corner may
induce such a curve. As a result, the total number of critical curves is O(n?). Each
pair of curves may intersect, so that there can be up to O(n') intersections, and,
hence, O(n*) critical curve sections.

Things change it we assume the obstacles to be k-fat. Let us first observe an
important property of all critical curves, following from the definitions of the curves.

Property 5.3 Each point on a critical curve is less than the length { of the ladder
away from the obstacle features (corners, edges) that define this curve.

The other important tools in the analysis of the ‘fat case’ are the low object density
results Theorem 2.9, Corollary 2.10, and Lemma 5.1. Like in the previous section,
the length ¢ of the robot B = P(Q is bounded by { < b-p <b-p;, forall 1 <: < n.

Lemma 5.4 bounds the number of critical curves of type 4 and 5. The lemma
follows more or less directly from the definition of the curves and Lemma 5.1, which
bounds the overall number of feature pairs, and, hence, the number of feature pairs
defining critical curves of type 4 and 5.

Lemma 5.4 The number of critical curves of type 4 and 5 in the workspace is O(n).

Proof: Each pair of obstacle corners with mutual distance at most ¢ may, under
some additional conditions, like relative angles of incoming edges, define one critical
curve of type 4. The number of corner pairs lying less than ¢ apart is bounded
by O(n) by Lemma 5.1. Thus, the number of type 4 curves is bounded by O(n).
Each pair of an obstacle corner and an obstacle edge with mutual distance at most
{ may, again under some additional conditions, define one curve of type 5. Lemma
5.1 bounds the number of such pairs and, hence, the number of type 5 curves, by

O(n). O

Each of the of O(n) critical curves may be intersected by other critical curves and,
as a result of that, be cut into a number of critical curve section. Since each critical
curve 3 is defined by one or two obstacle features, an intersection point p = N 3’
can be regarded as being implied by the union of the two sets of defining features.
Each intersection is as such implied by a collection of two, three, or four obstacle
features. If we now charge each intersection p to the lexicographically smallest of
these features, then we find again that each feature is charged at most a constant
number of times. Adding up all contributions of features f leads to a total of O(n)
intersections and, hence, critical curve sections.
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Lemma 5.5 The number of critical curve sections in the workspace is O(n).

Proof: Let us bound the number of critical curve intersections p implied by f and
a set I of lexicographically larger features (1 < |F| < 3); the features in {f} U F
define the two curves 3 and 3’ intersecting in p. By Property 5.3, the distances from
the intersection point p to the defining features {f} U F' of 5 and " do not exceed
(. As a result, the distance from any feature f" € F to f is at most 2¢. Moreover,
the distance from the object F; containing f to any feature f’ € F'is bounded by
20 < 2b-p < 2b- p;. Each lexicographically larger feature f € I’ belongs either to
E; or to an obstacle I/; with j > :. By Corollary 2.10, the number of such obstacles
FE; within a distance b-6; from FE; is bounded by a constant. Combined with the
constant complexity of these obstacles and of F;, we find that there is also at most a
constant number of candidates for inclusion in F'. Hence, there exist only a constant
number of sets F' of features that, together with f, can imply a pair of intersecting
curves 3 and 3. The low degree of the curves implies that the number of intersec-
tions of a pair of curves 8 and 3’ is bounded by a constant, so any choice for F
can contribute no more than O(1) intersections. Adding up the contributions of all
features f yields a total of O(n) intersections and, hence, critical curve sections. O

We have seen that the number of connectivity graph nodes added by the critical
curve section 3 equals the number of subcells induced by the region left(3) plus the
number of subcells induced by the region right(3). If 7 is a type 0 curve, only one
of the two regions is noncritical, in all other cases both regions will be noncritical.
A region that is not noncritical will induce no graph nodes.

Now, we analyze the number of subcells induced by a single noncritical region
R. In Schwartz and Sharir’s method, each pair [s1, s3] € o(R) defines a subcell.
Hence, the number of subcells induced by a noncritical region R is determined by
the number of pairs in o(R), each pair in o(R) consisting of two different contact
placements for B with P fixed at some point in R. The number of subcells induced
by R is therefore determined by the number of different contact placements for B
when we fix its endpoint P at some point (x,y) in R and vary its orientation 6.
Note that, due to the shape of the features, each feature can be touched by B in
at most two different orientations while its endpoint P is fixed at (z,y). In the
case of arbitrary polygonal obstacles, we can easily construct examples where the
robot can touch any of the O(n) obstacle features, each at a different orientation
. A noncritical region R can therefore induce O(n) subcells. Since the number of
noncritical regions is O(n*), we obtain a total number of O(n®) subcells. As before,
things are different in a fat setting. It is easy to see that an obstacle feature f
touched by B with P fixed at (,y) in some contact position must lie close to (x,y).
Using the low density property of spaces with fat objects, we can bound the number
of such features f.

Lemma 5.6 Fach noncritical region in the workspace induces only O(1) subcells in
the configuration space.
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Proof: The number of subcells induced by a noncritical region R depends on the
number of obstacle features that can be touched by B = P() while its endpoint P
is fixed at some arbitrary point (z,y) € R. Obviously, such a feature intersects the
circular region S obtained by rotating B while keeping P at (x,y). The number of
objects E; (¢ > 1) intersecting the circle S with radius ¢ < b- p is constant by Theo-
rem 2.9. As a consequence, the number of features f intersecting S, and potentially
touched by B, is O(1). So, the number of subcells induced by a noncritical region
R is bounded by a constant. O

Lemma 5.6 shows that each critical curve section # adds at most twice a constant
number of nodes to the connectivity graph. By Lemma 5.5, we conclude that the
total number of nodes is O(n). Let us count the adjacencies of a single node N
added by some section 3. Assume without loss of generality that NV is induced by
the noncritical region left(3). The nodes that are adjacent to N either correspond to
the same subcell, or are induced by the noncritical region right(/3) and added by the
section 3. As all nodes corresponding to a single subcell are circularly connected, the
number of adjacencies of the first type cannot exceed two. The number of adjacent
nodes of the second type is constant by Lemma 5.6. Hence, each subcell is adjacent
to a constant number of other subcells, resulting in a total of O(n) graph edges.

Theorem 5.7 The connectivity graph corresponding to the cell decomposition of the
free space of a ladder moving amidst k-fat obstacles has O(n) nodes and edges.

5.2.2 Computing the cell decomposition

Although the complexity of the connectivity graph corresponding to the cell de-
composition is O(n), a straightforward application of Schwartz and Sharir’s method
would result in O(n?) time to compute the decomposition. This bound turns up
in each of the three steps in the algorithm: the first step where all critical curves
are computed, the second step where all critical curve (inter)sections are computed,
and the third step where all subcells induced by a single noncritical region are de-
termined. If we incorporate the plane sweep ideas by Bentley and Wood [14] for
reporting geometric intersections in each of the three steps, then the efficiency of
each individual step is enhanced to O(nlogn). For a discussion of the main in-
gredients of a plane sweep, we refer to Section 7.1. Here, we confine ourselves to
mentioning that the K intersections of n line segments in the plane can be reported
in time O((n+4 K)logn). The ideas are straightforwardly generalized to x-monotone
constant-complexity curves. Below we redefine each of the three above steps as a
problem of reporting constant-complexity curve intersections.

We have shown in the previous subsection that the number of type 4 or 5 curves
is linear in the case of fat obstacles. Each of these curves is determined by two
features. We could naively try all possible pairs of features to find out which pairs
generate a curve. This strategy would require £(n?) time to find the O(n) curves.
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Instead we should use the knowledge that only two features that lie less than ¢ apart
can define a curve of type 4 or 5. Let us first determine all pairs of features that lie
less than ¢ apart. By Lemma 5.1, there exist O(n) such pairs. After determining
the close feature pairs O(n) time suffices to find which of the corner-corner and
corner-edge pairs indeed define curves of types 4 and 5.

To determine the pairs of features with distance at most ¢, we use the ideas
of Sifrony and Sharir [93], which in turn rely on the techniques from [14]. Sifrony
and Sharir wrap each obstacle edge and its two endpoints by a so-called envelope.
The envelope of an edge ¢ is the set d(e © So4/2): the boundary of the Minkowski
difference of e and the circle with radius /2 centered at the origin. Hence, the
envelope of an edge e equals the set of points with distance (/2 to e. As such, it
consists of two straight segments parallel to e, and two circular arcs of arc length
7 (half-circles) about e’s endpoints (see Figure 5.2). It is not too hard to see that

e i et

Figure 5.2: The envelope of an edge e and its two endpoints.

the envelopes of the edges e = vjvy and €’ = vjv) intersect if and only if features

from {e,vy,v1} and {€/,v],v5} lie less than ¢ apart. As a result, we can find the
close pairs of features by sweeping the (constant-complexity) envelope curves in the
plane. To satisfy the input requirement that the curves are z-monotone, we simply
cut the circular arcs into two subarcs at z-extremal points. The envelope curves are
labeled with the corresponding edge and endpoints®.

Let us now consider the efficiency of the above sweep for envelope intersections,
and, hence, for close feature pairs. By the convexity of the envelopes, two envelopes
can only intersect in a constant number of points. Moreover, each reported inter-
section of two envelopes leads to a non-zero number of close feature pairs. As a
result, the number of envelope intersections is of the same order of magnitude as the
number of close feature pairs: O(n) by Lemma 5.1. Reporting the K' = O(n) enve-
lope curve intersections with the plane sweep takes O((n + K)logn) = O(nlogn)
time. From the envelope intersections, the close feature pairs, and subsequently, the
critical curves of type 4 and 5 can be computed in O(n) time.

!Note that envelopes of consecutive edges on the boundary of a single obstacle may partially
coincide. Potential problems with these coinciding parts are avoided if we merge these parts into
a single curve, labeled with all corresponding edges and endpoints.
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After having computed the critical curves in O(nlogn) time, we encounter a
similar problem when computing the curve intersections (and the resulting critical
curve sections). We could, naively, spend O(n*) by intersecting each curve with
any other curve, although we know that the number of intersection is only O(n) by
Lemma 5.5. An obviously better idea is to cut the (constant-complexity) critical
curves into a constant number of z-monotone subcurves and feed these to the plane
sweep. The sweep reports the K = O(n) intersections in time O((n + K)logn) =
O(nlogn). The intersection points cut the critical curves into the desired critical
curve sections.

For each of the O(n) critical curve sections /3, we have to compute o(left(3)) and
o(right()). Computing o(left(/3)) requires choosing a point (x,y) € left(/), fixing
the robot’s endpoint P at (x,y), and reporting all features that can be touched by
B and the orientations in which they are touched, which seems rather difficult to do
efficiently. Fortunately, the set of features that are to be reported forms a subset
of the set of features of the O(1) obstacles (Theorem 2.9) that intersect the circular
region S, )¢ (centered at (z,y) and with radius /). Checking all O(n) obstacles for
intersection with S, is surely not the most efficient way of determining the O(1)
obstacles that intersect the circle. A better idea is to use the results on bounded
size range searching from Chapter 3. The construction of the data structure storing
all obstacles of € takes O(nlognloglogn) time. The O(n) queries with circles
(with radius /) induced by all critical curve section then take O(nlogn) in total.
The entire computation takes O(nlognloglogn). The following two-step approach,
however, avoids the ‘loglogn’-factor: first find for all circles S the set Vi(9) of
obstacles that have a vertex inside S, and then report for all circles S the set V5(.5)
of obstacles F with edges that intersect the boundary 95 of S. Notice that the
union of possibly overlapping sets V4(.5) and V3(.5) is clearly the set of all obstacles
intersecting 5. Below we solve the subproblems one by one.

The computation of the (constant-cardinality) sets V4(5) can be further simpli-
fied by realizing that Vi(S) is a subset of the set of obstacles having a vertex inside
the axis-parallel minimal enclosing square C' of S. The enclosing square (' of the
circle S with radius ¢ has side length 2¢ < 2b- p. By Theorem 2.9, the number of
obstacles from & intersecting C' is constant, so definitely the number of obstacles
having a vertex inside (' is constant. To solve the reduced problem we store all ob-
stacle vertices in a data structure that supports efficient axis-parallel (or orthogonal)
range searching queries. Preparata and Shamos’ text book [79] on computational
geometry gives an appropriate data structure, based on the layered range tree. The
characteristics of the (layered range tree) structure are given as Lemma 5.8.

Lemma 5.8 There exists a data structure of size O(nlogn) that answers planar
range search queries among points in time O(logn 4+ K), where K is the number of
answers to the query. Building the structure requires O(nlogn) time.

After having spent O(nlogn) time to build the range searching structure, we can
easily report all sets V4(5) in time O(nlogn) by querying the structure with the
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enclosing squares and subsequently filtering out the obstacles that do not have a
vertex inside S.

The nature of the second subproblem, reporting intersections of circles and
obstacle edges, suggests the use of the plane sweep for reporting intersections of
constant-complexity curves. By the proot of Lemma 5.6 or Theorem 2.9, each circle
S = Sy is intersected by only a constant number of edges. This observation
not only implies that each set V3(.5) has constant cardinality but also that the total
number of circle-edge intersections is O(n). Unfortunately, we do not only encounter
circle-edge intersections throughout the sweep: the circles also intersect each other.
These intersections are non-interesting events with respect to finding the subcells
induced by the non-critical regions, but they do affect the efficiency of the plane
sweep. The number of such (irrelevant) circle-circle intersections seems impossible
to bound without further provisions.

Before analyzing the number of circles intersecting a given circle, we recall that
each critical curve section 3 defines two circles, centered in left(3) and right(/),
respectively. If we allow these centers to be anywhere in left(/3) and right(/3), then
it seems impossible to bound the number of circle-circle intersections. However, if
the centers of both circles are restricted to the vicinity of their implying critical
curve sections, then proving an O(n) bound on the number of intersections becomes
feasible. In the modified version of Schwartz and Sharir’s algorithm, we therefore
take care to choose the circle centers within a distance, say, ¢ from the originating
critical curve section 3, thus allowing for an efficient sweep of the arrangement of
curve and circle parts.

Lemma 5.9 [f the centers of the circles implied by the O(n) eritical curve sections
B are chosen within a distance { from 3, then the number of circle-circle intersection

is O(n).

Proof: Let us consider a circle S, , and count the number of circles intersecting
S Any circle Sy, o intersecting S, » must clearly have its center m’ lying in the
circle S;, 20. As m’ was chosen within a distance ¢ from the critical curve section
f" defining S, ¢, this defining section § must intersect the again larger circle Sy, 3.
By Property 5.3 in turn, any point on /3 lies within a distance ¢ from all its defin-
ing features, which must therefore intersect the circle S, 4. By Theorem 2.9, the
number of obstacles, and, hence, obstacle features, intersecting 5, 4¢ is bounded by
a constant. This constant number of features can define at most a constant number
of critical curves, that may possibly intersect S, 3. The (constant size) subset of
critical curves that intersect 9, 3¢ define only a constant number of critical curve sec-
tions 3'. As each of the O(1) sections defines two circles the total number of circles
defined by such curve sections is constant. The circles S,/ , that intersect 5, , must
belong to this constant-size set of circles. Hence, any circle S, , is intersected by
O(1) other circles, leading to the O(n) bound on the total number of intersections. O
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The above lemma shows that the total number K of intersections encountered
during the sweep of the arrangement of the O(n) (properly chosen) circles and the
O(n) (non-intersecting) obstacle edges equals O(n). The running time of the sweep
therefore amounts to O((n 4+ K)logn) = O(nlogn). The output of the sweep are
the constant size sets V5(.5) of obstacles E € €. From the constant size unions
Vi(Sme) U Va(Sim), the sets o(R) with R 3 m can be computed in constant time.

The modified version of Schwartz and Sharir’s algorithm, which is tailored to
fat obstacles, now consists of three steps: the first two are plane sweeps and the
third combines a sequence of range search queries with a plane sweep. Fach of the
three steps runs in time O(nlogn), so that the running time of the entire algorithm
amounts to O(nlogn) as well. The result is summarized in the following theorem.

Theorem 5.10 Schwartz and Sharir’s cell decomposition algorithm [84] can be
adapted to plan the motion of a ladder robot B with length { < b- p amidst the
fat obstacles of £ in time O(nlogn), for any constant b > 0.

5.2.3 A polygonal robot

In the preceding two subsections we have restricted our attention to a ladder moving
amidst polygonal obstacles. Schwartz and Sharir’s paper [84], however, also gives
an algorithm for a polygonal robot.

The algorithm for a polygonal robot is similar to the algorithm for a ladder.
The only difference concerns the definition of the critical curves. There are more
and different types of critical curves in the polygonal case. Although the critical
curves are different, the basic properties of these curves remain valid: features that
are involved in the definition of a single critical curve are less than the diameter of
the robot apart, and each point on a critical curve is less than the diameter of the
robot away from the features that define it. The validity of these properties allows
us to use a similar proof strategy and a similar approach for an algorithm in the
case of a polygonal robot, resulting in the same O(nlogn) complexity for the cell
decomposition and for the motion planning algorithm.

5.3 A fatness-insensitive cell decomposition

A different example of the cell decomposition approach is the algorithm of Leven and
Sharir presented in [64], which also applies to a ladder moving in a two-dimensional
workspace amidst polygonal obstacles. Although the worst-case cell decomposition
size and running time of the algorithm for general obstacles, O(n?) and O(n?logn)
respectively, are superior to the O(n°) worst-case bounds for the Schwartz-Sharir
algorithm, a simple example shows that the Leven-Sharir algorithm is inferior when
the obstacles in the workspace are fat. More precisely, the example shows that
motion planning problems with fat obstacles can still give rise to a decomposition
of the free space into (n?) subcells.
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The basis of the algorithm by Leven and Sharir is the fact that a simple O(n)
cell decomposition exists for the strictly translational version of the problem. This
cell decomposition is, off course, a decomposition of the projective subspace IR* of
the configuration space IR* x [0,27) of the original problem. The decomposition is
such that a small change in the orientation of the robot leads to an only slightly
different (and often topologically equivalent) cell decomposition. In configuration
space we conceptually obtain an infinitely small-grain stack of such continuously
varying planar cell decompositions. If one would descend the stack, then, at certain
orientations, the planar cell decomposition changes topologically. These so-called
critical orientations divide the angular dimension [0,27) of the configuration space
into intervals of similar planar cell decompositions. The one-dimensional intervals
I C [0,27) define slices IR* x [ in configuration space, that cut the stack into sub-
stacks. Corresponding regions in different layers of the stack form a subcell in the
decomposition of the configuration space. All three-dimensional subcells in a slice
span the entire slice from its lower boundary # = 6, to its upper boundary 6 = 6,.
Subcells appear or disappear only at slice boundaries. Moreover, assuming general
position of the obstacles, exactly one subcell appears or disappears at any slice
boundary.

The complexity of the resulting cell decomposition is determined by the number
of critical orientations, which form the interval endpoints, and, hence, the slice
boundaries. A critical orientation # is an orientation for which one of the three
conditions listed below is true (¢ is the length of the ladder). The identification of
the conditions is adopted from the paper by Leven and Sharir [64].

(C4) There exist two obstacle corners such that the open line segment connecting
them is entirely contained in the closure of W \ (UgesF) and has orientation

0.

(C5) There exist an obstacle corner and a point on some obstacle edge such that the
open line segment connecting the corner and the point is entirely contained in
W\ (UgeeF) and has orientation § and length (.

(C6) There exist two points on two obstacle edges and an obstacle corner ¢ such
that the open line segment connecting the two points has orientation § and
length 0, passes through ¢, and is entirely contained in W\ (UgeeF) except at
c.

Clearly, the number of critical orientations in the case of arbitrary polygonal ob-
stacles is O(n?). The resulting free space decomposition consists of O(n?) cells. In
contrast to the algorithm in Section 5.2, the number of critical events is not in-
fluenced by the possible fatness of the obstacles. This is most easily seen from a
situation where we have n square 27-fat obstacles placed in circular fashion (see
Figure 5.3). In this example, the obstacle corner v can be connected to any of the
2n — 2 obstacle corners facing the interior of the circle by a line segment that is
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Figure 5.3: The number of critical orientations is not reduced by the fatness of the
obstacles.

wholly contained in the closure of W \ (UgeeF). If we do the same for each of the
remaining 2n — 1 obstacle corners facing the interior of the circle, we obtain a total
number of 1(2n —1)(2n —2) = (2n —1)(n — 1) different line segments, each of them
corresponding to an occurrence of condition (C4). By small perturbations of the
obstacles we can establish that each of the line segments has a different orientation,
which results in at least (2n — 1)(n — 1) critical orientations induced by occurrences
of condition (C4). As a consequence, the number of critical orientations is O(n?).
Thus, the fatness of the obstacles does not lead to a reduction of the complexity of
the cell decomposition in this case.

5.4 Boundary cell decomposition

Avnaim, Boissonnat, and Faverjon [10] describe a variant of the cell decomposition
approach that, rather than decomposing the free space itself, decomposes the free
space boundary BFP = ¢/(FP) \ FP into simple subcells or faces. The results in
Chapter 4 imply that the complexity of BFP in our realistic setting is O(n). The
algorithm requires that the complement W \ (UgeeE') of the obstacles is bounded.
This requirement is easily met by enclosing the workspace obstacles in arbitrarily
large box. After the decomposition of the free space boundary, additional faces are
created to establish sufficient connectivity among the faces to solve the path-finding
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problem between two specific placements. The initial and final placements determine
the faces that are added in this step. The preceding decomposition of BFP, on the
other hand, is independent of the query. The boundary faces and the additional
faces constitute the nodes of a graph in which two nodes are connected if their
corresponding faces share a common boundary. The graph is subsequently searched
for a path connecting the initial and final robot placements. The motion planning
algorithm has worst-case running time O(n”logn), but the authors claim that the
running time improves to O(n log n) in workspaces of bounded local complexity [88].
Below, we see that the running time is O(nlogn) in the case of a polygonal robot
B with reach pg < b- p, and, hence, diameter at most 2pg, moving among the k-fat
polygonal obstacles of &.

The free space boundary decomposition is based on ideas borrowed from a paper
by Avnaim and Boissonnat [9]. The authors decompose BFP into faces bounded
by two straight edges parallel to the plane § = 0 and by two curved arcs. They
essentially compute the O(n) contact surfaces consisting either of all placements in
which a robot vertex v touches an obstacle edge ¢’ or of all placements in which a
robot edge ¢ touches an obstacle vertex v’, and subsequently subtract the collection
of placements in which a robot edge intersects an obstacle edge from each of these
contact surfaces. A sweep of each contact surface computes the difference of the ini-
tial surface and the collection of placements corresponding to intersecting robot and
obstacle edges?. The sweep simultaneously subdivides the resulting set difference
into faces bounded by two arcs and two straight edges. A sweep of a single contact
surface takes worst-case O(n®logn) time, resulting in a total time of O(n”logn)
time for handling all surfaces. The faces form a decomposition of the free space
boundary into simple subcells. Determining the connectivity of the faces takes time
proportional to the cumulative complexity of the faces, provided that the bounding
curves of the faces are labeled with a characterization of the double contact that
they represent.

Let us now consider the consequences of fatness on the decomposition sketched
above. Assume that f4 ¢ is the (constant-complexity) surface consisting of the place-
ments in which the robot feature ¢ touches the obstacle feature ®. The objective
is to subtract from f4 ¢ all placements Z in which an edge e of B intersects some
obstacle edge €¢’. Such an obstacle edge ¢ must lie within a distance 2pg < 2b- p
from the obstacle feature ¢, because B simultaneously touches ® and intersects ¢’.
By Lemma 5.1, the overall number of such pairs is O(n), and they can be computed
in time O(nlogn) using the technique by Sifrony and Sharir outlined in Subsection
5.2.2. Provided that these O(n) close feature pairs are computed in advance, it is
possible to determine the m edges e’ within a distance 2pg from ¢ in time O(m). We
charge each edge €’ to the close pair (¢, ¢’). The m edges e’ and the O(1) robot edges
e define O(m) (constant-complexity) collections of points that are to be subtracted
from f; . The computation of the difference of f, ¢ and these O(m) sets and the

2A suitable parametrization of the contact surface facilitates an efficient sweep.
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simultaneous subdivision of the difference via the surface sweep takes O(mlogm)
time. Repeating the arguments for all contact surfaces f leads to at most two charg-
ings of every close pair (¢,¢), so it follows that >, ms; = O(n). The cumulative
running time of all sweeps, and, hence, of the entire computation of all faces of BFP
equals >~ O(myslogmy) = O(nlogn). Extraction of the adjacency information for
the faces takes O(nlogn) time. The resulting graph is denoted by Gg.

Assume, for the second part of Avnaim, Boissonnat, and Faverjon’s algorithm,
that the goal is to find a path between the free placements Zy = (20,90, 00) and
71 = (21,y1,01). Let Ky and K; be the free cells containing Z, and 7Z; respectively.
The boundedness of W \ (UgeeF) implies that all free cells are bounded as well.
The boundaries 0Ky and 0K; may well be non-connected. The boundedness of
the cells guarantees that one connected component of a cell boundary, the so-called
external boundary, encloses all other connected components. Let K and 9K be
the external boundaries of Ky and K respectively. Furthermore, let Kj be the
intersection of the plane 6§ = 0, and the free cell Ky and let Ky, be the intersection
of § = 0; and K;. The placement Z; is connected to any placement in K by a
(semi-free) path that is entirely contained in Ky, U 0K,. Similarly, Z; is connected
to any placement Z' € K7 by a path in Ky U JK;. The key observation is that
Zo and Z; are connected by a semi-free path if and only if both placements belong
to the same free cell: Ky = K;. In that case, Zy and Z; are connected by a path in
Koy UOKyU Ky, = Ky, UOK;, U Kp,. A decomposition of Ky, and Ky, into simple
faces facilitates path-finding in these two subsets of FP.

The cross-section Ky, of the free cell Ky is a polygonal region. The complexity
of the polygonal region Ky, is bounded by the complexity of the intersection of
the FP and the plane 6§ = 6,, which is O(n) by the results from Chapter 4. A
vertical decomposition subdivides Ky, into O(n) faces bounded by at most four
edges. The computation of the decomposition and the adjacencies of the faces via
a sweep of Ky, takes O(nlogn) time. (For details on such a sweep, the reader is
referred to Section 7.1.) Let Gy be the adjacency graph on the faces in the vertical
decomposition. A similar treatment of Ky, results in an O(n) decomposition of Kjy,
and a corresponding graph (¢y. The faces containing Z, and 7, are easily determined
during the sweeps. Notice that no face corresponding to a node in Gy is adjacent to
a face corresponding to a node in Gy, unless 6y = 6,.

The final task is to merge the graphs G'g, Gy, and Gy into a single graph G on the
faces in all three decompositions. Merging the graph G into G’ requires a single
simultaneous scan of the nodes in Gp corresponding to faces that are intersected
by 8 = 0, and the nodes in Gy corresponding to faces on the boundary of Kg. A
node in G and a node in Gy are connected by an edge if the corresponding faces
share a curve of non-zero length. A careful implementation of the merge requires
O(n) time. Finally, the graph G is merged into G'g U Gy using the same ideas and,
hence, within the same time bound.

A search of the graph G with size O(n) returns a sequence of faces connecting
the face containing 7, and the face containing 7Z; if and only if Zy and Z; lie in the
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same free cell. The paper by Avnaim, Boissonnat, and Faverjon [10] includes clues
on transforming the sequence of faces into an actual semi-free path for the robot B.
Notice that, contrary to most other exact algorithms, part of the work is dedicated
to the specific query with the points Zy = (20, y0,00) and Z; = (@1, y1,61): another
query requires re-doing the second part of the construction.

The most expensive step from a computational point of view of the algorithm
sketched above is the computation of the close feature pairs, taking O(nlogn) time.
The following theorem summarizes the result obtained in this section.

Theorem 5.11 Awvnaim, Boissonnat and Faverjon’s boundary cell decomposition
algorithm [10] can be adapted to plan the motion of a polygonal robot B with diameter
0 <b-p amidst the fat obstacles of € in time O(nlogn), for any constant b > 0.

5.5 Towards a general method

The preceding sections include a variety of algorithms for the solution of the planar
motion planning problem amidst fat obstacles, all running in O(nlogn) time. The
main goal of the final chapters of this thesis, however, is to find a more general
solution to the motion planning problem amidst fat obstacles. Unfortunately, the
algorithms presented here are dedicated to planar problems.

Algorithms for efficient motion planning in three-dimensional workspaces are
scarce. Approaches in contact space, like the algorithms by Sifrony and Sharir in
Section 5.1 and by Avnaim, Boissonnat, and Faverjon in Section 5.4 were never
shown to generalize to 3D workspaces. The problem in generalizing such methods
lies in the difficulty of establishing (sufficient) connectivity among the nodes corre-
sponding to vertices or faces in a single free cell to guarantee the exact solution of
the planning problem.

The general approaches to motion planning for robots with f degrees of freedom
are the cell decomposition method by Schwartz and Sharir [85] running in time
O(n2f+6) and the roadmap method by Canny [20] running in O(n/ log n) time. The
general and recursive nature of these approaches makes it unlikely that they take
advantage of any special structure of FP if present, like in our framework. The
repeated projection of the free space in the first algorithm is likely to destroy any
structure of the free space and may lead to high complexities of the free space
projection, regardless of the complexity of the original free space. The number of
subcells in the resulting cylindrical decomposition can therefore be high, despite
a possible low complexity of FP. The recursive manner of introducing curves to
guarantee the connectivity of the roadmap in Canny’s method seems insensitive to
a special structure or low complexity of the free space. The number of such curves
relates to some extent to the number of local extrema of the free space and in certain
lower-dimensional subspaces of the free space, and the fatness of the obstacles in
the workspace does not seem to reduce the latter quantity.
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The Piano Movers’ algorithm outlined in Section 5.2 deviates from the general
O(n2f+6) cell decomposition approach in that it takes a decomposition of the two-
dimensional subspace W = IR* of €' = IR® x [0,27) as the basis for a cylindrical
decomposition, while the general approach would take a decomposition of a one-
dimensional subspace of (' as a starting point. The alternative of a cylindrical
decomposition based in a higher-dimensional subspace B of (' offers the opportunity
to use properties of the space B to obtain efficient decompositions. The projections
of B in the general approach affect such beneficial properties, so that they no longer
hold in the projective subspaces of B.

A closer look at the details of Section 5.2 learns that the O(n) workspace regions
R defined by the critical curves are such that the intersection of the free space with
their liftings R x [0,27) has constant complexity. This property led to Lemma 5.6,
stating that each region R induces only O(1) subcells in the free space decomposition,
and, hence, only O(n) subcells in the entire decomposition of the free space. A
recursive decomposition of W into similar regions R could easily lead to €(n?)
regions, and thus to Q(n?) subcells. The ability to define a decomposition like the
one in the first sentences of this paragraph is rooted in the relative low obstacle
density in the workspace. While the robot’s reference point is confined to some
sufficiently small region R € W, the robot is able to touch only a constant number
of obstacle features. This fact causes the free part of the configuration space cylinder
R x [0,27) to have constant complexity.

The validity of the low obstacle density property for workspaces of arbitrary
dimensions suggests that the ideas in the preceding paragraph are extendible to other
motion planning problems. Chapter 6 formalizes and exploits the ideas to obtain a
strategy for motion planning that reduces the problem of partitioning the free space
to the intuitively simpler problem of computing some constrained decomposition
of the (lower-dimensional) workspace, provided that the workspace is a projective
subspace of the configuration space. The efficiency of the approach depends on the
availability of small constrained workspace decompositions, which is the topic of
Chapter 7. By demonstrating the existence of small decompositions, the chapter
verifies the validity of the approach.



Chapter 6

A paradigm for motion planning
amidst fat obstacles

The aim of this chapter is to determine a general approach to planning the motion of
a not too large, constant-complexity robot moving amidst k-fat constant-complexity
obstacles. In Section 5.5, we have seen that the existing planar motion planning
algorithms are not easily extendible towards other problems. Moreover, the existing
general approaches to motion planning (like those by Schwartz and Sharir [85] and
Canny [20]) are computationally expensive, even for problems involving fat objects.

Motion planning problems in Euclidean workspaces of dimension three normally
imply at least three-dimensional configuration spaces. A configuration space con-
tains constraint hypersurfaces of the form fy ¢, consisting of placements of the robot
B in which a robot feature ¢ is in contact with an obstacle feature ®. We shall denote
the fact that ¢ is a feature of some object or object set X by { €5 X. The arrange-
ment of all (constant-complexity) constraint hypersurfaces fso (¢ €5 B,® €5 &)
divides the higher-dimensional configuration space into free cells and forbidden cells.
Even in the case of fat motion planning, the complexity of a single free cell can be
O(n), which illustrates that some additional processing is necessary to facilitate
efficient motion planning. Naturally, the structure of a higher-dimensional arrange-
ment like the arrangement of constraint hypersurfaces is complex to understand, let
alone to subdivide the free arrangement cells into simple subcells or to catch their
structure in some one-dimensional roadmap. At this point, however, fatness comes
to our help to provide us with a very useful property of an f-dimensional configura-
tion space C of the form ' =W x D, where W is the d-dimensional workspace and
D is some (f — d)-dimensional (rest-)space. (Free-flying rigid robots, for example,
fit well in this framework. For a free-flying rigid robot in W = IR®, D is the space
defined by the three rotational degrees of freedom of the robot.) The low object
density property of the workspace implied by the fatness of the obstacles can be
shown to result in a very interesting property of configuration space, namely that
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for each point p € W:

{foalo € BA®E EN fyan(px D) # 0} =0(1).

In words, the (f — d)-dimensional subspace p x D obtained by lifting the workspace
point p into configuration space is intersected by only a constant number of con-
straint hypersurfaces. An immediate consequence of this result is that the hyper-
surfaces define a constant-complexity arrangement in each cross-section p x D of the
configuration space C.

At a more abstract level, motion planning problems for free-flying robots amidst
fat obstacles can be regarded as a subclass of the larger class of motion planning
problems with configuration spaces ' = B x D that satisfy for each point p € B:

{foalo € BA®E EN fyan(px D) # 0} =0(1).

In general, a configuration space C' that satisfies this constraint will be said to
be cylindrifiable. Furthermore, we call the subspace B of C' a base space. Hence,
motion planning problems involving a free-flying robot among fat obstacles have
cylindrifiable configuration spaces in which the workspace constitutes a valid base
space. As a result of the cylindrifiability of ', it is possible to partition the subspace
B into closed regions R (or C' into cylinders R x D) such that

{foalo € BAO € EN fya N (R x D) # 0} = O(1).

We refer to such a decomposition of the configuration space (' into cylinders as a
constrained cylindrification. The partition of B that leads to the cylinders will be
called the base partition corresponding to the cylindrification. Figure 6.1 illustrates
the terminology. The figure shows a three-dimensional cylindrifiable configuration
space C' with a two-dimensional base space B. (Hence, the rest-space D is one-
dimensional.) In addition, the figure reveals a fragment of the base partition in the
subspace B and shows the configuration space cylinder R x D corresponding to one
of the regions R in the partition. The cylinder in this specific example is bounded
although in many cases (e.g. D = IR, D = IRT) the cylinder will be unbounded. The
constraints on the base partition guarantee that the cylinder R x D is intersected
by at most a constant number of surfaces like f; 4.

Let us now consider the configuration space cylinder R x D corresponding to a
region R in a base partition in B. By the definition of a base partition, the cylinder
Rx D isintersected by O(1) constraint hypersurfaces. These hypersurfaces subdivide
the cylinder R x D into a constant number of cells, due to their constant complexity.
If we furthermore assume that the cylinders themselves have constant descriptional
complexity (achievable by establishing that R has constant complexity) then each
of the O(1) (free or forbidden) cells in R x D has constant complexity as well. In
conclusion, the constraint hypersurfaces and the cylinder boundaries divide the free
space into constant-complexity, and thus simple, subcells.
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Figure 6.1: A three-dimensional example of a cylindrifiable configuration space '
with a base space B, and a fragment of the base partition in B. The configuration
space cylinder R x D, obtained by lifting the base partition region R into C' is
intersected by at most a constant number of constraint hypersurfaces fj4 6.

The preceding arguments suggest a two-step approach for computing a cell de-
composition for a motion planning problem with a cylindrifiable configuration space:
first, find a base partition in some appropriate base space B of (', and then tranform
the partition into a cell decomposition of the free space FP C (', by computing a
decomposition of the free part of every cylinder. We shall see that the resulting
decomposition consists of cells that allow for simple motion planning within their
interiors, and, moreover, that the rules for crossing from one cell into another are
simple. The proposed approach follows a projection-like approach to cell decompo-
sition that is encountered in several other algorithms (see e.g. [84, 85]). Basically,
these methods (recursively) decompose a lower-dimensional subspace of the config-
uration space (' and lift the decomposition regions into . The free part of the
resulting cylinders is subsequently partitioned into a number of simple subcells.

In Section 6.1, it is shown how the latter part of the two-step approach outlined
above transforms a base partition into a cell decomposition of comparable size in
time proportional to the size of the base partition. Noting this, the problem of find-
ing a (small) cell decomposition of the free space FP C C reduces to the problem of
finding a (small-sized) base partition in an appropriate base space B C . Section
6.2 exploits specific properties of the constraint hypersurfaces that follow from the
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shapes and relative positions of the obstacles to simplify the constraints on the par-
tition of the base space B = W for motion planning problems involving free-flying
robots. The new and simpler constraints combined with the transformation steps
result in a tailored paradigm for motion planning for free-flying robots amidst fat
obstacles. In the next chapter, this paradigm is shown to lead to efficient algorithms
for planning motions for free-flying robots amidst several types of obstacles in dif-
ferent workspaces. Moreover, the ideas presented in this chapter prove useful for
motion planning problems that do not fit neatly in the sketched framework: they
lead to an efficient algorithm for planning the motion of a vacuum cleaning robot,
which is definitely not free-flying.

6.1 Transforming a base partition into a cell de-
composition

We consider a motion planning problem for a constant-complexity robot B amidst
constant-complexity obstacles F2 € £. Pairs of a feature ¢ €7 B and a feature ® &5
& of matching dimension define constraint hypersurfaces f, ¢ in the cylindrifiable
configuration space C' = B x D. Furthermore, we assume that we are given a graph
(VB, EB), where Vg is a set of constant-complexity closed regions R that partition
B and individually satisfy

{foalo € BAO € EN fya N(R x D) # 0} = O(1),

and Fp contains the adjacencies of Vg’s regions: Ep = {(R,R') € Vg x Vg|ORN
IR 0.

The algorithm outlined below transforms the graph (Vp, Fg) into a connectivity
graph CG = (V¢ E¢), consisting of a set Vi of constant-complexity subcells that
collectively partition the set of free placements FP, and a set Fo = {(A, A") €
Vo X VeloAN QA" # (0} of subcell adjacencies. The sizes of the sets Vi and F¢
are of the same order of magnitude as the sizes of Vg and Ep respectively: |[V¢| =
O(|Vsl), |Fc| = O(|Eg|). Note that the graph (Ve, E¢) supports simple path-finding
between two placements in subcells A € Viz and A’ € Vi@ the constant complexity
of the individual subcells guarantee easy path-finding within a subcell, and the
constant complexity of the shared boundary of two adjacent subcells - following
from the constant complexity of the involved subcells - caters for simple boundary
crossing rules. The transformation steps are, contrary to the computation of the base
partition, independent of the actual motion planning problem under consideration.

TRANSFORM BASE PARTITION INTO CELL DECOMPOSITION

Vo -
Eci

0;
0;
for all # € V5 do
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compute the arrangement A of surfaces fy ¢ intersecting R x D;
use A to compute FP N (R x D);
Desc(R) = 0;
for all maximal connected components A of FP N (R x D) do
4.1. VC = VC U {A},
4.2. Desc(R) := Desc(R) U{A};
for all (R, Ry) € Ep do
for all A, € Desc(Ry) N Ay € Dese(R;) do
if 0A; N0Ay # () then Fo := Ec U {(Aq, A2)}.

e =

Figure 6.2 gives a pictorial explanation of the transformation.

R//

(Ve, ')

Desc

(R//) @

Desc(R")
Desc(R')

Figure 6.2: The relation between the base partition graph (Vg, E) in the subspace
B of C at the top, and the connectivity graph CG = (V¢, E¢) in the configuration
space at the bottom. Fach node/region R € Vg defines at most O(1) nodes A € V¢,
collected in a set Desc(R). Two nodes A and A’ in Vi can only be connected if
the corresponding nodes R and R’ in Vg are connected, so, for example, A} may be
connected to all nodes in Desc(R'), but Ay and A4 can never be connected.

We review the different steps of the transformation in more detail to verify their
validity and to determine the efficiency. Recall that the definition of the set Vg
and the constant complexity of the regions R € Vg together imply the constant
complexity of all subcells A € V.
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The first for-loop computes the O(1) (constant-complexity) maximal connected
components of FPN(R x D). A possible way to compute this free part of the cylinder
R x D in constant time could be to apply the techniques by Schwartz and Sharir
[85] to the constant number of constraint hypersurfaces intersecting the cylinder
R x D. Each of the four steps in the loop is easily verified to run in constant time,
provided that the constraint hypersurfaces f; ¢ intersecting R x D can be determined
in constant time. In future applications of the transformation algorithm, we shall
take care that this precondition is fulfilled. If the requirement is indeed settled,
the entire loop runs in time O(|Vg|). Upon termination of the first loop, each set
Desc(R) stores all nodes in Vi that correspond to free subcells in R x D. Note that
each set Desc(R) has constant cardinality.

Two free subcells A; and A, are adjacent if they share a common boundary
(which allows for collision-free crossing from one subcell into the other). Such sub-
cells Ay and Ay can only be adjacent if their containing cylinders By x D O A,
and Ry x D O A, are adjacent in ' and, hence, R; and R, are adjacent in B.
An adjacency (R, Rz) gives rise to only a constant number of adjacencies of nodes
Ay and Ay in Desc(Ry) and Desc(Rz) respectively due to the constant cardinality
of Desc(Ry) and Desc(Rz). Two free subcells Ay and A; in adjacent cylinders are
adjacent if they share a common boundary. Such a common boundary has constant
complexity since both involved free subcells have constant complexity. The nested
for-loop in the second for-loop takes constant time by the above considerations,
implying a running time of O(|Epg]) for the latter loop.

It we combine the time-bounds of the three steps in the paradigm, then we find
that the running time of the entire paradigm depends solely on the size of the base
partition in a lower-dimensional subspace and on the time to compute the partition.
A small and efficiently computable partition is therefore crucial to the success of the
paradigm. We notice that the base partition is implicitly subject to constraints in
configuration space (not more than a constant number of constraint hypersurfaces
may intersect the configuration space cylinder corresponding to the base partition
region). We have, however, already suggested the possibility of using hypersurface
properties to translate the constraints into simpler, lower-dimensional constraints.
In the next section we focus on the large class of motion planning planning problems
for free-flying robots (amidst k-fat obstacles). We will see that these problems allow
for a unique choice of base space. Efficient partitions are likely to be achievable
in this subspace due to the possiblity to translate the implicit configuration space
constraints into (simpler) constraints in the lower-dimensional subspace. In Chapter
7, we shall see that the resulting tailored paradigm really leads to efficient algorithms
for planning motions for free-flying robots.

Finally, we mention that the problem of solving a motion planning query ‘find a
free path from a placement 7Z; = (Z1p, Z1p) to another placement Zy = (Zap, Zap)’
basically reduces to a point location query with Z;5 and Z3p in Vg to find Ry 3 715
and Ry 5 Zsp. So, we need a structure for point location in the base space rather
than in the full configuration space /. After having found R; and R,, it takes
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O(1) time to find Ay 3 Z; using Desc(Ry) and Ay 3 75 using Desc(Ry), followed
by a search in the graph (Vi, E¢) for a sequence of subcells connecting A; to As.
The constant complexities of the subcells and of the common boundaries of pairs of
adjacent subcells facilitate the transformation of the subcell sequence into an actual
free path for B.

6.2 A tailored paradigm for free-flying robots

We now focus on a special instance of the class of motion planning problems with
cylindrifiable configuration spaces, namely the problem of planning the motion of a
not too large constant-complexity robot B with f degrees of freedom moving amidst
n k-fat constant-complexity obstacles F € &, where [ and k are constants. The
restriction on the size of the robot is expressed by a bound on its reach: pg < b- p,
where b is some positive constant and p is a lower bound on the minimal enclosing
hypersphere radii of the obstacles in €. For the moment, we assume that the robot
B does not self-collide, that is, no part of B can collide with any other part of B.
Let O € B be the reference point of the robot. The tailored paradigm presented
below suits robots with configuration spaces that can be written as the Cartesian
product of the d-dimensional Euclidean workspace W and some other (rest-)space
D (of dimension f — d),
C=WxD,

such that the position of the robot’s reference point in the robot’s workspace is
part of the specification of its placement. A placement Z of the robot can thus be
written as Z = (4w, Zp), where Zw € W = R? and Zp € D. Free-flying robots
fit very naturally in this framework. Examples for the rest-space D are D = [0, 27)
for a free-flying unsymmetric rigid robot in the plane, and D = [0,27)? x [0, 7| for
a similar robot in three-dimensional space.

It either the obstacles are non-fat or the robot is arbitrarily large, the robot
B with its reference point O fixed at some point p € W may be able to touch
all obstacles £ € €. The circumstances summarized above, however, make this
impossible: the robot with its reference point fixed at p can only touch obstacles
within a distance pp from the point p; such obstacles clearly intersect the hypersphere
Spps- Theorem 2.9 implies that the number of obstacles with minimal enclosing
hypersphere radii at least p intersecting any region with diameter 2pz < 26 - p 1s
bounded by a constant. As all obstacles in £ have minimal enclosing hypersphere
radius at least p, the robot B can touch no more than O(1) obstacles while its
reference point remains fixed at p. This fact leads to the following lemma, which
provides the theoretical feasibility of choosing W as a basis of the cylindrical cell
decomposition.

Lemma 6.1 For all p € W:
[ foald € BA®EFEN foaN(px D) #0} =0(1).
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Proof: The subspace p x D of the configuration space is intersected by constraint
hypersurfaces fso. A point in fse N (p x D) corresponds to a placement of the
robot B in which its reference point is positioned at p and its feature ¢ touches
an obstacle feature ®. This feature ® must necessarily belong to one of the O(1)
constant-complexity obstacles that can be touched by B while its reference point
is fixed at p. Combined with the constant complexity of B itself, this implies that
there exist only a constant number of pairs (¢, ®) for which f, ¢ intersects p x D.
O

In the sequel we define a partition of the workspace that is subject to constraints
that are formulated exclusively in the workspace. The partition subsequently turns
out to be a valid base partition for a cylindrical decomposition of the configuration
space.

We define the notion of grown obstacles to formalize the observation that the
robot B is unable to touch an obstacle E if the distance from the location of B’s
reference point to the obstacle F exceeds pg.

Definition 6.2 [grown obstacle G/(E, p)]
Let E be an obstacle in R and let p € RT. The p-grown obstacle E is defined as:

G(E,p)={peR|d(p. k) <p}.

Note that, as an alternative definition, the p-grown obstacle G(F,p) equals the
Minkowski difference of F and the hypersphere with radius p centered at the origin,
S0

G(E.p) = E© So,.

Clearly, the robot’s reference point must lie inside G(F, pg) in order for the robot
B to be in contact with E; if the reference point lies outside G/(F, pg) there is no
danger for B of colliding with £. A formalization of these informal observations
leads to a very interesting property on the ‘location’ of a constraint hypersurface in
configuration space.

Lemma 6.3 Let ¢ €; B and ® €; . Then:
foa S G(E, ps) x D.

Proof: Figure 6.3 illustrates the construction by means of a two-dimensional grown
obstacle G(F, ps) C W = IR* and a one-dimensional rest-space D = [0,27). The
arguments of the proof are given in the workspace.

Let p = (pw,pp) € fo.0, such that pwy € W and pp € D. We must prove that
p = (pw,pp) € G(F, pg) x D, which may be reduced to proving that pw € G(FE, pg),
since pp € D is trivially true. This means that it should be proven that the reference
point of the robot B must be placed inside G(FE, pg) when B’s feature ¢ touches E’s
feature ®.
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Figure 6.3: A grown obstacle and the corresponding configuration space cylinder for

a robot with W = IR? and C' = IR? x [0, 2~).

Assume, for a contradiction, that pw ¢ G(FE, pg). Then, by the definition of a
grown obstacle, the distance from pw to F exceeds ps. But then, it is impossible
for B to reach (and touch) the obstacle E, by the definition of the reach of a robot.
In other words, no feature ¢ €; B can touch a feature ® €y K. So, the point
p = (pw,pp) with pw & G(F, pg) cannot lie on f; ¢ contradicting the assumption
of the lemma. O

The lemma supplies some kind of a simple outer approximation of the location of
a constraint hypersurface in configuration space. If a workspace region R does not
intersect a grown obstacle G(F, pg) then certainly none of the constraint hypersur-
faces fy e with ® €; I intersects the configuration space cylinder i x D. If on the
other hand, R intersects G/(F, pg), then one or more constraint hypersurfaces fj; ¢
with ® € may (but not necessarily must) intersect R x D. As a result, the con-
figuration space cylinder R x D corresponding to a region R that is intersected by
O(1) grown obstacles is itself intersected by at most O(1) constraint hypersurfaces.
The following definition of the coverage of a workspace region facilitates a compact
statement of this interesting result.

Definition 6.4 [coverage Cov(R)]
Let RC W =R"

Cov(R)={E € E|RNG(E,ps) £01.

Hence, Cov(R) is the set of obstacles E whose corresponding grown obstacles
G(FE, pg) intersect R. The definition allows for a compact formulation of the preced-
ing observations regarding the relation between the grown obstacles in the workspace
and the constraint hypersurfaces in the configuration space.
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Lemma 6.5 Let R C W = IR be such that |Cov(R)| = O(1). Then
[{fooalo€s BA® s EN foo N (B X D)F# 0} =0(1).

Proof: Take a constraint hypersurface fy o with fyo N (R x D) # (. Now let
FE be such that ® €; F. By Lemma 6.3, f,0 C G(F,pg) x D. Hence, necessarily
(R x D)N (G(E,pg) x D) # 0 and thus RN G(FE,ps) # 0. By the definition of
Cov(R) and the assumption |Cov(R)| = O(1), it follows that there are only O(1)
obstacles I such that R N G(FE, pg) # . Due to the constant complexity of these
obstacles and the robot, there is only a constant number of hypersurfaces f; ¢ with

f¢7q>m(R><D)7£®. O

The lemma states that any region R with |Cov(R)| = O(1) is guaranteed to satisfy
the constraint on the regions of the base partition requiring that the correspond-
ing cylinder is intersected by O(1) constraint hypersurfaces. As a consequence, a
decomposition of the workspace W into regions R with both |Cov(R)| = O(1) and
constant complexity is a valid base partition of the base space B = W. We shall
refer to workspace partitions of this kind as cc-partitions (constant-size coverage,
constant-complexity).

Definition 6.6 [cc-partition]
A ce-partition V' of a workspace W with obstacles £ is a partition of W into regions
R satisfying the following additional constraints:

o [Con(R)| =O(1),
o R has constant complexity.

The constant-size coverage constraint |Cov(R)| = O(1) replaces the constraint
H{fsalo € BAD® €5 EN fsa N (R x D) #£ 0} = O(1); the new constraint is
simpler because it is truly a constraint in the workspace. The result in Lemma
6.5 and the definition of cc-partitions, however, would be completely useless if a
partition of W into regions R with |Cov(R)| = O(1) does not exist. Note that the
existence of such a partition solely depends on the absence of points p € W that are
contained in w(1) grown obstacles. Fortunately, such points do indeed not exist by
Lemma 6.7. The result follows immediately from Theorem 2.12, noting that each
grown obstacle G/(F, pg) is a constant-complexity pg-wrapping and, by pg < b- p,
also a constant-complexity (b - p)-wrapping of the obstacle E itself.

Lemma 6.7 Let £ be a set of n non-intersecting k-fat obstacles in R* with minimal
enclosing hypersphere radii at least p. Furthermore, let pg < b- p, for some positive
constant b. Then

(a) the complexity of the arrangement A(G) of all grown obstacle boundaries
OG(FE, pg) (F € &) is O(n),
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(b) every point p € W = R? lies in at most O(1) grown obstacles G(E, pg) (I €
g).

Lemma 6.7(b) shows that it is possible to partition the workspace W with the
k-fat obstacles of £ into (constant-complexity) regions with constant-size coverage.
Notice that the arrangement A(() even partitions W = IR? into O(n) regions R with
|Cov(R)| = O(1), as each d-cell of the arrangement is a subset of the intersection
of O(1) grown obstacles (by Lemma 6.7(b)). Unfortunately, the partition does not
suit our purposes, because the d-cells themselves may have more than constant
complexity. Hence, it is not a cc-partition (although it can be further refined into
one).

In summary, we have found (Lemma 6.7) that a cc-partition of a workspace with
non-intersecting k-fat obstacles always exists. The cc-partition in the workspace
corresponds, by Lemma 6.5, to a decomposition of the configuration space into
constant-complexity cylinders that are intersected by no more than a constant num-
ber of constraint hypersurfaces. As a result, the cc-partition is a valid partition
of the base space W allowing for application of the transformation algorithm from
Section 6.1.

The algorithm FatMot given below combines the search for a small cc-partition
with the transformation of that cc-partition into a cell decomposition of the free
space based on the transformation steps from the previous section. Besides the cc-
partition regions, gathered in a set Wiy, the first step is to report the adjacencies of
the cc-partition regions in a set Fyw, and the function Cov : Viy — P(&) mapping
each region R € Viy onto the (constant-cardinality) set of obstacles £ € & with
G(E,ps) N R # 0. (Occasionally, the pair (Viy, Fw) will be referred to as a cc-
partition graph.) We denote the time required to compute the pair (W, Fw) as
well as the coverage function C'ov by T'(n), where the argument n represents the
number of obstacles in &.

The remainder of the algorithm FatMot is a copy of the transformation algorithm
from Section 6.1 with the exception of the refinement in step 1. The refinement
shows how the precomputed sets C'ov(R) aid in computing in constant time the
arrangement A of all constraint hypersurfaces that intersect the cylinder R x D.
A closer look at the refinement learns that A is the arrangement of all constraint
hypersurfaces in a set F' = {fs0|¢ € BA® €5 Cov(R)}, which is a superset of
the set of hypersurfaces fy; ¢ that satisfy fs, e N (R x D) # (). Fortunately, the easily
computable set F' contains only a constant number of hypersurfaces, due to the
constant cardinality of C'ov(R) and the constant complexity of B and the individual
obstacles F. Crucial to the validity of the approach of computing a somewhat larger
arrangement is the simple observation that AN (R x D), i.e., the restriction of the
arrangement A to the cylinder R x D, is equivalent to the restriction to R x D of
the arrangement of hypersurfaces fs ¢ with fs 0 N (R x D) # 0. The techniques by
Schwartz and Sharir from [85] may be useful to compute a decomposition of the free

part FP N (R x D) of a cylinder R x D.
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ALGORITHM FATMOT

Find a ce-partition graph (Viv, Fw) and compute Cov;

Vo = 0;

Eo = {;

for all R € Vi do
1.1. F:=0;

1.2. for all p € BA® €5 Cov(R) do
1.2.1. compute fy a:
1.22. F:=FU {f¢7q>};
1.3. compute the arrangement A of all f € F';
2. use A to compute a decomposition of
FP N (R x D) into connected subcells;
3. Desc(R) := 0;
4. for all constant-complexity subcells A of FP N (R x D) do
4.1. VC = VC U {A},
4.2. Desc(R) := Desc(R) U{A};
for all (R, Ry) € Fw do
for all A, € Desc(Ry) N Ay € Dese(R;) do
if 0A; N0Ay # () then Fo := Ec U {(Aq, A2)}.

The refinement of step 1 of the first for-loop verifies the running time of O(|Vyy|)
for the first for-loop of the transformation. The running time of the entire algorithm
FatMot becomes O(|Vav| + |Fw| + T(n)), because of the running time of T'(n) for
finding the cc-partition graph (Viv, Ew) and computing C'ov, and the O(|Ew]|) time
bound on the execution of the second for-loop (see Section 6.1). The O(|Viy| +
|Fw| 4+ T(n)) time bound emphasizes once again that the efficiency of FatMot is
fully determined by the size of the graph (Viv, Fw) and the time to compute the
graph and the function Cov : Viy — P(E). Since the time T'(n) to compute the
graph and the function dominates the time O(|Vwy| + |Fw]|) to simply report both,
we may conclude that the T'(n)-factor dominates the running time of the algorithm
FatMot, which may therefore be said to equal T'(n).

Theorem 6.8 Let b and k be positive constants. In addition, let € be a set of k-fat
constant-complexity obstacles E in the robot’s workspace W with minimal enclosing
hypersphere radii at least p, and let B be a constant-complexity robot with reach
pp < b-p. Furthermore, let C' = W x D be the configuration space of B. Then,
algorithm FatMot computes a decomposition of the free space FP C C into simple
subcells with a connectivity graph CG = (Vo E¢) of size O(|Vaw| + |Ew]) in time
O(T(n)), where T'(n) is the time to compute a cc-partition of the workspace and the
corresponding function Cov : Viy — P(E).

Although the exact performance of the algorithm depends on the ability to find
small and efficiently computable cc-partitions, one may, at this stage, expect the
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method to be rather efficient since the paradigm reduces the problem of finding a
decomposition of certain f-cells in an arrangement in f-dimensional configuration
space to the problem of finding some constrained partition of the d-dimensional
workspace (d < f). Besides the dimensional reduction, there is also the feeling
that the hypersurfaces in configuration space have more complex shapes than the
obstacles in the workspace that are responsible for the partition constraints. A
major part of the next chapter is devoted to providing convincing and less intuitive
arguments for the validity of our approach, simply by deducing small and efficiently
computable cc-partitions for workspaces with various kinds of obstacles. Another
part of that chapter exploits the more general ideas of this chapter - on cylindrifiable
configuration spaces - to obtain an efficient algorithm for planning the motion of a
non-free flying robot amidst fat obstacles.

In Chapter 4, we have seen that, within our framework, self-collisions have no
major implications for the complexity of the free space. The O(1) self-collision con-
straint hypersurfaces do not increase the asymptotic complexity of the arrangement
of constraint hypersurfaces, and, hence, of the free space. Let us now reveal the
consequences of self-collisions for the motion planning paradigm given as the al-
gorithm FatMot. We have seen that self-collisions are independent of the position
of the robot’s reference point, as they can occur anywhere in the workspace. The
corresponding constraint hypersurfaces in ¢ = W x D are therefore of the form
W x s, where s C D. As a result, any self-collision hypersurface f; intersects all
configuration space cylinders R x D). The constant number of such hypersurfaces
and their individual constant complexity, however, guarantee that the combinatorial
complexity of the arrangement A and the set FP N (R x D) in steps 1.3 and 2 of the
algorithm FatMot and the running time of FatMot are not affected. The correctness
of the paradigm after the incorporation of self-collisions is established by replacing
the initialization of F' := () in step 1.1 by the initialization F' := F,, where F, is the
set of all self-collision constraint hypersurfaces.
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Chapter 7

Efficiently computable base
partitions

This objective in this chapter is to find instances of the general paradigm presented in
Chapter 6 for a handful of different settings of the motion planning problem. Besides
a universal and nearly-optimal solution for planning in two-dimensional workspaces,
we shall consider four different problems in three-dimensional workspaces.

Appropriate workspace decompositions for application of the algorithm FatMot
are shown to exist for problems involving a free-flying robot moving among poly-
hedral and arbitrary obstacles. The decompositions have sizes O(n?) and O(n?)
and are computable in O(n?logn) and O(n?) time respectively. FatMot transforms
the workspace partitions into cell decompositions of asymptotically equivalent size.
Sections 7.2 and 7.3 discuss the details of the respective partitions and their con-
struction.

Nearly-optimal results are obtained for two classes of motion planning problems
in 3-space with regularly encountered additional properties. The first class consists
of problems involving a free-flying robot and arbitrary obstacles from a bounded
range of sizes. More precisely, the ratio of the minimal enclosing hypersphere radii
of any pair of obstacles is bounded by a constant. The workspace with the obstacles
of this type of problem allow for a simple cc-partition of size O(n). Section 7.4 re-
ports the details of the partition and its computation. The second class of problems,
discussed in Section 7.5 concerns a further constrained robot. The robot’s reference
point is confined to a plane in the workspace W. The class contains the realistic
problems where the robot moves on a workfloor. Such problems are often encoun-
tered in industrial environments. One example is the vacuum cleaner robot studied
in [100]. Contrary to all other problem types dealt with so far, the workspace W is
not a projective subspace of the robot’s configuration space C'. (Clearly, the robot
is not free-flying.) Thus, the paradigm of Section 6.2 does not apply directly to
this class of problems. The plane to which the robot’s reference point is confined,
however, is a subspace of (/, and it turns out that this plane is decomposable into
regions such that the free part of the configuration space cylinders obtained after
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lifting the regions into ' has constant complexity. The algorithm in Section 6.1
transforms the decomposition into an actual cell decomposition of the free space.
The base decomposition in the plane very strongly resembles the decomposition
outlined below in Section 7.1.

7.1 Arbitrary obstacles in 2-space

In order to get a feeling for the different aspects of computing an appropriate base
partition, we first focus on planar motion planning before we move on to three-
dimensional workspaces and obstacles. The aim in this section is to find a small cell
decomposition of the free space for the class of motion planning problems with the
following characteristics.

A constant-complexity robot B with f degrees of freedom (f > 2) with
reach pg moves freely in the workspace W = IR* amidst a collection &€
of k-fat constant-complexity obstacles ¥ C W with minimal enclosing
circle radii at least p, for some constant k > 1. The system is constrained
by the inequality pg < b- p, for some fixed constant b > 0.

A substantial part of the specification of a placement of the free-flying robot B is
the position of its reference point O € B in the workspace B. As a result, the
configuration space C' of the problem is the Cartesian product of the 2-dimensional
Fuclidean workspace W and some ( f —2)-dimensional space D, hence C' = W x D =
IR*x D. For arigid robot (f = 3), the space D equals the one-dimensional rotational
interval [0,27); for free-flying articulated robots (f > 4), the space D models the
relative placements of the robot’s links.

The partition that is proposed below, a vertical decomposition of the arrange-
ment of grown obstacle boundaries, is a simple example of a conceptually two-layer
approach that we will use more often in this chapter. This two-layer approach finds
a partition of W by first dividing W into regions with constant-size coverage, and
subsequently refines the regions to obtain constant-complexity regions. Notice that
the instance of algorithm FatMot presented in this subsection provides a general-
ization of the algorithm presented in Section 5.2, which is a modified version of
Schwartz and Sharir’s algorithm [84] and as such dedicated to a polygonal robot
amidst polygonal obstacles.

Our first step towards a cc-partition comprises the computation of the grown
obstacle boundaries dG/(FE, pg) for all obstacles F € €. Each boundary is obtained
in O(1) time leading to O(n) time for computing all boundaries. As a preparation
for the next step, each grown obstacle boundary 0G(FE,pg) is cut up into O(1)
arcs which are maximal connected, z-monotone boundary parts having no vertices
in their interiors. Note that the arc endpoints are generally incident to two arcs.
For future purposes we label each arc from 0G(FE, pg) with £. Lemma 7.1 repeats
earlier results on the arrangement A(G) in a formulation that better suits their
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present application. The (b)-part follows directly from Lemma 6.7 if one realizes
that all points p in a single 2-cell A € A((G) lie in exactly the same collection of
grown obstacles.

Lemma 7.1 Let A(G) be the planar arrangement of all boundaries 0G(E, pg) (E €
E). Then

(a) A(G) has complexity O(n),
(b) |Cov(A)| = O(1) for all 2-faces A € A(G).

By Lemma 7.1, the resulting O(n) arcs define only O(n) (yet unknown) arc inter-
sections, and additionally subdivide W into regions with constant-size coverage.

In a second step we compute the vertical decomposition of the arrangement
A(G) of grown obstacle boundaries, by sweeping the plane [14] with the arcs with a
vertical line, meanwhile extending walls in upward and downward vertical direction
from all O(n) arc endpoints (known in advance) and all O(n) arc intersections (to
be determined during the sweep). Figure 7.1 shows an example of the vertical
decomposition of an arrangement of z-monotone arcs. For simplicity, we assume

Figure 7.1: The vertical decomposition of an arrangement of z-monotone arcs: walls
are extended in vertical direction from all arc endpoints and arc intersections.

that no two events points, that is, arc intersections or arc endpoints, lie on a vertical
line x = X. The extended walls end on the first arc that is hit in the direction of the
extension. The walls subdivide the 2-cells of the arrangement into regions bounded
by two (possibly degenerate) vertical walls and two arc sections. Hence, the regions
in the vertical decomposition of the arrangement A(G') have constant complexity.
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Moreover, they inherit the constant-size coverage from the original (enclosing) 2-cell
of A(G). The arcs and their endpoints and pairwise intersections and the walls
and their endpoints collectively form a planar graph consisting of O(n) edges and
vertices, subdividing the plane into O(n) constant complexity regions: the regions
of Viyv. The set FEw of pairs of adjacent vertical decomposition regions has size O(n)
as well, as each adjacency can be charged to one of the O(n) edges in the planar
graph. Moreover, it is clear that all possible sets Fw and Viy also have size Q(n).

Lemma 7.2 Viy is a cc-partition of size ©(n) of W with the obstacles £; Fyw =
{(R,R") € iy x Wiy |ORN OR' # 0} has size O(n).

The plane-sweep algorithm must not only report the regions of Viy, but also the cov-
erages C'ov(R) of all regions R € Viy, and the region adjacencies of Fyw. To achieve
this, the following invariant regarding the available data is maintained throughout
the entire sweep.

o Viy contains all regions strictly left of the sweep-line and their descriptions;
FEw contains all adjacencies of regions left of the sweep-line; C'ov(R) is assigned
for all regions R currently in Viy;

o The sweep-line status is a top-to-bottom ordered cross-section of the vertical
decomposition of A(G) at ©+ = X. As such, it is an alternating sequence of in-
tersected regions and intersected arcs. The elements of the sequence are stored
in the leaves of a balanced binary tree. The regions in the data structure are
accompanied by their coverages, and partial descriptions, i.e., their (possibly
degenerate) left vertical bounding wall and upper and lower bounding arc.

o The event point schedule is the sequence of upcoming events, consisting of
all statically computable arc endpoints, and potential intersections of pairs
of consecutive arcs (separated by a single region) in the sweep-line status.
The summarized events are stored in a priority queue, ordered by increasing
x-coordinate. The upcoming event is always either an arc endpoint of an
intersection of two consecutive arcs, so the first event in the queue is indeed
the upcoming event.

The creation of an artificial event point at * = 400 and the proper initialization
of the event point schedule and the sweep-line status causes the consistent main-
tainance of the invariant to eventually lead to the situation where the event point
schedule is empty, the set Viy consists of all regions in the vertical decomposition of
A(G), the set Fw contains all pairs of adjacent region from Wiy, and the function
C'ov is assigned appropriately for all arguments R € V.

Figure 7.2 shows the different kinds of events that are encountered: (a)-(c) show
all possible endpoint events, (d) shows the intersection event. Notice that the end-
point events are vertices joining two arcs originating from a single grown obstacle
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Figure 7.2: The different types of event points.

boundary (and, hence, carrying the same label). The dotted lines are the vertical
decomposition walls extended from the event points.

The upcoming event can be extracted in constant time from the event point
schedule. The event points, and more particularly the walls extended from it, mark
the end of at most three consecutive regions in the sweep line status (named R, R',
R"” in Figure 7.2). The ending regions and their descriptions, which are completed
by the addition of the right boundary (a wall or event point), are deleted from
the balanced binary tree storing the sweep-line status and transferred to Viy. The
corresponding coverages are assigned to the appropriate entries of C'ov. The sepa-
rating arcs (f, f') are deleted along with the ending regions. The deleted regions
are replaced by at most three new regions (named @), @', Q" in Figure 7.2), and
their separating arcs. The regions are accompanied by their partial representations,
which involve the walls, the new separating arcs (g, ¢'), and the two arcs u and [
bounding the upper new region from above and the lower new region from below.
The identification of the latter two arcs requires two searches of the sweep-line sta-
tus. The coverages of the new regions are easily computable from the coverages
of the old regions, using the simple observations that the coverages of regions on
opposite sides of a wall are equal, and the set difference of the coverages on opposite
sides of an arc with label F is exactly {F}. Finally, we must report the adjacen-
cies of the new regions. These adjacencies only involve the O(1) new regions, the
O(1) old regions, and the regions U bounding the old and new upper regions from
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above and L bounding the old and new lower regions from below. The latter two
regions are found by two searches of the binary tree storing the sweep-line status. In
summary, the processing of an event requires a constant number of searches, dele-
tions, and insertions in a balanced binary tree. The data structure supports each of
these operations in time O(logn). The remaining computations in a single step a
constant-complexity data set, and therefore require constant time.

The O(1) newly obtained pairs of consecutive arcs in the sweep-line status, in-
volving the new separating arcs and v and [, may necessitate an update of the event
point schedule with the potential intersections of the new consecutive arc pairs. The
insertion of an element in the priority queue storing the schedule takes O(log n) time.
As a result, the entire update of the event point schedule takes O(logn) time.

Throughout the plane sweep a total of O(n) events are encountered, each requir-
ing O(log n) processing time. The entire sweep, and, hence, the computation of the
sets Viy and Fw and the function Cov, therefore takes O(nlogn) time.

Lemma 7.3 The computation of the ce-partition graph (Viw, Ew) and the corre-
sponding function Cov : sy — P(E) takes O(nlogn) time.

Lemma 7.3 shows that the time T'(n) in Theorem 6.8 to compute the cc-partition
graph (Viv, Fw) and the function C'ov is O(nlogn). In addition, Lemma 7.2 bounds
the sizes of the sets Viy and Ew by O(n). Hence, the algorithm FatMot computes
a decomposition of FP of size O(|Viy| + |Fw|) = O(n) in time T'(n) = O(nlogn).
(Note that the outlined vertical decomposition must be substituted for the first step
of the algorithm in order to actually achieve this performance.)

Theorem 7.4 Let k > 1 and b > 0 be constants and let £ be a collection of k-
fat constant-complexily obstacles . C W = IR* with minimal enclosing circle radii
at least p. Algorithm FatMot solves the motion planning problem for any constant-
complexity robot B with [ > 2 degrees of freedom and reach pg < b-p amidst € in time
O(nlogn). The connectivity graph CG = (Vi, E¢) of the resulting decomposition of
FP into simple subcells has optimal size O(n).

7.2 Polyhedral obstacles in 3-space

In this section, we move on to three-dimensional workspaces where we study a
setting of a free-flying robot amidst polyhedral obstacles. The number of algorithms
for motion planning problems in a three-dimensional workspace with polyhedral
obstacles is limited. The two methods that apply to robots with an arbitrary number
f > 3 of degrees of freedom are the general O(n2f+6) cell decomposition algorithm by
Schwartz and Sharir [85] and the O(n’ log n) roadmap method by Canny [20]. More
specific results include O(n'') [87] and O(n®logn) [50] algorithms for a (5-DOF)
ladder among polyhedral obstacles, and an O(n'®) algorithm [87] for a polyhedral
robot in the same environment. This section presents an instance of the algorithm
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FatMot for a bounded-size robot among fat polyhedral obstacles with running time
O(n?logn), regardless of the number f of degrees of freedom of the robot. The
following description fixes the setting of the results.

A constant-complexity robot B with f degrees of freedom (f > 3) with
reach pg moves freely in the workspace W = IR® amidst a collection &€
of k-fat constant-complexity polyhedral obstacles K C W with minimal
enclosing sphere radii at least p, for some constant k > 1. The system is
constrained by the inequality pg < b- p, for some fixed constant b > 0.

The problem of finding cc-partitions for three-dimensional Euclidean workspaces
is much harder than its two-dimensional equivalent, which is illustrated by the
relatively small number of results on partitioning 3D arrangements into constant-
complexity subcells like tetrahedra or prisms. Moreover, the existing results (see,
for example, papers by Aronov and Sharir [6], Chazelle [21], and De Berg, Guibas,
and Halperin [16]) do not apply to arbitrary arrangements but instead only hold
for arrangements of planar faces, which makes their application to the arrangement
of (arbitrarily-shaped) grown obstacles impossible. The two-step approach of first
decomposing the workspace into constant-size coverage regions and then refining
the regions to constant-complexity regions is likely to lead to O(n?) regions, as the
application of any of the above methods gives O(n?) subcells when applied to an
O(n) complexity arrangement of planar faces. Although a smaller decomposition
might be achievable by either this approach or a completely different strategy, we
are currently unaware of such a decomposition and therefore choose to settle for
a cc-partition of size O(n?). The partition is obtained by following the two-step
approach.

Instead of using the grown obstacle boundaries to achieve the decomposition
into constant-size coverage regions, we now use the boundary of a polyhedral outer
approximation of these grown obstacles. The polyhedral approximations still achieve
a decomposition of W into regions of constant-size coverage, but additionally allow
for subsequent application of a vertical decomposition algorithm (to the triangulated
polyhedral arrangement) to obtain O(n?) constant-complexity regions. A tight outer
approximation of the grown obstacle G(F, pg) is the Minkowski difference H(FE, pg)
of K and a cube with side length 2pj3.

Definition 7.5 Let A € SO(3) be some arbitrary rotation matrix, establishing that
none of the faces of the cube A - Co ,, is vertical. Then

H(Eva) =k (A ) 00705)-

The computation of a Minkowski difference H(F, pg) from the constant-complexity
obstacle E takes constant time. The Minkowski difference H(F,pg) encloses E
and, by its definition, no point in H(E, ps) has a distance larger than v/3 - ps to
E. Hence, H(E, pg) is a (V3 - ps)-wrapping of E, and because ps < b- p, also a
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(bV/3 - p)-wrapping of E. The additional lower bound of p on the minimal enclosing
sphere radii of all obstacles in & makes Theorem 2.12 applicable to the arrangement

A(H) of all Minkowski difference boundaries H (F, pg) (E € £). Thus, we obtain

Lemma 7.6.

Lemma 7.6 Let A(H) be the three-dimensional arrangement of all boundaries

OH(FE,pg) (E€&). Then
(a) A(H) has complexity O(n),
(b) {E € E|H(E,pg) N A# 0} = O(1) for all 3-faces A € A(H).

The set of obstacles £/ whose Minkowski differences H(F, pg) intersect a given region
R is a superset of C'ov(R), the set of obstacles FF whose grown obstacles G(FE, pg)
intersect R, due to the inclusion G(FE,pg) C H(FE,pg). With the observation we
deduce the following interesting corollary from Lemma 7.6(b).

Corollary 7.7 |Cov(A)| = {F € E|G(E,ps) N A #£ B} = O(1) for all 3-faces
Ae A(H).

Hence, the O(n) complexity polyhedral arrangement A(H) subdivides W = IR” into
regions with constant-size coverage.

The range searching results in Chapter 3 facilitate a computation of the linear-
complexity arrangement A(H) in time O(nlog®nloglogn). A naive and simpler,
but in the light of steps to come sufficiently efficient, computation of A(H) takes
O(n?) time and simply intersects all pairs of constant-complexity faces of Minkowski
difference boundaries dH (F, pg) and stores the (potential) intersection segment with
both faces. After that, each face and the segments defined by its intersection with
other faces undergo a constrained triangulation. The triangulation is constrained
in the sense that it incorporates all intersection edges as edges of triangles in the
triangulation. The triangulation introduces no new vertices. The constrained trian-
gulation can be done by a single sweep (comparable to the sweep in Section 7.1) of
each face f in time O(mylogmy), where my is the complexity of the respective face
and the corresponding intersection segments. As the cumulative complexity 3= my
equals (asymptotically) the complexity O(n) of the arrangement A(H ), the triangu-
lation of all faces of the arrangement takes O(nlogn) time. The result is a collection
Ta¢my of non-intersecting triangles. Although the triangles are non-intersecting they
do touch each other, that is, they share edges and vertices. For future purposes,
we take care to label each triangle ¢ € T4y with the appropriate obstacle F to
indicate that ¢ belongs to the Minkowski difference H(FE, pg). The decomposition
of the workspace by the arrangement A(H ) is not a cc-partition, because the 3-cells
of the arrangement may have more than constant complexity. To refine the 3-cells
into constant-complexity regions, we apply a full vertical decomposition algorithm
to the triangulated arrangement.
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De Berg, Guibas, and Halperin [16] give a rather simple algorithm for computing
a full vertical decomposition of an arrangement of triangles in 3-space. The general
position of the obstacles in € and the rotated cube A - Cp ,, establish that the
triangles in T4(z) are in general position in the sense that no triangle is vertical,
no edge is parallel to a coordinate axis, and no two edges lie in a vertical plane
unless they coincide. The fact that we deal with sets of touching triangles requires
some additional bookkeeping to prevent multiple extensions of equivalent walls. The
bookkeeping is simple and does not affect the efficiency of the algorithm. We neglect
the bookkeeping in the description of the algorithm. In the restricted case of non-
intersecting triangles, the vertical decomposition algorithm leads to a decomposition
of the arrangement of the triangles into O(n?) constant-complexity regions [69].
The computation takes O(n*logn) time [16]. Below we first briefly discuss the
algorithm and the structure of the full vertical decomposition. After that, we show
that application of the algorithm to the set of triangles T'y() leads to a cc-partition
graph (Viy, Ew), with |Viy| = O(n?) but, unfortunately, a larger set Eyw. To remedy
this, we will replace each triangle by a flat tetrahedron and then show that the
resulting set F'(T 4(z)) of triangular tetrahedron faces solves the problem as its full
vertical decomposition leads to |Viy| = |Ew| = O(n*) and T(n) = O(n*logn).

The computation of the full vertical decomposition proceeds in two steps. The
first step results in the vertical decomposition of the arrangement of non-intersecting
triangles. The second step uses the specific shape of the resulting regions to subdi-
vide them further to obtain constant-complexity regions, which together constitute
the full vertical decomposition. We discuss each step in more detail.

The vertical decomposition step partitions the arrangement of non-intersecting
triangles from a given set T' into maximal connected collections of points with equal
vertical visibility with respect to the triangles of T'; both in upward and downward
z-direction. More precisely, a region in the vertical decomposition is a maximal con-
nected set {z € R*|up(z) = t1 A down(x) = ty} where t1,t, € T and up(z)/down(z)
denotes the first triangle in 7' that is hit by the vertical ray emanating from x in
upward/downward z-direction. The decomposition is achieved by the extension of
vertical walls from all triangle edges, which end upon hitting other triangles. The
representation of the vertical decomposition computed by the vertical decomposition
algorithm consists of: (i) for each triangle edge e, the wall W (e) extended from it,
and (ii) for each triangle t € T', the two arrangements of ending walls on either side
of t. The algorithm stores the walls and the triangle arrangements in a quad-edge
structure [40] to facilitate future navigating through the decomposition and explicit
reporting of the regions and the region adjacencies.

The wall W(e) extended from the edge e is obtained by intersecting the vertical
surface H(e) through e, that is, the union of all vertical lines through e, with all
non-intersecting triangles, resulting in O(n) disjoint intersection segments in H(e).
The upper boundary of Wi(e) is defined by the lower envelope of all intersection
segments in H(e) lying above e. Similarly, the lower boundary of W (e) is defined by
the upper envelope of all intersection segments in H(e) lying below e. The envelopes
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are alternating polygonal chains of parts of intersection edges and of vertical seg-
ments. Both envelopes have complexity O(n), since the upper/lower envelope of a
collection of disjoint line segments in the plane has complexity O(n). Each halfwall
(between an envelope and the edge) is divided into slabs by vertical line segments
connecting the vertices of the envelope to the edge (see Figure 7.3). The vertical seg-

Figure 7.3: The grey face is the (upper half of the) wall extended in vertical direction
from the edge e. The line segments above e are the intersections of triangles with
the supporting plane of the vertical surface H(e).

ments correspond to intersections with other walls. Clearly, the vertical segments
do not increase the complexity of the wall. The envelopes (and the vertical line
segments) can be computed in O(nlogn) time, using divide-and-conquer [47]. The
computation of all O(n) walls requires O(n?logn) time; the cumulative complexity
of the walls is O(n?).

Walls end as line segments on both sides of the triangles of T'. The ending walls
on the upward-facing side of the triangle are (non-vertical) portions of the lower
boundaries of walls W (e). Similarly, the ending walls on the downward-facing side
are portions of upper boundaries of walls W(e). Figure 7.4 shows an example of a
triangle side and the arrangement of walls ending on it. By charging the complexity
of the arrangement of ending walls to the corresponding walls and by noticing that
the complexity of T'is O(n), we find that the asymptotic cumulative complexity of
all triangle arrangements equals the cumulative complexity of all walls: O(n?). A
single scan of all walls suffices to find for all triangle sides the segments that define
the arrangement on that specific side. Next, a single arrangement can be computed
by a single sweep of the segments in time O(mlogm), where m is the complexity of
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Figure 7.4: The arrangement of walls ending on a side of a triangle, and the planar
vertical decomposition of the arrangement.

the arrangement. As the cumulative complexity of all arrangements is O(n?), the
computation of all arrangements takes O(n*logn) time. The floors and ceilings,
that is, the bounding faces in vertical direction, of the resulting regions are parts of
triangles. More precisely, they are 2-faces in an arrangement of ending walls on a
triangle side. Note that the floor and ceiling of a vertical decomposition region have
equivalent projections onto the (x,y)-plane.

The second step refines the vertical decomposition into a full vertical decompo-
sition, consisting of regions bounded by six (possibly degenerate) planar faces, by
adding walls parallel to the (x, z)-plane. The refining is obtained through a planar
vertical decomposition of all triangle arrangements, in which segments are extended
within the triangles parallel to the y-axis from every vertex of the arrangement (see
Figure 7.4). The additional walls connect corresponding extended segments (that is,
with equivalent projections on the (x, y)-plane) in the upper and lower bounding tri-
angles of a vertical decomposition region. The entire refining takes O(n?logn) using
a sweep of all triangle arrangements. Every region in the full vertical decomposition
has a trapezoidal floor and ceiling with equivalent projections onto the (x,y)-plane.
The remaining four (possibly degenerate) bounding faces are vertical walls: two re-
sulting from the vertical decomposition and two added during the refinement. The
representation of the full vertical decomposition computed in the refinement step
consists of: (i) all walls W(e) extended from triangle edges e plus all additional
(paralleloid) walls parallel to the (x,y)-plane, and (ii) for each triangle ¢t € T, the
two arrangements of ending walls, both extended from edges and added during the
refinement, on either side of 7.

Lemma 7.8 Let T be a set of n non-intersecting triangles in R®. The full vertical
decomposition of T decomposes the arrangement of triangles in T into constant-
complexily regions. The decomposition has complexity O(n*) and can be computed
in time O(n?logn).

Application of the decomposition algorithm to the set of triangles T4y yields
a subdivision of the constant-size coverage 3-faces of the arrangement A(H) into
constant-complexity regions. As a result, the regions of the refined subdivision
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collectively partition W with the polygonal obstacles € into O(n?) regions with
constant-complexity and constant-size coverage. Hence, the collection of these re-
gions would make an appropriate choice for a set V4. Unfortunately, the decompo-
sition does not give us a low number of adjacencies as well.

The common boundary of two adjacent regions in the full vertical decomposition
is either embedded in a vertical wall or embedded in a triangle. Although the
number of adjacencies of the first type can be bounded by O(n?), it seems impossible
to obtain a similar bound on the number of adjacencies of the latter type. Walls
extended from other triangles’ edges end on both sides of a triangle ¢ € T4y and
define arrangements of line segments on these sides. The complexity of a single
arrangement and its planar vertical decomposition can be as high as O(n?), and,
hence, the number of 2-faces in the vertically decomposed arrangement is bounded by
O(n?) only. These 2-faces are the floors (or ceilings) of the full vertical decomposition
regions. Fach non-empty intersection of 2-faces on either side of a single triangle
corresponds to an adjacency of two regions. In general, two subdivisions of a single
triangle ¢ into m; and n; 2-faces could easily give rise to O(m; - n;) non-empty
intersections of pairs of 2-faces. At present, it is unclear if the specific properties of
the full vertical decomposition make it possible to bound the cumulative number of
intersections on all O(n) triangles, and, hence, the number of region adjacencies, by
anything close to O(n?).

An elegant way to overcome the problem outlined above is by replacing all tri-
angles of T4y by tetrahedra that are sufficiently flat to prevent them from inter-
secting. The tetrahedra have the initial triangles of T4m) as one of their faces.
The triangular faces of the tetrahedra are collected in the set I'(Tacwy); F(Tacm))
satisfies F(Tag)) 2 Tagy and [F(Tagm))| = 4 - [Tagm)|. Hence, the size of F'(Tam))
is still O(n). Moreover, F'(T 4(z)) is again a set of non-intersecting though touching
triangles, which now have the simple but beneficial property that one of their sides
faces the interior of a tetrahedron 7 (consisting of four triangles from F'(T4)).
The benefit of this property lies in the fact that walls extended from triangles out-
side 7 are unable to penetrate 7 (and, hence, to end on the inward-facing sides of its
triangular faces) as they end upon hitting the outside of 7. The walls inside 7 must
therefore either be extended from one of the six edges of 7 itself, or added during
the subsequent refinement of the O(1) regions in the vertical decomposition inside
7. Clearly, the refinement introduces no more than a constant number of walls as
well. As a result, the O(1) ending walls on the inward-facing side of a triangle define
a constant-complexity arrangement on that side.

We first discuss how to replace each triangle ¢ € T 4m) by a tetrahedron 7 having
t as one of its faces, such that the resulting tetrahedra are non-intersecting. Recall
that T4y is a set of triangles that may share a vertex or an edge but do not
intersect each others” interiors. Let ¢ be the minimum distance between any pair
of disjoint (non-touching) triangles. Furthermore, let ~; be the minimum over all
dihedral angles between pairs of (touching) triangles that share an edge and 72 be
the minimum over all angles between the supporting plane of a triangle ¢ € Tq(x)



7.2. POLYHEDRAL OBSTACLES IN 3-SPACE 131

and an edge of another triangle ¢ incident to a vertex of . We define v = min(~q,v2).
We construct a set F'(T4y) by applying the following procedure to every ¢ € Ty.
Let vy, v9, v3 be the vertices of t.

1. The planes 71, 75, w3 through vy, vy, v3 that make a positive angle v/2 with the
top side (facing z = o0) of ¢ intersect in a point v. If the distance from v to ¢ is
strictly less than ¢, then the tetrahedron is defined by the vertices v, vy, v9, vs.

2. If the distance from v to ¢ is at least €, then we take the half-line A through v
and perpendicular to and ending on ¢. The tetrahedron is defined by vy, vs, v3
and the unique point v" on the half-line A with distance ¢/2 to t.

The application of the above two-step process to the triangles of T4y results in a
collection of tetrahedra with disjoint interiors. Property 7.9 is a compact statement
of the result. The property contains a minor abuse of the definition of the set
F(T4gmy) as it is interpreted to be the set of flat tetrahedra instead of the triangular
faces of the tetrahedra. Let the (open) interior of the closed set 7 be denoted by
int(1).

Property 7.9 V1,7 € I'(Tyup)) : int(1) Nint(r') = 0.

Before applying the vertical decomposition algorithm to the triangles of F'(14),
we must convince ourselves that these triangles partition the workspace W with the
obstacles & into regions with constant-size coverage. Fortunately, this follows di-
rectly from the construction of F'(14)) from the triangles of T4y, which already
define a partition of into regions with constant-size coverage. The addition of dis-
joint triangles to the partition can only lead to a refinement of the regions into
smaller regions, with smaller or equally-sized coverages.

Application of the decomposition algorithm to the O(n) disjoint triangles of
F(Tymy) vields a full vertical decomposition of complexity O(n?) and therefore
consisting of O(n?) regions with constant complexity. The decomposition regions
are appointed to be the regions of Viy. The coverage of each region R € Vi has
constant size as It is a subset of a region in the partition by the triangles of F'(14),
which were shown to have constant-size coverage in the previous paragraph.

Let us now bound the size of the set Fw = {(R, R') € Viy x Vigy|0RN OR £ 0}.
The complexities of the triangle arrangements are crucial to the analysis of the
adjacencies, so we first study these complexities in more detail. The complexity of
the entire full vertical decomposition is O(rn?). As a consequence, the cumulative
complexity of all triangle arrangements is O(n?) as well. Each triangle t € F/(T 4(m))
has a side facing the interior of the tetrahedron 7 it belongs to and a side facing
outward. The complexity m; of the arrangement on the inward-facing side of ¢ is
constant, because we have seen that only a constant number of walls define this
arrangement: m; = O(1), for all £. The complexity n; of the arrangement on the
outward-facing side of a single triangle ¢, however, can be as high as O(n?). The
number of adjacencies of 2-faces in a triangle arrangement is of the same order of
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magnitude as the complexity of the arrangement (because a triangle arrangement
is a planar graph). Hence, the numbers of adjacencies on the inward- and outward-
facing sides of a triangle ¢t are O(m;) and O(n;) respectively.

We recall that two adjacent regions share a common boundary that is either
embedded in a triangle or embedded in a vertical wall. Each non-empty intersection
of two 2-faces in arrangements on either side of a triangle represents an adjacency of
the first type. The number of non-empty intersections on opposite sides of a triangle
tis O(my - ng) = O(ny) due to my = O(1). Hence, the number of adjacencies in Fw
of the first type equals >, O(n;) = O(n*). To find the number of adjacencies of
the second type, note that two adjacent regions whose common boundary is part of
a vertical wall have adjacent floors or adjacent ceilings in a triangle arrangement.
Hence, the total number of adjacencies of 2-faces in all triangle arrangements supplies
an upper bound on the number of pairs of regions in Wiy that share a vertical
face. The total number of adjacencies of 2-faces on a triangle ¢ is O(m; + ny) =
O(n;). Hence, the number of adjacencies in Ew of the second (and last) type equals
5 O(ny) = O(n?) as well. Lemma 7.10 summarizes the bounds on the sizes of Viy
and Fw.

Lemma 7.10 Viy is a cc-partition of size O(n?) of W = IR® with the polyhedral
obstacles £; Ew = {(R, R') € Viy x Vig|0RN OR' # 0} has size O(n?).

After applying the O(n*logn) vertical decomposition algorithm, we traverse the
O(n?) constant-complexity regions of the decomposition using the quad-edge struc-
ture storing the triangle arrangements and the walls, starting from an arbitrarily
chosen region. The aim of the traversal is to extract explicit descriptions of the
regions in Wiy, report the region adjacencies of Fyw, and compute the coverages
Cov(R) of the regions R € Viy. The latter part of the computation deserves some
additional explanation. Instead of attempting to compute the constant-size cover-
ages Cov(R) = {F € E|G(E,ps) N R # B} directly, we first compute the constant
cardinality sets {F € E|H(F, pg) N R # 0}. The constant cardinality of these set is
due to the property that each region R € Wiy is a subset of a 3-face A of the arrange-
ment A(H), which satisfy [{£ € E|H(E,ps) N A # 0} = O(1), by Lemma 7.6. The
necessary data for the computation of the sets {F € E|H(F,pg) N R # 0} are avail-
able from the decomposition, contrary to the data for the computation of Cov(R).
Throughout the traversal of the decomposition we use the fact that adjacent re-
gions are intersected (or actually enclosed) by the same set of Minkowski differences
H(F, pg) unless their common boundary is contained in a triangle ¢ that is part of
some Minkowski difference boundary dH (F, pg), in which case the sets of intersect-
ing Minkowski differences differ by exactly {£'}: the label of the triangle t. The set
{E € E|H(E,ps) N R # 0} is a superset of Cov(R) = {F € E|G(E,ps) N R #£ 0},
since G(E,pg) C H(F,pg). The latter set is obtained in constant time from the
former set by elimination of the O(1) obstacles I € {F € E|H(F,ps) N R # 0} that
satisfy B N G(E, pg) = 0. The traversal of the O(n?) regions in the decomposition
requires, taking into account the limited amount of work per traversed region, time
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proportional to the number of regions. As a consequence, the time to compute the
ce-partition graph (Wi, Ew) and the function C'ov is dominated by the running time
of the vertical decomposition algorithm: O(n*logn).

Lemma 7.11 The computation of the cc-partition graph (Vw, Ew) and the corre-
sponding function Cov : Viy — P(E) takes T'(n) = O(n*logn) time.

Substitution of the computation of (Viy, Ew) and Cov outlined above for the
first (abstract) step of the algorithm FatMot yields, by Theorem 6.8 and Lemmas
7.10 and 7.11, a motion planning algorithm with running time O(rn*logn). The
algorithm decomposes the free space of a robot amidst fat polyhedral obstacles into
O(n?) subcells of constant-complexity, defining O(n?) pairwise adjacencies.

Theorem 7.12 Let k> 1 and b > 0 be constants and let £ be a collection of k-fat
constant-complexity obstacles E C W = IR with minimal enclosing sphere radii
at least p. Algorithm FatMot solves the motion planning problem for any constant-
complexity robot B with [ > 3 degrees of freedom and reach pg < b-p amidst € in time
O(n?logn). The connectivity graph CG = (Vo, E¢) of the resulting decomposition
of FP into simple subcells has size O(n?).

The gap between the (linear) complexity of the free space and the (quadratic) size
of the connectivity graph of the FP decomposition shows that the cell decomposition
is not optimal. An interesting open problem is therefore to attempt to bridge the
gap by exploring alternative cc-partitions of the workspace. A smaller cc-partition
would probably require a partitioning strategy that differs completely from the two-
step approach of first subdividing the workspace with the obstacles into regions with
constant-size coverage and then refining the regions in the subdivision to constant-
complexity regions. The next two sections show examples of cc-partitions that are
not obtained via the two-step approach.

7.3 Arbitrary obstacles in 3-space

The setting that is considered in this section differs from the setting of the previous
section in that the obstacles are not required to be polyhedral, but instead only
assumed to be of constant complexity. The only general methods that could solve
such a problem are those by Schwartz and Sharir [84] and Canny [20]. Here, it is
shown that an instance of the algorithm FatMot for a bounded-size robot among
fat obstacles exists with running time ©(n?), independent of the actual number f of
degrees of freedom of the robot. The setting is fixed by the following description.

A constant-complexity robot B with f degrees of freedom (f > 3) with
reach pg moves freely in the workspace W = IR® amidst a collection
E of k-fat constant-complexity obstacles F C W with minimal enclos-
ing sphere radii at least p, for some constant k > 1. The system is
constrained by the inequality pg < b- p, for some fixed constant b > 0.
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The main implication of the fact that the obstacles in the workspace have arbi-
trary shape is that they cannot be tightly wrapped by some polyhedron of constant
complexity. A consequence is that we are no longer able to construct a low complex-
ity arrangement in a first decomposition step which partitions the workspace into
regions with constant-size coverage. Instead, we propose a simple direct cc-partition
of the workspace leading to a cubic number of regions.

The axis-parallel bounding boxes B(G(F, pg)) of the grown obstacles G(F, pg)
(E € &) partition the workspace with the obstacles £ into regions with constant cov-
erage (which is not completely obvious). The arrangement of boxes has complexity
O(n?). Unfortunately, the 3-cells of the arrangement may very well have more than
constant complexity. If, however, we replace the arrangement of bounding boxes
by the arrangement of the supporting planes of all bounding box faces, then we
obtain rectangloid (constant-complexity) 3-cells without increasing the asymptotic
worst-case complexity of the arrangement: the cc-partition of the workspace by the
supporting planes has complexity ©(n?).

Each obstacle £/ € £ contributes six planes to the arrangement defining the
cc-partition. The constant complexity of the obstacle F allows us to compute the
supporting planes @ = 2/, x = 2", y =y, y = y”, z = 2/, and z = Z” of the
grown obstacle G(FE,p) in constant time. For simplicity, we assume that none of
the supporting planes is tangent to any other grown obstacle G(F’, pg) (E' # F).
This extra assumption, however, can be avoided quite easily. After having computed
all 2n planes parallel to the (y, z)-plane, we sort the resulting planes by increasing
x-coordinates, yielding a sequence xy < ... < x3,. The sequence partitions the real
line into 2n + 1 intervals X (0 < h < 2n) with Xy = (—o0,24], X, = [2h, @hia]
for all 1 < h < 2n, and X3, = [r2,,+00). A similar treatment of the planes
parallel to the (x, z)-plane and (z,y)-plane results in sequences y; < ... < ¥z, and
71 < ... < zg, and two partitions of the real line into intervals ¥; (0 < ¢ < 2n)
and Z; (0 < j < 2n) respectively. The strictly increasing nature of the sequences is
due to the assumption that no plane is tangent to two grown obstacles. The three
ordered sequences define a cc-partition graph consisting of a set Viy of regions

VW = {Xh XK ><Z]|0§h,l,j§2n},
and a set Ew of adjacencies:

Ew = {(thYiij,Xh_H><K><Zj)|0§h<2n/\0§i,j§2n}
U {(XhXKXZ]‘,XhXK_HXZj)|0§i<2nA0§h,j§2n}
U {(XhXKXZ]‘,X}LXK><Z]‘+1)|0§j<2n/\0§h,i§2n}

Lemma 7.13 Viy is a cc-partition of size ©O(n”) of W with the obstacles £; Ew =
{(R,R') € Viy x Viw|ORN OR' # 0} has size ©O(n?).
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Proof: Viy and Fw are easily seen to have size O(n*). The remaining task is to
prove that the regions of Viy partition the workspace W into regions with constant
complexity and constant-size coverage. The first part is trivial as a rectangloid has
constant complexity; the second part is less obvious.

The structure of the partition by the supporting planes of the bounding boxes
of the grown obstacles is such that an arbitrary rectangloid region R € Viy either
lies in the exterior of all bounding boxes, in which case it has empty coverage, or it
lies entirely in the interior of a number of bounding boxes of grown obstacles. Let,

in the latter case, D be the set of all obstacles F for which R C B(G(E,pg)). D

may have more than a constant number of elements.

Let E~ be the obstacle in D with the smallest minimal enclosing sphere radius,
say, p~. We first prove that no obstacles with minimal sphere radii smaller than
p~ belong to Cov(R). Assume, for a contradiction, that £* has minimal enclosing
sphere radius p* < p~ and satisfies £* € Cov(R). By the definition of coverage, this
means that, RN G(E*, pg) # 0. But then, since G(E*, ps) € B(G(E*, pg)), also
RN B(G(E*, pP)) # 0. So, E* must belong to D, violating the assumption that £~
is the obstacle in [ with the smallest minimal enclosing sphere radius.

From E~ € D it follows that R C B(G(E~, pg)). The minimal enclosing hyper-
sphere radius p~ of £~ implies that the length of none of the sides of B(G(E~, pg))
exceeds 2p~ + 2pp < 2p~ +2bp < (204 2)p~. As a result, the length of none of the
sides of R C B(G(E~, pg)) exceeds (2b+ 2)p~ as well. An obstacle £’ with mini-
mal enclosing sphere radius p’ > p~ whose corresponding grown obstacle G(FE’, pg)
intersects 12, must itself intersect the enclosing rectangloid R O R, obtained by
growing R by ps < bp < bp~ in all (six) axis-parallel directions, so R = RS Cp ..
The edges of R have length at most (4b + 2)p~. By Theorem 2.9, the number
of obstacles £’ with mes-radius p’ > p~ intersecting the rectangloid region R® is
bounded by a constant, and hence the number of grown obstacles G(E’, pg) inter-
secting R is bounded by a constant, meaning that |C'ov(R)| = O(1). O

The single algorithmic issue that is to be solved concerns the computation of the
coverage Cov(R) C & of each region R € Viy, because the regions of Viy and the
adjacencies of Ew can be trivially extracted in time ©(n?) from the the three ordered
sequences of planes. Instead of taking a single region R € Viy and computing all
grown obstacles G(E, pg) that intersect it, we choose a more or less inverse approach
here: we take a grown obstacle region G/(E, pg) and compute all regions R € Viy that
are intersected by it, and add F to all corresponding sets C'ov( R) under construction.
In other words, we want to determine all regions R with Cov(R) > E. The approach
is to identify a single region R intersected by G/(F, pg) and then use this region as a
basis for searching the adjacency graph Fyw to find the entire connected set of regions
intersected by G(F, pg). The correctness of the approach relies on the connectedness
of G(FE, pg), which is implied by the connectedness of F.
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To find an arbitrary region R intersected by G(F,pg), we take a point p €
G(E,ps). Next, we perform a point location query with p = (p.,p,,p.) in the
partition Wiy, which, by the orthogonality of the partition can be decomposed into
three binary searches to find X, 3 p,, Y; 3 p,, and Z; 3 p. in time O(logn). The
Cartesian product X}, xY; x Z; contains the point p, and, hence, intersects G(FE, pg),
so we add F to Cov(R).

In preparation for a second phase, we create a set Ev yet consisting of just one
element: R. We repeatedly extract an element R from Ewv for further processing,
until Ev is empty. We compute the O(1) neighbors of R and verify for each neighbor
R’ if R intersects G(FE, pg). If this is the case and the neighbor has not been treated
vet (which can be tested by marking the regions visited), then we add F to Cov(R')
and the neighbor R’ itself to Ev.

The above search through the regions considers a superset of the collection of
my regions R € Wiy satisfying R N G(FE, ps) # . More precisely, it also considers
all regions adjacent to regions R with RN G(F, pg) # 0. Still, the total number of
regions that are considered is O(mpg). As the amount of work per region is constant,
the total time spent in the search is O(mpg).

It remains to bound the number mg of regions R € Viy with RN G(E, pg) # 0.
For each region R with RN G(E,pg) # 0, we add E to Cov(R). Hence, the sum
of all mg over all grown obstacles G(F, pg) equals the sum of all |Cov(R)| over all
regions R. As |Cov(R)| = O(1) for all R € Viy, the latter sum amounts to O(n?).
As a result, the sum of all mg equals O(n?), and, hence, all searches together take
O(n?) time. The n point location queries (in the orthogonal cc-partition) to identify
a starting region for each of the n searches require additional O(nlogn) time in
total. As a result, the cc-partition graph (Viy, Fw) and the corresponding function
C'ov can be computed in ©(n?) time.

Lemma 7.14 The computation of the cc-partition graph (Vw, Ew) and the corre-
sponding function Cov : Viy — P(E) takes O(n?) time.

The substitution of the computation of the cc-partition graph (Viy, Fw) and the
function Cov in the first step of the algorithm FatMot leads, by Theorem 6.8, to a
motion planning algorithm that decomposes FP into constant-complexity subcells
in time T'(n) = ©(n?) time. The number of subcells and subcell adjacencies is in the
worst case of the same order of magnitude as the number of regions and adjacencies
in the cc-partition.

Theorem 7.15 Let k> 1 and b > 0 be constants and let £ be a collection of k-fat
constant-complexity obstacles E C W = IR® with minimal enclosing sphere radii at
least p. Algorithm FatMot solves the motion planning problem for any constant-
complexity robot B with [ > 3 degrees of freedom and reach pg < b-p amidst £ in
time ©(n®). The connectivity graph CG = (Vr, Ec) of the resulting decomposition
of FP into simple subcells has size O(n?).
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7.4 Similarly-sized arbitrary obstacles in 3-space

The motion planning algorithm in the previous section for a robot amidst arbitrary
obstacles has a relatively high running time compared to the free space complexity.
It is therefore interesting to see what realistic additional assumptions may lead
to a relevant improvement of the performance. This section shows an interesting
example of such a realistic assumption, namely that the obstacles have comparable
sizes. The assumption is realistic because in many practical situations, the largest
obstacle in the workspace will not be more than a constant factor bigger than the
smallest obstacle. The addition of the assumption to the mildly constrained setting
of the previous section leads to a surprising improvement of the performance. The
resulting motion planning algorithm computes an optimal O(n) cell decomposition
in nearly-optimal O(n log n) time. The following problem statement fixes the setting
of the results in this section.

A constant-complexity robot B with f degrees of freedom (f > 3) and
reach pg moves freely in the workspace W = IR® amidst a collection &€
of k-fat constant-complexity obstacles ¥ C W with minimal enclosing
sphere radii in the range [p,up|, for some constants k > 1 and u > 1.
The system is constrained by the inequality pg < b - p, for some fixed
constant b > 0.

Again, the goal is to compute a (small) cc-partition of the workspace. The
bounded ratio between the size of the smallest and largest obstacle in £ provides
the opportunity of a simple and structured cc-partition, consisting of axis-parallel
rectangloid regions. The corners of the rectangloid regions are restricted to the
points of the regular orthogonal grid G(p) (with resolution p). More specifically,
the rectangloid regions of the subdivision are either cubes with side length p, or
(possibly semi-infinite) rectangloids of width and height p, or rectangloids that are
unbounded in both z-directions. All regions of the latter two types have empty
coverage. The number of each of the three types of regions in the subdivision is
bounded by O(n). Moreover, the number of adjacencies is equally low: O(n). The
rectangloid subdivision is as such an optimal partition of the workspace.

The basic idea behind the rectangloid subdivision is to embed the bounding
boxes B(G(F,pg)) of all grown obstacles G(FE, pg) in cubes of the form [hp, hp +
pl x [ip,ip+ p] X [1p,ip + p|, where h,i,j € Z. The idea seems promising for two
different reasons. On the one hand, the cubes are small enough to certify constant-
size coverage, while, on the other hand, the cubes are large enough to be able to
embed each of the (bounded-size) grown obstacles in a constant number of cubes
with pair-wise disjoint interiors. As a result, the total number of cubes is linear in
the number obstacles. The complement of the cubes clearly has empty intersection
with the grown obstacles. The regions of the two non-cubic types serve as a means of
efficiently subdividing this complement. All these regions have empty coverage. The
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subdivision is such that the regions can be ordered lexicographically. This ordering
on the regions simplifies many of the computations.
Let Vi be the set of cubic ce-partition regions; V; is defined by

i=[Jwp),

Eeg

where

VI(E) = {Thp, hp + p] < [ip,ip =+ p] X [jp,ip + p]
\hyi,5 € ZA[hp,hp+ p] < [ip,ip+ p] X [jp,jp+ p] O B(G(E, ps)) # 0}.

Lemma 7.16 proves the linear bound on the number of regions in V}
Lemma 7.16 |Vi| = O(n).

Proof: Let us bound the number of cubes in Vi(F), for some £ € £. The minimal
enclosing sphere radius of F lies in the range [p, up]. As a result, no two points in
FE are more than 2up apart, and, hence, no two points in G(FE, pg) are more than
2up~+2pp < 2(u+b)p apart, which in turn implies that the length, width and height
of the bounding box B(G(F, pg)) do not exceed 2(u + b)p. Such a box is certainly
embedded in an orthogonal cluster of (2(u+ b) + 1)® cubes of side length p, which is
a constant number. The number of elements in Vi(F) is bounded by this constant.
Summing over all sizes of set Vi(F), yields a bound of O(n) on the size of the set
V1. O

Lemma 7.17 confirms the intuition that the cubes of V; are so small that they can
only be intersected by a constant number of grown obstacles.

Lemma 7.17 For all R € Vi: |Cov(R)| = O(1).

Proof: Any obstacle £ € &, for which G(F, pg) intersects R € Vi, must itself
intersect the enclosing cube R’ of R obtained by growing R by pp in all three axis-
parallel directions. The resulting R’ is a cube with side length p+2ps < (264 1) p,
and, hence, with diameter at most (26 + 1)3/3 - p. By Theorem 2.9, the number of
obstacles in &, which all have minimal enclosing sphere radi at least p, intersecting

the cube R’ is constant. So, |C'ov(R)| = O(1). O

The definition of Vi as the union of all sets Vi(E) (FE € &) gives a clue on a
straightforward but efficient computation of the set Vi. A first step computes all
constant-cardinality sets Vi(F). Each set Vi(E) of cubes intersecting the grown
obstacle G(F, pg) is trivially computable in constant time from E and pg. The
resulting sets of cubes are not disjoint; a cube R may occur in more than one set
Vi(E). To eliminate multiple copies of a single cube, we simply sort the cubes of all
sets Vi(F) lexicographically. Multiple copies of a single cube appear consecutively
in the ordered sequence, and are easily filtered out. In conclusion, the O(nlogn)
time to sort the O(n) cubes of the sets Vi(F) determines the time bound for the
computation of V4.
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Lemma 7.18 Vi consists of O(n) constant-complexity regions R with |Cov(R)| =
O(1); the computation of Vi takes O(nlogn) time.

At this stage, the remaining task is to find a way of efficiently partitioning the
closure of the complement IR?\ (Ugev, R) into a small number of constant-complexity
regions. The efficient subdivision of the complement outlined below proceeds in
two phases. The first phase will be such that, upon its completion, all workspace
columns of the form [hp, hp + p] X [ip,ip + p] X IR that contain a cube R € V; are
partitioned into regions with constant complexity and constant-size coverage. This
approach reduces the remaining step, that is, the subdivision of the complement of
the columns, to the essentially two-dimensional problem of subdividing the planar
complement of the intersections of the columns with the plane z = 0. Both phases
result in a collection of O(n) additional regions, which are computable in time O(n)
time using the ordered sequence of cubes from V;.

The first of the remaining two steps completes the partition of the union of the
z-columns through the cubes of Vi. A z-column through a cube [hp, hp+p] X [ip,ip+
pl < [jp,7p+p] is the infinite extension [hp, hp+p] X [ip,ip+p] X IR of that cube in the
z-direction. The complement ¢ \ (Ugey; R) of the cubes in each z-column ¢ through
a cube of Vi consists of a collection of (possibly semi-infinite) maximal connected
components of height and width p (see Figure 7.5). The regions that constitute
the set V5 are the closures of all such maximal connected components in the O(n)
z-columns through cubes of Vj. To understand the contribution to V; of a single
z-column ¢, consider the example of Figure 7.5. The grey cubes vy,...,vg in the
z-column ¢ all belong to V4. The complement of the cubes, that is, the white space
between the cubes, consists of three connected components wq, ws, w3 of height and
width p. The closures of these regions form the contribution of the z-column ¢ to
V.

From the construction of the regions of V4 it is clear that the number of regions
R € V; contributed by a z-column ¢ can exceed the number of cubes R € V| in ¢
by at most one, as each pair of subsequent regions from V5 in ¢ must be separated
by at least one cube from V. As a consequence, the total number of regions in V;
is of the same order of magnitude as the number of cubes in Vj. The computation
of the regions of V, contributed by a single z-column ¢ is simple if the ordered
sequence of cubes (from V1) in ¢ is given. Fortunately, this cube sequence appears
as a subsequence in the lexicographical ordering of all cubes of Vj. As a result, the
regions of V, contributed by all z-columns can be computed by a single scan of the
full O(n)-length sequence.

Lemma 7.19 V; consists of O(n) constant-complexity regions R with Cov(R) = 0);
the computation of Vy takes O(nlogn) time.

Note that the computation time of O(nlogn) incorporates the ordering of the cubes
from Vj.
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Figure 7.5: The column ¢ contains cubes vy,...,vg, all being elements of V7; the

regions wy, wsy, and w3 are members of V5.

The problem of finding a partition of the complement IR* \ (Ugev,uw, R) of the
z-columns is a problem that can be solved in the plane z = 0, as such a partition can
be obtained by orthogonally lifting a planar subdivision of the complement of the
square intersections of the columns with z = 0. The lifting preserves the asymptotic
complexity of the regions in the partition, so it suffices to find a partition of the
plane into constant-complexity regions.

Consider the plane z = 0. The column cross-sections are squares of the form
[hp, hp + p] X [ip,ip + p], with h,¢ € Z. Figure 7.6 shows an example of a plane
z = 0 with column cross-sections. To partition the complement of the squares into
constant-complexity regions, we simply extend vertical walls, parallel to the y-axis,
through the vertical edges of the squares. Note that no more than O(n) walls
are extended, partitioning the complement of the squares into at most O(n) con-
stant complexity regions. The orthogonal liftings of these regions into 3-space are
constant-complexity regions that collectively partition the three-dimensional com-
plement of the columns.

The ordered sequence of cubes of V; again turns out a useful tool in the compu-
tation. The restriction of the cubes to the first two coordinates turns the sequence
into the lexicographical ordering of the squares resulting from the intersection of the
z-columns with the plane z = 0. Hence, the squares appear from left to right (see
Figure 7.6) and, within a vertical slab of the plane, from bottom to top. Using this
sequence of squares, it is not hard to compute the decomposition of the plane by
a single scan of the sequence of squares: adding an unbounded region (like ¢3) for
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Figure 7.6: The regions ¢q,...,qs; are regions in the vertical decomposition of the

complement of the column cross-sections (the grey squares). The liftings of these
regions are elements of V5.

every consecutive pair of squares in non-adjacent slabs, adding semi-infinite regions
(like g5 and g4) for all first and last squares in a slab, and adding a bounded region
(like ¢q2) for every consecutive pair of non-adjacent squares in a single slab. The
sketched computation of V3 takes O(n) time, provided that the ordered sequence of
cubes from V] is given.

Lemma 7.20 V3 consists of O(n) constant-complexity regions R with Cov(R) = 0);
the computation of Vs takes O(nlogn) time.

The results obtained so far show that the regions of V; U V5 U V3 have constant-
complexity and constant-size coverage. In addition, the regions collectively partition
IR®, which makes V; UV, U V3 an adequate choice for a ce-partition of the workspace

W = R?, so we choose Viy = V4 U V5 U Vi,

Lemma 7.21 Wy = ViUWUV; is a ce-partition of size O(n) of W with the obstacles
E; the computation of Viy takes O(nlogn) time.

The cc-partition of W = IR® by the regions of Viy has a recursive structure
which turns out to be useful in the sequel. At the upper level, the workspace W
is divided into slices, separated by planes © = hp (h € Z). A slice is either a
region from V3 (like ¢1, g5 in Figure 7.6) or it is divided into levels by planes y = ip
(¢ € Z) and has width p. A level is either a region from V3 (like g2, ¢4, ¢5) or it
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is a z-column of width and height p. Recall that a z-column contains no regions
from V3. The recursive structure of the subdivision shows that all regions in Wiy
can be stored lexicographically, that is, slice by slice by increasing z, level by level
by increasing y within a single slice, and by increasing z within a single level. The
above structuring makes it easy to distinguish three different types of adjacencies.
Two adjacent regions are z-adjacent if they lie in different (subsequent) slices; two
adjacent regions are y-adjacent if they lie in different (subsequent) levels of a single
slice; two adjacent regions in a single level (or z-column) are z-adjacent.

We are now ready to prove an upper bound on the number of region adjacencies
in the cc-partition.

Lemma 7.22 Ew = {(R,R') € Viv x Viy|0RN OR' # 0} has size O(n).

Proof:  The proof uses case analysis with respect to the types of the regions
involved in the adjacency. The number of adjacencies in each case is bounded by
O(n).

Let us first count the adjacencies involving a region, say R, from V;. A region
R’ adjacent to the cube R entirely covers one of the six sides of R, regardless of
the type of R'. Charging the adjcency to the covered side leads to at most O(n)
chargings, and, hence at most O(n) adjacencies involving a region from V;.

Now consider an adjacency (R, R') € Vo x V3; R is a (possibly semi-infinite)
part of a z-column, and R’ is unbounded in the z-direction. R and R’ must be
either x-adjacent or y-adjacent. The restriction on the type of adjacency and the
unboundedness of R’ in the z-direction establish that R’ completely covers one of the
four sides of R parallel to the (x,z)- or (y,z)-plane. Charging the adjacency to the
entirely covered side of R implies that the number of adjacencies (R, R') € V3 x V3
is O(n).

The regions involved in an adjacency (R, R') € V5 x V5 are both obtained by
lifting a rectangular region in the (z,y)-plane orthogonally into the z-dimension.
Hence, the rectangular intersections of R and R’ with the plane z = 0 must be
adjacent in the planar subdivision of z = 0. The planar arrangement in z = 0 is
a planar graph with O(n) edges and vertices, dividing the plane into O(n) regions
with a total of O(n) adjacencies. Hence, the number of adjacencies (R, R') € V3 x V;
is O(n).

The number of the remaining adjacencies (R, R') € V3 x V3 is more difficult to
bound. Both R and R’ are (possibly semi-infinite) parts of different z-columns. R
and R’ must be either x-adjacent or y-adjacent. It is easily seen that R and R’ are
in one of the two relative positions depicted in in Figure 7.7. In the left case, one
side involved in the adjacency is contained in the other involved one. We charge
the adjacency to the covered side (the dashed one in Figure 7.7). Each side can
only be charged once. The number of sides of regions of V; is O(n), so the number
of adjacencies (R, R') € V3 x V, of the first kind is O(n). In the complimentary
case, neither one of the sides is completely contained in the other one. In this case,
however, one edge bounding the involved side of R is contained in the interior of the
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Figure 7.7: Two types of adjacencies (R, R') € V3 x Vj.

involved side of R and vice versa. We can charge the adjacency to either edge (the
bold edges in Figure 7.7). Each edge can only be charged once, because it can lie in
the interior of only one face. The number of edges of regions of V4 is O(n), so the
number of adjacencies of two regions from V; of the second kind is O(n) as well.
Combination of all linear bounds yields that |FEw| = O(n). O

For the computation of the set Fyw of adjacencies, it is convenient to have
the O(n) regions of Viy ordered lexicographically. Such can be achieved in time
O(nlogn). The computations of the z-adjacencies, the y-adjacencies, and the x-
adjacencies proceed as outlined below.

The z-adjacencies can be extracted from the sequence of regions in a straight-
forward single scan, taking O(n) time. Two regions that are z-adjacent appear
consecutively in a z-column, and also in the lexicographical order. Any pair of con-
secutive regions in the sequence lying in the same z-column should be reported as
an adjacency.

At the heart of the computation of the x- and y-adjacencies lies a basic operation
that reports pairs of adjacent regions in two adjacent levels (either in a single slice
or in two subsequent slices). Assume that the adjacent levels are divided into m
and n regions respectively. Then, it is easily verified that the number of adjacencies
involving one region from either level is @(m +n). Moreover, the adjacencies can be
reported in time O(m +n) by a simultaneous scan of the two levels from z = —oo to
z = 00. In conclusion, the region adjacencies in two adjacent levels can be reported
in time proportional to the number of adjacencies.

The y-adjacencies are restricted to pairs of regions in subsequent levels of a sin-
gle slice. To identify all pairs of subsequent levels (and to compute all adjacencies
induced by their regions) we traverse the lexicographical order of regions with two
pointers. The pointers invariantly point to the start of the subsequences correspond-
ing to two subsequent levels. At any combination of pointer positions, we apply the
techniques of the previous paragraph to compute the adjacencies induced by the
two levels in time proportional to the number of adjacencies. After this computa-
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tion, both pointers are forwarded to the start of the next level. As the number of
y-adjacencies is bounded by O(n) and both pointers make a single traversal of the
sorted sequence of regions, the total time for computing the y-adjacencies equals
O(n).

The computation of the z-adjacencies, finally, resembles the computation of the
y-adjacencies. Recall that z-adjacencies are restricted to pairs of regions in sub-
sequent slices. Again we traverse the sorted sequence of regions with two pointers
which now invariantly point to the start of ‘comparable-height’ levels in subsequent
slices. (Comparable-height levels in subsequent slices share a common face paral-
lel to the (y,z)-plane.) As a result, pairs of regions in the comparable levels are
x-adjacent. The x-adjacencies induced by the two levels can be computed by the
basic strategy outlined above in time proportional to the number of adjacencies.
After the computation, the pointer corresponding to the level with the lowest upper
boundary with respect to the y-coordinate is forwarded to the next level. As the
number of z-adjacencies is bounded by O(n) and both pointers make a single traver-
sal of the sorted sequence of regions, the total time for computing the z-adjacencies
equals O(n).

To compute the coverage of the regions of Viy, we borrow the ideas from Section
7.3. Thus, the approach is to consider obstacle by obstacle and compute all regions
R € Wy (in fact R € V1) intersected by the corresponding grown obstacle. One
arbitrary region R € Vi intersecting the grown obstacle can be determined in
O(log n) time, using the ordered sequence of regions. Starting from that region, the
other O(1) regions intersected by the grown obstacle are identified in O(1) time,
using Fw. (See Section 7.3 for the details.) The approach amounts to O(nlogn)
for computing Cov.

Lemma 7.23 The computation of Ew and Cov takes O(nlogn) time.

If we substitute the above computation of the cc-partition graph (Viy, Fw) and the
corresponding function Cov for the abstract first step of algorithm FatMot, then we
obtain an efficient algorithm for computing a cell decomposition of the free space.
The algorithm yields a decomposition into O(n) constant-complexity cells in time
T(n) = O(nlogn) by Theorem 6.8, as T'(n) stands for the time required to compute
Viv, Fw, and Cov.

Theorem 7.24 Let k> 1,6 >0, and u > 1 be constants and let € be a collection
of k-fat constant-complexity obstacles E C W = IR with minimal enclosing sphere
radii in the range [p,up]. Algorithm FatMot solves the motion planning problem for
any constant-complexity robot B with f > 3 degrees of freedom and reach pg < b-p
amidst £ in time O(nlogn). The connectivity graph CG = (Vi, Ec) of the resulting
decomposition of FP into simple subcells has optimal size O(n).
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7.5 Planar motion amidst arbitrary obstacles in
3-space

With the present technological state-of-the-art, one rarely encounters free-flying
three-dimensional robots in industrial environments. Instead, many robots move in
three-dimensional workspaces amidst spatial obstacles while their motion is confined
to a (planar) workfloor. A realistic example of such a setting is a vacuum cleaner
moving in a room in which objects hang from the ceiling and stand on the floor
[100]. Sometimes, the nature and positions of the obstacles does not allow to reduce
such problem to purely planar motion planning. The vacuum cleaner, for example,
can easily pass under a table. An approach to solve the problem by projecting the
vacuum cleaner and the obstacles onto the floor and then finding a (planar) path
for the projected vacuum cleaner amidst the projected obstacles would forbid such
paths. In this section we study a general formulation of the type of problem outlined
above in the context of fat obstacles.

We consider a workspace W = IR® with k-fat constant-complexity obstacles. The
motion of the robot B in this workspace is constrained by the assumption that a
specific point p in B is restricted to a workfloor F x {0} = R? x {0} C R?; the
workspace W is the Cartesian product of the projection F of the workfloor and the
real line: W = F x IR. For convenience, we choose the robot’s reference point O € B
to be equal to the point p that is restricted to the workfloor. Hence,

O[Z] € F x {0}

for all placements Z € C' of the robot B. The following problem statement fixes the
setting of this section.

A constant-complexity robot B with f degrees of freedom (f > 2) and
reach pg moves with some point O € B restricted to a plane F in the
workspace W = F x IR = IR amidst a collection £ of k-fat constant-
complexity obstacles ' C W with minimal enclosing sphere radii at least
p, for some constant k > 1. The system is constrained by the inequality
ps < b- p, for some fixed constant b > 0.

Note that the problem statement does not restrict the robot to rotate around an
axis perpendicular to the workfloor only (as for the vacuum cleaner). The robot is
allowed to rotate arbitrarily and can have more degrees of freedom. (An example of
such a robot is a moon vehicle, equipped with several arms to grasp stones etc.)
Planar motion planning in 3-space is sometimes referred to as two-and-a-half-
dimensional motion planning, for understandable reasons. A solution to this type
of path-finding for a polyhedral robot amidst polyhedral obstacles is given by Wen-
tink and Schwarzkopf in [100]. Their algorithm, which is a generalization of the
boundary cell decomposition algorithm by Avnaim, Boissonnat, and Faverjon [10],
runs in time O(n®logn). Under the realistic assumptions of a bounded-size robot
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and fat obstacles, the free space is shown below to be decomposable into O(n)
simple subcells in time O(nlogn), using the general ideas of Section 6.1, yielding
an O(nlogn) motion planning algorithm.

Choosing the position of the robot’s reference point as a part of the specification
of the robot placement, similar to the preceding sections, seems a bad idea. The
fact that the position (x,y, z) of the robot’s reference point is restricted by z = 0,
would have unclear implications for path-finding in the resulting configuration space,
as not all free placements are valid placements according to the constraint on the
position of the robot’s reference point. Finding a free path for the robot would
require some constrained path-finding in such a configuration space. Instead, we
choose the configuration space to be

C=FxD=R*xD,

where D is again some rest-space. Any point 7 = (Zp,Zp) = ((x,y), Zp), with
Zy € ¥, Zp € D, in configuration space corresponds to a placement of B in which
its reference point is positioned at (x,y,0) in the workspace W. A possible rest-space
for a vacuum cleaner would be D = [0,2x). The configuration space C formulated
above makes the application of the tailored paradigm from Section 6.2 for solving the
motion planning problem impossible, as the configuration space is not a superspace
of the robot’s workspace.

A possible strategy for computing a cell decomposition of the free space would be
to temporarily discard the restriction on the position of the reference point and act
as if the robot is free-flying, and, hence, has configuration space C' = W x D = F x
IR x D. We may borrow the ideas of Section 7.2 to decompose the free part FP’ of ("
into O(n?) simple subcells in O(n?log n) time. The free part FP of the configuration
space C' = F x D of the constrained problem can be regarded as the projection onto
the space F x D of the subset FP'N(F x {0} x D) of the free part FP' C " = (W x D).
To obtain a cell decomposition of the free part FP C ¢ = F x D, we simply
intersect all subcells and common boundaries in the decomposition of FP' C (' =
W x D with the space F x {0} x D and subsequently project the intersection onto
the subspace F x D. Regardless of the (possibly unnecessarily large) complexity
of the resulting decomposition, the computation takes O(n?logn) time, which is
inferior to the approach that we follow below leading to a decomposition of size O(n)
in time O(nlogn). The approach exploits the general paradigm for cylindrifiable
configuration spaces, which is given in Section 6.1 as an algorithm for transforming
a base partition of some appropriate base space into a cell decomposition of the free
space.

The projected workfloor F turns out to be a good choice for a base space for the
cylindrical decomposition of the free space. The subdivision that we propose strongly
resembles the partition of the workspace W = IR? by the grown obstacles discussed in
Section 7.1. Consider the planar arrangement in F'x{0} defined by the intersection of
the grown obstacle boundaries dG(FE, pg) € W and the workfloor F x {0}. It will be



7.5. PLANAR MOTION AMIDST ARBITRARY OBSTACLES IN 3-SPACE 147

shown that this arrangement partitions the plane F into regions whose corresponding
configuration space cylinders are intersected by a constant number of constraint
hypersurfaces. The O(n) curves resulting from the intersection of grown obstacle
faces with F' x {0} have constant complexity, due to the constant complexity of the
grown obstacles. The arrangement of curves has complexity O(n). To obtain a valid
base partition in the base space F we compute, inspired by resemblance with Section
7.1, the vertical decomposition of the planar arrangement of intersection curves in
time O(nlogn) time. The resulting base partition graph has complexity O(n).
The computation of the constraint hypersurfaces that intersect the configuration
space cylinders is supported by sets that resemble the region coverages, and are
computed along with the vertical decomposition in a way that strongly resembles
the computation of the coverages. Below, we settle the details of the informally
described approach.

A restriction on the applicability of the general paradigm is that the configuration
space (' is cylindrifiable, that is, decomposable in some B and D such that for all
p € B:

{foolo €, BAPEFEN foon (px D) #0} =0(1).

Lemma 6.1 states that the condition is satisfied for B = W, but W is not a subspace
of C. Fortunately, the property is inherited by the subset F' x {0} € W leading to
the following property.

Property 7.25 For all pe F:

{foalo € BA®E EN fyan(px D) # 0} =0(1).

As a result, the two-dimensional Euclidean space F is a feasible base space for a
cylindrical decomposition of FP C ' = F x D. The algorithm in Section 6.1
transforms the graph (Vg, Fr) corresponding to a base partition in F into a cell
decomposition of the free part of C', provided that all regions R € V& have constant
complexity and satisfy:

{foalo € BAO € EN fya N (R x D) # 0} = O(1).

In the previous chapter we have formalized the informal observation that a robot
can only touch an obstacle lying within its reach using the notion of grown obstacles.
A robot with its reference point at some point p € W is only able to touch an obstacle
Eif p e G(F,pg). In our constrained case, the position p of B’s reference point for
potential collision with E € & is further restricted to p € G(F,pg) Ap € F x {0}.
In other words, the reference point of B must be positioned at some point in the
intersection of the grown obstacle G(E, ps) and the plane F x {0} = IR* x{0}. Notice
that the emptiness of the intersection implies that B cannot collide with F during its
constrained motion. We define G'p(F, pg) to be the intersection G(F, ps)N(F x{0}).
(Actually, it is the intersection restricted to the first two coordinates, to make it lie

in F.)
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Definition 7.26 Gy(FE,ps) = {(z,y)|(x,y,0) € G(E,ps)}.

The restriction on the position of the reference point of the robot B for being able
to touch an obstacle £ has implications for the location in configuration space of
the constraint hypersurtaces defined by a contact of a feature of 5 with a feature of

E.

Lemma 7.27 Let ¢ €; B and ® ¢; E. Then:
foa © Ge(E, ps) x D.

Proof: Let p = (pr,pp) = ((pz, py), pp) € fs.0, such that pp € F and pp € D. We
must prove that p = ((ps, py), pp) € Gr(F, ps)x D, which may be reduced to proving
that (ps,py) € Gr(FE, pg) as pp € D is trivially true. Proving (p,, p,) € Gr(FE, pg) is,
in turn, equivalent to proving (ps, py,0) € G(F, pg). This means that B’s reference
point must be placed inside G(F, pg) when B’s feature ¢ touches ®.

Assume, for a contradiction, that (p,,p,,0) & G(FE, pg). Then, by the definition
of grown obstacles, the distance from (p,,p,,0) to E exceeds ps. But then, it is
impossible for B to reach and touch the obstacle K, by the definition of the reach
of a robot. In other words, no feature ¢’ €5 B can touch a feature ® €y F. So,
the point p = (pr, pp) = ((pesy )s ) With (pe, py,0) & G(E, ps) canmot lie on o
contradicting the assumption of the lemma. O

Lemma 7.27 provides, similar to Lemma 6.3 in Section 6.2 for free-flying robots,
some simple outer approximation on the location of any constraint hypersurface
fs.0 in the configuration space C' = F x D. If R C F does not intersect Gy(FE, pg),
then no constraint hypersurface f; ¢ with ® €; I intersects the configuration space
cylinder Gp(F, pg). The following definition simplifies a more general formulation
of the consequences of Lemma 7.27.

Definition 7.28 Let R C F = R%
Covp(R) = {F € E|RN Gp(F, ps) # 0}.

Covp(R) is the collection of obstacles £ whose corresponding regions Gg(FE, pg)
intersect R. Now, if a region R C F is intersected by a collection of regions Gy (FE, pg)
then the configuration space cylinder R x D can only be intersected by constraint
hypersurfaces induced by the corresponding obstacles F, or, more formally:

{foalo€s BADEFEN foaN(RXxD)#£D}
C {foalp€s BAD €; Covp(R)}

The set inclusion directly shows that if R is chosen such that |Covp(R)| = O(1),
then [{fs0]ld € BA® €5 EN foo N (R x D) #£ 0} = O(1), due to the constant
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complexities of the obstacles and the robot. Hence, any partition of F into constant-
complexity regions R with |Covp(R)| = O(1) is a valid base partition for a cylindrical
cell decomposition of FP C (', and as such, a valid input to the transformation
algorithm. Let us now focus on the arrangement of regions Gr(F, pg) in the plane
F.

The planar arrangement A(G) of all boundaries 0Gr(F, pg) (E € &) subdivides
F into maximal connected sets of points p € F with equivalent collections C'ovg(p).
Lemma 7.29 states that the arrangement has complexity O(n). In addition, it states

that each 2-cell A in A(Gy) satisfies |Covp(A)| = O(1). F x {0}.

Lemma 7.29 Let A(Gg) be the planar arrangement of all boundaries 0Gr(E, pg)
(E€&). Then

(a) A(Gw) has complexity O(n),
(b) |Covp(A)| = O(1) for all 2-faces A € A(Gy).

Proof: Theorem 2.12 yields for the spatial arrangement A(G) of all grown ob-
stacles G(F, pg) (F € £): (i) the complexity of A(G) is O(n), and (ii) every point
p € W = IR® lies in at most O(1) regions G(E, ps) (E € £). The intersection of
the linear complexity arrangement A((') with the plane F x {0} results in a planar
arrangement in F x {0} with complexity O(n). Hence, A(Gr) has complexity O(n).
To prove (b) it suffices to pick a point p € A and prove that it lies in at most O(1)
regions Gr(F, pg), because all points in a single face A lie in exactly the same re-
gions. By expression (ii), every point p € F x {0} C W lies in at most O(1) regions
G(E,ps) N (F x {0}), yielding (b). O

The arrangement A(Gy) partitions the base space F into regions whose cor-
responding configuration space cylinders are intersected by only O(1) constraint
hypersurfaces. The regions, however, do not have constant complexity, but thanks
to the planarity of the subdivision, such is easily remedied by vertical decomposition
of the arrangement. The resulting vertical decomposition regions are the regions of
V. The set By = {(R, R') € Ve x VE|0RNOR' # 0} consists of all adjcencies of pairs
of regions. Section 7.1 explains why the vertical decomposition of an arrangement
of complexity O(n) consists of O(n) regions and region adjacencies.

Lemma 7.30 Vi consists of O(n) constant-complexity regions R that partition F
and satisfy |Covp(R)| = O(1); Fr has size O(n).

The transformation algorithm in Section 6.1 transforms the base partition rep-
resented by the sets V& and FEp into a decomposition of the free space in time
O(|Ve| + |Er|) provided that for every region R the collection of constraint hyper-
surfaces {fyo0]|0 € BAP® €5 EN fy6 N (R x D)} is computable in constant time.
Fortunately, we have found that {fsa|¢ € BA® €5 EAfoaN(RX D)} C{fs0le €
BA® € Covp(R)} = O(1), which shows that a constant time computation of
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the appropriate hypersurfaces is possible when the function Covp : V& — P(E) is
given. Therefore, we decide to compute the function C'ovp along with the vertical
decomposition. The similarity of the present triple (Vi, Fr, Covp) and the triple
(Vy, Ew, Cov) in Section 7.1 suggests the use of the plane sweep from that section
for the simultaneous computation of Vg, Fp, and Covp in O(nlogn) time. The
input to the sweep are the O(n) (labeled) maximal connected x-monotone arcs of
the boundaries 0GR (FE, pg) (E € £) having no vertices in their interiors. The arcs
of a single boundary dGr(F, pg) are obtained in constant time by intersecting the
constant-complexity grown obstacle G/(F, pg) with the plane F x {0}, and subse-
quently cutting the projection of the intersection into the appropriate z-monotone
arcs. The generation of all input arcs takes O(n) time, so the entire computation of
the base partition (Vg, Er) and the function C'ovp from the grown obstacles takes
O(nlogn) time.

Lemma 7.31 The computation of the base partition Vi, the set Ey, and the function
Covp takes O(nlogn) time.

The computation of a cell decomposition consists of two steps: the first step
which computes a valid base partition, and the second step which transforms the base
partition into a decomposition of the free space. The second step takes time O(|Vi|+
|Fr|) = O(n), because the function Covp supports the constant time computation
of {fsalo € BAD € EN fr6N (R x D)} for any region R. The combination with
the O(nlogn) running time for the first step justifies the following theorem, which
formulates the main result of this section.

Theorem 7.32 Let k> 1 and b > 0 be constants and let £ be a collection of k-fat
constant-complexity obstacles E C W = IR® with minimal enclosing sphere radii at
least p. Algorithm FatMot solves the motion planning problem for any constant-
complexity robot B with f > 2 degrees of freedom and reach pg < b- p amidst €
whose reference point O € B is confined to the planar workfloor F x {0} in time
O(nlogn). The connectivity graph CG = (Vi, E¢) of the resulting decomposition of
FP into simple subcells has optimal size O(n).



Chapter 8

Concluding remarks

This final chapter recaptures some of the main results in this thesis and gives some
reflections on possible extensions and improvements. The reader is warned that
most reflections are based on intuitive feelings and not supported by indisputable
proofs.

We have studied the motion planning problem for a constant-complexity robot
B with f degrees of freedom amidst n constant-complexity k-fat obstacles £ C IR?,
for some constants d, f > 0 and £ > 1. In addition, the reach pz of the robot B
is assumed to be bounded from above by a constant multiple 6 > 0 of p, where
p is a lower bound on the minimal enclosing hypersphere radius of any obstacle
E. The mild assumptions are considered to provide a realistic framework for many
practical motion planning problems. The complexity of the free space for problems
that satisfy the assumptions was proven to be O(n), whereas the complexity can
easily be as high as Q(n’) when both the fatness assumption on the obstacles and
the bounded-size assumption on the robot are dropped. This remarkable gap makes
it interesting to study the individual influence on the free space complexity of each
of the two assumptions in more detail, which we leave as an open question.

The basis of the linear complexity result is a low obstacle density property (rela-
tive to the robot size) of the workspace W = IR?, which is implied by the combination
of the two assumptions. As such, the low obstacle density property imposes a weaker
restriction for obtaining linear complexity free spaces. (To see that the latter condi-
tion is weaker, imagine a workspace with non-fat obstacles that are far apart.) All
algorithmic motion planning results in this thesis, however, apply equally well to
problems that satisfy the relaxed condition.

Besides having a low combinatorial complexity, the free space for a motion plan-
ning problem that fits in our framework also has a beneficial structure. The structure
allows for a decomposition of the configuration space into cylinders, with bases in
some projective subspace, the so-called base space, such that the free space part of
every cylinder has constant-complexity. In other words, the cylinder walls partition
the free space into constant-complexity parts. The maximal connected components
of the free parts make perfect subcells in a cell decomposition of the free space, as
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they allow for simple path-finding in their interiors due to their constant complexity
and connectedness. The validity of a projective subspace as a base space is verified
by a proof that the lifting back into configuration space of every point in the base
space is intersected by at most a constant number of constraint hypersurfaces, which
are sets of contact placements of a robot and an obstacle feature. The preceding
considerations reduce the problem of finding a cell decomposition of the free space
to the problem of finding some constrained decomposition of the lower-dimensional
base space, in which the regions are appropriate cylinder bases. A uniform sequence
of operations then suffices to transform the base partition into a cell decomposi-
tion of the free space of asymptotically equal size. The running time of the entire
paradigm is determined by the time to compute the base partition. A small and ef-
ficiently computable base partition is therefore of obvious importance to the success
of the approach. Finding a small and efficiently computable base partition may seem
a hard problem at first sight, because the regions are constrained by a restriction
on their liftings, hence in configuration space.

The extensive and interesting class of motion planning problems with configu-
ration spaces C' = W x D, which includes for example all problems that involve
a free-flying robot, allows for choosing the robot’s workspace W as a base space.
Moreover, any so-called cc-partition of W, which is subject to constraints that are
formulated exclusively in W, turns out to be a valid base partition of the base space
W. A cc-partition decomposes the workspace into constant-complexity regions that
intersect at most a constant number of cells of the arrangement of grown obstacle
boundaries'. A grown obstacle is the collection of points within a distance ps from
the original obstacle. The arrangement of grown obstacle boundaries has complex-
ity O(n) and each point p € W lies in no more than a constant number of grown
obstacles simultaneously.

Optimal O(n) size cc-partitions exist for three out of five practical instances
of the motion planning problem amidst fat obstacles studied in this thesis. These
instances are motion planning in the plane amidst arbitrarily-shaped obstacles, mo-
tion planning in 3-space amidst arbitrarily-shaped obstacles of comparable sizes, and
motion planning on a workfloor in 3-space amidst arbitrarily-shaped obstacles. The
reason for treating restricted instances of the motion planning problem in 3-space
lies in the failure to find an optimal partition for the general version of the problem
and in the frequent occurrence of these specific instances in real-life motion planning
problems. All three cc-partitions are computable in nearly-optimal O(nlogn) time.
In conclusion, we have obtained O(nlogn) motion planning algorithms for each of
the three classes of problems. The algorithms yield a cell decomposition of optimal
size O(n). Notice that these results do not depend on the number of degrees of
freedom of the robot.

!Note that this description of a ce-partition seems somewhat different from the formal definition
in Chapter 6. Nevertheless, it is essentially equivalent, due to the constant-size coverage of the
arrangement cells.
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The cc-partitions that are obtained for the two remaining instances, motion plan-
ning in 3-space amidst polyhedral obstacles and amidst arbitrarily-shaped obstacles,
have sizes O(n?) and O(n”) and are computable in time O(n?logn) and O(n?) re-
spectively. The partitions give rise to motion planning algorithms with running
times O(n*logn) and O(n?) that compute cell decompositions of sizes O(n?) and
O(n?) for the respective problems, regardless of the number of degrees of freedom of
the robot. These results might be improvable. The challenge is to find subquadratic
and subcubic partitions of the workspace W such that each region has constant com-
plexity and intersects no more than a constant number of cells of the arrangement
of grown obstacle boundaries.

Besides attempting to improve the latter two results, it is also interesting to see
if the paradigm for motion planning amidst fat obstacles applies to other classes
of motion planning problems involving fat obstacles. Let us give some thoughts
on some possible extensions, like motion planning with moving obstacles, multiple
robots, and anchored robot armes.

Motion planning problems involving moving obstacles are normally solved in
configuration-time space. The configuration-time space C'T" is the Cartesian prod-
uct of the configuration space ' of the stationary version of the problem and the
time dimension 1. The fact that motion back in time is impossible is reflected by the
additional requirement that any solution curve between a pair of query placements
in the configuration-time space must be strictly monotone in time. The requirement
imposes restrictions on the search of the connectivity graph of a cell decomposition of
the free part of C'T" and on the simple motions within each subcell of the decomposi-
tion. The complexity of the free part of the configuration-time space C'T" can increase
rapidly when many obstacles are non-stationary and travel along complicated tra-
jectories. The ideas of the preceding two chapters will definitely not be applicable
in such cases. Things seem different when we assume that only a constant number
¢ out of the n obstacles move along simple trajectories, that is, algebraic curves of
bounded degree. Let us assume furthermore that a cc-partition of the d-dimensional
workspace with the n — ¢ stationary obstacles is given. Now, the cylinders obtained
by lifting the d-dimensional cc-partition into the (f + 1)-dimensional configuration-
time space are intersected by only a constant number of constraint hypersurfaces
defined by contacts of the robot and the stationary obstacles. The overall number
of constraint hypersurfaces due to contacts of the robot and the moving obstacles
is constant. The simplicity of the motion supposedly implies that the intersection
of each such constraint hypersurface with a cylinder consists of a constant number
of constant-complexity connected components. Hence, the constraint hypersurfaces
define constant-complexity arrangements in every cylinder. Therefore, the results of
the previous chapter seem to generalize directly to environments in which a constant
number of the obstacles are non-stationary. When the number of moving obstacles
is not constant, the preceding arguments no longer hold. It is though to be expected
that, still, a large complexity reduction is achievable: from the fatness of the (mov-
ing and stationary) obstacles it follows that any cross-section of the free part of C'T



154 CHAPTER 8. CONCLUDING REMARKS

at a particular time ¢ has linear complexity.

The usual approach to the exact solution of a motion planning problem with
¢ robots By, ..., B. with configuration spaces C,...,C. of dimensions fy,..., f. is
centralized planning. In centralized planning, the ¢ robots are regarded as one multi-
body robot B = By ---B.. Planning the motion of the multi-body robot B takes
place in the composite configuration space C' = Cy x...x C.. There, collisions of the
robots B; (1 < ¢ < ¢) turn into collisions of the multi-body robot B. (The alternative
to centralized planning, decoupled planning, plans the motions of each of the robots
independently, and then considers the interactions of the resulting paths. Decoupled
planning is not guaranteed to find a solution to the problem.) The complexity of
the free part of the composite configuration space C' can, for fat obstacles, easily be
as high as Q(n°), even when the reaches pg, of the individual bodies B; (1 <i < ¢)
are bounded by pp, < b- p, for some constant b > 0. The key observation here is
that the reach pp of the composite robot is in no way bounded: two bodies B; and
B; can be infinitely far apart. Figure 8.1 shows a single ¢-fold contact of B. Clearly,
there are Q(n®) such contacts. Still, there is a considerable gap between the (n°)

E1 E2 E3 En—l En

B, B; Bj

Figure 8.1: Each of the ¢ robots By, ..., B. touches one of the n obstacles £y, ..., F,,.
This corresponds to a single ¢-fold contact of the composite robot B = By --- B.. The
total number of such contacts is Q(n°).

lowerbound construction and the obvious upperbound of O(n/), with f = 3 ,<. fi,
on the complexity of the free space. We believe the complexity of the free space to
be close to the lowerbound. The ideas of cylindrical decomposition of the free space
seem applicable to some extent if the workspace W = IR? is a projective subspace
of each of the configuration spaces C; (1 < < ¢). Then the ‘composite workspace’
W¢ is a projective subspace of the composite configuration space C'. A point p € W¢
fixes the positions of the reference points of all bodies B;. The low obstacle density
of the workspace and the bounds on the sizes of the individual bodies yield that
each body can touch only a constant number of obstacles while its reference point
is fixed. Provided that ¢ is a constant, the lifting of p into €' is intersected by O(1)
constraint hypersurfaces. Hence, C' is a cylindrifiable configuration space and W is a
valid base space. The existence of a small and efficiently computable base partition
remains an open question.

The straightforward application of the framework of assumptions in the second
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paragraph of this chapter to an anchored robot arm does not give rise to an inter-
esting motion planning problem. Even though the number of obstacles can be high,
the total number of obstacles touched by the robot in any placement is at most con-
stant, due to its bounded size. The free space of the anchored robot has constant
complexity and a rigorous cell decomposition method [85] suffices to compute a cell
decomposition of the free space in constant time.

A more interesting problem formulation follows when we take a closer look at
industrial robot arms. Typically, the links close to the base of the arm are long
(magjor axes) whereas the links close to the tip, or hand, are short (minor azes).
Figure 8.2 shows a robot arm with two major axes [ and Ly and two minor axes
Ls and L4. Now consider an f-link robot arm B of which the m links closest to the

L,

Ly

Figure 8.2: A robot arm with two major axes [; and Ly and two minor axes L3 and

Ly.

tip are not too large compared to the obstacles. The sizes of the f — m major axes
are not bounded. Assume that (4 is the (f — m)-dimensional configuration space
corresponding to the major axes and that C5 is the m-dimensional configuration
space corresponding to the minor axes. Hence, C' = (4 x (5 is the f-dimensional
configuration space of B. A point p € (' fixes the placements of all major axes. If m
is a constant, then the m minor axes can only touch a constant number of obstacles
while the major axes are fixed, due to the low obstacle density. As a result, the
lifting of the point p € (' into € will be intersected by only a constant number of
constraint hypersurfaces. So, the configuration space C' is cylindrifiable and (7} is a
valid base space. Again, however, the existence of a small and efficiently computable
base partition in C'; remains uncertain. Nevertheless, we expect the complexity of
the free space to be closer to O(n/=™) then to the obvious upperbound of O(n/).
We can conclude that the paradigm presented in this thesis might lead to many
more efficient motion planning algorithms for a variety of instances of the problem.
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Chapter 3 generalizes earlier reported results [74] on point location and range search-
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by applying different tools. The general results are reported in [75].
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The O(nlogn) time bound on the running time of a fat version of the Piano Movers’
algorithm [84] in Section 5.2 improves the earlier reported bound of O(nlog®n) in
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pairs of neighboring obstacle features: through a plane sweep of ‘enveloped’ features
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Samenvatting

Het groeiende aantal toepassingsgebieden voor robots en de toenemende verschei-
denheid in hun taken vereist steeds meer autonomie van de robots. Een autonome
robot accepteert complexe taken en voert die uit zonder hulp van zijn omgeving.
Een voor de hand liggende opdracht voor zo’n autonome robot is om van een begin-
positie naar een eindpositie te bewegen, waarbij botsing met de aanwezige obstakels
vermeden dient te worden. Het vinden van een dergelijk pad wordt het motion
planning probleem genoemd.

Het motion planning probleem wordt in het algemeen opgelost in de configu-
ratieruimte. Dit is de ruimte van de representaties van alle mogelijke robotposities,
ofwel configuraties. Het aantal vrijheidsgraden van de robot bepaalt de dimensie van
de configuratieruimte. Fen configuratie is vrij wanneer de robot in de overeenkom-
stige positie geen enkel obstakel doorsnijdt. Indien de robot in een positie een of
meerdere obstakels doorsnijdt, dan is de betreffende configuratie verboden. De vrije
ruimte (FP) is de deelruimte van de configuratieruimte die bestaat uit alle vrije con-
figuraties. Het oplossen van het motion planning probleem in de configuratieruimte
komt neer op het vinden van een continue curve die de beginconfiguratie met de
eindconfiguratie verbindt en bovendien volledig is bevat in de vrije ruimte. De con-
tinue curve in de configuratieruimte komt overeen met een botsingsvrij pad voor de
robot in zijn werkruimte. Het is tamelijk eenvoudig om in te zien dat de moeilijkheid
van het vinden van een continue curve in de vrije ruimte (ofwel, het oplossen van het
motion planning probleem) sterk afhankelijk is van de complexiteit (beschrijvingsg-
rootte) van die ruimte. Op haar beurt hangt de complexiteit van de vrije ruimte in
hoge mate af van het aantal meervoudige contacten van de robot met de obstakels.
Helaas kan in theorie het aantal meervoudige contacten, en dus de complexiteit van
de vrije ruimte, erg hoog zijn.

Motion planning algoritmen trachten een continue curve in de vrije ruimte te
vinden. De vrije ruimte is daarbij indirect gegeven door middel van de robot en
de obstakels. Aangezien zo’n continue curve door het complexe karakter van de
vrije ruimte (zelfs voor eenvoudige motion planning problemen) onmogelijk direct te
bepalen is, is verdere verwerking van de vrije ruimte noodzakelijk. De verschillende
motion planning algoritmen onderscheiden zich door de manier waarop zij de vrije
ruimte verwerken tot een structuur waarmee men in staat is om op efficiénte wijze
een pad te vinden tussen twee configuraties.
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In de huidige praktijk worden vrijwel altijd benaderende methoden gebruikt om
het motion planning probleem op te lossen. Benaderende methoden verwerken de
vrije ruimte tot een structuur die de vrije ruimte benadert. Ze vinden in veel gevallen
snel een pad voor de robot, doch in sommige lastige gevallen zullen ze er niet in slagen
om een oplossing te vinden. Sinds een aantal jaren bestaan er ook een aantal exacte
methoden. Deze methoden, die hun oorsprong voornamelijk in de computationele
geometrie gemeenschap hebben, vinden gegarandeerd een pad wanneer er een pad
bestaat. Dit proefschrift concentreert zich op exacte methoden.

Exacte methoden kunnen op grond van hun aanpak grofweg in twee categorieén
worden ingedeeld: cel-decompositiemethoden en retractiemethoden. Cel-decomposi-
tiemethoden verdelen de vrije ruimte in eenvoudige subcellen. Deze subcellen vormen
de knopen van een graaf. Twee knopen van de graaf zijn met elkaar verbonden
wanneer de overeenkomstige subcellen aan elkaar grenzen. De aanpak reduceert
het motion planning probleem tot het vinden van een pad in de graaf. Door de
vereiste eenvoud van de subcellen is het aantal benodigde subcellen om de vrije
ruimte te verdelen in hoge mate athankelijk van de complexiteit van de ruimte.
Retractiemethoden trachten de structuur van de vrije ruimte vast te leggen in een
een-dimensional netwerk van curves in diezelfde ruimte: het wegennet. Dit houdt
in dat elke vrije configuratie via een eenvoudig pad verbonden dient te zijn met
het wegennet, en dat alle curves in een samenhangende component van de vrije
ruimte met elkaar een samenhangende component van het wegennet vormen. Deze
voorwaarden reduceren het motion planning probleem wederom tot het vinden van
een pad in een graaf, namelijk het wegennet. De beide eisen aan het wegennet
maken de grootte van het wegennet sterk athankelijk van de complexiteit van de
vrije ruimte. Uiteraard beinvloedt de grootte van de berekende structuur (graaf) de
rekentijd van de exacte algoritmen.

De conclusie uit het voorgaande is dat de efficiéntie van exacte algoritmen sterk
athangt van de complexiteit van de vrije ruimte. Aangezien die complexiteit in
theorie erg hoog kan zijn, lijken exacte methoden ongeschikt voor toepassing in
praktijksituaties. De literatuur toont echter dat de omstandigheden (dat wil zeggen
vorm en posities van de obstakels en vorm van de robot) die leiden tot de hoge
complexiteiten vaak een kunstmatig karakter hebben en vrijwel nooit voorkomen in
praktische motion planning problemen. In praktijkgevallen zal de complexiteit van
de vrije ruimte ver beneden de theoretische grenzen blijven. Voor dergelijke gevallen
zal de toepassing van exacte algoritmen dan wellicht realistisch worden. Een studie
naar milde voorwaarden die een bewijshaar lage complexiteit van de vrije ruimte
tot gevolg hebben is daarom van groot belang voor de toepasbaarheid van exacte
methoden.

Dit proefschrift toont dat de combinatie van wvette obstakels en een niet al te
grote robot leidt tot een drastische reductie van de complexiteit van de vrije ruimte.
Een vet obstakel is een obstakel dat niet lang en dun is en ook niet dergelijke delen
heeft. Vetheid vormt in een aantal problemen uit de computationele geometrie een
realistische aanname die resulteert in lage complexiteiten en efficiénte algoritmen.
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Veel praktische motion planning problemen combineren een niet te grote robot met
een zekere vetheid van de aanwezige obstakels, zodat vetheid ook in motion planning
een waardevol begrip is.

De bovengenoemde omstandigheden leiden tot een verlaging van de rekentijd van
een aantal bestaande cel-decompositie- en retractiemethoden. De kern van de ef-
ficiéntiewinst voor deze methoden ligt in een lage obstakeldichtheid in de werkruimte,
die een direct gevolg is van de vetheid van de obstakels. De eigenschap vormt de basis
voor een nieuwe algemene aanpak, of paradigma, voor motion planning problemen
tussen vette obstakels. Het paradigma volgt de cel-decompositie-aanpak.

Het gepresenteerde paradigma voor motion planning tussen vette obstakels is
toepasbaar op problemen waarvoor de werkruimte een projectieve deelruimte is van
de configuratieruimte. Wanneer de robot vrij beweegt in de werkruimte, en dus
niet is verankerd, dan zal in het algemeen aan deze voorwaarde voldaan zijn. De
aanpak reduceert het probleem van het vinden van een cel-decompositie van de vrije
ruimte tot het probleem van het vinden van een verdeling van de werkruimte met de
vette obstakels die aan bepaalde voorwaarden voldoet. Een aantal uniforme stappen
berekenen vervolgens een cel-decompositie van de vrije ruimte uit de verdeling van
de werkruimte. Het aantal subcellen is direct afhankelijk van de grootte van de
werkruimte-verdeling. Optimale verdelingen blijken te bestaan voor motion planning
problemen in het vlak, voor motion planning in een drie-dimensionale ruimte met
obstakels van vergelijkbare grootte, en voor motion planning op een werkvloer in
een drie-dimensionale werkruimte met obstakels. De inpassing van de verdeling en
de berekening ervan in het paradigma resulteert in zeer efficiénte algoritmen voor de
betreffende problemen. Goede verdelingen en dus efficiénte algoritmen bestaan ook
voor motion planning problemen in een drie-dimensionale ruimte met polyhedrale en
willekeurige obstakels van onbeperkte afmetingen. Verbeteringen van deze laatste
resultaten lijken echter mogelijk. De efficiéntie van elk algoritme dat volgt uit het
paradigma is onafhankelijk van het aantal vrijheidsgraden van de robot (ofwel de
dimensie van de configuratieruimte), in tegenstelling tot de meeste andere exacte
motion planning algoritmen.

Naast motion planning besteedt het proefschrift ook aandacht aan de rol van
vetheid in twee kernproblemen in de computationele geometrie: point location en
range searching. Het point location probleem vraagt om, gegeven een aantal niet-
snijdende objecten, voor een willekeurig punt te rapporteren welk object het punt
bevat of om te concluderen dat geen enkel object het punt bevat. Het range searching
probleem vraagt om voor een willekeurige regio de verzameling doorsneden objecten
te rapporteren. Het proefschrift laat zien dat, wanneer de objecten vet zijn, één
enkele datastructuur volstaat om beide problemen efficiént op te lossen. De oplossing
werkt in willekeurige dimensie.
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