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Abstract

Zhegalkin Zebra Motives are biperiodic tilings of the plane by black
and white polygons given by F2-valued functions on R2 with remarkably
simple defining formulas. They provide low tech methods for constructing
numerous examples of planar biperiodic bipartite graphs (a.k.a. brane
tilings or dimer models), textile structures, bipartite graphs embedded in
a Riemann surface (a.k.a. dessins d’enfants), links and Seifert surfaces
contained in a thickened 2-torus. They give accurate, nice pictures as
well as manageable algorithms for computations. Zhegalkin Zebra Motives
provide simple tools for exploring connections between topics which are
usually investigated with (seemingly) unrelated methods.
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1 Preface

The present text is somewhat fragmentary, because the work on this paper
has been interrupted and redirected several times by personal circumstances. I
therefore want to point out that the following sections can be read independently
• Section 2.1 • Section 2.3 • Section 3.1 • Section 4.2 • Section 5.

2 Introduction

2.1 Tilings and Textiles

In 1927 Zhegalkin pointed out that the Boolean formalism used in set theory is
equivalent to the standard addition and multiplication for functions with values
in the field F2 = {0, 1}. We apply this observation to subsets of the plane, i.e.
F2-valued functions on R2. The elementary building blocks for our constructions
are functions which we call zebras. The zebra with frequency v ∈ R2 \ {0},
denoted as Zv, is defined by

Zv(x) = b2x�vc mod 2 for x ∈ R2, (1)

where � is the dot product on R2 and for r ∈ R the integer brc is defined by
0 ≤ r − brc < 1.

Figure 1: Zebra Zv. All bands are ⊥ v and have width 1
2|v| .

The zebras with frequencies in Z2 generate a subring of the ring of all F2-valued
functions on R2. A function Z in this subring gives a tiling of the plane by
white (where Z is 0) and black (where Z is 1) polygons. We say that Z is a
Zhegalkin Zebra Motive if all polygons are bounded and convex.1

The tiling consists of black and white polygons, edges and vertices. We
orient the edges such that the boundaries of the black (resp. white) polygons
run clockwise (resp. counter-clockwise). The vertices and edges form a quiver
(= graph with oriented edges) Γ. Combinatorially the polygons and edges form
a bipartite graph Γ∨ dual to Γ, a.k.a. dimer model or brane tiling.

1In [22] §5.1 it is explained how one can easily draw pictures of these tilings. Boundedness
and convexity of the polygons can then be checked by visual inspection.
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Z2 = Z21 + Z41 Z3 = Z21 + Z41 + Z61

Z4 = Z21 + Z31 + Z41 + Z61 Z6 = Z11 + Z21 + Z31 + Z41 + Z51 + Z61

Figure 2: Four classical tilings realized by Zhegalkin Zebra Motives

Examples2 are shown in Figures 2, 3, 26, 34, 35, 36, where Zjk denotes the
zebra with frequency kvj with k ∈ Z>0 and vj for j = 1, . . . , 6 as in (2).
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A non-negative integer weight function on a Zhegalkin Zebra Motive
Z is a map ν : E → Z≥0 from the set E of edges in the planar tiling to the
set Z≥0 of non-negative integers for which there is an integer deg(ν), called the
degree of ν, such that for every polygon P in the tiling∑

e edge of P

ν(e) = deg(ν) . (3)

A non-negative integer weight function of degree 1 is called a perfect match-
ing or dimer covering. The latter terminology refers to the following geomet-
ric structure. If ν is a non-negative integer weight function of degree 1 it follows

2announced in [22] as “to appear in a forthcoming paper”
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Figure 3: A dimer covering for the Zhegalkin Zebra Motive Z23 +Z43 +Z61. The
edges are oriented such that the grey polygon is on their right.

from (3) that the only possible values for ν(e) are 0 and 1 and that for every
polygon P in the tiling there is exactly one edge e of P with ν(e) = 1. Thus for
every black polygon b there is exactly one white polygon w adjacent to b such
that ν(e) = 1 for the common edge e. It is standard practice in the literature on
brane tilings to picture a perfect matching by marking on the planar bipartite
graph the edges with ν(e) = 1 with a special color; see e.g. [12] Figures 9, 33,
34. On a tiling of the plane by black and white polygons it is more illuminating
to mark the edges with ν(e) = 0 with a special color. This illustrates why one
calls this a dimer covering ; see Figure 3.3

A positive integer weight function is a non-negative integer weight func-
tion ν such that ν(e) > 0 for all e. A positive integer weight function ν can be
used to mark a point inside each polygon P by taking the convex combination
specified by 1

deg ν ν of the midpoints of the edges of P .

One can easily upgrade the picture of the planar polygonal black-white tiling
to a tiling Γ� of the plane by polygons colored black, yellow, green or white
such that the new black polygons are scaled copies of the old black polygons,
the new yellow polygons are scaled copies of the old white polygons, the new
white polygons correspond with the vertices of the original tiling and each green
polygon is a parallelogram which corresponds with an edge of the original tiling
and has two sides parallel to that edge. The tiling Γ� is such that the adjacency
structure of the new polygons is the same as the incidence structure between
edges, vertices and polygons in the original tiling. The actual drawing of Γ�

depends of the choice of certain parameters which control the visual appearance,
but do not affect the adjacency structure. For examples see the Z3 pictures in
Figures 2 and 4.

3As an instructive exercise one may search for dimer coverings in Figure 2. The brane
tiling in [12] Figure 9 corresponds with the Zhegalkin Zebra Motive denoted “model 14” in
Figure 35. So, it may also be an instructive exercise to recognize the perfect matchings in [12]
Figure 9 as dimer coverings in this “model 14”.
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Z3 = Z21 + Z41 + Z61

Figure 4: The tiling Γ� for the Zhegalkin Zebra Motive Z3. The new white
polygons are holes in the plane and the union of the black, yellow and green
polygons is a thickening of the bipartite graph Γ∨. For the original black-white
tiling see Figure 2 top-right. The twist function for the right picture is η ≡ 1.

We define the automorphism group Aut(Z) of the Zhegalkin Zebra Motive
Z to be the group of translations in the plane which leave the tiling invariant:

Aut(Z) = { τ ∈ R2 | Z(x + τ) = Z(x) , ∀x ∈ R2 } , (4)

This is a lattice in R2 because by assumption the frequencies of the zebras lie
in Z2 and the polygons in the tiling are bounded and convex4.

Definition 1 For a Zhegalkin Zebra Motive Z and a sublattice Λ ⊂ Aut(Z) we
say that (Z,Λ) is dimer complete if a Λ-invariant positive weight function ν
exists. 5

For a sublattice Λ of Aut(Z) the function Z induces an F2-valued function
on the torus R2/Λ. The black-white polygonal tiling and the tiling Γ� also
descend to the torus R2/Λ. Taking the graphs Γ and Γ∨ modulo Λ one obtains
the quiver ΓΛ and the bipartite graph Γ∨Λ , both embedded in the torus R2/Λ.

We denote the set of edges of the black-white tiling on R2/Λ by EΛ. Iden-
tifying EΛ with the set {1, . . . , n} amounts to a labeling of the edges in the
black-white tiling and of the green polygons in the tiling Γ�. The oriented
boundary of a polygon (black clockwise, white counter-clockwise) gives a cyclic
permutation of elements of EΛ. Since every edge is in precisely one black poly-
gon the cyclic permutations coming from the various black polygons are disjoint.

4In [22] §5.2.2 it is explained how one can determine (by computer) the lattice Aut(Z) from
the defining formula for Z. In practice one can see it directly in the picture of the tiling.

5For issues of existence of positive integer weight functions we refer to the text preceding
Corollary 2.
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The product of these cycles is a permutation σ1 of the set EΛ. In the same way
the white polygons lead to a permutation σ0 of EΛ. The triple (EΛ, σ0, σ1) is
called the superpotential of (Z,Λ). Identifying EΛ with {1, . . . , n} reduces the
superpotential to a pair of permutations (σ0, σ1) of {1, . . . , n} 6 7. For examples
see Figures 17, 19, 20, 32, 43. The white (resp. black) nodes of the bipartite
graph Γ∨Λ correspond 1-1 with the cycles of the permutation σ0 (resp. σ1). The
edges of Γ∨Λ between two nodes correspond with the common elements in the
cycles. The abstract graph Γ∨Λ does not depend on the cyclic ordering within
the cycles of σ0 and σ1. The cyclic ordering makes Γ∨Λ into a ribbon graph
and provides a lot of extra structure.

According to [3] Definition 7 (also see [20]) a textile structure is an embed-
ding of (a disjoint union of) infinitely many lines or circles into the thickened
plane R2 × [−1, 1] ⊂ R3 preserved under translations by two linearly indepen-
dent vectors in R2. One can conveniently picture a textile structure by its torus
diagram; see [3] Definition 7. This is the image of the configuration of lines
and circles under the projection R2 × [−1, 1]→ R2 plus the usual indication of
over/under crossings as in knot theory. The diagram should also include a pe-
riod parallelogram for the lattice Λ of translations which leave the configuration
invariant.

Taking the textile structure modulo the period lattice Λ one obtains a link in
the thickened torus R2/Λ × [−1, 1].

In the present paper we investigate textile structures which are naturally
associated with a Zhegalkin Zebra Motive Z, a sublattice Λ ⊂ Aut(Z) and a
function η : EΛ → {±1}. The simplest method for constructing these textiles is
to draw in the planar tiling Γ� the diagonals in the green parallelograms with
an indication of the over/under crossing as specified by η. For an example with
η(e) = 1 for all e ∈ EΛ see Figure 4 where the threads are the strings of blue
and red line segments.

Putting in a period parallelogram for Λ one obtains the torus diagram of a
textile structure; see Figures 19, 39.

2.1.1 Textiles and Seifert surfaces

In Section 4.2, we construct real textile structures and not just their torus
diagrams for Zhegalkin Zebra Motives which are dimer complete in the
sense of Definition 1. This textile structure is the boundary of a Λ-periodic ori-
ented surface S̃6hZ,η,ν,ω in R2 × [−1, 1]. The construction of this surface involves
a choice of parameters η, ν, ω, h. Figure 5 shows an example of how the projec-
tion of S̃6hZ,η,ν,ω in the horizontal plane compares with the tiling Γ� constructed
with the same choice of parameters ν, ω, h.

6Once one has a picture of the planar polygonal tiling the edges can be labeled by hand.
7In the physics literature, e.g. [13, 14], the superpotential is usually written as a polynomial
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Z3 = Z21 + Z41 + Z61

Figure 5: The tiling Γ� for the Zhegalkin Zebra Motive Z3. The new white
polygons are holes in the plane and the union of the black, yellow and green
polygons is a thickening of the bipartite graph Γ∨. For the original black-white
tiling see Figure 2 top-right. The twist function for the right picture is η ≡ 1.

Taking the surface S̃6hZ,η,ν,ω modulo Λ yields an oriented surface in the thick-

ened torus R2/Λ × [−1, 1], which can subsequently be embedded into R3. We

thus obtain an explicit, accurate, real world model S6hZ,Λ,�,r of a surface of which
the boundary is the desired link in a thickened 2-torus. The surface itself is a
Seifert surface for this link. For examples see Figures 15, 33, 37.

2.1.2 The kernel of the fabric

By construction the surface S6hZ,Λ,�,r lies in a thickened torus in R3 which can
be taken to be independent of h and r. By gluing to the thickened torus a solid
torus on the outside and a solid torus on the inside one obtains a 3-sphere S3.
Thus the boundary of S6hZ,Λ,�,r becomes a link Lh in S3.

Now fix h0 close to 1 such that 0 < h0 < 1. Let L denote the link Lh0 . The
link L together with the central circles X and Y of the two solid tori form the
link L∞ = X ∪ Y ∪ L in S3. In [20] the link L∞ is called the kernel of the
fabric.

For 0 < h < h0 the surface S6hZ,Λ,�,r lies in the surface S6h
0

Z,Λ,�,r and also in
the complement of an open tubular neighborhood of L∞:

S6hZ,Λ,�,r ↪→ S3 \ L∞. (5)

in n non-commuting variables.
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2.1.3 Seifert form, Poisson structure and Monodromy

The embedding of S6hZ,Λ,�,r into S3 induces on H1(S6hZ,Λ,�,r,Z) a bilinear form

known as the Seifert form 8. By our constructions the bipartite graph Γ∨Λ lies

as a deformation retract in the surface S6hZ,Λ,�,r for all choices of the parameters
h, r, �. Consequently

H1(Γ∨Λ ,Z) ' H1(S6hZ,Λ,�,r,Z) for all h, r, �. (6)

So, the Seifert form S is actually a bilinear form on H1(Γ∨Λ ,Z). It is explicitly
computed in Section 5.4.

The surface S6hZ,Λ,�,r depends on the superpotential (EΛ, σ0, σ1) and all pa-

rameters h, r, � = (η, ν, ω, λ1, λ2), but the Seifert form S depends only on
σ0, σ1, η, λ1, λ2, while its anti-symmetrization S− St is also independent of the
choice of η, λ1, λ2.

The anti-symmetric bilinear form S− St is used in [11] for the construction
of a Poisson structure on the complex torus H1(Γ∨Λ ,C∗); see Theorem 6. It
only depends on the superpotential (EΛ, σ0, σ1).

Most interesting are the settings for η, λ1, λ2 for which the Seifert form S is
non-degenerate. In those cases one defines the monodromy transformation
M on H1(Γ∨Λ ,Z) by

M =
(
St
)−1

S (7)

see Definition 5. For examples see §5.4.1, §5.4.2. The monodromy transforma-
tion induces a Poisson automorphism on the complex torus H1(Γ∨Λ ,C∗).

The embedding (5) and the isomorphism (6) induce a linear map

H1(Γ∨Λ ,Z) −→ H1(S3 \ L∞,Z). (8)

This map is explicitly computed in Section 6.2. The Seifert form and the mon-
odromy are essential ingredients in this computation; see Formulas (209)-(213).

2.2 Hyperbolic Belyi maps

The superpotential (EΛ, σ0, σ1) is equivalent to the homomorphism of groups

σ∗ : F2 −→ SEΛ , σ∗(δ0) = σ0, σ∗(δ1) = σ1 (9)

from the free group F2 on two generators δ0 and δ1 to the group SEΛ = Sn of
permutations on the set EΛ = {1, . . . , n}. Via σ∗ the group F2 acts transitively
on EΛ. The group F2 can be identified with the fundamental group of C \ {0, 1}
such that δ0 and δ1 are the counter-clockwise oriented circles with radius 1

2
around 0 and 1, respectively, starting at the point 1

2 . From this geometric inter-
pretation of F2 and σ∗ one obtains with a well-known classical construction (see

8A physical model of the surface S6hZ,Λ,�,r in R3 actually has a positive thickness and the

two sides have opposite orientations. The Seifert form then gives the linking numbers of closed
curves on one side with closed curves on the other side.
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0 τ %

Figure 6: Closed unit disk D with interval [0, %] and circles U(1), U(%) with
centre 0 and respective radii 1, %; here % = 3

5 and τ = 1
3 .

e.g. [17] 1.2.15, 1.2.17, 1.2.18) an oriented compact two-dimensional manifold
Xσ0,σ1

and a ramified covering map of degree n

ϕσ0,σ1
: Xσ0,σ1

−→ CP1 = C ∪ {∞} (10)

which ramifies at most over the points 0, 1, ∞ such that the action of F2 on
the fiber ϕ−1

σ0,σ1
( 1

2 ) is given by the homomorphism σ∗. The points in the fiber
ϕ−1
σ0,σ1

(0) (resp. ϕ−1
σ0,σ1

(1), resp. ϕ−1
σ0,σ1

(∞)) correspond 1-1 with the cycles of
the permutation σ0 (resp. σ1, resp. σ0σ1). The bipartite graph Γ∨Λ lies in Xσ0,σ1

as the inverse image of the interval [0, 1] 9.
The Euler characteristic of Xσ0,σ1 is (see [17] Thm 1.3.10)

χ(Xσ0,σ1) = |σ0|+ |σ1|+ |σ0σ1| − n, (11)

where |σ| denotes the number of cycles of the permutation σ.
For a real number % with 0 < % < 1 we set

ϕσ0,σ1,% = % · ϕσ0,σ1
, Xσ0,σ1,% = ϕ−1

σ0,σ1,%

(
D
)
, Xσ0,σ1,% = ϕ−1

σ0,σ1,%

(
D
)

(12)

where D = {z ∈ C | |z| < 1} is the open unit disc and D its closure. Xσ0,σ1,% is
an open subset of the surface Xσ0,σ1

and Xσ0,σ1,% is its closure.
D is a model for the hyperbolic plane. The map

ϕσ0,σ1,% : Xσ0,σ1,% −→ D (13)

is a ramified covering map of degree n which ramifies over the points 0, %. It is
a hyperbolic Belyi map in the sense of [8] §3.

9If instead of (9) one takes the homomorphism δ0 7→ σ0, δ1 7→ σ−1
1 the constructions yield

the torus R2/Λ with the graph Γ∨Λ embedded in it. The appearance of σ−1
1 here as opposed

to σ1 in (9) is the simplest manifestation of the twisting procedure in [9, 11] and of the
specular duality in [14].
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Let (see Figure 6)

U(1) = circle with centre at 0 and radius 1 = D \ D ; (14)

U(%) = circle with centre at 0 and radius %; (15)

Cτ = D ∩ {circle with centre at %−1 and radius
√
%−2 − 1; (16)

τ = %−1 −
√
%−2 − 1. (17)

Note that D and D are invariant under the hyperbolic reflections in the line
[−1, 1] and the arc Cτ ; see Figure 6. The first reflection leaves the points 0 and
% invariant. The second one interchanges 0 and %.

The inverse image ϕ−1
σ0,σ1,%

(
U(1)

)
of the counter-clockwise oriented circle

U(1) is the boundary of Xσ0,σ1,%. Its connected components correspond 1-1
with the cycles of the permutation σ1σ0.

The bipartite graph Γ∨Λ lies in Xσ0,σ1,% as the inverse image ϕ−1
σ0,σ1,%

(
[0, %]

)
of the closed interval [0, %]. It is a deformation retract of Xσ0,σ1,% and Xσ0,σ1,%.
Hence:

H1(Γ∨Λ ,Z) ' H1(Xσ0,σ1,%,Z) ' H1(Xσ0,σ1,%,Z). (18)

The fiber ϕ−1
σ0,σ1,%(τ) can be identified with the set EΛ. Let e× denote the

point of ϕ−1
σ0,σ1,%(τ) which corresponds to e ∈ EΛ. The connected components

of ϕ−1
σ0,σ1,%(Cτ ) form a collection of disjoint, simple, oriented curves Je in

Xσ0,σ1,% such that Je passes through the point e×. The endpoints of the closure
Je of Je lie on the boundary of Xσ0,σ1,% so that Je starts (resp. ends) at the
boundary component which corresponds to the cycle of σ1σ0 which contains e
(resp. contains σ0(e)).

Remark 1 The inverse image ϕ−1
σ0,σ1,%

(
U(%)

)
of the counter-clockwise oriented

circle U(%) is a quiver ΓΛ
	 with set of nodes ϕ−1

σ0,σ1,%(%). The arrows of ΓΛ
	 are

the closures of the connected components of ϕ−1
σ0,σ1,%

(
U(%)\{%}

)
. Since ΓΛ

	 is
embedded in the oriented surface Xσ0,σ1,% there is at every node a specified
cyclic ordering of the edges incident to that node; i.e. ΓΛ

	 is a directed ribbon
graph. In Section B we give a description of the underlying abstract quiver
ΓΛ
	 directly in terms of the superpotential (EΛ, σ0, σ1) and discuss its relation

with the bipartite graph Γ∨Λ .

2.3 Hyperbolic Belyi maps and Seifert surfaces

In Section 4.4 Formulas (88), (98), (99) we give a construction of the surfaces
Xσ0,σ1,% and Xσ0,σ1,% and the hyperbolic Belyi map ϕσ0,σ1,% completely in the
spirit of [8] and independent of the construction of the map (10) in [17]

More precisely in Formula (88), we construct the surface Xσ0,σ1,% by gluing
quadrangles which are explicitly parametrized by the unit square [0, 1]× [0, 1].
For every e ∈ EΛ there are four quadrangles and these are glued according to
the plan in Figures 14 and 21. This construction works under the condition
% > cos

(
π
N

)
where N is the maximal cycle length in the permutations σ0, σ1.
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In Section 4.2 we construct surfaces SZ,Λ,�,r and S6hZ,Λ,�,r in R3 using

the permutations (σ0, σ1) from a dimer complete Zhegalkin Zebra Motive Z
and a sublattice Λ of Aut(Z) as well as auxiliary parameters h, r and � =
(η, ν, ω, λ1, λ2) which are subject to certain conditions (see §4.2). We construct
these surfaces by gluing charts Ie, IIe, IIIe, IVe for e ∈ EΛ according to the
plan in Figures 14 and 21. Each chart comes with an explicit parametrization
by the unit square [0, 1]× [0, 1] which is given in Formulas (59), (60), (66), (69).

In Formulas (70)-(71) and (96)-(97) we use the parametrizations to define
the “truncated” surfaces

X6hσ0,σ1,% , X<hσ0,σ1,% , S6hZ,Λ,�,r , S<h
Z,Λ,�,r . (19)

Since the gluing and truncation schemes in Sections 4.2 and 4.4 agree we con-
clude that the following theorem holds.

Theorem 1 i. For every admissible choice of the parameters %, h, r and
� = (η, ν, ω, λ1, λ2) there are orientation preserving homeomorphisms

X<hσ0,σ1,% ' S<h
Z,Λ,�,r , X6hσ0,σ1,% ' S6hZ,Λ,�,r . (20)

In the limit h ↑ 1 the homeomorphisms (20) converge to a map

Xσ0,σ1,% −→ SZ,Λ,�,r (21)

which is a homeomorphism away from |EΛ| points on the boundary of
Xσ0,σ1,% and |P?Λ| points on the boundary of SZ,Λ,�,r. On the exceptional
boundary points the map (21) corresponds to the cycle decomposition of
the permutation σ−1

1 σ0.

ii. For every e ∈ EΛ the map (21) restricts to a homeomorphism from the
oriented curve Je on Xσ0,σ1,% onto the oriented line segment Ie in R3

defined in Formula (73). This preserves the orientation if η(e) = 1 and
reverses the orientation if η(e) = −1.

�

Remark 2 In Section C the topic of Theorem 1ii is further elaborated with
algebraic combinatorial techniques using the textile code. See in particular
Remark 16.

The surface Xσ0,σ1,% is the conjugated surface Ŝw in [11] §1.1. The inclu-
sion Xσ0,σ1,% ⊂ Xσ0,σ1

(see (12)) induces a surjective homomorphism

H1(Xσ0,σ1,%,Z) −→ H1(Xσ0,σ1
,Z) (22)

of which the kernel is generated by the homology classes of the connected compo-
nents of the boundary of Xσ0,σ1,%. This is the subgroup of H1(Γ∨Λ ,Z) generated
by the homology classes of the zigzag loops `z (z ∈ Pz

Λ); see (6), (18), (127).
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The anti-symmetrization S− St of the Seifert form is equal to the pull-back
via (22) of the intersection form on H1(Xσ0,σ1 ,Z) and is, therefore, the same as
the anti-symmetric bilinear form used in [11] for the construction of a Poisson
structure on the complex torus H1(Γ∨Λ ,C∗); see Theorem 6.

3 Vistas and revisions

The composition of the maps in (20) and (5) gives an embedding

Xσ0,σ1,% ↪→ S3 \ L∞. (23)

One can trace through the constructions in Section 4 an explicit description of
the map (23) which is, however, very complicated and not illuminating. The
maps in (18) and (8) and the computations in §6.2 yield a fairly simple, explicit
description of the induced map on homology

H1

(
Xσ0,σ1,%,Z

)
↪→ H1

(
S3 \ L∞,Z

)
. (24)

But that contains only secondary information about the map (23).

For that reason we sketch in this section the beginnings of an alternative ap-
proach via an embedding of the universal covering of Xσ0,σ1,% into hyperbolic
three space.

3.1 Schottky dance on a Zhegalkin Zebra Motive

The construction of the universal covering of Xσ0,σ1,% is based on the universal

covering Γ̃∨Λ of the bipartite graph Γ∨Λ , whereas in Section 4.4.2 we use a rooted

spanning tree Γ̂∨Λ for Γ∨Λ . Since the bipartite graph Γ∨Λ is a deformation retract
of the surface Xσ0,σ1,% the universal covering of Γ∨Λ is a deformation retract of the
universal covering of Xσ0,σ1,%. The fundamental group π1(Γ∨Λ ) = π1(Xσ0,σ1,%)
acts on these universal covering spaces and the constructions in §4.4 amount to
choosing a fundamental domain for this action.

The term Schottky dance is taken from the title of [21] Chapter 4, because
this was a great source of inspiration for our constructions which produce pic-
tures by repeatedly applying transformations from a finite collection of Möbius
transformations to a finite collection of building blocks. Both the Möbius trans-
formations and the building blocks are directly given by the Zhegalkin Zebra
Motive Z and one additional parameter % which is the same % as in Xσ0,σ1,%.
It must be such that % = cos(β) with 0 < βN < π where N is the maximal
number of sides of the polygons in the planar tiling defined by Z.

We start from a dimer complete Zhegalkin Zebra Motive Z and a sublattice
Λ of Aut(Z). We only use the combinatorial data about the number and cyclic
ordering of the sides of the black and white polygons in the planar tiling and

13



which polygons are adjacent 10. As before the sets of edges, black polygons and
white polygons of the planar tiling modulo Λ are denoted by EΛ, P•Λ and P◦Λ,
respectively. The set EΛ is identified with {1, . . . , n}. The combinatorial data
are encoded in the two permutations σ0 and σ1 of {1, . . . , n} such that P◦Λ and
P•Λ are identified with the sets of cycles of σ0 and σ1, respectively. For e ∈ EΛ
the cycle of σ0 (resp. σ1) which contains e is denoted by w(e) (resp. b(e)).
In Section 2.3 the triple

(
EΛ, σ0, σ1

)
is called the superpotential of (Z,Λ).

Adjacency of the polygons is encoded in the “abstract” bipartite graph Γ∨Λ :
the set of white (resp. black) nodes of Γ∨Λ is identified with P◦Λ (resp. P•Λ) and the
set of edges is identified with EΛ such that two nodes w and b are connected by
edge e if and only if the corresponding cycles of σ0 and σ1 both contain e. Here
“abstract” means that this definition of Γ∨Λ does not include a cyclic ordering
of the edges incident with a node.

For the purpose of correct bookkeeping we fix a perfect matching m0
11.

This is a map m0 : EΛ → {0, 1} such that every cycle of σ0 and σ1 contains
exactly one e ∈ EΛ with m0(e) = 1. This is then used to normalize the standard
notation for the cycle decomposition of σ0 and σ1 such that in each cycle the
element e with m0(e) = 1 appears in the leftmost position. The positions in the
cycles are numbered from left to right as 0, 1, 2, . . .. The cycles and, hence, the
nodes of Γ∨Λ may then be labeled as e◦ resp. e• where e is the leftmost entry.

Example 1 For the Zhegalkin Zebra Motive Z = Z21 + Z31 + Z41 + Z62 and
Λ = Aut(Z) = Z (2, 2) + Z (2,−2) the planar tiling and the edge labels are
shown in Figure 19. The permutations σ0 and σ1 are given in Formula (80). We
take the perfect matching m0 : EΛ = {1, . . . , 14} → {0, 1} such that m0(e) = 1
for e = 4, 8, 9, 12 and m0(e) = 0 else. Thus the normalized cycle decomposition
for σ0 and σ1 becomes

σ0 = [4, 14, 2, 3] [8, 1, 6] [9, 10, 7] [12, 13, 5, 11],

σ1 = [4, 6, 7, 5] [8, 3, 11, 10] [9, 14, 13] [12, 2, 1].
(25)

Thus the cycles are 4◦, 8◦, 9◦, 12◦ and 4•, 8•, 9•, 12•, respectively. �

The universal covering Γ̃∨Λ of Γ∨Λ can now be constructed as follows. Fix

a white node w0 of Γ∨Λ and identify Γ̃∨Λ with the set of paths on Γ∨Λ which start
at w0. Such a path p is a finite string of elements of EΛ

p = (e1, e2, . . . , er−1, er) such that w(e1) = w0 , (26)

b(ek) = b(ek+1) if k is odd, w(ek) = w(ek+1) if k is even.

We emphasize that the path p passes alternately through white and black nodes
by writing

p = e1
◦•e2

•◦ · · · er−1
•◦er

◦• if r is odd,
p = e1

◦•e2
•◦ · · · er−1

◦•er
•◦ if r is even.

(27)

10Unlike Section 4.2 the present section does not make use of the lengths of the sides or the
size of the angles of the polygons in the planar tiling.

11Perfect matchings exist because (Z,Λ) is dimer complete.
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The number r will be called the length of the path p. The exceptional case
r = 0 gives the constant path at w0.

The set Γ̃∨Λ has the structure of a bipartite rooted tree. The set of nodes of

this tree is Γ̃∨Λ (i.e. paths on Γ∨Λ which start w0) and the root is the constant path
at w0. A node is colored white (resp. black) if the length of the corresponding
path is even (resp. odd). Two nodes p and p′ of the tree are connected by an
edge if and only if p′ = p · e◦• or p′ = p · e•◦ for some e ∈ EΛ. For every node

p of the tree Γ̃∨Λ there is a unique path on Γ̃∨Λ which starts at w0 and ends at
p, which is tautologically the same as p viewed as a path on Γ∨Λ .

The bipartite rooted tree Γ̃∨Λ is the universal covering of Γ∨Λ .
The group of covering transformations is the fundamental group π1(Γ∨Λ ,w0);
i.e. the set of closed paths on Γ∨Λ which start and end at w0 with concatenation
as group operation.

One can construct the rooted tree Γ̃∨Λ as follows. The root w0 corresponds
with a cycle of σ0. Each edge e in this cycle is the first step on a path in the
tree. For a given e one subsequently takes the cycle of σ1 which contains e.
Each edge e′ in the latter cycle, except for e itself, gives the second step on a
path which starts with e. Having e′ one looks for the cycle of σ0 which contains
e′. One takes e′′ 6= e′ from this cycle and thus gets the first three steps of the
path e◦• · e′•◦ · e′′◦•. This process continues in the obvious way and produces
the desired abstract bipartite infinite tree with root w0; here “abstract” means
that it only gives the adjacency structure but not a cyclic ordering on the set
of edges incident to a given node.

Remark 3 Paths on Γ∨Λ can easily be drawn as curves on the tiled plane R2

which start and end in the interior of a polygon and do not pass through any
vertex in the planar tiling defined by the Zhegalkin Zebra Motive Z. Given
such a drawing one simply writes the sequence of labels of the edges in the
tiling which the curve intersects plus an indication of whether it passes from
white-to-black or from black-to-white. This results in a path as in (27). See
also Remark 9 in §5.2. �

We will now embed the tree Γ̃∨Λ into the Poincaré disk D such that all edges

are hyperbolic geodesics with length log
(

1+%
1−%

)
= −2 log

(
tan
(

1
2β
))

. This will

then also exhibit D as the universal covering of the surface Xσ0,σ1,%.
The construction proceeds by repeatedly applying transformations from a fi-

nite collection of Möbius transformations to a finite collection of building blocks.
The building blocks are given by the cycles of σ0 and σ1 and consist of a col-
lection of line segments and an ideal regular hyperbolic polygon as shown in
Figure 7.
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0 a τ

legend:

green: unit circle

light blue line segments:[
0, τ exp(2πij/k)

]
, 0 ≤ j < k

black-red dotted circle arcs:

radius: tan(πi/k),

centers: exp(2πij/k)/ cos(πi/k), 0 ≤ j < k

ends: exp(πi(1 + 2j)/k), 0 ≤ j < k

hyperbolic distances:

dH(0, τ) = − log
(
tan
(

1
2β
))

dH(0, a) = − log
(
tan
(
π
2k

))
Figure 7: Basic building block corresponding with a cycle of length k of σ0 or

σ1 and τ =
(
cos(β)

)−1 − tan(β). In the picture k = 6, β = π
12 . In the sequel

the black-red dotted arcs will be drawn as solid red (resp. solid black) for cycles
of σ0 (resp. σ1). Compare this with Figure 23.

Recall that the Möbius transformation defined by the matrix A =

(
a b
c d

)
is the map A : C ∪ {∞} → C ∪ {∞} given by:

A(z) =
az + b

cz + d
if detA = 1, (28)

A(z) =
az + b

cz + d
if detA = −1. (29)

For e ∈ EΛ we define the matrices M(e◦•) and M(e•◦) by

M(e◦•) = (30)

exp

(
j0,e
n0,e

πi

(
1 0
0 −1

))
· 1√

1− %2

(
1 −%
% −1

)
· exp

(
j1,e
n1,e

πi

(
−1 0

0 1

))

M(e•◦) = M(e◦•)
−1

(31)

where n0,e (resp. n1,e) is the length of the cycle of σ0 (resp. σ1) containing e and
j0,e (resp. j1,e) gives the position of e in that cycle such that the leftmost entry
in the cycle is in position 0 and the rightmost entry is in position n0,e− 1 (resp.

n1,e−1). In (31) M() means complex conjugation. The geometric meaning and
motivation for the Formulas (30)-(31) is given in the discussion around Formulas
(102)-(105). Most relevant for now is that

the Möbius transformations defined by M(e◦•) and M(e•◦)
map the unit disk D and the unit circle U(1) into themselves.

(32)
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For a path p = e1
◦•e2

•◦ · · · er−1
•◦er

◦• with r odd as in (27) we define the
2× 2-matrix Mp by

Mp = M(e1
◦•) ·M(e2

•◦) · . . . ·M(er−1
•◦) ·M(er

◦•)

= M(e1
◦•) ·M(e2

◦•)−1 · . . . ·M(er−1
◦•)−1 ·M(er

◦•) , (33)

where M() means that in the above product the matrices in even position must
be complex conjugated because the matrices in (30) have determinant −1.

Similarly, for a path p = e1
◦•e2

•◦ · · · er−1
◦•er

•◦ with r even we define

Mp = M(e1
◦•) ·M(e2

•◦) · . . . ·M(er−1
◦•) ·M(er•◦)

= M(e1
◦•) ·M(e2

◦•)−1 · . . . ·M(er−1
◦•) ·M(er

◦•)−1. (34)

Note that detMp = (−1)r. So for a black node of Γ̃∨Λ the matrix Mp has
determinant −1 and by (29) the corresponding Möbius transformation involves
complex conjugation.

Recall that P◦Λ (resp. P•Λ) denotes the set of cycles of the permutation σ0

(resp. σ1) as well as the set of white (resp. black) polygons in the planar tiling
modulo Λ. For w ∈ P◦Λ and b ∈ P•Λ we define

�w =

nw−1⋃
j=0

[
0, τ exp

(2πij

nw

)]
, �b =

kb−1⋃
j=0

[
0, τ exp

(2πij

nb

)]
, (35)

where nw and nb denote the number of sides of the polygons w and b. Thus
�w and �b are the sets of light blue line segments in Figure 7. We denote the
ideal hyperbolic polygons in Figure 7 by ♦w and ♦b:

vertices ♦w : exp(πi(1 + 2j)/nw) , 0 ≤ j < nw ,

vertices ♦b : exp(πi(1 + 2j)/nb) , 0 ≤ j < nb .
(36)

Recall that the nodes of the tree Γ̃∨Λ correspond 1-1 with the paths on Γ∨Λ
as in (27). For a black node p = e1

◦•e2
•◦ · · · er−1

•◦er
◦• and a white node

p′ = e1
◦•e2

•◦ · · · er′−1
◦•er′

•◦ we set

b(p) = b(er) , w(p′) = w(er′). (37)

Finally we define

Γ̃∨Λ,%,M =
⋃

p black node of Γ̃∨Λ

Mp

(
�b(p)

)
∪

⋃
p′ white node of Γ̃∨Λ

Mp′
(
�w(p′)

)
. (38)
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Figure 8: The rooted tree Γ̃∨Λ,%,M (light blue) up to path length 2 and the poly-

gons Mp

(
♦b(p)

)
(black) and Mp

(
♦w(p)

)
(red) for the Zhegalkin Zebra Motive

Z3, Λ = Aut(Z3) and % = cos(2π/7). Compare this with Figure 24.

Theorem 2

i. Γ̃∨Λ,%,M is an embedding of the tree Γ̃∨Λ into the Poincaré disk D such that

all edges are geodesics with length log
(

1+%
1−%

)
= −2 log

(
tan( 1

2β)
)
.

ii. The edges are labeled by the elements of EΛ. At a node p of Γ̃∨Λ,%,M the
counter-clockwise cyclic ordering of the labels of the edges incident to p
agrees with corresponding cycle of σ0 if p is white or σ1 if p is black.

iii. For every black (resp. white) node p of Γ̃∨Λ,%,M the polygon Mp

(
♦b(p)

)
(resp. Mp

(
♦w(p)

)
) is a regular ideal hyperbolic polygon with k sides which

intersect the k edges of Γ̃∨Λ,%,M incident to p orthogonally at hyperbolic

distance − log
(
tan
(
π
2k

))
from p.

iv. The sides of the ideal polygons are labeled by the elements of EΛ such that
the counter-clockwise oriented boundary of a red (resp. black) polygon is
a cycle of σ0 (resp. σ1). These polygons are pairwise disjoint and between
polygons corresponding to adjacent nodes of Γ∨Λ lies a quadrangle with two
opposite sides on the unit circle U(1). These quadrangles together with the
ideal polygons give a tiling of the closed disk D.

See Figures 8 for an illustrative example.

Proof : i+ii: This follows from the same arguments as used in §4.4.2 for proving
Proposition 3.
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iii: This follows from Figure 7 because Mp is a hyperbolic isometry.
iv: Obvious from pictures like Figures 8. �

Recall that the bipartite graph Γ∨Λ lies as a deformation retract in the surface
Xσ0,σ1,%. Comparing the arguments and constructions which lead to Theorem 2
with those for Proposition 3 we now arrive at the following corollary.

Corollary 1 The disk D is the universal covering of the surface Xσ0,σ1,% whereby
the fundamental group π1(Xσ0,σ1,%,w0) = π1(Γ∨Λ ,w0) acts on D via the Möbius
transformations associated with the matrices Mp (34) for p a path on Γ∨Λ with
start and finish at w0. �

Remark 4 The action of the fundamental group in the above corollary amounts
to a group homomorphism

M : π1(Γ∨Λ ,w0) −→ Sl2(C). (39)

One may want to compare this with the definition of line bundles on Γ∨Λ in
[11] as homomorphisms

π1(Γ∨Λ ,w0) −→ C∗. (40)

As C∗ is commutative the latter homomorphisms factorize through the homology
group H1(Γ∨Λ ,Z) and may therefore be identified with elements of the cohomol-
ogy group H1(Γ∨Λ ,C∗). In [11] one is interested in the whole moduli space of line
bundles on Γ∨Λ which is then identified with the complex torus H1(Γ∨Λ ,C∗). The
main result of [11] is the construction of a Poisson structure on the complex
torus H1(Γ∨Λ ,C∗). In Formula (177) and Section 5.5 of the present paper this
Poisson structure is explicitly computed in terms of the permutations σ0, σ1 and
the perfect matching m0. Since the permutations σ0, σ1 and the perfect match-
ing m0 are the only ingredients needed in the construction of the homomorphism
(45) one may wonder if there is a deeper relation between the Poisson structure
on the complex torus H1(Γ∨Λ ,C∗) and the structure of D as universal covering
space of the surface Xσ0,σ1,%. �

3.2 Schottky dance and twist

3.2.1

For the twisting construction we first embed the tree Γ̃∨Λ into the Poincaré disk D
with all edges geodesic with length log

(
1+%
1−%

)
and, more importantly, such that

at a white (resp. black) node p the counter-clockwise (resp. clockwise) cyclic
ordering of the labels of the edges incident to p agrees with the corresponding
cycle of σ0 (resp. σ1). In order to construct this embedding we define for a
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node p of Γ̃∨Λ the matrix Wp by replacing in the Formulas (33)-(34) the matrices
M(e◦•) and M(e•◦) from (30)-(31) by the matrices

W (e◦•) = (41)

exp

(
j0,e
n0,e

πi

(
1 0
0 −1

))
· 1√

1− %2

(
1 −%
% −1

)
· exp

(
j1,e
n1,e

πi

(
1 0
0 −1

))

W (e•◦) = W (e◦•)
−1
. (42)

For a geometric motivation of this replacement see the discussion around Formu-

las (102)-(105). Next we define the embedding Γ̃∨Λ,%,W of Γ̃∨Λ into D by replacing

in Formula (38) the matrices Mp and Mp′ by Wp and Wp′ , respectively.

In D one also has the ideal hyperbolic polygons Wp

(
♦b(p)

)
and Wp′

(
♦w(p′)

)
centered around the nodes of Γ̃∨Λ,%,W . Analogous to Theorem 2iv the sides of the
ideal polygons are labeled by the elements of EΛ such that the counter-clockwise
(resp. clockwise) oriented boundary of a red (resp. black) polygon is a cycle
of σ0 (resp. σ1). These polygons are pairwise disjoint and between polygons
corresponding to adjacent nodes of Γ∨Λ lies a quadrangle with two opposite sides
on the unit circle U(1). These quadrangles together with the ideal polygons give
a tiling of D.

For a better understanding of the twisting construction later in this section
we draw the tiling in the Beltrami-Klein model of the hyperbolic plane. Re-
call that in that model the hyperbolic plane is the disk D and that the geodesics
are Euclidean straight line intervals (i.e. connected pieces of chords) in D. In
the Poincaré disk model the hyperbolic plane is the disk D and the geodesics
are connected pieces of Euclidean circles which perpendicularly intersect the
boundary U(1) of D.

The correspondence between the two models is best understood through the
well-known classical map

C ∪ {∞} −→ C× R = R3 , z 7→
(

2z

1 + |z|2
,

1− |z|2

1 + |z|2

)
. (43)

It maps the horizontal plane C∪{∞} homeomorphically onto the unit sphere S2

through a projection from the point (0, 0,−1). It maps the closed unit disk D in
C onto the northern hemisphere and C\D∪{∞} onto the southern hemisphere.
The unit circle U(1) is mapped onto the equator. The points 0 and ∞ are
mapped to respectively the north pole and the south pole.

The map (43) maps the circle in C which intersects the boundary U(1) of D
perpendicularly in two points a1 and a2 to the circle which is the intersection of
S2 with the vertical plane in R3 through the points a1 and a2. Thus the chord
between a1 and a2 in D is a diameter of that circle on S2.
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Figure 9: Tiling of D for Z3 and all paths of length ≤ 3.

In particular, in the Beltrami-Klein model the ideal hyperbolic polygons
Wp

(
♦b(p)

)
and Wp

(
♦w(p)

)
are the convex Euclidean polygons with vertices

vertices Wp

(
♦b(p)

)
: Wp

(
exp
(
πi(1 + 2j)/nb(p)

)
, 0 ≤ j < nb(p)

)
,

(44)
vertices Wp

(
♦w(p)

)
: Wp

(
exp
(
πi(1 + 2j)/nw(p)

)
, 0 ≤ j < nw(p)

)
;

see Figure 7 and Formula (36). Figure 9 shows an example.

Remark 5 The above construction provides a group homomorphism

W : π1(Γ∨Λ ,w0) −→ Sl2(C) (45)

which exhibits D as the universal covering of the torus R2/Λ from which (small
disks around) the vertices of the planar tiling modulo Λ have been deleted.

The tiling of D is the pull-back of the tiling Γ�; cf. Figure 4. �

HHHHHHHHHH

One can now project this tiling vertically up to the upper hemisphere in
S2 and project it vertically down to the lower hemisphere. Each ideal polygon
yields a pair of polygons, one in the upper hemisphere and one in the lower
hemisphere, which have their vertices on the equator and are interchanged by
the reflection in the equatorial plane. Each quadrangle yields an annulus in S2

which is its own image under the reflection in the equatorial plane.

3.2.2

We continue in the Beltrami-Klein model of this tiling of D. The quadrangles

correspond 1-1 with the edges of the tree Γ̃∨Λ,%,W and are accordingly labeled
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by the elements of EΛ 12. In each quadrangle there are two diagonals which we
orient such that the black side of the quadrangle lies to the right of the diagonal.
Next we use the twist function η : EΛ → {±1} to color the two diagonals red
and black according to the rule shown in the diagram (46)

�
�
�
��

@
@

@@Iη(e) = −1

red black
@
@

@
@I

�
�

���η(e) = +1

redblack
(46)

...........................

4 Geometric constructions

In this section the Zhegalkin Zebra Motive Z and the lattice Λ ⊂ Aut(Z) are
such that (Z,Λ) is dimer complete; cf. Definition 1.

4.1 Realizations of the superpotential

The lattice Λ acts on the sets E , P?, P•, P◦ of edges, vertices, black and white
polygons in the tiling of R2. We denote the orbit sets (i.e. the sets of edges,
vertices, black and white polygons in the tiling of the torus R2/Λ) by EΛ, P?Λ, P•Λ
and P◦Λ. The superpotential (EΛ, σ0, σ1) (see (9)) provides precise information
about the number and cyclic ordering of the edges of the polygons and how the
polygons must be glued together to make a biperiodic tiling of R2. In order
to actually make the tiling one must however also supply a list of edge vectors
ω : EΛ −→ R2 which satisfies various constraints posed by the superpotential.
We call such a map ω a realization of the superpotential (EΛ, σ0, σ1) 13.

The picture of the planar tiling for the Zhegalkin Zebra Motive Z itself
provides one realization ωZ : EΛ −→ R2 = C of the superpotential. Since the
frequencies used in the defining formula for Z lie in Z2 the edge vectors ωZ(e)
lie in Q2. We can therefore rescale the picture so that we obtain a realization of
the superpotential with edge vectors in Z.

The following diagram helps in visualizing the constraints which the super-
potential poses on a realization.

12Figure 9 shows an example. The labels of the quadrangles are suppressed. Therefore the

picture can in this simple case not distinguish between Γ̃∨Λ,%,W and Γ̃∨Λ,%,M . For Γ̃∨Λ,%,M the

labels are shown in Figure 24. Labeling the edges of Γ̃∨Λ,%,W is left as an easy exercise.
13When it seems more convenient we will identify R2 with C in the obvious way and view

the realization as a map ω : EΛ −→ C.
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...s(e)

(47)

Firstly a realization ω : EΛ −→ C of (EΛ, σ0, σ1) must satisfy

∀e ∈ EΛ : ω(e) 6= 0 , (48)

∀w ∈ P◦Λ , b ∈ P•Λ :
∑

e:w(e)=w

ω(e) = 0 ,
∑

e: b(e)=b

ω(e) = 0 . (49)

Secondly, for every w ∈ P◦Λ (resp. b ∈ P•Λ) the cyclic ordering on the unit circle
of the complex numbers ω(e)|ω(e)|−1 with w(e) = w (resp. b(e) = b) should be
the same as in the corresponding cycle of σ0 (resp. σ−1

1 ) and all interior angles
in the polygon must be > 0 and ≤ π. This condition can be restated in terms
of the exterior angles and the argument function arg : C∗ −→ [0, 2π) as follows:

∀e ∈ E : arg
(
ω(e)ω(σ0(e))

)
< π , arg

(
ω(e)ω(σ1(e))

)
< π , (50)

∀w ∈ P◦Λ :
∑

e:w(e)=w

arg
(
ω(e)ω(σ0(e))

)
= 2π , (51)

∀b ∈ P•Λ :
∑

e: b(e)=b

arg
(
ω(e)ω(σ1(e))

)
= 2π . (52)

Thirdly, at each vertex v ∈ P?Λ of the tiling the angles must add up to 2π:∑
e: t(e)=v

(
2π − arg

(
ω(e)ω(σ0(e))

)
− arg

(
ω(e)ω(σ1(e))

))
= 2π . (53)

Moreover, if a function ω : EΛ → C satisfies the conditions in (48)-(53) and c is
a non-zero complex number, the function c ω also satisfies these conditions.

Definition 2 A realization ω : EΛ −→ C of the superpotential (EΛ, σ0, σ1) is
said to be a stable realization if all polygons are strictly convex; i.e. all
exterior angles are > 0; cf. (50).

Since one can easily draw the picture of the Zhegalkin Zebra Motive Z
stability of the realization ωZ can easily be checked by visual inspection. But
even if ωZ is not stable one can often see a deformation of ωZ which is stable;
see for example the Zhegalkin Zebra Motive Z22 + Z42 + Z31 + Z61Z31Z22 in
Figure 35.
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Lemma 1 Let ω : EΛ → C be a stable realization of the superpotential (E , σ0, σ1).
Let $ : EΛ −→ C be a map such that |$(e)| is sufficiently small for all e and

∀w ∈ P◦Λ , ∀b ∈ P•Λ :
∑

e∈EΛ:w(e)=w

$(e) = 0 ,
∑

e∈EΛ:b(e)=b

$(e) = 0. (54)

Then ω +$ is also a stable realization of the superpotential (EΛ, σ0, σ1).

Proof : The conditions (50)-(53) and also the stability condition pertain only
to the directions of the edge vectors of the realization. For stable realizations
these conditions are preserved by small perturbations. �

Theorem 3 The set of realizations of the superpotential (EΛ, σ0, σ1) is a non-
empty C∗-invariant subset of the complex vector space H1(Γ∨Λ , C) which does
not contain 0. The set of stable realizations is either empty or a non-empty
C∗-invariant open subset of H1(Γ∨Λ , C). In the latter case the tangent space
to the space of realizations of (EΛ, σ0, σ1) at a stable realization ω is equal to
H1(Γ∨Λ , C).

Proof : The equalities (49) mean that a realization ω is an element of the
homology group H1(Γ∨Λ , C); also see (116). Thus the conditions (48)-(53) im-
ply that the set of realizations of the superpotential (EΛ, σ0, σ1) is a subset of
H1(Γ∨Λ , C) which does not contain 0. It is not empty because it contains ωZ .
The statements about stable realizations follow from Lemma 1. �

We want to view ω + $ in Lemma 1 as a deformation of ω. A special
kind of deformations is obtained by slightly moving the vertices in the tiling.
We call them vertex deformations. A vertex deformation comes from a map
α : P?Λ −→ C by setting

∀e ∈ EΛ : $(e) = α(t(e))− α(s(e)) . (55)

This can be rewritten as14

$ = −
∑
v∈P?

Λ

α(v)`v (56)

where `v denotes the function EΛ → Z defined by

`v(e) = 1 if s(e) = v, `v(e) = −1 if t(e) = v, `v(e) = 0 else. (57)

There is only one linear relation between the latter functions, namely their sum
is 0. The vertex deformations therefore form a (|P?Λ| − 1)-dimensional subspace
of the (|P?Λ|+1)-dimensional complex vector space H1(Γ∨Λ , C); see Proposition 4
Formula (119).

14The −-sign in (56) is needed because we want (57) to define the same function `v as (123).
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Figure 10: The realizations ωL (left) and ωR (right) in Example 2.

Definition 3 The tiling of R2 given by a realization ω of the superpotential
(EΛ, σ0, σ1) is biperiodic. We denote the period lattice by Λω.

For the realization ωZ provided by the picture of the Zhegalkin Zebra Motive
Z the lattice ΛωZ is by definition equal to Λ. Vertex deformations do preserve
the period lattice Λω, but more general deformations do not.

Example 2 The two tilings in Figure 10 are realizations of the superpotential

σ0 = (1, 4, 8, 5)(2, 6, 7, 3)(9, 12, 16, 13)(10, 14, 15, 11) ,

σ1 = (1, 13, 14, 2)(3, 15, 16, 4)(5, 6, 10, 9)(7, 8, 12, 11) .

The following table lists the edge labels, the labels of the sources and targets and
the complex numbers ωL(e) and ωR(e) of the two realizations (where η = 1+i

2 )

e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
s 7 1 8 2 1 4 2 3 3 5 4 6 5 8 6 7
t 1 8 2 7 3 1 4 2 5 4 6 3 7 5 8 6
ωL 1 i 1 i −i −1 −i −1 1 i 1 i −i −1 −i −1
ωR η i 2 −η η −2 −i −η 1 η η 2i −2i −η −η −1

It is an instructive exercise to put edge labels in the pictures in Figure 10 which
match with the data σ0, σ1, ωL, ωR. The table shows that

ωR − ωL = 1
2 (−v1 + v2 + iv3 + v4 + iv5 − iv6 − iv7 − v8) ,

where v1, . . . ,v8 ∈ ZEΛ are the functions associated in (57) with the eight
vertices. So the two realizations are related by a vertex deformation. It is an
amusing exercise to see the vertex deformation in Figure 10.

A Z-basis for the period lattice of the realization ωR is given by the vectors

ωR(3) + ωR(2) + ωR(1) + ωR(4) = 2 + 2i,

ωR(10) + ωR(14) + ωR(2) + ωR(6) = −2 + 2i.
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Figure 11: The realizations ωZ (left) and ω (right) in Example 3.

A Z-basis for the period lattice of the realization ωL is given by the vectors

ωL(3) + ωL(2) + ωL(1) + ωL(4) = 2 + 2i,

ωL(10) + ωL(14) + ωL(2) + ωL(6) = −2 + 2i.

This illustrates the fact that vertex deformations preserve the period lattice.
�

Example 3 The tiling for Z = (1 + Z62)(Z32 + Z61) + Z62(Z24 + Z44) is shown
in Figure 36. The left picture in Figure 11 shows a close-up of this tiling with
edge labels. We see that Aut(Z) = Z(0, 4) ⊕ Z(4, 2) and that for Λ = Aut(Z)
the superpotential (EΛ, σ0, σ1) is given by EΛ = {1, . . . , 12},

σ0 = (1, 5, 6, 2, 9, 8)(4, 3, 7)(11, 10, 12) , σ1 = (1, 3, 2, 12)(4, 5, 10, 9)(11, 6, 7, 8) .

The right picture in Figure 11 shows another realization of the superpotential.
The edge vectors for these realizations are given in the following table, with
ε = eπi/6 = 1

2 (
√

3 + i).

e 1 2 3 4 5 6 7 8 9 10 11 12
ωZ 2 −2 −2i −1 + i 1 + i −1 + i 1 + i 1− i −1− i 1− i −1− i 2i

ω 1 ε6 ε9 ε5 ε2 ε4 ε ε10 ε8 ε11 ε7 ε3

The period lattice for the realization ωZ is Λ. A Z-basis for Λ is

ωZ(5) + ωZ(6)− ωZ(3) = 4i ,

ωZ(1) + ωZ(5)− ωZ(11) = 4 + 2i .

A Z-basis for the period lattice Λω of the realization ω is

ω(5) + ω(6)− ω(3) = ε2 + ε4 − ε9 = (1 +
√

3) i ,

ω(1) + ω(5)− ω(11) = 1 + ε2 − ε7 = 1
2 (1 +

√
3) (
√

3 + i) .
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A computer check reveals that ωZ , ω and v for v ∈ P?Λ (cf. (57)) span a
subspace of dimension |P?Λ|+ 1 in CEΛ . This implies that no (complex) multiple
of ω is related to ωZ by a vertex deformation.

Note that in this example one can easily see a positive integer weight function
ν, namely ν(e) = 1 if e is an edge of a white hexagon and ν(e) = 2 if e is an
edge of a white triangle. In the realization ω all black and white polygons are
regular and the marked points given by ν are the centres of the circumcircles.

�

4.2 Surfaces in R3

In this section we construct from input data
(
Z,Λ,�, h, r

)
a connected oriented

surface S6hZ,Λ,�,r in R3 which contains the bipartite graph Γ∨Λ as a deformation

retract. Here Z is a Zhegalkin Zebra Motive and Λ is a sublattice of Aut(Z)
such that (Z,Λ) is dimer complete and such that the superpotential (EΛ, σ0, σ1)
admits a stable realization; see Definitions 1 and 2. The other input data consist
of a 5-tuple

� = (η, ν, ω, λ1, λ2) (58)

where η is a Λ-invariant function η : E → {±1} (called twist function), ν is
a Λ-invariant positive integer weight function, ω is a stable realization of the
superpotential and {λ1, λ2} is an ordered basis of the period lattice Λω; h and
r are real numbers such that 0 < h < 1 and 0 < r < 3−h.

The stable realization ω gives a tiling of R2 by convex black and white
polygons. We mark a point inside each polygon P by taking the convex combi-
nation specified by 1

deg ν ν of the midpoints of the edges of P . The corresponding
barycentric subdivision of the polygonal tiling is constructed by connecting
for every polygon P the marked point to the vertices and the midpoints of the
edges of P . The barycentric subdivision is a triangulation of R2. By connecting
for every polygon P the marked point to the vertices of P one obtains a tiling of
R2 by quadrangles in which each quadrangle is the union of four triangles from
the barycentric subdivison; see Figure 12.

Using the barycentric subdivision and elementary surface charts described
by the parametrization in Equations (59) and (60) we first construct an oriented

surface S̃Z,η,ν,ω in the thickened horizontal plane R2 × [− log 3, log 3] 15 in R3.
For four not co-planar points A,B,C,D in R3 we take the surface VABCD

in R3 given by the parametrization

x(1− y)A+ (1− x)yB + (1− x)(1− y)C + xyD (59)

with 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. This surface lies in the tetrahedron conv(A,B,C,D);
see Figure 13. The edges x = 0 resp. y = 0 resp. x = 1 resp. y = 1 of the unit
square [0, 1]× [0, 1] are mapped to the edges [CB] resp. [CA] resp. [AD] resp.
[BD] of the tetrahedron.

15Here and it what follows we use 3 as a notationally convenient number which is a bit
larger than e = exp(1).
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Z2 = Z21 + Z41 Z3 = Z21 + Z41 + Z61

Z4 = Z21 + Z31 + Z41 + Z61 Z6 = Z11 + Z21 + Z31 + Z41 + Z51 + Z61

Figure 12: Barycentric subdivision (with ν(e) = 1 for all e) of the tilings in
Figure 2. Highlighted is the tiling by the quadrangles formed by the four tri-
angles with a common vertex at the midpoint of an edge in the black-white
tiling. The quiver Γ and the bipartite graph Γ∨ appear as the diagonals in
these quadrangles.
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Figure 13: Left: tetrahedron conv(A,B,C,D). Right: the four triangles adja-
cent to the edge e in the barycentric subdivision. Here w(e), b(e), s(e), t(e) and
m(e) denote the white and black marked points adjacent to e and the source,
target and midpoint of e, respectively.
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(m(e) , 0)(w(e), 0) (b(e), 0)

(s(e), 0)

(t(e), 0)

(t(e), 0)

(s(e), 0)
(m(e), η(e))

(m(e),−η(e))

III II

IV I

Figure 14: Left: surface chart for S̃Z,η,ν corresponding to one edge e built from

four surfaces VABCD; cf. (60). Right: surface charts for S̃Z,η,ν corresponding
to the edges e, σ0(e), σ−1

0 (e), σ1(e), σ−1
1 (e). Note: here g = σ.

For an edge e in the tiling consider the four triangles in the barycentric
subdivision which are adjacent to e; see Figures 12 and 13. Edge e contributes
to the surface S̃Z,η,ν,ω the four charts VABCD as in (59) with

I : A = (m(e), 0), B = (s(e), 0), C = (b(e), 0), D = (m(e), η(e)),
II : A = (m(e), 0), B = (t(e), 0), C = (b(e), 0), D = (m(e),−η(e)),
III : A = (m(e), 0), B = (s(e), 0), C = (w(e), 0), D = (m(e),−η(e)),
IV : A = (m(e), 0), B = (t(e), 0), C = (w(e), 0), D = (m(e), η(e)) .

(60)

These four charts fit together to one chart corresponding to the edge e as shown
in Figure 14. The surface S̃Z,η,ν,ω is obtained by glueing the charts for the
various edges exactly as in the barycentric subdivision of the original black-
white tiling given by Z; see Figure 14. It is an oriented surface; i.e. as a
surface in R3 it has two sides which can be colored with two different colors (but
Figure 14 shows just one side; the light-dark shading indicates the barycentric
subdivision).

The coordinate function y on the parametrized chart (59)-(60) defines a
continuous map

Ξ : S̃Z,η,ν,ω −→ [0, 1]. (61)

For 0 < h < 1 we define the surfaces S̃6hZ,η,ν,ω and S̃<h
Z,η,ν,ω by

S̃6hZ,η,ν,ω := Ξ−1([0, h]) , S̃<h
Z,η,ν,ω := Ξ−1([0, h)) . (62)

The surfaces S̃<h
Z,η,ν,ω and S̃6hZ,η,ν,ω are contained in the thickened horizontal

plane R2 × [−h log 3, h log 3] and contain the bipartite graph Γ∨ = Ξ−1(0) as a
deformation retract.

Vertical projection onto the horizontal plane defines a continuous map

q : S̃6hZ,η,ν,ω −→ R2. (63)
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If x is not the midpoint of an edge of Γ then the inverse image q−1(x) is either
empty or consists of one point. If x is the midpoint of an edge of Γ then q−1(x)
is the vertical line segment

q−1(x) =
{
t
(
x,−h

)
+ (1− t)

(
x, h

)
| 0 ≤ t ≤ 1

}
(64)

in R3; cf. (60). For illustrative examples showing the projected image of S̃6hZ,η,ν,ω
we refer to Figure ??. The shading in Figure ?? reflects the barycentric subdi-
vision in Figure 12 and indicates the covering of S̃6hZ,η,ν,ω by charts as defined
in Figure 14 and Formulas (59)-(60).

Remark 6 The boundary of S̃6hZ,η,ν,ω is a configuration of non-intersecting

curves in the thickened plane R2 × [−1, 1] ⊂ R3. This configuration is invariant
under the action of Λω by horizontal translations. The pattern of over/under
crossings is determined by the twist function η. Examples of the projection
diagram of this configuration on the horizontal plane are shown in Figure ??.
In this diagram the curves are oriented such that the black points are on their
right hand side and the white points are on their left hand side. The shown
diagrams are for the twist function η(e) = 1 for all e ∈ EΛ. For a general twist
function the crossing corresponding to an e where η(e) = −1 must be switched.

The orientation of the curves in the projection diagram is induced by the
orientation we have chosen on the boundaries of the polygons in the planar
tiling, i.e. black clockwise, white counter-clockwise. The over/under crossings
in the diagram are given by the twist function η and Formula (60). Comparing
our projection diagram with the standard conventions (see (65)) for assigning a
±1 sign to a crossing of oriented curves we see that in the standard conventions
the sign for the crossing at e is −η(e).

�
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−1 (65)

�

We let Λω act on R3 by translations parallel to the horizontal plane and
consider the previous constructions modulo Λω. In order to concretely realize
the “mod Λω-objects” in R3 we use the basis λ1, λ2 for the lattice Λω and the
positive real number r < 3−h to define the Λω-periodic map

R2 × [−h log 3, h log 3] −→ R3 , (ξ, z) 7→ (X,Y, Z) ,

(66)

X =

(
1 + r exp(z) cos

(
2π

det(ξ, λ1)

det(λ2, λ1)

))
sin

(
2π

det(ξ, λ2)

det(λ1, λ2)

)
Y =

(
1 + r exp(z) cos

(
2π

det(ξ, λ1)

det(λ2, λ1)

))
cos

(
2π

det(ξ, λ2)

det(λ1, λ2)

)
Z = r exp(z) sin

(
2π

det(ξ, λ1)

det(λ2, λ1)

)
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The image of the thickened horizontal plane R2 × [−h log 3, h log 3] is the
thickened torus obtained by rotating the annulus in the plane X = 0 with
centre (0, 1, 0) and radii r3−h and r3h around the vertical axis X = Y = 0.
The condition r < 3−h ensures that the thickened torus does not intersect the
vertical axis and is contained in the 3-ball (with radius 2)

D3 =
{

(X,Y, Z) ∈ R3
∣∣X2 + Y 2 + Z2 ≤ 4

}
(67)

which is the (W ≥ 0)-half of the 3-sphere (with radius 2)

S3 =
{

(X,Y, Z,W ) ∈ R4
∣∣X2 + Y 2 + Z2 +W 2 = 4

}
. (68)

Definition 4 (cf. (62)) For 0 < h < 1 and 0 < r < 3−h we define

SZ,Λ,�,r = image under the map (66) of S̃Z,η,ν,ω, (69)

S<h
Z,Λ,�,r = image under the map (66) of S̃<h

Z,η,ν,ω, (70)

S6hZ,Λ,�,r = image under the map (66) of S̃6hZ,η,ν,ω. (71)

Proposition 1 This construction/definition has the following properties:

i. The maps S̃6hZ,η,ν,ω −→ S6hZ,Λ,�,r and S̃<h
Z,η,ν,ω −→ S<h

Z,Λ,�,r are unram-
ified covering maps with covering group Λ.

ii. The surfaces S<h
Z,Λ,�,r and S6hZ,Λ,�,r contain the graph Γ∨Λ as a deforma-

tion retract. This implies that

H1(Γ∨Λ ,Z) = H1(S<h
Z,Λ,�,r,Z) = H1(S6hZ,Λ,�,r,Z). (72)

iii. The boundary ∂S6hZ,Λ,�,r of the surface S6hZ,Λ,�,r is a link in the 3-sphere

S3 and S6hZ,Λ,�,r is a Seifert surface for this link; i.e. an oriented surface

in S3 with boundary equal to the link; see Figure 15.

iv. The embedding S6hZ,Λ,�,r ⊂ S3 induces on its homology a bilinear form
known as the Seifert form; for the definition and explicit computation
of the Seifert form see §5.4.

v. For every e ∈ EΛ the surface S6hZ,Λ,�,r contains the oriented line segment

in R3

Ie =
{

Σ1 +
(
t r exp(h) + (1− t) r exp(−h)

)
Σ2 | 0 ≤ t ≤ 1

}
(73)
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Z3 = Z21 + Z41 + Z61

Z2 = Z21 + Z41

Z4 = Z21 + Z31 + Z41 + Z61 Z6 = Z11 + Z21 + Z31 + Z41 + Z51 + Z61

Figure 15: Some Seifert surfaces S6hZ,Λ,�,r with embedded bipartite graphs for

Λ = Aut(Z), all ν(e) = η(e) = 1 and h ≈ 0.4. The half edges of the bipartite
graph have the color of the adjacent node of the graph. What looks like triangles
are actually quadrangles on S6hZ,Λ,�,r. The light/dark shading of these quad-
rangles reflects the barycentric subdivision in Figure 12. The light-dark blue
quadrangles show one side of the oriented surface; the yellow-green quadrangles
show the other side.
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where (see (64), (66))

Σ1 =


sin
(

2π det(x,λ2)
det(λ1,λ2)

)
cos
(

2π det(x,λ2)
det(λ1,λ2)

)
0

 , Σ2 =


cos
(

2π det(x,λ1)
det(λ2,λ1)

)
cos
(

2π det(x,λ1)
det(λ2,λ1)

)
sin
(

2π det(x,λ1)
det(λ2,λ1)

)
 , (74)

x is the midpoint of any edge in the planar tiling which modulo Λ is e.

The endpoints of Ie lie on the boundary of S6hZ,Λ,�,r. It depends on η(e)
which endpoint lies on which boundary component. More precisely, the
boundary components correspond bijectively with the cycles of the permu-
tation σ1σ0. If η(e) = 1 then the endpoint Σ1 + r exp(−h)Σ2 lies on the
boundary component given by the cycle of σ1σ0 which contains σ1(e) and
the endpoint Σ1 + r exp(h)Σ2 lies on the boundary component given by the
cycle which contains e. If η(e) = −1 it is precisely the other way round.

vi. The surface S6hZ,Λ,�,r lies in the thickened torus which is obtained by rotat-

ing the annulus in the plane X = 0 with centre (0, 1, 0) and radii r exp(−h)
and r exp(h) around the vertical axis X = Y = 0.

�

Since the quantities det(ξ,λ2)
det(λ1,λ2) and det(ξ,λ1)

det(λ2,λ1) are the coordinates of ξ w.r.t.

the basis λ1, λ2 of R2 the map

R3 −→ U(1)× U(1)× R>0 , (75)

(ξ, z) 7→
(

exp

(
2πi

det(ξ, λ2)

det(λ1, λ2)

)
, exp

(
2πi

det(ξ, λ1)

det(λ2, λ1)

)
, exp(z)

)
,

with U(1) =
{
z ∈ C

∣∣ |z| = 1
}

, induces an isomorphism

R3
/Λω

'−→ U(1)× U(1)× R>0 . (76)

Proposition 2 The maps (66) and (75) induce embeddings of the surfaces

S6hZ,Λ,�,r and S<h
Z,Λ,�,r into the thickened torus U(1)× U(1)× [3−h, 3h].

Proof : See Definition 4 and note that the equalities

exp

(
2πi

det(ξ, λ2)

det(λ1, λ2)

)
=

iX + Y

|iX + Y |

exp

(
2πi

det(ξ, λ1)

det(λ2, λ1)

)
=

|iX + Y | − 1 + iZ∣∣|iX + Y | − 1 + iZ
∣∣ (77)

exp(z) =
1

r

∣∣|iX + Y | − 1 + iZ
∣∣
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Z2 = Z21 + Z41 Z3 = Z21 + Z41 + Z61

Figure 16: Unfolded charts for Z2 (left) and Z3 (right) both with Λ = Aut(Z).

are equivalent to (66). �

4.3 Examples

4.3.1 Examples: Z2 and Z3.

Consider the Zhegalkin Zebra Motives Z2 and Z3 with their automorphism lat-
tices. For Z2 there are four charts and for Z3 three. Figure 16 shows how these
charts fit together. The letters a,b,c,d indicate which sides should be identified.
This identification can be achieved by folding along the dotted lines. From this
we see that the surface S6hZ2,Λ,�,r

(resp. S6hZ3,Λ,�,r
) is homeomorphic to a 2-

sphere S2 from which four (resp. three) disjoint open discs have been removed.

Embeddings of S6hZ2,Λ,�,r
and S6hZ3,Λ,�,r

into R3 are shown in Figure 15.

The superpotentials are (cf. Figure 2)

for
(
Z2,Aut(Z2)

)
: σ0 = (1, 2, 3, 4), σ1 = (4, 3, 2, 1) , (78)

for
(
Z3,Aut(Z3)

)
: σ0 = (1, 2, 3), σ1 = (3, 2, 1) . (79)

Since in both cases σ1σ0 is the identity permutation it follows from (11) that
χ(Xσ0,σ1

) = 2 and that Xσ0,σ1
is indeed a 2-sphere. �

4.3.2 Examples: Z4 and Z6.

Consider the Zhegalkin Zebra Motives Z4 and Z6 with their automorphism
lattices. The fundamental domains and edge labels are shown in Figure 17.
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Z4 = Z21 + Z31 + Z41 + Z61 Z6 = Z11 + Z21 + Z31 + Z41 + Z51 + Z61

Figure 17: Fundamental domain in tiling with labeled edges for Z4 (left) and
Z6 (right) both with Λ = Aut(Z).

From this we find the permutations σ0, σ1, σ1σ0:

for Z4 :

σ0 = (1, 4, 6)(2, 3, 11)(5, 7, 8)(9, 12, 10)

σ1 = (1, 2, 5)(3, 12, 4)(6, 7, 10)(8, 9, 11)

σ1σ0 = (1, 3, 8)(2, 12, 6)(4, 7, 9)(5, 10, 11)

for Z6 :

σ0 = (1, 2, 17)(3, 8, 4)(5, 6, 10)(7, 13, 11)(9, 12, 14)(15, 18, 16)

σ1 = (1, 7, 5)(2, 18, 3)(4, 6, 9)(8, 12, 11)(10, 13, 16)(14, 15, 17)

σ1σ0 = (1, 18, 10)(2, 14, 4)(3, 12, 15)(5, 9, 11)(6, 13, 8)(7, 16, 17)

The surface S6hZ4,Λ,�,r
(resp. S6hZ6,Λ,�,r

) is covered by 12 (resp. 18) charts
which are glued as shown in Figure 18. Thus we see that these surfaces are
homeomorphic to a 2-torus from which four (resp. six) disjoint open discs have
been removed. This agrees with the fact that according to (11) the surface
Xσ0,σ1

has Euler characteristic 0 and, hence, is a 2-torus. Embeddings of the

surfaces S6hZ4,Λ,�,r
and S6hZ6,Λ,�,r

into R3 are shown in Figure 15.
The atlases in Figure 18 show that the 2-torus Xσ0,σ1

comes with a triangula-
tion which is precisely the triangulated torus given by the Zhegalkin Zebra Mo-
tive Z3 and the sublattice Λ4 = Z(3, 1)+Z(2,−2) (resp. Λ6 = Z(3, 3)+Z(2,−2))
of Aut(Z3) = Z(1, 1) + Z(1,−1).

The pair (Z4,Aut(Z4)) corresponds to model 15b in [13, 14], while the pair
(Z3,Λ4) corresponds to model 13 in op.cit.. Similarly, the pair (Z6,Aut(Z6))
corresponds to model 10d, while the pair (Z3,Λ6) corresponds to model 7. These
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Z4 = Z21 + Z31 + Z41 + Z61 Z6 = Z11 + Z21 + Z31 + Z41 + Z51 + Z61

Figure 18: Atlas with unfolded charts for Z4 and Z6 both with Λ = Aut(Z).
The Z4 picture is in fact isomorphic to picture b) in [9] Figure 10.

correspondences are an expression of the phenomenon called specular duality
in [14]; see in particular op.cit. Figure 1. �

4.3.3 Example: Z = Z21 + Z31 + Z41 + Z62.

The planar tiling for the Zhegalkin Zebra Motive Z = Z21 + Z31 + Z41 + Z62 is
shown in Figure 34. A close up with edge labelings and period parallelogram
for the lattice Λ = Aut(Z) = Z (2, 2) + Z (2,−2) are shown in Figure 19. From
this one sees that the superpotential is:

σ0 = (1, 6, 8)(2, 3, 4, 14)(5, 11, 12, 13)(7, 9, 10),

σ1 = (1, 12, 2)(3, 11, 10, 8)(4, 6, 7, 5)(9, 14, 13).
(80)

The cycle decompositions of the permutations σ−1
1 σ0 and σ1σ0 are

σ−1
1 σ0 = (3, 5)(2, 8)(6, 10)(1, 4, 9, 11)(7, 13)(12, 14) , (81)

σ1σ0 = (3, 6)(5, 10)(2, 11)(8, 12, 9)(4, 13)(1, 7, 14) . (82)

Thus by (11) the surface Xσ0,σ1 is a torus.
One immediately checks that the superpotential for the Zhegalkin Zebra

Motive Z ′ and the lattice Λ′ shown on the left in Figure 20 is given by the pair
of permutations (σ0, σ

−1
1 ). It follows that the surface Xσ0,σ1

for the Zhegalkin
Zebra Motive Z and lattice Λ with the embedded bipartite graph Γ∨Λ is the same
as the torus with black-white polygonal tiling for the Zhegalkin Zebra Motive
Z ′ and lattice Λ′. The right-hand picture in Figure 20 shows, in the style of
Figures 16-17, how the charts for the surface S6hZ,Λ,�,r fit together. It is obtained
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Figure 19: Planar tiling and period parallelogram for the Zhegalkin Zebra Mo-
tive Z = Z21 + Z31 + Z41 + Z62 and Λ = Aut(Z) = Z (2, 2) + Z (2,−2).

by removing small (open) discs around the vertices of the tiling in the left-hand

picture. For an embedding as a surface S6hZ,Λ,�,r in R3 see Figure 33.

The Zhegalkin Zebra Motive Z and lattice Λ correspond to [13] model 10c.
The Zhegalkin Zebra Motive Z ′ and the lattice Λ′ correspond to [13] model 8a.
The observed equality of the surface Xσ0,σ1 for (Z,Λ) and the tiled torus for
(Z ′,Λ′) is another example of specular duality; cf. [14] Figure 1. �

4.4 Cartography and hyperbolic Belyi maps

4.4.1

In this section we give a construction of the surface Xσ0,σ1,% completely in the

spirit of the constructions in [8]. We set τ = %−1 −
√
%−2 − 1. Then 0 < τ < %

and
1
2 (τ−1 + τ) = %−1 , 1

2 (τ−1 − τ) =
√
%−2 − 1 . (83)

On the closed disk D we distinguish the following landmarks (see Figure 6):

• The points 0 < τ < % < 1 and the closed interval [0, %].
The hyperbolic distances between the points 0 and τ (resp. 0 and %) are:

dH(0, τ) = log

(
1 + τ

1− τ

)
= 1

2 log

(
1 + %

1− %

)
= 1

2dH(0, %). (84)

• The circles U(1), U(%) and the arc Cτ .
These were defined in (14), (15) and (16) and are oriented counter-clockwise.
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Z ′ = Z23 + Z43 + Z61, Λ′ = Z (3, 1) + Z (0, 4) ⊂ Aut(Z ′) = Z (3, 1) + Z (0, 2)

Figure 20: Left: Period parallelogram with edge labelings for the Zhegalkin
Zebra Motive Z ′ = Z23 + Z43 + Z61 and lattice Λ′. For the biperiodic planar
tiling given by Z ′ see Figure 34. Right: atlas with unfolded charts for the
surface S6hZ,Λ,�,r.

The arc Cτ intersects the interval [0, %] perpendicularly at the point τ
and its closure intersects the circle U(1) perpendicularly at the points

%± i
√

1− %2.

• The quadrangles

I : corners τ, %, 1, %+ i
√

1− %2,

II : corners τ, %, 1, %− i
√

1− %2,

III : corners τ, 0, −1, %− i
√

1− %2,

IV : corners τ, 0, −1, %+ i
√

1− %2.

(85)

The sides of these quadrangles are subintervals of [−1, 1] or subarcs of Cτ
or of U(1). Thus we have

D = I ∪ II ∪ III ∪ IV. (86)

These special structures on D lift via ϕ−1
σ0,σ1,% to special structures on Xσ0,σ1,%:

• ϕ−1
σ0,σ1,%

(
U(1)

)
is the boundary of Xσ0,σ1,%. Its connected components

correspond 1-1 with the cycles of the permutation σ1σ0.

• ϕ−1
σ0,σ1,%

(
U(%)

)
is a quiver ΓΛ

	 with set of nodes ϕ−1
σ0,σ1,%(%). The arrows of

ΓΛ
	 are the closures of the connected components of ϕ−1

σ0,σ1,%

(
U(%)\{%}

)
.
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b(σ0(e)) b(e)
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e×σ0(e)
×

Figure 21: Adjacency in the tilings of Xσ0,σ1,% by quadrangles; see (87)-(88).

• The bipartite graph Γ∨Λ lies in Xσ0,σ1,% as the inverse image ϕ−1
σ0,σ1,%

(
[0, %]

)
.

The set of white nodes is ϕ−1
σ0,σ1,%(0). The set of black nodes is ϕ−1

σ0,σ1,%(%).
The white nodes correspond 1-1 with the cycles of the permutation σ0.
The black nodes correspond 1-1 with the cycles of the permutation σ1.

• There is a bijection EΛ ↔ ϕ−1
σ0,σ1,%

(
τ
)
.

We denote the point on Xσ0,σ1,% which corresponds to e ∈ EΛ by e×.

• The connected components of ϕ−1
σ0,σ1,%(Cτ ) form a collection of disjoint,

simple, oriented curves Je (e ∈ EΛ) in Xσ0,σ1,% such that Je passes
through the point e×. The endpoints of the closure Je of Je lie on the
boundary of Xσ0,σ1,% so that Je starts (resp. ends) at the boundary com-
ponent which corresponds to the cycle of σ1σ0 which contains e (resp.
contains σ0(e)).

• For every e ∈ EΛ we have the four quadrangles Ie, IIe, IIIe, IVe:

Ie : component of ϕ−1
σ0,σ1,%(I) with a corner at e×

IIe : component of ϕ−1
σ0,σ1,%(II) with a corner at e×

IIIe : component of ϕ−1
σ0,σ1,%(III) with a corner at e×

IVe : component of ϕ−1
σ0,σ1,%(IV ) with a corner at e×

(87)

Then (cf. (86))

Xσ0,σ1,% =
⋃
e∈EΛ

(
Ie ∪ IIe ∪ IIIe ∪ IVe

)
. (88)

In (88) the quadrangles are glued as indicated in Figure 21. For examples
of how the gluing rules work out globally see Figures 16, 18, 20.

For 0 < β < α < 1
2π we set

% = cos(β) , τ =
1− sin(β)

cos(β)
. (89)
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0 τ

K

U(1)

L

eiα

eiβ

Cτ

Figure 22: Parametrization of quadrangle Qα,β for α = π
3 , β = π

6 and, hence,

% = 1
2

√
3, τ = 1√

3
.

Let Qα,β denote the quadrangle enclosed by the line segments [eiα, 0], [0, τ ],
the upper half of the arc Cτ and the arc between eiα and eiβ along U(1); see
Figure 22. Formula (84) now reads

dH(0, τ) = − log
(
tan( 1

2β)
)
. (90)

With these notations we have (see Figures 14 and 21)

Ie = IIe = Qα,β with α = π
ke
,

IIIe = IVe = Qα,β with α = π
ne
,

(91)

where ne (resp. ke) is the length of the cycle of the permutation σ0 (resp. σ1)
which contains e and β = arccos(%). In order to glue such a quadrangular chart
Q′ to another one Q such that side S′ of Q′ gets identified with side S of Q one
first puts Q′ and Q in the disk D so that S′ coincides with S and subsequently
identifies the side S of Q with the side S′ of the image of Q′ under the hyperbolic
reflection in S′.

In order to give a parametrization of the quadrangles Qα,β we take the circle
U(1) as in (14), the arc Cτ as in (16) and let (see Figure 22)

L = line through 0 and i, (92)

K = circle with centre at τ + iτ tan(α) and radius τ tan(α). (93)
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Then the parametrization is

[0, 1]× [0, 1] −→ Qα,β , (x, y) 7→ point of intersection of (94)

the circle through xτ perpendicular to U(1) and K

with the circle through yeiα perpendicular to Cτ and L.

The parametrization (94) applies to all quadrangles Ie, IIe, IIIe, IVe in (91)
provided

π

β
> length of every cycle of the permutations σ0 and σ1. (95)

For 0 < h ≤ 1 we define Q6hα,β (resp. Q<hα,β) to be the image under the
parametrization (94) of the rectangle [0, 1]× [0, h] (resp. [0, 1]× [0, h[ ). In this
way Formula (91) yields I6he , . . . , IV <he . In combination with (88) this yields

the surfaces X6hσ0,σ1,% and X<hσ0,σ1,% such that for 0 < h′ < h ≤ 1

X<h
′

σ0,σ1,% ⊂ X6h
′

σ0,σ1,% ⊂ X<hσ0,σ1,% ⊂ X6hσ0,σ1,% , (96)

Xσ0,σ1,% = X<1
σ0,σ1,% , Xσ0,σ1,% = X61

σ0,σ1,% (97)

The hyperbolic Belyi map (cf. (13))

ϕσ0,σ1,% : Xσ0,σ1,% −→ D (98)

is defined, as follows, so that it maps the quadrangles Ie, IIe, IIIe, IVe homeo-
morphically onto the respective quadrangles I, II, III, IV ; see (85)-(88). The
homeomorphism which maps the quadrangle IVe = Qα,β in Figure 22 onto the
quadrangle IV in Figure 6 and Formula (85) is the identity map on the triangle
with vertices 0, τ , eiβ and is an obvious homeomorphism from the triangle with
vertices 0, eiβ , eiα onto the triangle with vertices 0, eiβ , −1. For the quadran-
gles Ie (resp. IIIe, resp. IIe one must subsequently compose this map with
the hyperbolic reflection in the arc Cτ (resp. the reflection in the interval [0, τ ],
resp. the composite of these two reflections). The hyperbolic Belyi map

ϕσ0,σ1,% : Xσ0,σ1,% −→ D (99)

is just the restriction of (98).

4.4.2

In this section we give a construction of Xσ0,σ1,% based on the embedding of
the bipartite graph Γ∨Λ into Xσ0,σ1,%. For this construction we must fix a rooted

spanning tree Γ̂∨Λ for Γ∨Λ ; i.e. a simply connected subgraph Γ̂∨Λ of Γ∨Λ with the
same set of nodes as Γ∨Λ and one marked white node w0 (the root).

41



For efficient bookkeeping we also fix a perfect matching m0, i.e. a map m0 :
EΛ → {0, 1} such that in every cycle of the permutation σ0 and in every cycle
of the permutation σ1 there is precisely one element e for which m0(e) = 1.

For w ∈ P◦Λ and all e ∈ EΛ such that w(e) = w - i.e. for a white polygon w
in the planar tiling associated with the Zhegalkin Zebra Motive Z and all of its
sides - the quadrangles IIIe and IVe have one angle equal to π

nw
, three angles

π
2 and one side of finite hyperbolic length − log

(
tan( 1

2β)
)

(cf. (90)); here nw is

the number of sides of the polygon w. In Xσ0,σ1,% these 2nw quadrangles form
a polygon

Hw =
⋃

e∈EΛ, w(e)=w

(
IIIe ∪ IVe

)
(100)

with nw sides which are arcs of length 2π
nw
− 2β along the circle U(1) and nw

sides which are circular arcs perpendicular to U(1). The arcs of the second kind
span an angle π− 2β on a circle with radius tan(β). The centers of these circles
are the points %−1 exp(2πij/nw) for j = 0, . . . , nw − 1 and the midpoint of the
arc is τ exp(2πij/nw); see (83), (89).

The arcs of the first kind on the boundary of Hw correspond 1-1 with the
corners of the polygon w in the planar tiling. The arcs of the second kind
correspond 1-1 with the sides of the planar polygon w. These are counter-
clockwise cyclically labeled as the elements of EΛ in the cycle of σ0 corresponding
to w such that the label of the arc with center %−1 and midpoint τ is e with
m0(e) = 1. See the left picture in Figure 23 where we also have drawn the line
segments from the center 0 of the polygon Hw to the midpoints of its sides.

Similarly, for every b ∈ P•Λ - i.e. a black polygon b in the planar tiling - the
quadrangles Ie and IIe with b(e) = b have one angle equal to π

kb
, three angles

π
2 and one side of finite hyperbolic length − log

(
tan( 1

2β)
)

(cf. (90)); here kb is
the number of sides of the polygon b. Together these form the polygon

Hb =
⋃

e∈EΛ, b(e)=b

(
Ie ∪ IIe

)
(101)

in Xσ0,σ1,% with kb sides which are arcs of length 2π
kb
− 2β along the circle U(1)

and kb sides which are circular arcs perpendicular to the circle U(1). The arcs
of the second kind all span an angle π− 2β on a circle with radius tan(β). The
centers of these circles are at the points %−1 exp(2πij/kb) for j = 0, . . . , kb − 1
and the midpoint of the arc is τ exp(2πij/kb). The arcs of the first kind on the
boundary of Hb correspond 1-1 with the corners of the polygon b in the planar
tiling. The arcs of the second kind correspond 1-1 with the sides of the planar
polygon b. They are clockwise cyclically labeled as the elements of EΛ in the
cycle of σ1 corresponding to b such that the label of the arc with center %−1

and midpoint τ is e with m0(e) = 1.
If the polygons w and b in the planar tiling have a common side e one can

glue the polygon Hb to the polygon Hw as follows. Take the image of Hb under
the reflection in its side which is the circular arc with label e and fit this image
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Figure 23: Left: polygon Hw for nw = 6. Right: image of polygon Hb for kb = 4
under reflection in one of its boundary arcs of the second kind. Middle: right
polygon glued into an arc of the second kind of the left polygon.

by a rotation with center 0 into the side of Hw which is the circular arc with
label e. Note that the reflection reverses the cyclic ordering of the arcs on the
boundary of Hb from clockwise to counter-clockwise. In the same way one can
glue the polygon Hw to the polygon Hb along the arc e. See Figure 23.

Recall that the circle with center c ∈ C which intersects the unit circle
perpendicularly has radius

√
cc− 1 and that the reflection Rc in this circle is

given by

Rc(z) =
cz − 1

z − c
for z ∈ C. (102)

If e is the jth element in the cycle of σ1 corresponding to b (0 ≤ j < kb), then
c = %−1 exp(−2πij/kb) and (102) is the Möbius transformation with matrix

exp

(
πij

kb

(
−1 0

0 1

))
· 1√

1− %2

(
1 −%
% −1

)
· exp

(
πij

kb

(
−1 0

0 1

))
. (103)

The fact that the determinant of the matrix in (103) is −1 accounts for the
appearance of z in (102).

The image of Hb under the transformation (102) lies in the disc with center
%−1 exp(−2πij/kb). If e is the hth element in the cycle of σ0 corresponding to
w (0 ≤ h < nw) the image of Hb must subsequently be mapped by a rotation
into the disc with center %−1 exp(2πih/nw). The required rotation amounts to
multiplication by exp

(
2πi(h/nw + j/kb)

)
and is the Möbius transformation

defined by the diagonal matrix with entries exp
(
±πi(h/nw + j/kb)

)
. Thus we

find that the Möbius transformation which puts Hb in the correct arc of Hw is
given by the matrix

M(e◦•) = exp

(
πih

nw

(
1 0
0 −1

))
· 1√

1− %2

(
1 −%
% −1

)
· exp

(
πij

kb

(
−1 0

0 1

))
.

(104)
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Similarly, the Möbius transformation which puts Hw in the correct arc of Hb is
given by the matrix

M(e•◦) = exp

(
πij

kb

(
−1 0

0 1

))
· 1√

1− %2

(
1 −%
% −1

)
· exp

(
πih

nw

(
1 0
0 −1

))
= M(e◦•)

−1
. (105)

Using the tree Γ̂∨Λ with root w0 we now construct a surface X̆σ0,σ1,% as

follows. A black node b of Γ̂∨Λ is connected to the root w0 by a unique path

e1
◦• · e2

•◦ · · · e2r+1
◦• in Γ̂∨Λ with r ≥ 0, w(e1) = w0, b(e2r+1) = b (notation as

in (122)). Using the matrices in (104)-(105) we define the 2× 2-matrix Mb by

Mb = M(e1
◦•) ·M(e2

•◦) · . . . ·M(e2r
•◦) ·M(e2r+1

◦•) (106)

= M(e1
◦•) ·M(e2

◦•)−1 · . . . ·M(e2r
◦•)−1 ·M(e2r+1

◦•) , (107)

where M() means that in the above product the matrices in even position must
be complex conjugated because the matrices have determinant −1. The equality
(107) follows from (106) and (105).

Similarly, a white node w 6= w0 of Γ̂∨Λ is connected to the root w0 by a

unique path e1
◦• · e2

•◦ · · · e2r
•◦ in Γ̂∨Λ with r ≥ 1, w(e1) = w0, w(e2r) = w. We

define the 2× 2-matrix Mw by

Mw = M(e1
◦•) ·M(e2

◦•)−1 · . . . ·M(e2r−1
◦•) ·M(e2r

◦•)−1. (108)

We define Mw0 to be the 2 × 2 identity matrix. Writing Mw and Mb also for
the Möbius transformations defined by (106)-(108) we can finally construct the

surface X̆σ0,σ1,% as a subset of D:

X̆σ0,σ1,% =
⋃

w∈P◦Λ

Mw

(
Hw

)
∪
⋃

b∈P•Λ

Mb

(
Hb

)
. (109)

Note that for w′ 6= w and b′ 6= b and for w and b which are not connected by

an edge in the tree Γ̂∨Λ

Mw

(
Hw

)
∩Mw′

(
Hw′

)
= ∅ , Mb

(
Hb

)
∩Mb′

(
Hb′
)

= ∅ ,
Mw

(
Hw

)
∩Mb

(
Hb

)
= ∅ ,

(110)

while for nodes w and b which are connected by an edge in the tree Γ̂∨Λ :

Mw

(
Hw

)
∩Mb

(
Hb

)
= D ∩ { circle perpendicular to U(1)}. (111)

In X̆σ0,σ1,% lies the set

̂̂
Γ∨Λ =

⋃
w∈P◦Λ

Mw

(
�w

)
∪
⋃

b∈P•Λ

Mb

(
�b

)
, (112)
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where �w (resp. �b) denotes the union of the line segments [0, τ exp(2πij/m)]
for j = 0, . . . ,m − 1 and m = nw (resp. m = kb) connecting the center of Hw

(resp. Hb) to the midpoints of its boundary arcs of the second kind.

The image of such a line segment is a hyperbolic geodesic arc in
̂̂
Γ∨Λ (i.e.

a piece of a circle which is perpendicular to the unit circle U(1)). There are
2|EΛ| such arcs. They all have length dH(0, τ) (see (90)). Their interiors are
pairwise disjoint and if two arcs γ and γ′ have a common endpoint ξ then either
ξ = Mw(0) for some w ∈ P◦Λ or ξ = Mb(0) for some b ∈ P•Λ or the endpoints
of γ and γ′ are {ξ,Mw(0)} and {ξ,Mb(0)}, respectively, such that the nodes w

and b in the tree Γ̂∨Λ are connected by an edge e, in which case γ ∪γ′ equals the

edge e of Γ̂∨Λ and ξ is the midpoint of the arc (111).
A white node w corresponds to a cycle of the permutation σ0. The line

segments in �w are labeled counter-clockwise cyclically with the elements of

EΛ in that cycle. As det(Mw) = 1 the arcs in
̂̂
Γ∨Λ with one endpoint equal to

Mw(0) are also counter-clockwise cyclically labeled with the elements of EΛ in
that cycle.

A black node b corresponds to a cycle of the permutation σ1. The line
segments in �b are labeled clockwise cyclically with the elements of EΛ in that

cycle. As det(Mb) = −1 the arcs in
̂̂
Γ∨Λ with one endpoint equal to Mb(0) are

counter-clockwise cyclically labeled with the elements of EΛ in that cycle.
The following proposition summarizes the above results.

Proposition 3

i.
̂̂
Γ∨Λ is a tree with leaves, i.e. a connected graph without loops in which the

edges are incident to one or two nodes. The nodes of the tree Γ̂∨Λ are the

same as those of
̂̂
Γ∨Λ . The edges of Γ̂∨Λ are γ ∪ γ′ where γ, γ′ are arcs in̂̂

Γ∨Λ with one common endpoint ξ which is not a node of Γ̂∨Λ .

The leaves of
̂̂
Γ∨Λ (i.e. edges incident to only one node) come in pairs

which correspond 1-1 with the elements of EΛ which are not an edge of

Γ̂∨Λ .

ii. A node Mw(0) for w ∈ P◦Λ (resp. Mb(0) for b ∈ P•Λ) corresponds to a cycle

of the permutation σ0 (resp. σ1) and the arcs of
̂̂
Γ∨Λ incident to Mw(0)

(resp. Mb(0)) are counter-clockwise cyclically ordered as the elements in
that cycle.

iii. The boundary of X̆σ0,σ1,% consists of arcs along the circle U(1) and circular
arcs perpendicular to U(1). The arcs of the latter type correspond 1-1 with

the leaves of the tree
̂̂
Γ∨Λ . They come in pairs and when they are pairwise

identified we obtain the surface Xσ0,σ1,%.
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Figure 24: Polygon X̆σ0,σ1,% (red arcs and blue arcs 2 and 3) for Zhegalkin Zebra
Motive Z3, Λ = Aut(Z3) and % = 1

2

√
2, β = π

4 .

There is no identification between arcs on U(1)∩ X̆σ0,σ1,%. Thus the union
of these arcs is the boundary of Xσ0,σ1,%.

iv. The surface Xσ0,σ1,% is Xσ0,σ1,% without its boundary. �

4.4.3 Examples: Z3, Z4, Z6.

In the planar tilings for the Zhegalkin Zebra Motives Z3, Z4, Z6 in Figure 2
all polygons are triangles. Therefore, the hyperbolic quadrangles used in the
above construction of Xσ0,σ1,% all have angles 1

3π, 1
2π, 1

2π, 1
2π. For Z3 and

Λ = Aut(Z3) there is one white and one black polygon and the permutations

are σ0 = (1, 2, 3), σ1 = (3, 2, 1); see (79). Figure 24 shows the polygon X̆σ0,σ1,%

and the tree with leaves
̂̂
Γ∨Λ ; see also Figure 16. Identification of the arcs with

equal labels yields the surface Xσ0,σ1,%. Topologically this surface is a 2-sphere
from which three disjoint open disks have been removed.

We leave it as an instructive exercise to convert the pictures for (Z4,Aut(Z4))
and (Z6,Aut(Z6)) from Figure 18 into the format of Figure 24. �

5 Algebraic structures

5.1 Tabulating the structure

For the investigation of the algebraic structures associated with a Zhegalkin
Zebra Motive Z, a sublattice Λ of Aut(Z) and a Λ-invariant positive integer
weight function ν : E → Z>0 we restrict the pictures of the polygonal tiling
given by Z to a period parallelogram for the lattice Λ; cf. Figure 19.
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The lattice Λ acts on the sets E , P?, P•, P◦ of edges, vertices, black and
white polygons in the tiling of R2. We denote the orbit sets (i.e. the sets of
edges, vertices, black and white polygons in the tiling of the torus R2/Λ) by EΛ,
P?Λ, P•Λ and P◦Λ. These are finite sets with cardinalities satisfying the relation

|P?Λ|+ |P•Λ|+ |P◦Λ| = |EΛ| . (113)

We label the vertices with the numbers 1, . . . , |P?Λ|, the black polygons with the
numbers 1, . . . , |P•Λ|, the white polygons with the numbers 1, . . . , |P◦Λ| and the
edges with the numbers 1, . . . , |EΛ|. It suffices to only include the edge labels in
the picture; cf. Figure 19.

The structure maps for the quiver ΓΛ and the bipartite graph Γ∨Λ are

s, t : EΛ → P?Λ , b : EΛ → P•Λ , w : EΛ → P◦Λ. (114)

These maps can be given in a table as in Figure 25. We also include in the table
two columns for the edge vectors

(
ω1(e), ω2(e)

)
, one column for the positive

weight function ν and two columns encoding the period parallelogram. The
latter two are constructed as follows. First shift the period parallelogram such
that its sides do not pass through a vertex in the tiling and its corners lie in
the interior of black polygons. Choose a corner of the period parallelogram and
look at how the two sides of the polygon incident to this corner intersect the
edges of the tiling. This yields two maps

l1, l2 : EΛ → {−1, 0,+1} (115)

such that lj(e) = 0 if side j does not intersect edge e, lj(e) = −1 if side j
intersects edge e from black to white, lj(e) = +1 if side j intersects edge e from
white to black. Finally we also include in the table a column for a twist function
η.

Remark 7 Note that the picture in Figure 19 and the table in Figure 25
(except for the η-column) are equivalent, in the sense that one can easily be
(re)constructed from the other. Actually there is some redundancy in the table.

For instance, using the columns e, s(e), t(e), ω1(e), ω2(e) one can draw the
quiver Γ with periodically labeled edges in R2. The (closures of the) connected
components of the complement R2 \ Γ are the polygons of the tiling. The
boundaries of these polygons are oriented and the polygons can be colored black
(resp. white) if the orientation is clockwise (resp. counter-clockwise). Choosing
labels for the polygons one thus finds the columns b(e) and w(e).

Alternatively, one may use the columns e, b(e), w(e), ω1(e), ω2(e) and the
requirement that the polygons must be convex to draw the individual polygons.
If the polygons are strictly convex, the labels on the edges are uniquely deter-
mined and thus provide unambiguous instructions for building the planar tiling
by glueing the polygons. Choosing labels for the vertices in the tiling one thus
finds the columns s(e) and t(e). �
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e s(e) t(e) b(e) w(e) ω1(e) ω2(e) ν(e) l1(e) l2(e) η(e)
1 2 4 1 1 −1 0 2 0 0 1
2 6 2 1 2 0 −1 1 0 −1 1
3 2 1 2 2 1 0 1 −1 1 1
4 1 4 3 2 0 2 1 1 0 −1
5 5 1 3 3 −1 0 1 0 0 1
6 4 3 3 1 1 −1 1 −1 0 1
7 3 5 3 4 0 −1 1 0 0 1
8 3 2 2 1 0 1 1 1 0 −1
9 5 4 4 4 1 0 2 0 0 −1

10 4 3 2 4 −1 1 1 0 0 1
11 1 4 2 3 0 −2 1 0 −1 1
12 4 6 1 3 1 1 1 0 1 −1
13 6 5 4 3 0 1 1 0 0 1
14 4 6 4 2 −1 −1 1 0 0 1

Figure 25: Tabulated version of the data in Figure 19.

Remark 8 The data in the columns e, s(e), t(e), b(e), w(e) are equivalent to
the data of the superpotential (EΛ, σ0, σ1). Indeed the cycle decompositions of
σ0 and σ1 immediately give the columns b(e) and w(e). The vertices in the tiling
correspond with the cycles of the permutation σ−1

1 σ0. The edges in a cycle are
the incoming edges at the vertex corresponding to that cycle. The outgoing
edges at a vertex are found by applying σ0 to the incoming edges. In this way,
the superpotential (EΛ, σ0, σ1) yields columns e through w(e) in the table.

Conversely, column b(e) (resp. w(e)) shows which edges e belong to which
cycle of σ1 (resp. σ0). If edges e and e′ belong to the same cycle, e′ is the
immediate successor of e in the cyclic ordering if and only if t(e) = s(e′).

For an illustration of this remark one may compare the table in Figure 25
and Formulas (80)-(81). �

5.2 The (co)homology of Γ∨Λ

The homology group H1(Γ∨Λ ,Z) is by definition a subgroup of the free abelian
group on the set of edges EΛ. The latter group can be canonically identified
with the group ZEΛ of maps from EΛ to Z. The homology group H1(Γ∨Λ ,Z) then
consists of those maps θ : EΛ → Z which satisfy

∀b ∈ P•Λ, ∀w ∈ P◦Λ :
∑

e∈EΛ,b(e)=b

θ(e) = 0,
∑

e∈EΛ,w(e)=w

θ(e) = 0. (116)

The cohomology group H1(Γ∨Λ ,C∗) = Homgroups

(
H1(Γ∨Λ ,Z),C∗

)
is a quo-

tient of the group C∗EΛ of maps from EΛ to C∗ whereby a map α : EΛ → C∗
induces the homomorphism

H1(Γ∨Λ ,Z) −→ C∗ , θ 7→
∏
e∈EΛ

α(e)θ(e). (117)
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Two maps α1, α2 : EΛ → C∗ yield the same element of H1(Γ∨Λ ,C∗) if and only if
α1/α2 lies in the subgroup of C∗EΛ defined by the equations∏

e∈EΛ

α(e)θ(e) = 1 (118)

for all maps θ : EΛ → Z which satisfy (116). Of course, it suffices to take (118)
only for a set of θ’s which form a basis for H1(Γ∨Λ ,Z).

Example 4

i. Equation (49) means that a realization ω : EΛ → C of the superpotential
is an element of the homology group H1(Γ∨Λ ,C). If the components of
all edge vectors (ω1(e), ω2(e)) are integers ω1 and ω2 are elements of the
homology group H1(Γ∨Λ ,Z).

ii. Equation (48) means that a realization of the superpotential can also be
viewed as a map ω : EΛ → C∗ which then through (117) defines an element
of the cohomology group H1(Γ∨Λ ,C∗).

iii. A twist function η : EΛ → {±1} yields an element in the cohomology
group H1(Γ∨Λ ,C∗). �

Proposition 4 The rank of the homology group H1(Γ∨Λ ,Z) is

rankH1(Γ∨Λ ,Z) = |EΛ|+ 1− |P•Λ| − |P◦Λ| = 1 + |P?Λ|. (119)

If (Z,Λ) is dimer complete (i.e. positive integer weight functions exist) the
group H1(Γ∨Λ ,Z) is the subgroup of ZEΛ generated by the differences m − m′ of
perfect matchings m, m′.

Proof : The first equality in (119) follows from the fact that (116) is a system
of |P•Λ|+ |P◦Λ| linear equations for |EΛ| unknows with exactly one linear relation
between the equations. The second equality in (119) follows from (113).

In [11] §3.4 the matching polytope for Γ∨Λ is defined as the set
maps ϑ : EΛ → R≥0 such that for all w ∈ P◦Λ and all b ∈ P•Λ:∑

e∈EΛ, w(e)=w

ϑ(e) = 1 and
∑

e∈EΛ, b(e)=b

ϑ(e) = 1

 . (120)

Assume that a positive integer weight function ν exists. Then for every map
α : EΛ → Z representing an element of H1(Γ∨Λ ,Z) and every sufficiently large
integer k the map 1

k deg ν (kν + α) is a point in the matching polytope. Thus

(119) implies that the matching polytope is a convex polyhedron of dimension
1+ |P?Λ|. By [11] Lemma 3.10 the vertices of the matching polytope are precisely
the perfect matchings.
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Now consider an element of H1(Γ∨Λ ,Z) and represent it by a map α : EΛ → Z.
Take a positive integer k such that all values of the map kν + α : EΛ → Z are
≥ 0. Then kν + α is a non-negative integer weight function of degree k deg ν.
So there are real numbers rm ≥ 0 such that

kν + α =
∑

m perfect matching

rm m . (121)

Then kν(e) + α(e) ≥ rmm(e) for all m and e. Now take m such that rm > 0.
Then kν+α−m is a non-negative integer weight function of degree k deg ν− 1.
If kν +α−m 6= 0 we repeat this procedure with kν +α−m in place of kν +α.
After finitely many steps we arrive at the situation that

kν + α −
∑
m

nmm = 0

with all nm ∈ Z and
∑

m nm = k deg ν. In the same way one shows that
kν −

∑
m n
′
mm = 0 with all n′m ∈ Z and

∑
m n
′
m = k deg ν. It follows that

α =
∑
m

n′′mm

with all n′′m ∈ Z and
∑

m n
′′
m = 0. This completes the proof of Proposition 4. �

It is an amusing challenge to find positive integer weight functions by just
looking at the picture of the planar tiling, but one may fail. Here is a method
for proving or disproving the existence of positive integer weight functions which
works in general. From (3) one sees that the simplest necessary (but not suffi-
cient) condition for existence of non-negative integer weight functions of degree
≥ 1 is that in the cycle decompositions of the permutations σ0 and σ1 there
must be as many cycles for σ0 as for σ1. If that condition is satisfied one can
easily find (by computer) from the cycle decompositions of σ0 and σ1 all perfect
matchings. If one finds nothing there are no perfect matchings and therefore
according to the Proposition 4 there are no positive integer weight functions
either. So let us now assume that there are perfect matchings. Then the sum of
all perfect matchings is a positive integer weight function if and only if for every
e ∈ EΛ there is a perfect matching m such that m(e) = 1. As said in the proof
of Proposition 4, by [11] Lemma 3.10 the perfect matchings are the vertices of
the matching polytope (120). So every positive integer weight function ν must
be a linear combination of perfect matchings with non-negative real coefficients.
Thus if a positive integer weight function exists there must be for every e ∈ EΛ
at least one perfect matching m such that m(e) = 1. We conclude:

Corollary 2 Positive integer weight functions exist if and only if the sum of
all perfect matchings is a positive integer weight function. �

This shows that the definitions of dimer completeness – Definition 1 in the
present paper and Definition 1.5. in [22] – agree.
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Z21 + Z41 + Z61 + Z62 Z21 + Z41 + Z62

Figure 26: Zhegalkin Zebra Motives which do not admit positive integer weight
functions.

Example 5 The Zhegalkin Zebra Motives shown in Figure 26 do not admit
positive integer weight functions. For Z21+Z41+Z61+Z62 this is because there
are twice as many black polygons as white polygons. For Z = Z21 + Z41 + Z62

and Λ = Aut(Z) it turns out that there are 14 edges and 25 perfect matchings.
The sum of the perfect matchings as a function EΛ = {1, . . . , 14} → Z is

10, 10, 5, 5, 10, 10, 0, 10, 10, 5, 5, 10, 10, 0.

This shows that for this (Z,Λ) there are no positive integer weight functions.
�

For e ∈ EΛ we denote by e•◦ (resp. e◦•) the directed edge of the bipartite
graph Γ∨Λ from b(e) to w(e) (resp. from w(e) to b(e)). Every closed loop ` on
Γ∨Λ can then be written as a string

`= e1
•◦ · e2

◦• · e3
•◦ · e4

◦• · · · e2m−1
•◦ · e2m

◦• with (122)

w(ek) = w(ek+1) if k odd, b(ek) = b(ek+1) if k even, b(e2m) = b(e1).

The homology class of the loop ` (122) in H1(Γ∨Λ ,Z) ⊂ ZEΛ is given by the
function

` : EΛ → Z, `(e) = ]{k | e = ek, k even } − ]{k | e = ek, k odd }. (123)

Remark 9 Loops on Γ∨Λ in the format (122) can immediately be seen in the
picture of the planar tiling as paths in R2 which start in the interior of some
black polygon b, end in the interior of some Λ-translate of b, do not pass through
any vertex of the tiling and transversely intersect the edges of the tiling. Thus,
in Figure 19 one can see, for instance, the loop 1•◦8◦•11•◦5◦•7•◦9◦•14•◦2◦•. �
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In Section 2 we defined the superpotential (EΛ, σ0, σ1) for the Zhegalkin
Zebra Motive Z and lattice Λ. Vertices in the tiling modulo Λ correspond to
the orbits of the permutation σ−1

1 σ0 as follows. For a vertex v fix an edge e1 with
v = t(e1). Let (e1, e3, e5, . . . , e2m−1) be the orbit of σ−1

1 σ0 which contains the
edge e1; i.e. e2j+1 = σ−1

1 σ0(e2j−1) for j = 1, . . . ,m−1 and σ−1
1 σ0(e2m−1) = e1.

Then the incoming arrows at the vertex v are e1, e3, . . . , e2m−1 and the outgoing
arrows at v are σ0(e1), σ0(e3), . . . , σ0(e2m−1). Setting e2j = σ0(e2j−1) for j =
1, . . .m we may combine this to one string of edges

v =
(
e1, e2, e3, . . . , e2m−1, e2m

)
,

ek+1 = σ0(ek) if k odd, ek+1 = σ−1
1 (ek) if k even, e1 = σ−1

1 (e2m),
v = t(ek) if k odd, v = s(ek) if k even.

(124)

This string of edges directly gives the following loop on Γ∨Λ in the format (122)

`v = e1
•◦ · e2

◦• · e3
•◦ · . . . · e2m−1

•◦ · e2m
◦•. (125)

Remark 10 The right-hand side of v =
(
e1, e2, e3, . . . , e2m−1, e2m

)
in (124)

gives precisely the cyclic ordering of the arrows in the quiver ΓΛ incident (in-
coming as well as outgoing) to the vertex v. This cyclic ordering at all vertices
of ΓΛ is precisely what makes ΓΛ a ribbon graph. It is obvious from (124)
that one can read the superpotential (σ0, σ1) directly from this ribbon graph
structure on ΓΛ, and vice versa.

Passing from v =
(
e1, e2, e3, . . . , e2m−1, e2m

)
in (124) to `v = e1

•◦ · e2
◦• ·

e3
•◦ · . . . · e2m−1

•◦ · e2m
◦• in (125) is just a notational make-up which preserves

the information on the cyclic ordering. There is however a clash between the
notation `v in (125) and the notation `v in (57): the latter gives only the
incoming and outgoing arrows at the vertex v, but contains no information
about the cyclic ordering. Or rather, (125) describes a closed loop on the graph
Γ∨Λ and (57) only gives the homology class of that loop in H1(Γ∨Λ ,Z). �

In the same way the orbits of the permutation σ1σ0 define strings of edges
known as zigzags:

z =
(
e1, e2, e3, . . . , e2m−1, e2m

)
,

ek+1 = σ0(ek) if k odd, ek+1 = σ1(ek) if k even, e1 = σ1(e2m).
(126)

This string of edges directly gives the following loop on Γ∨Λ in the format (122)

`z = e1
•◦ · e2

◦• · e3
•◦ · . . . · e2m−1

•◦ · e2m
◦•. (127)

The string of edges for the zigzag z in (126) also is a path along the edges of
the tiling (i.e. a path on the quiver ΓΛ) which alternately turns sharp left and
sharp right. That is why it is called a zigzag. We denote the set of zigzags by
Pz

Λ.

Remark 11 Note that one can immediately recover the permutations σ0 and
σ1 from the strings of edges v in (124) for all vertices v ∈ P?Λ.
Similarly one can immediately recover the permutations σ0 and σ1 from the
strings of edges z in (126) for all zigzags z ∈ Pz

Λ. �
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Proposition 5 The homology classes of the loops `v ( v ∈ P?Λ ) generate a sub-
lattice of rank |P?Λ| − 1 in H1(Γ∨Λ ,Z). The homology classes of the loops `z
( z ∈ Pz

Λ ) generate a sublattice of rank |Pz
Λ| − 1 in H1(Γ∨Λ ,Z). �

The string of edges z in (126) is a closed loop on the quiver ΓΛ, while the string
`z in (127) is a closed loop on the bipartite graph Γ∨Λ . The correspondence (126)-
(127) is exceptionally simple. In general the correspondence between closed
loops on ΓΛ and closed loops on Γ∨Λ is more complicated. Here is a (canonical)
way to convert a closed loop ` on Γ∨Λ given in the format (122) to a closed loop on
ΓΛ. A pair e2j−1

•◦e2j
◦• on ` corresponds to a white polygon wj which ` enters

through the edge e2j−1 and leaves through the edge e2j . Let ej,1, . . . , ej,nj
be

the edges between e2j−1 and e2j on the counter-clockwise oriented boundary of
wj . A pair e2j

◦•e2j+1
•◦ on ` corresponds to a black polygon bj which ` enters

through the edge e2j and leaves through the edge e2j+1. Let e′j,1, . . . , e
′
j,n′j

be

the edges between e2j and e2j+1 on the clockwise oriented boundary of bj . Here
j runs from 1 to m and e2m+1 = e1 by convention. Then the closed loop on ΓΛ
which corresponds to ` is

(e1, e1,1, . . . , e1,n1
, e2, e

′
1,1, . . . , e

′
1,n′1

, e3, . . . . . . . . . . . .

. . . . . . , e2m−1, em,1, . . . , em,nm , e2m, e
′
m,1, . . . , e

′
m,n′m

).
(128)

Note that this reproduces for the zigzag loop `z in (127) the loop z in (126).
For the vertex loop `v in (125) Formula (128)produces a loop on ΓΛ which is
the string of edges v in (124) with extra edges inserted between e2j−1 and e2j

for j = 1, . . . ,m. The resulting closed path on ΓΛ is in fact the concatenation of
the boundaries of the white polygons incident to v.

Using Formula (128) one can associate with a closed loop ` on Γ∨Λ and a
realization ω of the superpotential the vector

ω(e1) + ω(e1,1) + . . .+ ω(e1,n1
) + ω(e2) + ω(e′1,1) + . . .+ ω(e′1,n′1

) + ω(e3) + . . .

. . .+ ω(e2m−1) + ω(em,1) + . . .+ ω(em,nm
) + ω(e2m) + ω(e′m,1) + . . .+ ω(e′m,n′m).

(129)
This is an element of the lattice Λω (see Definition 3) and can be seen in the
picture of the planar tiling as a shift of the polygon b(e1). For a vertex loop `v
Formula (129) yields 0.

5.2.1 Example: Z = Z21 + Z31 + Z41 + Z62.

Consider the Zhegalkin Zebra Motive Z = Z21 +Z31 +Z41 +Z62 and the lattice
Λ = Aut(Z) = Z (2, 2) + Z (2,−2); see Figures 19 and 25. From the cycle
decompositions of the permutations σ−1

1 σ0 and σ1σ0 in (81)-(82) we see that
there are six vertices and six zigzags. Written in the form of strings of edges as
in (124) and (126) the vertices are

(3, 4, 5, 11), (2, 3, 8, 1), (6, 8, 10, 7), (1, 6, 4, 14, 9, 10, 11, 12),
(7, 9, 13, 5), (12, 13, 14, 2)

(130)
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and the zigzags are

(3, 4, 6, 8), (5, 11, 10, 7), (2, 3, 11, 12), (8, 1, 12, 13, 9, 10),
(4, 14, 13, 5), (1, 6, 7, 9, 14, 2).

(131)

Using (124)-(125) and (126)-(127) one can see these as paths in Figure 19.
We take `v (v = 2, . . . , 6) together with l1 = 3•◦4◦•6•◦8◦• and l2 = 11•◦12◦•2•◦3◦•

(see Figure 19). The corresponding functions EΛ → Z are the rows of the matrix

B =



1 −1 1 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 −1 1 1 0 −1 0 0 0 0
−1 0 0 −1 0 1 0 0 −1 1 −1 1 0 1

0 0 0 0 1 0 −1 0 1 0 0 0 −1 0
0 1 0 0 0 0 0 0 0 0 0 −1 1 −1
0 0 −1 1 0 −1 0 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 −1 1 0 0


. (132)

Note that these l1 and l2 are the same as in the table in Figure 25. Note also that
the top five rows of matrix B are just another way of displaying the information
in the columns s(e) and t(e) in the table in Figure 25.

Here is the list of perfect matchings for (Z,Λ) (also see (80)):

{4, 8, 9, 12}, {1, 4, 9, 11}, {1, 3, 5, 9}, {2, 5, 8, 9}, {3, 6, 9, 12},
{2, 6, 9, 11}, {1, 4, 10, 13}, {2, 6, 10, 13}, {1, 3, 7, 13}, {2, 7, 8, 13},
{1, 5, 10, 14}, {6, 10, 12, 14}, {7, 8, 12, 14}, {1, 7, 11, 14}.

(133)

Take m0 = {4, 8, 9, 12}. Writing the elements m−m0 in coordinates w.r.t. the
basis B (132) gives the columns of the following matrix

0 1 2 1 0 0 2 1 2 1 3 1 1 2
0 0 1 1 0 0 0 0 1 1 1 0 1 1
0 0 1 1 0 0 1 1 1 1 2 1 1 1
0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 1 1 1 1 1 0 0 0
0 0 0 0 −1 −1 1 0 0 0 1 0 0 0
0 −1 −1 −1 0 −1 −1 −1 −1 −1 −2 −1 −1 −2


. (134)

The fact that all entries in (134) are integers together with Proposition 4 proves
that the rows of B indeed form a Z-basis for H1(Γ∨Λ ,Z).

The loops l1 = 3•◦4◦•6•◦8◦• and l2 = 11•◦12◦•2•◦3◦• correspond to the
zigzags (3, 4, 6, 8) and (2, 3, 11, 12) in (131). These zigzags are paths on the
quiver ΓΛ. The sums of the edge vectors along these paths in the realization ω
given in Figure 25 are

ω(3) + ω(4) + ω(6) + ω(8)= (1, 0) + (0, 2) + (1,−1) + (0, 1) = (2, 2),
ω(2) + ω(3) + ω(11) + ω(12)= (0,−1) + (1, 0) + (0,−2) + (1, 1)= (2,−2).

This is the basis for Λ corresponding to the period parallelogram in Figure 19.
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Now consider the loops l′1 = 11•◦13◦•9•◦10◦• and l′2 = 11•◦12◦•1•◦8◦•; see
Figure 19. One can easily write l′1 and l′2 as linear combinations of the rows of
the matrix B and check that l′1 and l′2 together with `v (v = 2, . . . , 6) also form
a basis of H1(Γ∨Λ ,Z). From Figure 19 one sees that Formula (128) converts

l′1 to : (11, 12, 13, 9, 10, 8, 3), l′2 to (11, 12, 2, 1, 6, 8, 3).

Formula (129) now yields the vectors

ω(11) + ω(12) + ω(13) + ω(9) + ω(10) + ω(8) + ω(3) = (2, 2),

ω(11) + ω(12) + ω(2) + ω(1) + ω(6) + ω(8) + ω(3) = (2,−2),

which is the same basis of Λ as before. �

5.3 The Newton polygon

According to Proposition 4 the group H1(Γ∨Λ ,Z) is generated by the differences
m − m0 with m0 a fixed perfect matching and m varying through the set of
perfect matchings MZ,Λ. By Proposition 5 we can take a basis B of H1(Γ∨Λ ,Z)
consisting of the loops `v (see (125)) for all but one of the vertices and two
more maps l1, l2 : EΛ → Z. We write the elements m − m0 for m ∈ MZ,Λ in
coordinates w.r.t. the basis B. Taking the coordinates corresponding to l1, l2
defines a map

nm0,l1,l2 :MZ,Λ −→ Z2. (135)

The image is a finite collection of points in Z2. We define

NZ,Λ,m0,l1,l2 = nm0,l1,l2

(
MZ,Λ

)
(136)

NewtZ,Λ,m0,l1,l2 = convex hull of NZ,Λ,m0,l1,l2 in R2 (137)

The polygon NewtZ,Λ,m0,l1,l2 is called the Newton polygon of Z, Λ; cf. [11]
§3.5. It follows from Propositions 4 and 5 that NewtZ,Λ,m0,l1,l2 is a 2-dimensional
polygon.

Changing the choices of m0, l1, l2 changes NZ,Λ,m0,l1,l2 and NewtZ,Λ,m0,l1,l2

at most by an affine transformation (i.e. the composite of a translation and an
invertible linear map). So, we can define an equivalence relation ∼ on MZ,Λ
which is independent of the choices of m0, l1, l2 by setting

m ∼ m′ ⇔ nm0,l1,l2(m) = nm0,l1,l2(m′) for some m0, l1, l2. (138)

Then
m ∼ m′ ⇔ m−m′ =

∑
v∈P?

Λ

nv`v with all nv ∈ Z. (139)

We denote the set of equivalence classes by NZ,Λ.
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Figure 27: The set NZ,Λ,m0,l1,l2 and polygon NewtZ,Λ,m0,l1,l2 for Example 5.2.1.

5.4 The Seifert form

In Section 4 we constructed from the data
(
Z,Λ,�, h, r

)
, � = (η, ν, ω, λ1, λ2)

a connected oriented surface S<h
Z,Λ,�,r in S3. It contains the bipartite graph Γ∨Λ

as a deformation retract and we have the equalities of homology groups in (72).
The Seifert form is the bilinear form Sη,λ1,λ2 on H1(S<h

Z,Λ,�,r,Z) such that for

two oriented loops `1 and `2 on S<h
Z,Λ,�,r

Sη,λ1,λ2
(`1, `2) = link(`+1 , `2) . (140)

Here link(`+1 , `2) is the linking number of loops in S3 and the loop `+1 is
obtained by pushing `1 a little bit off the surface S<h

Z,Λ,�,r in the positive normal

direction; see [18] Definition 6.4.
The graph Γ∨Λ is also contained in the torus Tλ1,λ2

which is the image of the
horizontal plane R2 × {0} under the map (66). For a loop ` on Γ∨Λ we denote
by `† the loop in S3 obtained by pushing ` a little bit off the torus Tλ1,λ2

in the
outward normal direction. For pictures comparing `, `+ and `† see Figure 28.
Our strategy for computing the Seifert form will be to split (140) as

Sη,λ1,λ2(`1, `2) = link(`+1 − `
†
1, `2) + link(`†1, `2) (141)

and to compute matrices w.r.t. a suitable basis of H1(Γ∨Λ ,Z) for the two pieces
separately.

A pair of perfect matchings m,m0 determines a set of oriented edges of the
bipartite graph Γ∨Λ :

{e•◦, e′◦• | e, e′ ∈ EΛ, m0(e) = 1 , m(e) = 0 , m0(e′) = 0 , m(e′) = 1} . (142)

The elements of this set fit together to a collection of disjoint simple loops on Γ∨Λ
such that the sum the functions (123) for these simple loops is precisely m−m0.
The functions m − m0 with m0 fixed and m varying through the set of perfect
matchings MZ,Λ generate the homology group H1(Γ∨Λ ,Z); see Proposition 4.
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η(e) = +1 η(e) = +1

η(e) = −1 η(e) = −1

Figure 28: e◦•, e◦•+, e◦•† (left), e•◦, e•◦+, e•◦† (right); e◦•, e•◦ (black), e◦•+, e•◦+

(red), e◦•†, e•◦† (blue), e (dotted blue); all directed from right to left.

The first step in computing the Seifert form is to derive Formula (149) for
the linking numbers

link
(
(m1 −m0)+ − (m1 −m0)†, (m2 −m0)

)
(143)

for all pairs of perfect matchings m1, m2 (keeping m0 fixed). The number in
(143) is a sum with one term for every black node of Γ∨Λ . The contribution
from node b is 0, −1, +1 and depends only on the edges e0, e1, e2 satisfying
b = b(e0) = b(e1) = b(e2), m0(e0) = m1(e1) = m2(e2) = 1. Using the pictures
in Figure 28 one can easily see that only the four configurations in Figure 29
make non-zero contributions.

�
�

�

@
@

@ v
e1
◦•

e2
◦•

e0
•◦

η(e0) = +1 �
�

�

@
@

@ v
e2
◦•

e1
◦•

e0
•◦

η(e0) = −1

ve1
◦• = e2

◦• e0
•◦

η(e1) = η(e0) = +1

or

η(e1) = η(e0) = −1

Figure 29: The only configurations which make local contributions; the local
contribution is −η(e0).

The bookkeeping for these local contributions is most easily done by means
of matrices with rows and columns indexed by the elements of EΛ. We start
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from the permutation matrix for σ1: it has in column e only one non-zero entry,
namely 1 in row σ1(e). Using the perfect matching m0 we define the matrix

ρ1,m0
=
(
I− ς1,m0

)−1
(144)

where the matrix ς1,m0 is obtained by multiplying the e-th row of the permuta-
tion matrix σ1 by 1−m0(e). Denoting the identity matrix by I and the diagonal
matrix with (e, e)-entry equal to η(e) by diag(η) we form the matrices

Rη,m0
:= diag(η) + ρ1,m0

− ρt1,m0
, (145)

|Rη,m0
| := −I + ρ1,m0

+ ρt1,m0
. (146)

The matrices Rη,m0 and |Rη,m0 | have the following interpretation. Write the cy-
cle decomposition of the permutation σ1 such that the elements e with m0(e) = 1
are in the first position in their cycle. Then the entry of Rη,m0

in row e1 and
column e2 for e1 6= e2 is −1 (resp. +1) if e1 and e2 lie in the same cycle of σ1

with e1 to the left (resp. right) of e2. So, the (e1, e2)-entry is +1 for the left
picture in Figure 29 and −1 for the middle one. All other off-diagonal entries
of Rη,m0

are 0.
The matrix |Rη,m0

| is obtained from Rη,m0
by replacing all entries by their

absolute value. Thus the entry of |Rη,m0
| in row e1 and column e2 is 1 if e1

and e2 lie in the same cycle of σ1 and is 0 otherwise. View the function ηm0

given by ηm0(e) = η(e)m0(e) for all e as a row vector and use it to define
the row vector ηm0 · |Rη,m0

| by matrix multiplication. Let diag
(
ηm0 · |Rη,m0

|
)

denote the corresponding diagonal matrix. The non-zero entries of the matrix
|Rη,m0

| · diag
(
ηm0 · |Rη,m0

|
)

are then η(e0) in row e1 and column e2 if e1 and e2

lie in the same cycle of σ1 and e0 is the first element in that cycle.

Proposition 6 The matrix

Ωη,m0
:= − 1

2 diag(1−m0) ·
(
Rη,m0 + |Rη,m0 | · diag

(
ηm0 · |Rη,m0 |

))
· diag(1−m0)

(147)
satisfies:

Ωη,m0
− Ωtη,m0

= diag(1−m0) ·
(
ρt1,m0

− ρ1,m0

)
· diag(1−m0) (148)

`1 · Ωη,m0
· `t2 = link(`+1 − `

†
1, `2) (149)

for all simple loops `1, `2 on Γ∨Λ . On the left-hand side of Formula (149) `1, `2
are viewed as row vectors with entries `1(e) resp. `2(e) ( e ∈ EΛ ).
Note: The right-hand side of Formula (148) - hence also the left-hand side -
is independent of the choice of the twist function η. The right-hand side of
Formula (149) - hence also the left-hand side - is independent of the choice of
the perfect matching m0.

Proof : Formula (148) follows immediately from (145)-(146) and the fact that
the matrices |Rη,m0

| and diag
(
ηm0 · |Rη,m0

|
)

commute.
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By construction the non-zero entries of the matrix Ωη,m0 give exactly the
local contributions described in Figure 29. So, Formula (149) holds if `1 =
m1−m0 and `2 = m2−m0 for two perfect matchings m1, m2. Since the functions
m−m0 with m ∈MZ,Λ generate the homology group H1(Γ∨Λ ,Z) it now follows
that Formula (149) holds for all simple loops `1, `2. �

The subgroup of H1(Γ∨Λ ,Z) generated by the homology classes [`v] (v ∈ P?Λ)
has rank |P?Λ| − 1 (see Proposition 5). It is the kernel of the homomorphism
H1(Γ∨Λ ,Z) −→ H1(Tλ1,λ2

,Z) = Λ induced by the inclusion Γ∨Λ ↪→ Tλ1,λ2
. Thus

as a Z-basis of H1(Γ∨Λ ,Z) we can take all but one of the classes [`v] (v ∈ P?Λ)
together with the homology classes of two loops l1 and l2 on Γ∨Λ ⊂ Tλ1,λ2

of
which the homology classes in H1(Tλ1,λ2 ,Z) = Λω are λ1 and λ2, respectively.

More precisely, for l1 we take the image under the map (66) of the line
segment {(tλ1, 0) | 0 ≤ t < 1} and for l2 we take the image of the line segment
{(tλ2, 0) | 0 ≤ t < 1}. Thus l1 is the circle with centre (0, 0, 0) and radius 1 + r
in the plane Z = 0 and l2 is the circle with centre (0, 1, 0) and radius r in the

plane X = 0. We denote by l†1 (resp. l†2) the circles obtained by pushing l1
(resp. l2) a little off the torus Tλ1,λ2

in the positive normal direction. So, l†1 is

the circle in the plane Z = 0 with centre (0, 0, 0) and radius 1 + r + ε and l†2
is the circle in the plane X = 0 with centre (0, 1, 0) and radius r + ε for some
small positive real number ε. Figure 30 shows that:

link(l†2, l1) = 1 , link(l†1, l2) = link(l†1, l1) = link(l†2, l2) = 0 . (150)

Such loops l1 and l2 written as in (122) can easily be seen in pictures which
display the edge labels (see Figure 19). In order to see which of the two loops
should be l1 and which l2 one must then bear in mind that (150) implies that

det(λ1, λ2) = link(l†1, l2)− link(l†2, l1) = −1 . (151)

l1 l†2

l†1

l2

Figure 30: The loops l1, l2, l†1, l†2 for the torus Tλ1,λ2
. The loops are oriented

and start with the yellow arcs.

Once the basis has been fixed the Seifert form can be given by its matrix
with respect to this basis: the Seifert matrix. We fix here our notational
conventions by taking for two loops `1, `2 in the chosen basis the entry of the
Seifert matrix in row `1 and column `2 to be Sη,λ1,λ2

(`1, `2).
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Theorem 4

i. View the functions `v, l1, l2 : EΛ → {−1, 0, 1} as row vectors. Let B denote
the matrix of which the rows constitute the chosen basis of H1(Γ∨Λ ,Z).
Then the Seifert matrix w.r.t. this basis is

Sη,l1,l2 = B · Ωη,m0
· Bt + El2,l1 (152)

where in the matrix El2,l1 the entry in row l2, column l1 is 1 and all other
entries are 0.

ii. The Seifert form Sη,λ1,λ2
on H1(Γ∨Λ ,Z) = H1(S<h

Z,Λ,�,r,Z) does not depend

on the data ν, ω, h, r used in the construction of the surface S<h
Z,Λ,�,r.

It also does not depend on the choice of the perfect matching m0 and the
lifts l1, l2 of the basis λ1, λ2 of Λω.
It does, however, crucially depend on the choice of the twist function η
and the ordered basis {λ1, λ2} for Λω.

iii. The Seifert forms Sη,λ1,λ2
and S−η,−λ2,λ1

satisfy

S−η,−λ2,λ1
= −Stη,λ1,λ2

. (153)

Proof : i.The first term on the right in (152) is an immediate consequence of
Formula (149). For the second term on the right in (152) we use the result in
(150) and the fact that the homology class of a loop `v on the torus Tλ1,λ2

is 0.
ii. The data ν, ω,R, r, h did not appear in the preceding calculations of the
Seifert matrix (152). The perfect matching m0 does not appear in the defining
formula (140) for the Seifert form.
iii. Write p = 1+ |P?Λ| = dim H1(Γ∨Λ ,Z). The matrix for the Seifert form Sη,λ1,λ2

w.r.t. the basis B is given by Formula (152) i.e.

Sη,l1,l2 = B · Ωη,m0
· Bt + E (154)

where E denotes the p× p-matrix with (p, p− 1)-entry 1 and all other entries 0.
Similarly, the matrix for the Seifert form S−η,−λ2,λ1

w.r.t. the basis B′ is given
by

S−η,−l2,l1 = B′ · Ω−η,m0
· B′t + E. (155)

The bases B and B′ are related by

B′ = J · B with J =

(
1 0
0 0

)
+ E − Et (156)

where 1 denotes the identity matrix of size p− 1 and 0 denotes the appropriate
zero matrices. Note that J t = J−1. The matrix for the Seifert form Sη,λ1,λ2

w.r.t. the basis B′ is therefore

J · Sη,l1,l2 · J t = B′ · Ωη,m0
· B′t − Et. (157)
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Formulas (145) and (147) imply

Ω−η,m0
= −Ωtη,m0

. (158)

The result (153) now follows from (155), (157) and (158). �

Theorem 5

i. Let `0 =
∑

z∈Pz
Λ
nz`z be an element in the sublattice of H1(Γ∨Λ ,Z) which is

spanned by the zigzag loops. Then one has for every ` ∈ H1(Γ∨Λ ,Z)

Sη,λ1,λ2
(`, `0) = Sη,λ1,λ2

(`0, `) . (159)

ii. There is a 1-1 correspondence `z ↔ ˜̀
z between zigzag loops `z on the

bipartite graph Γ∨Λ and connected components ˜̀z of the boundary of the

surface S6hZ,Λ,�,r such that

Sη,λ1,λ2(`z1 , `z2) = link(˜̀z1 ,
˜̀
z2). (160)

In particular, the Seifert form Sη,λ1,λ2 restricts to a symmetric bilinear
form on the sublattice which is spanned by the loops `z ( z ∈ Pz

Λ ).

iii. Let the twist function be such that either η(e) = 1 for all e ∈ EΛ or
η = (−1)m for some perfect matching m. Let `1, `2 ∈ H1(Γ∨Λ ,Z) be such
that `1 or `2 lies in the sublattice spanned by the loops `v ( v ∈ P?Λ ). Then:

Sη,λ1,λ2(`1, `2) = − 1
2`1 · diag(1−m) ·

(
ρ1,m − ρt1,m

)
· diag(1−m) · `t2

(161)
− 1

2`1 · diag(η) · `t2 .

Here `1, `2 on the right are functions EΛ → Z viewed as row vectors.

Proof : i+ii. A zigzag z written as in (126) gives a loop `z as in (122) on the

bipartite graph Γ∨Λ which on the surface S6hZ,Λ,�,r is homologous to a connected

component ˜̀z of the boundary ∂S6hZ,Λ,�,r. This ˜̀z is disjoint from every loop `

supported on Γ∨Λ . Therefore when computing values of the Seifert form there is
no need to push loops off the surface (cf. (140)):

Sη,λ1,λ2
(`, `z) = link(`, ˜̀z) = link( ˜̀z, `) = Sη,λ1,λ2

(`z, `) . (162)

iii. The Seifert form (140) is independent of the choice of the reference perfect
matching m0 used in the calculations which led to (152). So, if the twist function
is η = (−1)m we can take m0 = m. If η(e) = 1 for all e we can take any reference
perfect matching and for uniformity in the formulas denote it as m.

For `1, `2 as in iii Formula (152) reduces to

Sη,λ1,λ2
(`1, `2) = `1 · Ωη,m · `t2 . (163)
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From Formulas (145), (146), (147) we see that

Ωη,m= − 1
2diag(1−m) ·

(
ρ1,m − ρt1,m

)
· diag(1−m)

(164)

− 1
2diag(1−m) ·

(
diag(η) + |Rη,m| · diag

(
ηm · |Rη,m|

))
· diag(1−m)

Recall that the entry of the matrix |Rη,m| in row e1 and column e2 is 1 if e1 and e2

lie in the same cycle of σ1 and is 0 otherwise. In particular |Rη,m| is a symmetric
matrix with diagonal equal to I. The diagonal matrix diag(η) · diag(1 − m) is
equal to diag(1−m).

If η = (−1)m, the diagonal matrix diag
(
ηm · |Rη,m|

)
is equal to −I and the

second term on the right in (164) is equal to

− 1
2 diag(1−m) ·

(
I− |Rη,m|

)
· diag(1−m) (165)

If η(e) = 1 for all e, the diagonal matrix diag
(
ηm · |Rη,m|

)
is equal to I and the

second term on the right in (164) is equal to

− 1
2 diag(1−m) ·

(
I + |Rη,m|

)
· diag(1−m) (166)

Note that all entries of the matrix diag(1−m) · |Rη,m| ·diag(1−m) are 0 or 1 and
that the entry in row e1 and column e2 is 1 if and only if m(e1) = m(e2) = 0
and b(e1) = b(e2). From this one sees that

`1 · diag(1−m) · |Rη,m| · diag(1−m) · `t2 =
∑

e1,e2∈Pm

`1(e1)`2(e2) (167)

with Pm =
{
e1, e2 ∈ EΛ | m(e1) = m(e2) = 0, b(e1) = b(e2)

}
Next note that `1 and `2 represent elements of H1(Γ∨Λ ,Z) and therefore satisfy∑

b(e)=b

`1(e) =
∑
b(e)=b

`2(e) = 0

for every black polygon b. The contribution of the terms with b(e1) = b(e2) = b
to the right hand side of (167) is therefore ∑

b(e1)=b,m(e1)=0

`1(e1)

 ∑
b(e2)=b,m(e2)=0

`2(e2)

 =
∑

b(e)=b,m(e)=1

`1(e)`2(e).

Thus (167) becomes

`1 ·diag(1−m)·|Rη,m|·diag(1−m)·`t2 =
∑

m(e)=1

`1(e)`2(e) = `1 ·diag(m)·`t2. (168)

On the other hand,

`1 · diag(1−m) · I · diag(1−m) · `t2 = `1 · diag(1−m) · `t2. (169)
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By combining Formulas (164), (165), (166), (168) and (169) we see that

Ωη,m = − 1
2

(
diag(1−m) ·

(
ρ1,m − ρt1,m

)
· diag(1−m) + diag(η)

)
(170)

The result iii now follows from (163) and (170). �

Definition 5

i. The intersection form on H1(Γ∨Λ ,Z) = H1(S<h
Z,Λ,�,r,Z) associated with

the Seifert form Sη,λ1,λ2 is the bilinear form 〈 , 〉η,λ1,λ2 given by

〈`1, `2〉η,λ1,λ2
= Sη,λ1,λ2

(`1, `2)− Sη,λ1,λ2
(`2, `1). (171)

Its matrix w.r.t. the basis B is Sη,l1,l2 − Stη,l1,l2 ; see (152).

ii. If the Seifert form Sη,λ1,λ2 is non-degenerate (i.e. det(Sη,l1,l2) 6= 0) then
there is a unique linear automorphism Mη,λ1,λ2

of H1(Γ∨Λ ,Q) such that for
all `1, `2 ∈ H1(Γ∨Λ ,Z)

Sη,λ1,λ2

(
Mη,λ1,λ2`1, `2

)
= Sη,λ1,λ2

(
`2, `1

)
. (172)

The matrix of Mη,λ1,λ2 w.r.t. the basis B is Mη,l1,l2 = (Stη,l1,l2)−1Sη,l1,l2 .
If all entries of this matrix are integers one calls Mη,λ1,λ2 the monodromy
transformation associated with the Seifert form Sη,λ1,λ2

.

Theorem 6

i. For all choices of the twist function η and the basis λ1, λ2 for Λω the inter-
section form 〈 , 〉η,λ1,λ2

is equal to the intersection form εŜw
on H1(Γ∨Λ ,Z)

used in [11].

Notation: We henceforth denote the intersection form on H1(Γ∨Λ ,Z) as 〈., .〉.

ii. When defined for η, λ1, λ2 the monodromy transformation Mη,λ1,λ2
pre-

serves the Seifert form Sη,λ1,λ2
and the intersection form 〈 , 〉. Moreover

for every zigzag z the homology class of the zigzag loop `z in H1(Γ∨Λ ,Z) is
an eigenvector of Mη,λ1,λ2

with eigenvalue 1.

Proof : i.: Formulas (152) and (148) imply

Sη,l1,l2−Stη,l1,l2 = B·diag(1−m0)·
(
ρt1,m0

−ρ1,m0

)
·diag(1−m0)·Bt +El2,l1−Etl2,l1 .

(173)
Next note the following analogue of Formulas (140)-(141)

Sη,λ1,λ2
(`1, `2) = link(`1, `

−
2 ) = link(`1, `

−
2 − `

†
2) + link(`1, `

†
2) (174)
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where the loop `−2 is obtained by pushing `2 a little off the surface S<h
Z,Λ,� in

the negative normal direction and `†2 is the loop in S3 obtained by pushing `2 a
little off the torus Tλ1,λ2

in the outward normal direction. In order to compute

link(`1, `
−
2 − `

†
2) we look for an analogue of Formula (149) based on an analysis

of local contributions. The local contributions now come from the white nodes
of Γ∨Λ . The local situations require the following modifications in Figure 28:
b(e) ↔ w(e), s(e) ↔ t(e), [η(e) = +1] ↔ [η(e) = −1]. The only configurations
with non-trivial local contributions are shown in Figure 31.

�
�

�

@
@

@ f
e1
•◦

e2
•◦

e0
◦•

η(e0) = +1
�
�

�

@
@

@ f
e2
•◦

e1
•◦

e0
◦•

η(e0) = −1

fe1
•◦ = e2

•◦ e0
◦•

η(e1) = η(e0) = +1

or

η(e1) = η(e0) = −1

Figure 31: The only configurations which make local contributions; the local
contribution is η(e0).

For bookkeeping of the local contributions we can use the same matrix for-
malism as in Formulas (144), (145) and (146) but now based on the permutation
σ0 instead of σ1, i.e.

ρ0,m0 =
(
I− ς0,m0

)−1
. (175)

where the matrix ς0,m0 is obtained by multiplying the e-th row of the permuta-
tion matrix σ0 by 1−m0(e). Write the cycle decomposition of the permutation
σ0 such that the elements e with m0(e) = 1 are in the first position in their
cycle. Then the entry of the matrix ρ0,m0

− ρt0,m0
in row e1 and column e2 is

−1 (resp. +1) if e1 and e2 lie in the same cycle of σ0 with e1 to the left (resp.
right) of e2. So, the (e1, e2)-entry is −1 for the left picture in Figure 31 and
+1 for the middle one. The other entries of ρ0,m0 − ρt0,m0

are 0. Proceeding as
before we now find the following analogue of Formula (173)

Sη,l1,l2−Stη,l1,l2 = B·diag(1−m0)·
(
ρt0,m0

−ρ0,m0

)
·diag(1−m0)·Bt +El1,l2−Etl1,l2 ,

(176)
where El1,l2 is the matrix with entry 1 in row l1, column l2 and all other entries
0; i.e. El1,l2 = Etl2,l1 . Taking the sum of (173) and (176) yields

Sη,l1,l2−Stη,l1,l2 = 1
2B·diag(1−m0)·

(
ρt1,m0

−ρ1,m0
+ρt0,m0

−ρ0,m0

)
·diag(1−m0)·Bt.

(177)
This formula shows how the intersection form is built up from local contri-
butions. The local contributions correspond to the left and middle pictures in
Figures 29 and 31. The local contribution is − 1

2 for Fig.29left and Fig.31middle;
it is + 1

2 for Fig.29middle and Fig.31left. By comparing these local contributions
with [[11] Figure 38, Lemma 8.1, Definition 8.2] we see that the intersection form
Sη,l1,l2 − Stη,l1,l2 is indeed the same as the form ε in [11] Definition 8.2.
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ii follows from (162) and (172). �

Corollary 3 The restriction of the intersection form 〈, 〉 to the lattice generated
by the homology classes of the loops `v ( v ∈ P?Λ ) satisfies:

〈`v, `v′〉 = ]{e ∈ EΛ | s(e) = v, t(e) = v′} − ]{e ∈ EΛ | t(e) = v, s(e) = v′}
(178)

for all v, v′ ∈ P?Λ. So, it only depends on the abstract quiver ΓΛ.

Proof : It follows from Formula (161) that

〈`v, `v′〉 = −`v · diag(1−m) ·
(
ρ1,m − ρt1,m

)
· diag(1−m) · `tv′ . (179)

Recall from the elucidation to Formula (145), that when we write the cycle
decomposition of the permutation σ1 such that the elements e with m(e) = 1
are in the first position in their cycle, the entry of ρ1,m − ρt1,m in row e1 and
column e2 is −1 (resp. +1) if e1 and e2 lie in the same cycle of σ1 with e1 to
the left (resp. right) of e2 and is 0 otherwise. It follows that the right-hand side
of (179) is a sum with one term for every black polygon b of which both v and
v′ are vertices.

Let us first consider the situation in which v = s(e), v′ = t(e) and b = b(e)
for some edge e ∈ EΛ. Then there are unique sides e1 and e4 of b such that
v = t(e1) and v′ = s(e4). It follows from (57) that `v(e1) = −1, `v(e) = +1,
`v′(e) = −1, `v′(e4) = +1. There is also a unique side e0 of b such that
m(e0) = 1. The three edges e1, e, e4 are distinct. For e0 one must distinguish
four cases depending on whether it does or does not coincide with one of e1, e,
e4. It follows from the above description of ρ1,m − ρt1,m that in each case the
contribution from b to (179) is +1 (where the extra −-sign on the right in (179)
has been taken into account).

In the same way one checks that in case v = t(e), v′ = s(e) and b = b(e)
for some edge e ∈ EΛ the contribution to (179) is −1.

If v and v′ are vertices of the black polygon b, but not the two endpoints
of a side of b, then there are four distinct sides e1, e2, e3, e4 of b such that
t(e1) = s(e2) = v and t(e3) = s(e4) = v′. Then `v(e1) = −1, `v(e2) = +1,
`v′(e3) = −1, `v′(e4) = +1. It follows from the above description of ρ1,m− ρt1,m
that in this case the contribution to (179) is 0. �

The following corollary summarizes some results of this section in terms of
the surfaces Xσ0,σ1 and Xσ0,σ1,%; see (10) and (12).

Corollary 4 The inclusion Xσ0,σ1,% ⊂ Xσ0,σ1
induces a surjective homomor-

phism
H1(Xσ0,σ1,%,Z) −→ H1(Xσ0,σ1 ,Z) (180)

of which the kernel is generated by the homology classes of the connected com-
ponents of the boundary of Xσ0,σ1,%. The homology classes of the boundary
components are precisely the homology classes of the zigzag loops `z on Γ∨Λ .
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Thus, Theorems 5 and 6 imply that the intersection form 〈., .〉 induces an in-
tersection form 〈., .〉 on H1(Xσ0,σ1 ,Z). When defined, the monodromy transfor-
mation Mη,l1,l2 is the identity on the kernel of the homomorphism (180) and
induces, therefore, an automorphism

Mη,l1,l2 : H1(Xσ0,σ1
,Z) −→ H1(Xσ0,σ1

,Z) (181)

which preserves the intersection form 〈., .〉. �

Z3 Z2

Figure 32: Display of the information needed in Example 5.4.1.

5.4.1 Example: Z3 and Z2

There are 2|EΛ| twist functions. So, only in very simple cases one can list all
twist functions and inspect them for the existence of the monodromy matrix.
The simplest cases are Z = Z3 or Z2 with Λ = Aut(Z).

For Z3 there are three edges labeled 1, 2, 3. We take l1 = 2•◦3◦•, l2 = 2•◦1◦•

(see Figure 32). The twist functions η with invertible Seifert matrix Sη,l1,l2
are given by the following lists of values on the three edges (1, 1, 1), (1,−1, 1),
(1,−1,−1), (−1,−1, 1). But, if we take l1 = 1•◦2◦•, l2 = 2•◦3◦• (see Figure 32)
then the Seifert matrix Sη,l1,l2 is invertible for η = (−1,−1,−1), (−1, 1,−1),
(−1, 1, 1) or (1, 1,−1). See also Formula (153).

For Z2 there are four edges labeled 1, 2, 3, 4. We take l1 = 3•◦4◦•, l2 =
3•◦1◦• (see Figure 32). The twist functions η with invertible Seifert matrix
Sη,l1,l2 are given by the following lists of values on the four edges (−1,−1,−1, 1),
(1,−1,−1,−1), (1,−1, 1, 1), (1, 1,−1, 1). On the other hand, for l1 = 1•◦3◦•,
l2 = 3•◦4◦• the twist functions η with invertible Seifert matrix Sη,l1,l2 are η =
(1, 1, 1,−1), (−1, 1, 1, 1), (−1, 1,−1,−1), (−1,−1, 1,−1); cf. Formula (153).
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For both Z2 and Z3 we have |Pz
Λ|−1 = |P?Λ|+1. So, according to Corollary 4

when the monodromy transformation is defined it is the identity transformation.

5.4.2 Example: Z = Z21 + Z31 + Z41 + Z62.

We look at Seifert forms for the example in Figures 19 and 25 and §4.3.3, §5.2.1.
The intersection form can be computed using the twist function with η(e) = 1

for all e. The matrix of the intersection form w.r.t. the basis B (132) is

intersection form on H1(Γ∨Λ ,Z) :



0 −1 1 0 −1 0 0
1 0 −2 1 0 0 0
−1 2 0 −1 2 0 0

0 −1 1 0 −1 0 0
1 0 −2 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


. (182)

With the labels for the vertices as in the table in Figure 25 the intersection
numbers 〈`v, `v′〉 for v,v′ 6= 1 are given in the upper-left 5 × 5-block of the
matrix (182). The remaining intersection numbers 〈`v, `v′〉 can be derived from
this and the relation

∑
v∈P?

Λ
`v = 0. This agrees with Formula (178) and the

table in Figure 25.
There are six zigzags; see §5.2.1.. The coordinates of the homology classes of

the zigzag loops `z w.r.t. to the basis B are given in the columns of the matrix

0 −1 0 2 1 −2
0 0 0 0 1 −1
0 −1 0 1 1 −1
0 −1 0 0 1 0
0 −1 0 1 0 0
1 −1 0 1 0 −1
0 0 1 −1 −1 1


. (183)

The columns of this matrix are indeed in the kernel of the intersection matrix.
Since there are 214 twist functions η it would be a time consuming task to

compute the Seifert matrix Sη,l1,l2 and its determinant for all η, even for a fixed
choice of l1, l2. We therefore restrict to the 28 twist functions η = τ(−1)m with
m a perfect matching and τ = ±1. The following table shows all cases with
l1 = 3•◦4◦•6•◦8◦• and l2 = 11•◦12◦•2•◦3◦• in which the Seifert matrix Sη,l1,l2 is
invertible

m τ det (Sη,l1,l2)
4 8 9 12 1 1
3 6 9 12 -1 -1
2 6 9 11 1 1
1 4 10 13 1 1
1 5 10 14 -1 -1
1 7 11 14 1 1

(184)
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The result of checking for Seifert matrices with non-zero determinant in case
l1 = 3•◦4◦•6•◦8◦• and l2 = 7•◦10◦•11•◦12◦•2•◦4◦• is given in the following table.

m τ det (Sη,l1,l2)
4 8 9 12 1 1
3 6 9 12 -1 -1
2 6 9 11 1 2
2 6 9 11 -1 1
1 4 10 13 1 2
1 4 10 13 -1 1
1 5 10 14 -1 -1
1 7 11 14 1 1

(185)

A subsequent check reveals that in all cases in (184) and (185) the mon-
odromy matrix M = Mη,l1,l2 has entries in Z (not obvious if the determinant of
the Seifert matrix is 2) and that the ranks of the matrices M− I, (M− I)(M+ I)
and (M − I)(M + I)2 are 2, 1 and 0, respectively. This means that in all cases
the eigenspace for the eigenvalue +1 has rank 5 and that there is a Jordan block
of size 2 for the eigenvalue −1. The eigenspace for the eigenvalue +1 is spanned
by the homology classes of the zigzag loops `z and is independent of η, l1, l2.

For instance, the monodromy matrix for the top line in (184) is

M =



1 0 0 0 0 0 0
1 −1 0 1 −2 0 0
1 −1 0 1 −1 0 0
0 −1 1 1 −1 0 0
0 −1 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(186)

It satisfies

T−1 MT =



1 0 0 0 0 1 0
0 1 0 0 0 2 −1
0 0 1 0 0 1 −1
0 0 0 1 0 1 −1
0 0 0 0 1 0 −1
0 0 0 0 0 −1 1
0 0 0 0 0 0 −1


(187)

where T is the matrix

T =



−1 0 2 1 −2 1 0
0 0 0 1 −1 0 1
−1 0 1 1 −1 0 0
−1 0 0 1 0 0 0
−1 0 1 0 0 0 0
−1 0 1 0 −1 0 0

0 1 −1 −1 1 0 0


(188)
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The first five columns of T are the last five columns of the matrix (183). The
last two columns of T correspond to the loops α = 1•◦8◦•3•◦2◦• and β =
6•◦8◦•10•◦7◦• on Γ∨Λ . The homology classes of α and β in H1(Γ∨Λ ,Z) are the
first and second line of the matrix B in (132). The loops α and β can be
seen in Figure 19 and Figure 20. In Figure 20 they are the sides of the period
parallelogram.

Remark 12 One can check that the twist functions in (184) and (185) are
precisely the twist functions of the form η = ±(−1)m with the property

∀v ∈ P?Λ :
∏

e∈EΛ,s(e)=v

η(e) ×
∏

e∈EΛ,t(e)=v

η(e) =
(
−1
)1+]{e∈EΛ| s(e)=v}

. (189)

Twist functions η which satisfy (189) are called Kasteleyn orientations or
Kasteleyn line bundles with connection; see [11] §1.4.1. �

5.4.3 Example 5.4.2 continued

We computed for the cases in Table (184) the restriction of the Seifert form
Sη,l1,l2 to the lattice spanned by the homology classes of the zigzag loops `z and
found in all these cases that the restriction of τSη,l1,l2 is a symmetric form with
signature (+1,−4).
For example for the first line in table (184) we found that the Seifert form on
the six zigzags is given by the matrix

0 0 1 −1 −1 1
0 −2 0 1 1 0
1 0 −1 0 0 0
−1 1 0 −1 0 1
−1 1 0 0 −1 1

1 0 0 1 1 −3

 . (190)

Figure 33 shows for the first line in table (184) (and some choice of parameters

ν, r, h which for now is irrelevant) the surface S6hZ,Λ,� and its boundary link in

R3. One can check that the off-diagonal part of (190) is precisely the matrix of
linking numbers of the link components. The diagonal entries follow from the
fact that the row sums must be 0 and are not the self-linking numbers of the
link components! �

5.5 The Poisson structure

In this section Z is a Zhegalkin Zebra Motive and Λ is a sublattice of Aut(Z)
such that (Z,Λ) is dimer complete; cf. Definition 1.
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Figure 33: Surface S6hZ,Λ,�,r and its boundary link for the first line in table (184).
Colors and zigzag labels: 1:magenta, 2:red, 3:cyan, 4:blue, 5:green, 6:yellow.

Take a basis B for H1(Γ∨Λ ,Z) consisting of the homology classes of all but one
of the loops `v (v ∈ P?Λ) and two more elements l1, l2 ∈ H1(Γ∨Λ ,Z). By means
of the basis B one can identify the group algebra Z[H1(Γ∨Λ ,Z)] with the ring of
Laurent polynomials Z[X±1

1 , . . . , X±1
k ] in k = |P?Λ| + 1 variables. It carries a

Poisson structure given by [11] Formula (5):{
Xi, Xj

}
= εijXiXj , (191)

where ε =
(
εij
)

is the matrix of the intersection form 〈., .〉 w.r.t. the basis B;
see also Theorem 6.

Proposition 7 The elements of Z[H1(Γ∨Λ ,Z)] which correspond to (homology
classes of) zigzag loops `z (z ∈ Pz

Λ) lie in the center of this Poisson structure,
i.e. they Poisson commute with all elements in Z[H1(Γ∨Λ ,Z)].

Proof : This follows from (159). �

We now choose the reference perfect matching m0 such that it lies over a
corner of the Newton polygon (see §5.3). For a perfect matching m the element
Xm−m0 in the group algebra which corresponds to m−m0 ∈ H1(Γ∨Λ ,Z) is then a
monomial in the variables X1, . . . , Xk where the exponents are the coordinates
of m−m0 w.r.t. the basis B; in particular, Xm0−m0 = 1.

For every a ∈ NZ,Λ,m0,l1,l2 (see (136)) one then has an element Aa in the
group algebra:

Aa =
∑

m∈MZ,Λ: nm0,l1,l2
(m)=a

Xm−m0 . (192)

In [11] Goncharov and Kenyon prove that under the special condition of “min-
imality” these elements Poisson commute with each other, i.e.{

Aa, Aa′
}

= 0 for all a, a′ ∈ NZ,Λ,m0,l1,l2 . (193)

They also prove that for perfect matchings m,m′ for which nm0,l1,l2(m) and
nm0,l1,l2(m′) are neighboring points on the boundary of the Newton polygon the
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difference m − m′ is a zigzag loop and, hence, {Aa, Xj} = 0 for all a on the
boundary of the Newton polygon and for j = 1, . . . , n.

However, not all Zhegalkin Zebra Motives satisfy the minimality condition
and when discussing examples we must check what remains true of these state-
ments; see §5.5.1 and §E.

Let η, λ1, λ2 be such that the monodromy transformation Mη,λ1,λ2 is defined
(see Definition 5). Then, by Theorem 6, Mη,λ1,λ2 preserves the intersection form
〈 , 〉 and, therefore, induces an automorphism of the Poisson structure on the
torus H1(Γ∨Λ ,C∗).

5.5.1 Example: Z = Z21 + Z31 + Z41 + Z62.

We look at the Poisson structure for the example in Figures 19 and 25 and
§4.3.3, §5.2.1. The basis B (132) of H1(Γ∨Λ ,Z) provides an isomorphism of
rings Z[H1(Γ∨Λ ,Z)] ' Z[X±1

1 , . . . , X±1
7 ] and coordinates X1, . . . , X7 on the torus

H1(Γ∨Λ ,C∗). From the matrix (134) one sees that the polynomials A0, . . . , A6

defined by (192) and the labels on the lattice points in the Newton diagram as
in Figure 27 are:

A1 = X2
1X3X5X6X

−1
7 , A2 = X3

1X2X
2
3X4X5X6X

−2
7 ,

A3 = X2
1X2X3X

−2
7 , A4 = X−1

6 X−1
7 , A5 = X−1

6 , A6 = 1,

A0 =
(
X1 +X2

1X2X3X4X5 +X1X2X3X4X5 +X1X3X5+

+X2
1X2X3X5 +X1X2X3X5 +X1X3 +X1X2X3

)
X−1

7

(194)

By multiplying the matrices (182) and (134) one checks that{
Ai, Xj

}
= 0 for i = 1, . . . , 6, j = 1, . . . , 7. (195)

It follows in particular, that the sequence of functions A := (A0, . . . , A5) is
involutive, i.e. {

Ai, Aj
}

= 0 for i, j = 0, . . . , 6. (196)

The 7-dimensional manifold H1(Γ∨Λ ,C∗) equipped with Poisson bracket
{
., .
}

as
in (191), (182) and the sequence of functions A := (A0, . . . , A5) is a completely
integrable system (see e.g. [1] Definition 4.13.). The momentum map is

A : H1(Γ∨Λ ,C∗) −→ C6. (197)

The monomials A1, . . . , A5 in (194) generate the ring of the Casimirs, i.e. the
elements C in Z[X±1

1 , . . . , X±1
7 ] with {C,F} = 0 for every F ∈ Z[X±1

1 , . . . , X±1
7 ].

The symplectic leaves for the Poisson structure on the torus H1(Γ∨Λ ,C∗) are
therefore given by the system of equations with c1, . . . , c5 ∈ C

Ai = ci for i = 1, . . . , 5. (198)
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We now illustrate the effect of the monodromy transformation for the first
line in table (184), i.e. l1 = 3•◦4◦•6•◦8◦•, l2 = 11•◦12◦•2•◦3◦•, m = {4, 8, 9, 12}
and η = (−1)m. The matrix of the monodromy transformation Mη,λ1,λ2

w.r.t.
the basis B is given in (186). The monodromy transformation acts on the
torus H1(Γ∨Λ ,C∗). It sends, for j = 1, . . . , 7, the coordinate function Xj to the
monomial with exponents given by the j-th row of the matrix (186). Thus to
see the effect of the monodromy transformation on the functions A0, . . . , A6 one
must simply multiply the matrices (186) and (134). The result is

0 1 2 1 0 0 2 1 2 1 3 1 1 2
0 1 0 −1 0 0 0 −1 −1 −2 1 1 0 1
0 1 1 0 0 0 1 0 0 −1 2 1 0 1
0 0 0 0 0 0 0 0 −1 −1 1 1 0 0
0 0 0 0 0 0 1 1 0 0 1 1 0 0
0 0 0 0 −1 −1 1 0 0 0 1 0 0 0
0 −1 −1 −1 0 −1 −1 −1 −1 −1 −2 −1 −1 −2


. (199)

The columns of (199) in which the last two entries are not (0,−1) are equal to
the corresponding columns of (134). This confirms that the functions A1, . . . , A6

are invariant under the monodromy transformation. Comparing (199) and (134)
one sees that A0 is not invariant under the monodromy transformation. �

6 Textile structures

6.1 The kernel of the fabric

By gluing to the thickened torus a solid torus on the inside and a solid torus on
the outside one obtains a 3-sphere S3. The central circles of the two solid tori
together with the link in the thickened torus form a link in S3 which in [20] is
called a kernel for the fabric. In the context of the present paper it can be
constructed as follows.

Realize the textile structure as the boundary of the surface S̃6hZ,η,ν,ω con-
structed in §4.2 for some 0 < h < 1, some positive integer weight function
ν and list of edge vectors ω = ωZ (see §4.1). It lies in the thickened plane
R2 × [−h,+h]. Fixing a point p in R2 and a basis λ1, λ2 for the lattice Λ in
R2 such that det(λ1, λ2) = −1 (cf. (151) and Figure 30) we obtain a period
parallelogram for Λ with corners p, p + λ1, p + λ2, p + λ1 + λ2. The sides
(oriented line segments) of the parallelogram are H, V , H+λ1 and V +λ2 with

H = {p + tλ2 | 0 ≤ t ≤ 1} , V = {p + tλ1 | 0 ≤ t ≤ 1} . (200)

We choose p such that none of the four sides contains a vertex in the black/white
tiling defined by Z. Then (H + Λ, 1) ⊂ R3 is a Λ-invariant collection of parallel
lines in the horizontal plane at height 1 and (V + Λ,−1) ⊂ R3 is a Λ-invariant
collection of parallel lines in the horizontal plane at height −1. Take the union
of the textile structure with these two sets of parallel lines modulo Λ, i.e.(

(boundary of S̃6hZ,η,ν,ω) ∪ (H + Λ, 1) ∪ (V + Λ,−1)
)
/Λ , (201)
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and embed it into R3 by means of Formula (66) (with r = 1
3 ). The resulting link

in R3 is then a kernel for the fabric. We denote it by L∞. It is the union,

L∞ = L ∪ X ∪ Y , (202)

of the link L which is the boundary of the Seifert surface S6hZ,Λ,�,r with the
central circle X of the outer solid torus coming from H and the central circle Y
of the inner solid torus coming from V ; see Figure 30.

For practical purposes one may sometimes want to think of (201) asboundary of S̃6hZ,η,ν,ω

∪
(
H + Λ

1

)
∪
(
V + Λ
−1

)
⋂

 box with corners(
p
±1

)
,

(
p + λ1

±1

)
,

(
p + λ2

±1

)
,

(
p + λ1 + λ2

±1

)
(203)

with opposite vertical faces identified.

6.2 The linear map H1(Γ∨Λ ,Z) −→ H1(S3 \ L∞,Z)

Recall from §6.1 that L∞ denotes the kernel of the fabric. By the construction
of the Seifert surface S6hZ,Λ,�,r the bipartite graph Γ∨Λ lies in the complement of

L∞ in S3. We are going to explicitly describe the induced linear map

H1(Γ∨Λ ,Z) −→ H1(S3 \ L∞,Z) (204)

w.r.t. natural bases of the two homology groups.
For H1(Γ∨Λ ,Z) we take the basis B as in Theorem 4; this basis consists of the

homology classes of the loops `v for all but one v ∈ P?Λ (say v 6= v0) and two
loops l1 and l2 which lift the chosen basis λ1, λ2 of Λ.

Since L∞ = L∪X∪Y (see (202)) a natural basis for H1(S3 \L∞,Z) is given
by the homology classes δX, δY, δz (z ∈ Pz

Λ) of the boundaries of little discs
transversal to the components of the link L∞. These classes are characterized
by their linking numbers with the components of L∞:

link(δc, c) = 1 , link(δc, c
′) = 0 (205)

for all components c, c′ of L∞ with c′ 6= c. A loop p on Γ∨Λ lies in S3 \ L∞. Its
homology class in H1(S3 \ L∞,Z) is

[p] = link(p,X) δX + link(p,Y) δY +
∑
z∈Pz

Λ

link(p, ˜̀z) δz , (206)

where, as in Theorem 5 ˜̀
z denotes the component of L∞ which corresponds

to the zigzag z. For the loops l1, l2, `v (v ∈ P?Λ) whose homology classes in
H1(Γ∨Λ ,Z) constitute the basis B we have (see Figure 30)

link(l1,X) = 1 , link(l2,X) = link(`v,X) = 0 ,∀v ∈ P?Λ ,
link(l2,Y) = 1 , link(l1,Y) = link(`v,Y) = 0 , ∀v ∈ P?Λ .

(207)
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According to Formula (162) the other linking numbers in (206) are given by the
Seifert form:

link(p, ˜̀z) = Sη,λ1,λ2
(p, `z) , (208)

where on the right `z is the homology class of the zigzag z in H1(Γ∨Λ ,Z).
The above arguments prove

Proposition 8 The matrix of the linear map (204) w.r.t. the basis `v (v ∈ P?Λ,
v 6= v0), l1, l2 of H1(Γ∨Λ ,Z) and the basis δz (z ∈ Pz

Λ), δX, δY of H1(S3 \ L∞,Z)
is the (|Pz

Λ|+ 2)× (|P?Λ|+ 1)-matrix Lt · Stη,l1,l2
0 1

 (209)

where 0 denotes the 2 × (|P?Λ| − 1) zero matrix, 1 is the 2 × 2 identity matrix,
Sη,l1,l2 is the (|P?Λ|+ 1)× (|P?Λ|+ 1)-matrix giving the Seifert form (see Formula
(152)), L is the (|P?Λ|+1)×|Pz

Λ|-matrix of which the columns give the coordinates
of the homology classes of the zigzag loops w.r.t. the basis B of H1(Γ∨Λ ,Z).
Note that Formula (159) implies

Lt · Stη,l1,l2 = Lt · Sη,l1,l2 . (210)

�

Implicit in the above computation is the computation of the linear map

H1(S<h
Z,Λ,�,r) −→ H1(S3 \ L,Z) ; (211)

cf. (??). This turns out to be an immediate illustration of the general theory
in [18] Chapter 6. So we may conclude from [18] Definition 6.6.:

The (one variable) Alexander polynomial of the link L is:

∆L(u) = det
(
uSη,l1,l2 − Stη,l1,l2

)
= det

(
uStη,l1,l2 − Sη,l1,l2

)
. (212)

where Sη,l1,l2 is the Seifert matrix (154). If detSη,l1,l2 = ±1, the (one variable)
Alexander polynomial is the characteristic polynomial of the monodromy
matrix Mη,λ1,λ2

= (Stη,l1,l2)−1Sη,l1,l2 (see (172)):

∆L(u) = ±det
(
u I−Mη,λ1,λ2

)
. (213)

Assume that l1, l2 lie in the kernel of the matrix Sη,l1,l2 − Stη,l1,l2 . Assume
also that det(Sη,l1,l2) 6= 0 and that the monodromy matrix M = Mη,λ1,λ2 =(
Stη,l1,l2

)−1
Sη,l1,l2 has all its entries in Z.

Formula (210) implies

image
(
M− I

)
⊂ kernel

(
H1(Xσ0,σ1,%,Z) −→ H1(S3 \ L∞,Z)

)
. (214)
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On the other hand, according to Corollary 4 the kernel of the surjective linear
map

H1(Γ∨Λ ,Z) = H1(Xσ0,σ1,%,Z) = H1(Xσ0,σ1,%,Z) � H1(Xσ0,σ1 ,Z) (215)

is generated by the homology classes of the zigzag loops `z (z ∈ Pz
Λ) and is equal

to the kernel of the matrix M− I. So the matrix M− I induces an isomorphism

H1(Xσ0,σ1
,Z)

'−→ image
(
M− I

)
. (216)

Restricting the map (204) to ker(M− I) amounts to multiplying the matrix
in (209) from the right by the matrix L. The result is a (|Pz

Λ|+ 2)× |Pz
Λ|-matrix

of which the top |Pz
Λ| rows form the symmetric |Pz

Λ| × |Pz
Λ|-matrix

Lt · Sη,l1,l2 · L. (217)

This matrix gives the restriction of the Seifert form Sη,l1,l2 to ker(M− I). The
restriction of the Seifert form to ker(M − I) is non-degenerate. Therefore the
matrix in (217) has rank |Pz

Λ| − 1 and its kernel is generated by
∑

z∈Pz
Λ
`z.

It follows that the restriction of the map (204) to ker(M − I) induces an
injective linear map

ker(M− I) ↪→ image
(
H1(Xσ0,σ1,%,Z) −→ H1(S3 \ L∞,Z)

)
(218)

with finite cokernel. From the known ranks of the homology groups we now see
that

rank
(
image

(
H1(Xσ0,σ1,%,Z) −→ H1(S3 \ L∞,Z)

)
= |Pz

Λ| − 1 ,

rank
(
cokernel

(
H1(Xσ0,σ1,%,Z) −→ H1(S3 \ L∞,Z)

)
= 3 .

(219)

Representatives in H1(S3\L∞,Z) for three independent generators of the cokernel
in (219) are the homology classes δX, δY, δZ where

δZ =
∑
z∈Pz

Λ

δz. (220)

6.2.1 Example 5.4.3 continued

For this example the matrix L was already given in Formula (183). The matrix
Sη,l1,l2 can be computed and turns out to be

Sη,l1,l2 =



−1 −1 1 0 0 0 −1
0 −1 0 1 0 0 0
0 2 −1 −1 1 0 0
0 0 0 −1 0 0 0
1 0 −1 1 −1 0 0
0 0 0 0 0 0 1
−1 0 0 0 0 1 −1


(221)
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This agrees with the matrices (182) and (186) for the intersection form and
the monodromy, respectively. Substituting the matrices for Sη,l1,l2 and L into
Formula (209) gives the matrix for the linear map H1(Γ∨Λ ,Z)→ H1(S3 \L∞,Z):

0 0 0 0 0 0 1
0 −1 1 1 0 0 0
−1 0 0 0 0 1 −1

0 0 0 0 0 −1 0
0 0 0 −1 1 −1 0
1 1 −1 0 −1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


. (222)

Since det(Sη,l1,l2) = 1 it follows from (213) that the (one variable) Alexander
polynomial of the link L is

∆L(u) = det(u I−Mη,l1,l2) = (u− 1)5(u+ 1)2. (223)

The eigenspace for the eigenvalue 1 (i.e. ker(M− I)) has rank 5 and is spanned
by the homology classes of the zigzag loops. The eigenspace for the eigenvalue
−1 has rank 1 and is spanned by the vector (0, 1, 1, 0, 0, 0, 0)t. The generalized
eigenspace for the eigenvalue −1 has rank 2 and is spanned by the vectors
(0, 1, 1, 0, 0, 0, 0)t and (0, 0, 1,−1,−1, 0, 0)t.

The matrix Lt · Stη,l1,l2 · L which gives the restriction of the Seifert form to
ker(M− I) is the 6× 6-matrix in Formula (190). Let

Ξ =


0 −3 −20 −5 −5 −6
9 0 −11 −14 −14 −9
−4 −7 0 −9 −9 −10
11 −10 −9 0 −24 −7
11 −10 −9 −24 0 −7
6 −9 −14 −11 −11 0

 . (224)

Then

Lt · Stη,l1,l2 · L · Ξ =


−20 4 4 4 4 4

4 −20 4 4 4 4
4 4 −20 4 4 4
4 4 4 −20 4 4
4 4 4 4 −20 4
4 4 4 4 4 −20

 . (225)

Using that is this example L is the matrix (183) one easily checks that the last
two rows of the matrix L · Ξt are(

4 4 4 28 4 4
−16 8 8 8 8 8

)
. (226)

One now easily finds 24δz for every z ∈ Pz
Λ as an explicit linear combination

of δX, δY, δZ and the homology classes of the zigzag loops `z′ (z′ ∈ Pz
Λ). In

these linear combinations the coefficients of δX and δY are given by (226) , the
coefficient of δZ is 4 (see (225)) and the other coefficients are given by (224). �
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A More examples of Zhegalkin Zebra Motives

In this section we show the tilings of the plane R2 by black and white polygons
for some more Zhegalkin Zebra Motives. In the pictures one can easily recognize
the dual bipartite graphs: the black (resp. white) polygons correspond to the
black (resp. white) nodes; two polygons with a common edge give an edge
between the corresponding nodes of the bipartite graph. For the planar bipartite
graphs which also appear in [13, 14] we will indicate which model it is in op.
cit..

From the planar bipartite graph associated with a Zhegalkin Zebra Motive
Z one then obtains a bipartite graph on the torus R2/Λ for every sublattice
Λ ⊂ Aut(Z). The actual models (brane tilings) in [13, 14] live on a torus. So,
in addition to the Zhegalkin Zebra Motive Z we must also specify the lattice Λ.

The functions in Figure 2 appear in [13, 14] as

• Z2 = Z21 + Z41: Aut(Z2) = Z(1, 0) + Z(0, 1).

– model 4a: Λ = Z(2, 0) + Z(0, 2).

– model 15a: Λ = Z(1, 1) + Z(1,−1).

• Z3 = Z21 + Z41 + Z61: Aut(Z3) = Z(1, 1) + Z(1,−1).

– model 1: Λ = Z(3, 3) + Z(3,−3).

– model 2: Λ = Z(4, 4) + Z(2,−2).

– model 7: Λ = Z(3, 3) + Z(2,−2).

– model 13: Λ = Z(3, 1) + Z(2,−2).

– model 16: Λ = Z(3, 3) + Z(1,−1).

• Z4 = Z21 + Z31 + Z41 + Z61: Aut(Z4) = Z(1, 0) + Z(0, 1).

– model 4d: Λ = Z(1, 1) + Z(1,−1).

– model 15b: Λ = Z(1, 0) + Z(0, 1).

• Z6 = Z11 + Z21 + Z31 + Z41 + Z51 + Z61: Aut(Z6) = Z(1, 1) + Z(1,−1)

– model 10d: Λ = Z(1, 1) + Z(1,−1).

Figures 34 - 36 include Zhegalkin Zebra Motives for the models 3a, 4b, 4c,
6a, 6b, 6c, 8a, 8b, 9a, 9b, 10a, 10b, 10c, 12b, 14 in [13, 14]. The pictures show
the planar tilings. For the models 4c, 6a, 6b, 6c, 8b, 9a, 9b, 10a, 10b, 10c, 12b,
14 the lattice Λ is equal to Aut(Z). For the models 3a, 4b, 8a, the lattice Λ has
index 2 in Aut(Z) (i.e. Aut(Z)/Λ = Z/2Z); more precisely (see Figure 34):

• model 3a: Aut(Z) = Z(2, 2) + Z(0, 1) , Λ = Z(2, 2) + Z(0, 2).

• model 4b: Aut(Z) = Z(2, 2) + Z(0, 1) , Λ = Z(2, 2) + Z(0, 2).

• model 8a: Aut(Z) = Z(3, 3) + Z(0, 2) , Λ = Z(3, 3) + Z(0, 4).

The models 3b, 5, 9c, 11, 12a in [13, 14] can also be described by Zhegalkin
Zebra Motives, but these we have not included in our figures.
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Z21 + Z31 + Z41 + Z61 + Z62 (Z22 + Z42)Z61 + Z31(1 + Z61) Z21 + Z31 + Z41 + Z61 + Z63

Z21 + Z31 + Z41 + Z61 + Z22 Z23 + Z43 + Z61 + Z63 Z22 + Z42 + Z61

[13] model 4b modulo Z/2Z

Z22 + Z42 + Z61Z62

[13] model 3a modulo Z/2Z
Z23 + Z43 + Z61

[13] model 8a modulo Z/2Z
Z21 + Z31 + Z41 + Z62

[13] model 10c

Figure 34:
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Z22 + Z42 + Z31Z61

[13] model 4c
Z42 + Z61 + Z31Z22

[13] model 8b
(Z11 + Z51 + Z62)(Z63 + Z61)+

+Z61Z63 + Z62 + Z31

[13] model 14

Z22 + Z42 + Z61Z31Z22

[13] model 6a
Z22 + Z42 + Z31 + Z61Z31Z22

[13] model 6b
Z22 + Z42 + Z31 + Z61 + Z61Z31Z22

[13] model 6c

Z21 + Z31 + Z41 + Z61+

+Z61Z31Z42

[13] model 12b

(Z22 + Z42 + Z62)Z61+

+Z31(1 + Z61)

[13] model 9a

Z22 + Z42+

+(Z22 + Z31Z22 + Z31Z42)Z61

[13] model 9b

Figure 35:
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Z22 + Z42 + Z61Z31Z21(Z32 + Z61)(1 + Z62)+

+(Z24 + Z44)Z62

[13] model 10a

Z32 + Z61 + (Z24 + Z44)Z62

[13] model 10b

Figure 36:

B The quiver ΓΛ
	

B.1 ΓΛ
	 on Seifert surface

The quiver ΓΛ
	 appears very naturally in the construction of hyperbolic Belyi

map (13)
ϕσ0,σ1,% : Xσ0,σ1,% −→ D

as the inverse image ϕ−1
σ0,σ1,%

(
U(%)

)
of the counter-clockwise oriented circle U(%);

see Section 2.3 and Figure 6. For % < h < 1 the connected components of
ϕ−1
σ0,σ1,%

{
z ∈ C

∣∣ |z| < %
}

and those of ϕ−1
σ0,σ1,%

{
z ∈ C

∣∣ % < |z| ≤ h
}

give a

bipartite tiling of X6hσ0,σ1, % \ ΓΛ
	. Via the homeomorphism (20) this induces a

bipartite tiling on S6hZ,Λ,�,r as illustrated in Figure 37.

B.2 ΓΛ
	 and the superpotential (EΛ, σ0, σ1)

Recall that the set of nodes of the quiver ΓΛ
	 is identified with the set P•Λ and that

the set of arrows of ΓΛ
	 is identified with the set EΛ. The arrow corresponding

to e ∈ EΛ is denoted as eJ. It runs from the node b(e) to the node b(σ0(e)) and
can be identified with the path e•◦σ0(e)

◦•
on the bipartite graph Γ∨Λ .

The embedding of ΓΛ
	 into the oriented surface Xσ0,σ1,% provides the quiver

ΓΛ
	 with the additional structure of a ribbon graph; i.e. at each node a cyclic

ordering of the edges incident to that node. For the cyclic structure at a node
b ∈ P•Λ we note that the outgoing arrows at b are those eJ for which b(e) = b
and the incoming arrows are those e′

J
for which b(σ0(e′)) = b. The outgoing

arrows are cyclically ordered as in the cycle of σ1 which corresponds to b.

Between the outgoing arrows eJ and σ1(e)
J

lies the incoming arrow σ−1
0 (e)

J
.

By writing for every b ∈ P•Λ the cyclically ordered set of arrows incident to
b as linear strings with an outgoing arrow in first position, the permutations σ1

and σ0 can immediately be read from the list of these strings. Thus we see that

80



Z4 = Z21 + Z31 + Z41 + Z61Z2 = Z21 + Z41

Figure 37: Examples of the bipartite tiling on S6hZ,Λ,�,r given by ΓΛ
	. Other

landmarks: the boundary of S6hZ,Λ,�,r (red) and the bipartite graph Γ∨Λ (white).

Proposition 9 The data of the ribbon graph ΓΛ
	 are equivalent to the data of

the superpotential (EΛ, σ0, σ1). �

Ignoring the cyclic ordering of the edges at the nodes leaves ΓΛ
	 only as an

abstract quiver as described in the first paragraph of this section. The data for
this abstract quiver are no longer equivalent to the superpotential (EΛ, σ0, σ1).

The data for this abstract quiver can be given as a table listing the edges eJ

(e ∈ EΛ) with their source b(e) and target b(σ0(e)) or as a matrix

MatΓΛ	 =
∑
e∈EΛ

MatΓΛ	(e) (227)

with rows and columns indexed by the nodes of ΓΛ
	, i.e. indexed by the elements

of the set P•Λ, and

MatΓΛ	(e)b,b′ =

{
eJ if b = b(e) , b′ = b(σ0(e))

0 else
(228)

B.2.1 Example: Z = Z21 + Z31 + Z41 + Z62.

The superpotential for Example 4.3.3 as given in (80) is

σ0 = (1, 6, 8)(2, 3, 4, 14)(5, 11, 12, 13)(7, 9, 10),

σ1 = (1, 12, 2)(3, 11, 10, 8)(4, 6, 7, 5)(9, 14, 13).

The nodes of ΓΛ
	 correspond with the cycles of σ1 and are labeled from left to

right as 1, 2, 3, 4. This is the same labeling as in Figure 25. So, the arrows of
the quiver ΓΛ

	 are

arrow 1J 2J 3J 4J 5J 6J 7J 8J 9J 10J 11J 12J 13J 14J

from 1 1 2 3 3 3 3 2 4 2 2 1 4 4
to 3 2 3 4 2 2 4 1 2 3 1 4 3 1
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In matrix form this table becomes

0 2J 1J 12J

8J + 11J 0 3J + 10J 0
0 5J + 6J 0 4J + 7J

14J 9J 13J 0

The cyclic orderings of the arrows incident to the four vertices of ΓΛ
	 are

vertex 1 : (1J, 8J, 12J, 11J, 2J, 14J);
vertex 2 : (3J, 2J, 11J, 5J, 10J, 9J, 8J, 6J);
vertex 3 : (4J, 3J, 6J, 1J, 7J, 10J, 5J, 13J);
vertex 4 : (9J, 7J, 14J, 4J, 13J, 12J).

�

A path on the quiver ΓΛ
	 is a string of composable arrows:

p = e1
Je2
Je3
J · · · ekJ with b(σ0(ej)) = b(ej+1) , 1 ≤ j < k. (229)

The source s(p) and target t(p) of the path p in (229) are

s(p) = b(e1) , t(p) = b(σ0(ek)). (230)

The path p is closed if t(p) = s(p).
The path algebra Z[Path(ΓΛ

	)] is the free Z-module on the set of paths on
ΓΛ
	 equipped with the product ∗ such that p ∗ p′ is the concatenation of the

strings p and p′ if t(p) = s(p′), while p ∗ p′ = 0 if t(p) 6= s(p′). The constant
paths

{
1b
}
b∈P•Λ

form a collection of orthogonal idempotents and 1 =
∑

b∈P•Λ
1b

is the unit element of Z[Path(ΓΛ
	)].

B.2.2 Example: some closed paths on ΓΛ
	.

Here are three examples of closed paths in ΓΛ
	.

• Take e ∈ EΛ. Let k > 0 be such that σk0 (e) = e and σj0(e) 6= e for j < k.
Then

We = eJ · (σ0(e))
J · . . . · (σk−1

0 (e))
J

(231)

is a closed path in ΓΛ
	 which starts and ends at the node b = b(e).

• For v ∈ P?Λ the loop on Γ∨Λ given in (124)-(125),

`v = e1
•◦ · e2

◦• · e3
•◦ · . . . · e2m−1

•◦ · e2m
◦•, (232)

becomes on ΓΛ
	 the closed path which starts and ends at node b = b(e1):

`v = e1
J · e3

J · . . . · e2m−1
J (233)

with e1 = σ−1
1 σ0(e2m−1), e2k+1 = σ−1

1 σ0(e2k−1) if 1 ≤ k < m.
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• For z ∈ Pz
Λ the loop on Γ∨Λ given in (126)-(127),

`z = e1
•◦ · e2

◦• · e3
•◦ · . . . · e2m−1

•◦ · e2m
◦•, (234)

becomes on ΓΛ
	 the closed path which starts and ends at node b = b(e1):

`z = e1
J · e3

J · . . . · e2m−1
J (235)

with e1 = σ1σ0(e2m−1), e2k+1 = σ1σ0(e2k−1) if 1 ≤ k < m.

�

Proposition 10 For every pair b,b′ ∈ P•Λ of nodes of ΓΛ
	 there is an oriented

path on ΓΛ
	 which starts at b and ends at b′.

Proof : Consider the tiling of R2. Let b and b′ be two black polygons in the
tiling. Take an oriented line segment ` which starts in the interior of b, ends
in the interior of b′ and does not pass through any vertex of the tiling. Let
e1, e2, . . . , e2m−1e2m be the edges of the tiling which ` intersects such that (cf.
(122))

`= e1
•◦ · e2

◦• · e3
•◦ · e4

◦• · · · e2m−1
•◦ · e2m

◦• with (236)

w(ek) = w(ek+1) if k odd, b(ek) = b(ek+1) if k even, b(e1) = b, b(e2m) = b′.

A pair e2j−1
•◦e2j

◦• on ` corresponds to a white polygon wj which ` enters
through the edge e2j−1 and leaves through the edge e2j . Let ej,1, . . . , ej,nj be
the edges between e2j−1 and e2j on the counter-clockwise oriented boundary of
wj . Then ej,1 = σ0(e2j−1) and e2j = σ0(ej,nj

) and

e2j−1
•◦e2j

◦• = e2j−1
J · ej,1J · · · ej,nj

J. (237)

The proof is completed by combining (236) and (237). �

B.3 Line bundles with connection on Γ∨Λ and representa-
tions of the quiver ΓΛ

	

A line bundle with connection on the graph Γ∨Λ (cf. [11] §1) consists of
a collection of 1-dimensional complex vector spaces {Vb, Vw}b∈P•Λ ,w∈P◦Λ and a

collection of isomorphisms
{
φe•◦ : Vb(e)

∼→ Vw(e)

}
e∈EΛ

.

An isomorphism α between two line bundles with connection {Vb, Vw, φe•◦}
and {V ′b, V ′w, φ′e•◦} is a collection of isomorphisms αb : Vb

∼→ V ′b for b ∈ P•Λ and

αw : Vw
∼→ V ′w for w ∈ P◦Λ such that

αw(e) · φe•◦ · α−1
b(e) = φ′e•◦ for all e ∈ EΛ. (238)
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Choosing bases for the 1-dimensional vector spaces {Vb, Vw} amounts to an
isomorphism α : {Vb, Vw, φe•◦}

∼−→ {V ′b, V ′w, φ′e•◦} with V ′b = V ′w = C for all
b ∈ P•Λ, w ∈ P◦Λ and, hence, all φ′e•◦ ∈ C∗.

Two line bundles with connection {V ′b, V ′w, φ′e•◦} and {V ′′b , V ′′w, φ′′e•◦} with all
V ′b = V ′w = V ′′b = V ′′w = C and all φ′e•◦ , φ

′′
e•◦ ∈ C∗ are isomorphic if and only

if there are non-zero complex numbers ab and aw for b ∈ P•Λ and w ∈ P◦Λ such
that

aw(e) · φ′e•◦ · a−1
b(e) = φ′′e•◦ for all e ∈ EΛ. (239)

Let C∗EΛ denote the set of tuples {φ′e•◦}e∈EΛ of non-zero complex numbers.

Define an equivalence relation ∼ on C∗EΛ by:

{φ′e•◦} ∼ {φ′′e•◦} ⇔ ∃ab, aw ∈ C∗ such that (239) holds. (240)

Recall from (117) that a tuple {φ′e•◦} ∈ C∗EΛ induces a homomorphism

H1(Γ∨Λ ,Z) −→ C∗ , θ 7→
∏
e∈EΛ

φ′e•◦
θ(e)

. (241)

The fact that θ : EΛ → Z satisfies (116) implies that for {φ′e•◦} ∼ {φ′′e•◦}∏
e∈EΛ

φ′′e•◦
θ(e)

=
∏
e∈EΛ

φ′e•◦
θ(e) ×

∏
w∈P◦Λ

∏
e:w(e)=w

aθ(e)w ×
∏
b∈P•Λ

∏
e:b(e)=b

a
−θ(e)
b

=
∏
e∈EΛ

φ′e•◦
θ(e)

. (242)

Conclusion: (cf. [11] Formula (1)) There are bijections between the set of iso-
morphism classes of line bundles with connection on Γ∨Λ , the set of ∼-equivalence
classes in C∗EΛ and the cohomology group H1(Γ∨Λ ,C∗):

H1(Γ∨Λ ,C∗) = C∗EΛ/C∗P
•
Λ =

isomorphism classes
of line bundles with
connection on Γ∨Λ

 . (243)

�

Recall that the set of nodes and arrows of the quiver ΓΛ
	 are P•Λ and EΛ,

respectively, and that the arrow eJ runs from node b(e) to node b(σ0(e)).
A representation of the quiver ΓΛ

	 consists of a collection of complex vec-
tor spaces {Vb}b∈P•Λ and a collection of linear maps

{
ψeJ : Vb(e) → Vb(σ0(e))

}
e∈EΛ

.

The list of dimensions {dimVb}b∈P•Λ is called the dimension vector of the

representation. An isomorphism between two representations {Vb, ψeJ} and
{V ′b, ψ′eJ} is a collection of isomorphisms αb : Vb

∼→ V ′b for b ∈ P•Λ such that

αb(σ0(e)) · ψeJ · α−1
b(e) = ψ′eJ for all e ∈ EΛ. (244)
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Let us now focus on representations with dimension vector (1, . . . , 1). Choos-
ing bases for the 1-dimensional vector spaces {Vb} amounts to an isomorphism
α : {Vb, ψeJ}

∼−→ {V ′b, ψ′eJ} with V ′b = C for all b ∈ P•Λ and, hence, all ψ′eJ ∈ C.
Two quiver representations {V ′b, ψ′eJ} and {V ′′b , ψ′′eJ} with all V ′b = V ′′b = C

and all ψ′eJ , ψ
′′
eJ ∈ C are isomorphic if and only if there are non-zero complex

numbers ab for b ∈ P•Λ such that

ab(σ0(e)) · ψ′eJ · a−1
b(e) = ψ′′eJ for all e ∈ EΛ. (245)

Formula (245) defines an equivalence relation ∼ on CEΛ . It also defines an action

of the group C∗P
•
Λ on CEΛ such that the orbits are precisely the ∼-equivalence

classes. The subgroup{
{ab} ∈ C∗P

•
Λ | ∀b,b′ ∈ P•Λ : ab = ab′

}
' C∗ (246)

acts trivially.

Conclusion: There is a bijection between the set of isomorphism classes of
representations of the quiver ΓΛ

	 with dimension vector (1, . . . , 1) and the set of

orbits of C∗P
•
Λ/C∗ acting on CEΛ :

CEΛ/
(
C∗P

•
Λ/C∗

)
=


isomorphism classes of
representations of ΓΛ

	 with
dimension vector (1, . . . , 1)

 . (247)

�

Proposition 11 The map

C∗EΛ −→ CEΛ , {φe•◦}e∈EΛ 7→ {ψeJ}e∈EΛ , ψeJ = φe•◦ · φ−1
σ0(e)•◦ (248)

induces an injective mapisomorphism classes
of line bundles with
connection on Γ∨Λ

 ↪→


isomorphism classes of
representations of ΓΛ

	 with
dimension vector (1, . . . , 1)

 (249)

Its image is the set of the classes of those {ψeJ} ∈ CEΛ which satisfy:∏
e∈EΛ:w(e)=w

ψeJ = 1 for all w ∈ P◦Λ. (250)

Proof : The map in (248) is compatible with the equivalence relations ∼. So,
the map in (249) is well defined.

The image of the map (248) is obviously contained in the set of those
{ψeJ}e∈EΛ which satisfy (250). In order to prove that it is equal to this set
we construct for every quiver representation {ψeJ}e∈EΛ which satisfies (250) a
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line bundle with connection {φ′e•◦}e∈EΛ on Γ∨Λ which by (248) is mapped to

{ψeJ} ∈ CEΛ . For the construction we fix a perfect matching m0 and partition
the set EΛ according to the cycles of the permutation σ0. Let (e1, e2, . . . , ek) be
such a cycle with indices such that σ0(ej) = ej+1 for 1 ≤ j ≤ k− 1, σ0(ek) = e1

and m0(ek) = 1. We then define

φ′ek•◦ = 1, φ′ej•◦ =

k−1∏
i=j

ψeiJ for j = 1, . . . , k − 1. (251)

Doing this for all cycles of σ0 we obtain from {ψeJ}e∈EΛ a line bundle with
connection {φ′e•◦}e∈EΛ on Γ∨Λ . When we subsequently apply Formula (248) to
{φ′e•◦}e∈EΛ we find the quiver representation {ψ′eJ}e∈EΛ with

ψ′eJ = φ′e•◦ · φ′−1
σ0(e)•◦ = ψeJ for all e ∈ EΛ. (252)

Conversely, if {ψeJ}e∈EΛ is obtained through Formula (248) from a line bun-
dle with connection {φe•◦}e∈EΛ , then by substituting (248) into (251) we find

φ′ej•◦ =

k−1∏
i=j

(
φei•◦ · φ−1

σ0(ei)
•◦

)
=

k−1∏
i=j

(
φei•◦ · φ−1

ei+1
•◦

)
= φej•◦ · φ−1

ek•◦
(253)

for j = 1, . . . , k. For w ∈ P◦Λ we set aw = φ−1
ew•◦

where ew is the unique element of

EΛ such that w(ew) = w and m0(ew) = 1. Then (253) becomes φ′e•◦ = φe•◦ ·a−1
w(e)

for all e ∈ EΛ. This shows by (240) that {φ′e•◦}e∈EΛ ∼ {φe•◦}e∈EΛ and proves
the injectivity of the map in (249). �

Formulas (243), (247), (249) and (250) provide an embedding of the complex

torus H1(Γ∨Λ ,C∗) into CEΛ/
(
C∗P

•
Λ/C∗

)
. One may want to view the closure of

the image as a compactification of H1(Γ∨Λ ,C∗). The compactification process
amounts to allowing tuples {ψeJ} ∈ CEΛ to have ψeJ = 0 for some e ∈ EΛ. From

the theory of moduli spaces one expects that the orbit space CEΛ/
(
C∗P

•
Λ/C∗

)
has bad singularities which prevent it from being a good moduli space for rep-
resentations of ΓΛ

	 with dimension vector (1, . . . , 1). This raises the questions:

• Which configurations of zeros must be excluded in order to avoid bad sin-
gularities?

• How can one resolve the remaining admissible singularities?

• Can the path algebra Z[Path(ΓΛ
	)] be used to construct a non-commutative

resolution of the admissible singularities?
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B.4 The path algebra Z[Path(ΓΛ
	)]

B.4.1 Non-commutative resolution of singularities

The last question in §B.3 is motivated by the hope to find an analogue of the
beautiful results about the Jacobi algebra of the quiver with relations ΓΛ given
by the superpotential (EΛ, σ0, σ1); see [2] and also [22] Remark 3.8.
The Jacobi algebra is the quotient of the path algebra Z[Path(ΓΛ)] by an ideal
of relations provided by the superpotential (EΛ, σ0, σ1).

So, the question might ask for an appropriate two-sided ideal W in Z[Path(ΓΛ
	)]

and to investigate the category of modules over the ring Z[Path(ΓΛ
	)]/W.

From the above description of ΓΛ
	 we recognize that this quiver also appears

in [19] where it is used in the construction of a type of algebras called Brauer
configuration algebras. Indeed, in [19] §3 Malič and Schroll construct for

permutations σ, α of {1, . . . , n} a quiver
◦
Q with vertices corresponding to the

cycles of the permutation α and for every i ∈ {1, . . . , n} an arrow from the cycle
of α containing i to the cycle of α containing σ(i). Thus, the quiver ΓΛ

	 is the

same as the quiver
◦
Q of [19] for σ = σ0 and α = σ1 (but in [19] the cycles of α

are white, while for us the cycles of σ1 are black).
The Brauer configuration algebras in [19] §4 are constructed by taking the

path algebra Z[Path(ΓΛ
	)] modulo a two-sided ideal generated by three types of

elements. In the notations of the present paper the first type of elements reads

e1
Je2
J · · · ekJ − e′1

J
e′2
J · · · e′k′

J
(254)

with (e1, e2, . . . , ek) and (e′1, e
′
2, . . . , e

′
k′) the cycles of the permutation σ0 such

that b(e1) = b(e′1). Formula (254) may be a suitable generalization of Equation
(250) in the present paper. But it is not clear if the second and third type of
relations in [19] §4 are also relevant in the context of the present paper.

B.4.2 Toric geometry

We recall from [22] the construction of a compactification of H1(Γ∨Λ ,C∗) by
means of toric geometry. The Λ-invariant non-negative integer weight functions
with the operation + and the degree function (3) form a graded semi-groupWΛ

which is generated by the perfect matchings (see [22] Formula (1.3)):

WΛ = Z≥0MΛ; (255)

here MΛ denotes the set of perfect matchings for (Z,Λ). Standard construc-
tions in algebraic geometry ([15] Chapter II) associate with the graded ring
Z[WΛ] the projective scheme Proj(Z[WΛ]) and with the ring Z[H1(Γ∨Λ ,Z)] the
affine scheme Spec(Z[H1(Γ∨Λ ,Z)]). The homology group H1(Γ∨Λ ,Z) is the sub-
group of ZEΛ generated by the differences m − m′ of perfect matchings m, m′

(see Proposition 4). It follows that Spec(Z[H1(Γ∨Λ ,Z)]) is a Zariski dense open
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subscheme of Proj(Z[WΛ]). Moreover

H1(Γ∨Λ ,C∗) = Hom(H1(Γ∨Λ ,Z),C∗) = Homalgs(Z[H1(Γ∨Λ ,Z)],C)

= the set of complex points of Spec(Z[H1(Γ∨Λ ,Z)])

⊂ the set of complex points of Proj(Z[WΛ]).

(256)

A perfect matching m0 gives rise to a sub-semi-group

W0
Λ[−m0] =

{
ν − deg(ν)m0 | ν ∈ WΛ

}
(257)

in H1(Γ∨Λ ,Z) and, hence, an inclusion of semi-group algebras

Z
[
W0

Λ[−m0]
]
⊂ Z[H1(Γ∨Λ ,Z)]. (258)

The union of the affine schemes Spec
(
Z
[
W0

Λ[−m0]
])

is an open covering of
Proj(Z[WΛ]) and their intersection is Spec(Z[H1(Γ∨Λ ,Z)]):

Proj(Z[WΛ]) =
⋃

m0∈MΛ

Spec
(
Z
[
W0

Λ[−m0]
])
, (259)

Spec(Z[H1(Γ∨Λ ,Z)]) =
⋂

m0∈MΛ

Spec
(
Z
[
W0

Λ[−m0]
])
. (260)

The above constructions of Proj(Z[WΛ]) is in fact standard constructions of
the complete toric variety associated with the matching polytope (120). The
affine covering (259) reflects the fact that the corners of the matching polytope
are precisely all perfect matchings.

The line bundle on Proj(Z[WΛ]) which corresponds to “divisor at infinity”

Proj(Z[WΛ]) \ Spec(Z[H1(Γ∨Λ ,Z)]) (261)

is given by the Čech cocycle w.r.t. the affine covering (259){
Xm1−m0

}
m0,m1∈MΛ

. (262)

Here Xm is the element of Z[WΛ] which corresponds to the perfect matching m.
On the other hand on Spec(Z[H1(Γ∨Λ ,Z)]) there is according to [11] a Poisson

structure; see Formulas (192)-(193).

B.4.3 Non-commutative geometry of quiver path algebras

For every perfect matching m0 we define a quiver Γ∨Λ;m0
with set of nodes P•Λ and

set of arrows

arrows Γ∨Λ;m0
=
{
e1
•◦e2

◦• | e1, e2 ∈ EΛ, w(e1) = w(e2), m0(e2) = 1
}
. (263)
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The arrow e1
•◦e2

◦• runs from the node b(e1) to the node b(e2). For every
e1 ∈ EΛ there is exactly one e2 ∈ EΛ such that w(e1) = w(e2), m0(e2) = 1. So,
we can define Γ∨Λ;m0

also as the quiver with set of nodes P•Λ and set of arrows EΛ
and source and target maps

sm0 : EΛ → P•Λ , sm0(e) = b(e),
tm0

: EΛ → P•Λ , tm0
(e) = b(e′) with w(e) = w(e′), m0(e′) = 1.

(264)

A path on Γ∨Λ ;m0
is a string

e1
•◦ · e2

◦• · e3
•◦ · e4

◦• · · · e2m−1
•◦ · e2m

◦• (265)

as in (236) satisfying the restriction m0(ej) = 1 if j is even. The path (265) runs
from node b = b(e1) to node b′ = b(e2m). As in the proof of Proposition 10 the
path (265) can be uniquely expanded to a path from node b to node b′ on the
quiver ΓΛ

	. Thus we obtain an inclusion of algebras

Z
[
Path(Γ∨Λ ;m0

)
]
⊂ Z[Path(ΓΛ

	)] (266)

which we want to view as the non-commutative analogue of the inclusion of
commutative rings in (258). The question then becomes

(?) What are appropriate non-commutative analogues of (259)-(262)?

To get a first idea of what may be involved one can look at how perfect
matchings are used.

• The homology group H1(Γ∨Λ ,Z) is generated by the differences m1−m0 of
perfect matchings m0, m1. This implies that the algebra Z[H1(Γ∨Λ ,Z)] is
generated by the collection of subalgebras Z

[
W0

Λ[−m0]
]

with m0 ∈MΛ.

The algebra Z
[
W0

Λ[−m0]
]

is generated by the paths eJ with e ∈ EΛ. Recall
that eJ = e•◦σ0(e)

◦•
and that for every e there is some perfect matching

m0 such that m0(σ0(e)) = 1. It follows that the algebra Z[Path(ΓΛ
	)] is

generated by the collection of subalgebras Z
[
Path(Γ∨Λ ;m0

) with m0 ∈MΛ.

• In the toric constructions behind (259)-(260) perfect matchings are viewed
as maps m : EΛ → Z≥0 which satisfy

∑
e edge of P m(e) = 1 for every

polygon P (black as well as white) in the planar tiling; see (3). The
difference m1 −m0 of two perfect matchings satisfies the equations (116)
and is therefore an element of the homology group H1(Γ∨Λ ,Z). As such it
is used in the Čech cocycle (262).

On the other hand, a perfect matching m defines a bijection

~m : P◦Λ → P•Λ , ~m(w) = b ⇔ ∃e ∈ EΛ : b = b(e), w = w(e), m(e) = 1.
(267)
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Then ~m1~m
−1
0 is a permutation of the set P•Λ which gives a correspondence

between the quivers:

Γ∨Λ ;m0
=
{
sm0

, tm0
: EΛ → P•Λ

}
, Γ∨Λ ;m1

=
{
sm1

, tm1
: EΛ → P•Λ

}
,

sm1
= sm0

, tm1
= ~m1~m

−1
0 tm0

.
(268)

The collection of permutations{
~m1~m

−1
0

}
m0,m1∈MΛ

. (269)

may be an appropriate analogue of the Čech cocycle (262). The effect on
the path algebras, however, looks very complex.

We must leave further investigations on the question (?) for the future.

C The textile code

The textile code of a link in a thickened torus is defined in [3] Definition 8
using the torus diagram of the link. We are going to analyse this definition for
the textiles coming from Zhegalkin Zebra Motives. In that case the crossings
in the torus diagram lie at the midpoints of the edges of the planar tiling given
by the Zhegalkin Zebra Motive Z. So they correspond to the elements of EΛ
and are labeled 1, . . . , n. At the crossing corresponding to e ∈ EΛ the situation
looks like

�
�
�
��

@@

@@Ic s
e◦• e•◦

if η(e) = −1 :

@
@
@
@I

��

���c s
e◦• e•◦

if η(e) = +1 :

(270)

For every zigzag z one should list the crossings which involve z in the order
in which they appear on z. This is exactly what we did in (126) and (127). If
at crossing e the zigzag z is undercrossing one should, according to the rules in
[3], add a superscript ± equal to −η(e); cf. (65) and (270). So, for this piece of
the textile code the rule becomes:

If in the list from (126) for the zigzag z the crossing e appears
• in odd position and η(e) = −1 then e gets a superscript +
• in even position and η(e) = +1 then e gets a superscript −

(271)

Note: It follows from (122)-(123) that e appears in odd (resp. even) position
in the list (126) for the zigzag z if [`z](e) = −1 (resp. [`z](e) = +1); here the
function [`z] : EΛ → {−1, 0,+1} gives the homology class of z in H1(Γ∨Λ ,Z).

For the other piece of the textile code we must choose a period parallelogram
and determine how the zigzags intersect the sides of the parallelogram. We
choose the parallelogram as in §6.1 with the point p in the interior of a black
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Figure 38: The four types of intersections of zigzags with the sides of the period
parallelogram. At each intersection point one side of the parallelogram and
two zigzags intersect. The position of the parallelogram is indicated by the �.
The two zigzags are indicated by e◦• and e•◦. The ±-superscripts are the signs
attached as in (65) to the crossing of the zigzag with H and V , respectively.

polygon. Then we list (in the format of Formula (122)) the order in which H
(resp. V ) intersects the edges in the tiling and whether it passes from black to
white or from white to black16.

We write the lists for a zigzag z and those for H and V in the format
of Formula (122) and interpret these as paths in the tiled plane. The path
for z is just z as curve in the textile structure. The paths for H and V are
concatenations of paths between marked points in neighboring black and white
polygons passing through the midpoint of the common edge. The points of
intersection of zigzag z with H (resp. V ) correspond 1-1 with those e ∈ EΛ
which appear in both the list for z and the list for H (resp. V ). The four
possible situations are shown in Figure 38. Actually, there are two zigzags z
and z′ passing through each such an intersection point e. However, for the
construction of the textile code in [3] the above paths representing H and V
must be slightly deformed in order to resolve the triple intersections into double
intersections. This can be done by moving the horizontal arrows and the vertical
arrows as indicated in Figure 38 17. Then near e the zigzags z and z′ cross H
or V before crossing each other. The crossings which arise in this way can be
denoted as H±e◦• , H

±
e•◦ , V

±
e◦• , V

±
e•◦ where the superscripts are the signs attached

as in (65) to the crossing of the zigzag with H and V , respectively18.
Figure 38 matches exactly with [3] Figure 7.

Definition 6 According to [3] Definition 8 the textile code is obtained by
writing for every zigzag z the string of symbols for the crossings of z with the
other zigzags (as in (271)) and the symbols for the crossings with the sides of
the period parallelogram (as in Figure 38) in the order in which these crossings
are encountered as one walks along the zigzag curve z.

Remark 13 In [3] Definition 8 the authors label the intersections of the side
H of the period parallelogram with the zigzags from left to right with symbols

16Compare this with the construction of the functions l1, l2 : EΛ → {−1, 0,+1} in Formula
(115) which give the homology classes of respectively H and V (as in Formula (123)).

17With this construction the given period parallelogram has in fact been deformed to another
fundamental domain for the translation action of Λ on R2.

18This means that H is always crossing over the zigzag and V is always crossing under
the zigzag. So for the torus diagram one actually should take the projection of (203) on the
horizontal plane. This fits well with the idea of the “kernel of the fabric”.
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h1, . . . , hl. The labeling in Figure 38 (with subscripts and superscripts) satisfies
this requirement if we take the e’s in the order specified by Formula (122) for H.
Every such an e contributes one intersection point for each of the two zigzags z
and z′ which cross at e. The subscript is e•◦ (resp. e◦•) if e appears in Formula
(126) for the zigzag in odd (resp. even) position. By slightly bending the sides
of the period parallelogram we have arranged things such that when walking
along the zigzag z or z′ one encounters the intersection with H just before the
crossing of z and z′ at e. Thus we see that in the textile the subscripts of the H
terms are completely determined by the superscript of the H term and by the
e next to the right of the H term. A similar argument works for the V terms.
So, the subscripts for the H and V terms are redundant and may without loss
be omitted. Note that the superscripts of the H’s and V ’s do not depend on the
twist function η. �

Remark 14 By deleting the H and V terms from the textile code one obtains
the zigzags in the format (126). From this one can subsequently recover the
permutations σ0 and σ1; see Remark 11. Using (271) one can read the twist
function η from the superscripts ± in the textile code. �

Remark 15 Taking the product of the H and V terms along the code line for
zigzag z one obtains a monomial HazV bz with exponents such that azλ1 + bzλ2

is the homology class of z in H1(R2/Λ,Z) = Λ. In the kernel of the fabric
the integers az and bz are the linking numbers of the link component z with
the two external circles. See also [3] Definition 17 and [20] Definition 2.1 and
Remark 2.2. In [20] the vector (az, bz) is called the axial type of the strand z in
the fabric. The definition of vectors (az, bz) (z ∈ Pz

Λ) in [3, 20] works for general
doubly periodic textile structures. For textiles coming from a dimer complete
Zhegalkin Zebra Motive the vectors (az, bz) ∈ Z2 (z ∈ Pz

Λ) sum to (0, 0) and can
be ordered such that when put in that order head to tail they form a convex
polygon, which (up to an affine transformation) is the Newton polygon of
(Z,Λ); cf. §5.3. �

Definition 7 From the textile code T one extracts a quiver ΓT as follows. The
set of nodes of ΓT is the set of components of the link L and can be identified
with the set of zigzags Pz

Λ. The set of arrows of ΓT is EΛ. There is an arrow
from z to z′ if there is according to the textile code T a crossing where the zigzag
z passes under the zigzag z′.

The quiver ΓT ignores the circles X, Y and the cyclic order in which a zigzag
crosses the other zigzags. It only keeps from the textile code T the information
of the over/under crossings.

We denote the textile code for the twist function 1 with 1(e) = 1 for all
e ∈ EΛ by T 1. The corresponding textile structure is a biperiodic alternating
link ; cf. Figure 5 and [7].
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Remark 16 For the textile code T with twist function η the quivers ΓT and
ΓT 1 have the same set of nodes (namely Pz

Λ) and the same set of arrow labels
(namely EΛ). The arrows with label e correspond with the oriented curves Ie
and J e, respectively, in Theorem 1 ii. �

For a textile code T we define

Γ+
T = ΓT ∩ ΓT 1 . (272)

This is a subquiver of both ΓT 1 and ΓT with the same set of nodes. If T is
given by the twist function η, then the arrows of Γ+

T are those e ∈ EΛ for which
η(e) = +1.

Let Z be a dimer complete Zhegalkin Zebra Motive and let Λ be a sublattice
of Aut(Z). Let T 1 be the textile code for the twist function 1 given by 1(e) = 1
for all e ∈ EΛ and let ΓT 1 be the corresponding quiver. Let m0 be a perfect
matching and let T be the textile code for the twist function η = (−1)m0 .
Assume that there are no oriented closed paths on the quiver ΓT .
Then the intersection is a subquiver of ΓT 1 with the same set of nodes as ΓT 1 ,
but without oriented closed paths. The arrows of Γ+

T are those e ∈ EΛ for which
η(e) = 1 (i.e. m0(e) = 0). In other words Γ+

T is obtained from ΓT 1 by removing
the arrows e for which η(e) = −1 (i.e. m0(e) = 1). For examples see Figure 40.

C.0.1 Example 5.4.3 continued

The link in Figure 33 lies in a thickened 2-torus. Figure 39 shows the correspond-
ing torus diagram, i.e. the projection of the link on the torus with indicated
over/under crossings while the torus is represented by the period parallelogram
(red) with opposite sides identified. The torus diagram is also the projection

of the boundary of the surface S̃6hZ,η,ν,ω on the horizontal plane; see (63). The
crossings correspond to the midpoints of the edges in the planar black-white
tiling and have been labeled as in Figure 19. Taking into account the orienta-
tions of the crossing curves and which one is over-crossing one assigns to the
crossings 4, 8, 9, 12 the number +1 and the the other crossings the number −1.

The twist function η is given by

η(e) = −1 if e = 4, 8, 9, 12 , η(e) = +1 else.

The curves in the torus diagram correspond to the zigzags given in (131). With
the rules from (271) for putting superscripts ± this leads to the following piece
of the textile code

(3, 4, 6, 8) , (5, 11−, 10, 7−) , (2, 3−, 11, 12) ,

(8+, 1−, 12+, 13−, 9+, 10−) , (4+, 14−, 13, 5−) , (1, 6−, 7, 9, 14, 2−) .
(273)

For the period parallelogram in Figure 19 we have H = 11•◦12◦•2•◦3◦• and
V = 3•◦4◦•6•◦8◦•. Inserting in the lists in (273) the symbols representing the
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Figure 39: The torus diagram of the link in Figure 33.

crossings of the zigzags with the sides of the parallelogram we arrive at the
following textile code:

1 : (H+, V +, 3, V −, 4, V +, 6, V −, 8)

2 : (5, H−, 11−, 10, 7−)

3 : (H−, 2, , H+, V +, 3−, H−, 11, H+, 12)

4 : (V −, 8+, 1−, H+, 12+, 13−, 9+, 10−)

5 : (V −, 4+, 14−, 13, 5−)

6 : (1, V +, 6−, 7, 9, 14, H−, 2−)

(274)

Note that omitting the pairs V +V − on the first line and the pairs H−H+ on
the third line yields exactly the textile code which one can see directly by visual
inspection of Figure 39.

The monomials mentioned in Remark 15 are in this example H, H−1, V ,
HV −1, V −1, H−1V and the exponent vectors (1, 0), (−1, 0), (0, 1), (1,−1),
(0,−1), (−1, 1) are indeed the sides of the Newton polygon in Figure 27.

The quiver ΓT for the textile code T in (274) can be determined from the
simpler looking data in (273). This quiver is shown on the left in Figure 40.
The quiver shown in the middle in Figure 40 is ΓT 1 where T 1 is the textile code
for the alternating link, i.e. the one with twist function 1 given by 1(e) = 1 for
all e ∈ EΛ. So, ΓT 1 is constructed from the list (see (131) and (271))

(3, 4−, 6, 8−), (5, 11−, 10, 7−), (2, 3−, 11, 12−),

(8, 1−, 12, 13−, 9, 10−), (4, 14−, 13, 5−), (1, 6−, 7, 9−, 14, 2−) .
(275)

The reader is invited to put the labels from EΛ = {1, . . . , 14} on the arrows of

94



w
w

w
w
w

w
3

6

1

5

4

2

J
J
J
J
J
J
J

��
��

�
��

�
��

���
���

��

��
��
�

HH
HH

H J
J
J
J
J
J
J
















HH
HH

H�
����
















6

J
J
J
J
J
Ĵ

�
���

���

�
�����

� �
���

H
HHj

?

J
J
J
J
J
J]












�

� HH
HY

�
��� 










�

ΓT

w
w

w
w
w

w
3

6

1

5

4

2

J
J
J
J
J
J
J

��
��

�
��

�
��

���
���

��

��
��
�

HH
HH

H J
J
J
J
J
J
J
















HH
HH

H�
����
















6

J
J
J
J
J
Ĵ
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Γ+
T = ΓT ∩ ΓT 1

Figure 40: Quivers for the textile codes T (273) and T 1 (275).

the quivers ΓT and ΓT 1 and to check that ΓT is obtained from ΓT 1 by changing
the orientation of the arrows with labels 4, 8, 9, 12.

On the other hand ΓT 1 is also the quiver given by the vertices and edges in
the tiling on the left in Figure 20. It is also shown (with two obvious misprints)
in [13] Figure 17.

The quiver Γ+
T on the right in Figure 40 is obtained from ΓT 1 by deleting

the arrows with labels 4, 8, 9, 12 from ΓT 1 . The quiver Γ+
T is shown in Figure 41.

Its nodes are the black circles and its arrows are the black edges oriented such
that the grey polygon is on the right of the edge. �

Remark 17 The quiver on the left in Figure 40 is connected and contains no
oriented loops. This implies that the fabric decomposes in |Pz

Λ| separate layers;
see [20] §3.7. The quiver on the right in Figure 40 is a connected subquiver
of ΓT 1 which contains all nodes of ΓT 1 but contains no oriented loops. In the
terminology of [12] Definition 5.1.1. and Lemma 5.1.4. it is the pre-Beilinson
quiver associated with the perfect matching {4, 8, 9, 12}.

The perfect matching {4, 8, 9, 12} is an internal perfect matching for the toric
diagram of Model 8a in [13] Figure 17, as required by [12]. But for the Newton
diagram in Figure 27 of the present paper (which is the toric diagram of model
10c in [13] Figure 26) the perfect matching {4, 8, 9, 12} lies over the corner (0, 0);
see also (133)-(134).

The eight external perfect matchings for Model 8a are used in [12] §5.2. for
the construction of an exceptional collection of line bundles on the toric variety
associated with the toric diagram of Model 8a. On the other hand the external
perfect matchings for Model 8a are the internal perfect matchings for model 10c
and these give the eight monomials in the Hamiltonian A0 in (194). �

D Connected sums and higher genus

In the present paper we have shown how a Zhegalkin Zebra Motive Z and a
period parallelogram P for a sublatice of Aut(Z) yield a torus in Euclidean 3-
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Figure 41: The quiver Γ+
T in Figure 40 as a biperiodic planar quiver.

space equiped with a tiling by black and white polygons and how that leads to
a Seifert surface S for a link in a thickened torus in R3 and a ramified covering
map S→ D with two ramification points. We now want to demonstrate with an
example how one might upgrade this work from the torus to a Riemann surface
in R3 of genus ≥ 2 by taking connected sums.

Example.
Consider the Zhegalkin Zebra Motives Z4 = Z21 + Z31 + Z41 + Z61 and
Z = Z21 + Z31 + Z41 + Z62 with the period parallelograms shown in Figures 17
and 19. We are going to take the connected sum using the respective vertices of
valency 8. Cutting away small open disks around these vertices yields the two
octagons in Figure 42. There are two ways for gluing the two tiled tori minus the
open disks. The first one identifies the two octagons so that 1 is identified with
3, 5, 6 or 9. The second one identifies 1 with 2, 4, 8 or 10 and interchanges black
and white in the Z4-tiling. The result is in all cases a surface of genus 2 with a
tiling with 4 + 4 = 8 black polygons, 8 white polygons, 12 + 14 + 8 = 34 edges
and 4+6+8−2 = 16 vertices. As for labeling the edges in the genus 2 tiling: we
have 1, . . . , 12 coming from Z4, 1, . . . , 14 coming from Z and 1+, . . . , 8+ coming
from the octagon as indicated in Figure 42. With this labeling of the edges one
can easily write down the permutations σ0, σ1 for the genus 2 tiling. It is also
easy to construct for the genus 2 tiling a positive integer weight function of
degree deg(ν) deg(ν′) from positive integer weight functions ν and ν′ for Z4 and
Z, respectively. �

I expect that most constructions and results of the present paper also work for
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Figure 42: Octagons around the 8-valent vertices of Z4 (left) and Z (right).
The vertices of the octagons are the intersection points of the boundary of the
disk with the edges incident with the vertex.

the genus 2 case with some obvious small adaptations.

E A test report on Z = Z22 + Z42 + Z61Z31Z21.

E.1. We consider the Zhegalkin Zebra Motive Z = Z22 + Z42 + Z61Z31Z21

and the lattice Λ = Aut(Z) = Z(4, 4) + Z(4,−4). The planar tiling, a period
parallelogram and edge labels are shown in Figure 43.19 In this example

|EΛ| = 30, |P•Λ| = |P◦Λ| = 8, |P?Λ| = 14, |Pz
Λ| = 6.

The group H1(Γ∨Λ ,Z) has rank 15. According to (11) the Euler characteristic of
the surface Xσ0,σ1

is 8 + 8 + 6− 30 = −8 and, hence, its genus is 5. The group
algebra Z[H1(Γ∨Λ ,Z)] is a Laurent polynomial ring in 15 variables. As a basis
for H1(Γ∨Λ ,Z) we choose the loops `v given by the 13 vertices v ∈ P?Λ with v 6= 3
(this is the centre point of the period parallelogram in Figure 43) together with
l1 = 27•◦2◦•3•◦15◦•17•◦22◦• and l2 = 1•◦2◦•4•◦5◦•.

The coordinates of the six zigzag loops w.r.t. this basis are given as the rows
in the following matrix

0 0 0 1 0 0 0 0 0 −1 −1 −1 0 1 1
1 1 1 1 0 1 0 −1 0 0 0 0 −1 0 2
0 0 −1 −1 0 −1 −1 −1 −1 0 −1 −1 −1 −1 1
0 −1 0 −1 0 −1 0 0 0 0 0 1 0 −1 −1
0 0 0 0 1 1 1 1 1 1 2 1 2 0 −2
−1 0 0 0 −1 0 0 1 0 0 0 0 0 1 −1

 (276)

The zigzags corresponding to the rows ending with (±1,±1) can easily be seen
in the planar tiling in Figure 43. They are the boundaries of the vertical chain of

19The planar tiling in Figure 43 has rotational symmetries of order 2. The product of any
two of these is a translation from Λ = Aut(Z). So, modulo Λ these rotational symmetries are
all equal to the rotation of order 2 about the centre of the period parallelogram in Figure 43.
It acts on the more algebraic structures through the following permutation of the edge labels:
(7, 12)(8, 11)(4, 28)(14, 17)(10, 21)(6, 25)(9, 22)(5, 26)(15, 16)(3, 19)(2, 20)(1, 23)(24, 27)(13, 18)(29, 30).
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(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

e s(e) t(e)
1 5 9
2 13 5
3 5 1
4 1 12
5 14 2
6 2 1
7 1 3
8 3 6
9 2 5

10 4 2
11 3 4
12 10 3
13 5 7
14 7 4
15 6 5

e s(e) t(e)
16 4 8
17 7 6
18 8 7
19 8 10
20 14 8
21 6 11
22 11 8
23 8 9
24 9 14
25 11 10
26 13 11
27 9 13
28 10 12
29 12 13
30 12 14

a m
(1,1) 1 6 12 14 15 20 22 29
(1,3) 2 6 8 13 16 22 24 28
(0,4) 2 5 7 13 16 21 23 28
(-1,3) 2 7 9 16 17 23 25 30
(-1,1) 4 9 11 15 18 20 25 27
(0,0) 1 4 10 12 15 18 20 26

Figure 43: Z = Z22 + Z42 + Z61Z31Z21 and Λ = Aut(Z) = Z(4, 4) + Z(4,−4).
The planar tiling is shown in Figure 36. Top left and bottom right: period par-
allelogram, edge labelings and vertex labelings. Top right: the set NZ,Λ,m0,l1,l2 .
Bottom left: perfect matchings at the corners of the Newton polygon.

black squares and the horizontal chain of white squares. The other two zigzags
are more complicated. Written in the format (122) they are

3•◦7◦•11•◦16◦•18•◦17◦•15•◦3◦•4•◦30◦•20•◦23◦•27•◦2◦• ,

19•◦12◦•8•◦15◦•13•◦14◦•16•◦19◦•28•◦29◦•2•◦1◦•24•◦20◦• .
(277)

Since these zigzags have self-intersections the present example is not minimal
in the sense of [11] Definition 2.1.

Moreover, the lattice generated by the homology classes [`v] (v ∈ P?Λ) and
[`z] (z ∈ Pz

Λ) is a sublattice of index 2 in H1(Γ∨Λ ,Z). To see this one may note
that homology class on the first line of (277) is the sum of the homology classes
of the loops (see Figure 43)

4•◦30◦•20•◦23◦•27•◦2◦• , 15•◦7◦•11•◦16◦•18•◦17◦• , (278)
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E.2. There are 152 perfect matchings. The set NZ,Λ,m0,l1,l2 and the Newton
polygon NewtZ,Λ,m0,l1,l2 for the above l1, l2 and m0 = {1, 4, 10, 12, 15, 18, 20, 26}
are shown in Figure 43. Note that the vectors giving the six sides of the Newton
polygon are precisely the last two coordinates in the rows of the matrix (276).

Recall that Formula (192) defines for every a ∈ NZ,Λ,m0,l1,l2 a polynomial
Aa in Z[H1(Γ∨Λ ,Z)]. One easily checks that A(0,0) = 1 and that
• A(1,1), A(1,3), A(0,4), A(−1,1), A(−1,3) have 1 term.
• A(1,2) and A(−1,2) have 12 terms
• A(0,1) and A(0,3) have 22 terms
• A(0,2) has 78 terms.

Moreover we computed the intersection form on H1(Γ∨Λ ,Z) and checked that the
following Poisson commutation relations hold:{
Aa, Xj

}
= 0, for 1 ≤ j ≤ 15 , a = (1, 1), (1, 3), (0, 0), (0, 4), (−1, 1), (−1, 3) (279){

Aa, Aa′
}

= 0, for a, a′ ∈ {(1, 2), (−1, 2), (0, 1), (0, 2), (0, 3)}. (280)

The six perfect matchings m for which m−m0 corresponds to a corner of the
Newton polygon are listed in Figure 43. The six differences m−m′ for which m
and m′ correspond to the endpoints of a side of the Newton polygon are exactly
the six zigzags in the format of Formulas (122) and (123). Thus we see that the
result in (279) is an immediate consequence of Formula (159) (which holds in
general). On the other hand, a simple calculation (by computer) reveals that
the elements of the group algebra Z[H1(Γ∨Λ ,Z)] which correspond to the loops
in (278) do not Poisson commute with the polynomial Aa if a is not a corner of
the Newton polygon.

We see that for this example even though it is not minimal in the sense of [11]
Definition 2.1, Theorem 1.2 of [11] still holds in a slightly adapted formulation:

The functions Aa with a ∈ NZ,Λ,m0,l1,l2 (the set of lattice points in the New-
ton polygon) Poisson commute. The functions Aa with a a corner the Newton
polygon are Casimirs (i.e. lie in the centre of the Poisson algebra Z[H1(Γ∨Λ ,Z)]).
The sides of the Newton polygon (i.e. the vectors between two consecutive cor-
ners) correspond to the zigzags. There are 11 lattice points in the Newton poly-
gon, of which 6 are corners and 5 are not corners. The dimension of the system
(i.e. the rank of H1(Γ∨Λ ,Z)) is

15 = 2× 5 + 6− 1

which also agrees with [11] Thm. 1.2.

E.3. I also computed for this example the Seifert matrices Sη,l1,l2 for l1, l2 as in
§E.1 and all twist functions such that η(e) = 1 for all e or η = ±(−1)m with m
a perfect matching. In some cases in which the Seifert matrix is non-degenerate
I computed the characteristic polynomial and the minimal polynomial of the
monodromy matrix. However, I did not see interesting results to report here.
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