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Abstract

Zhegalkin Zebra Motives are biperiodic tilings of the plane by black
and white polygons given by Fa-valued functions on R? with remarkably
simple defining formulas. They provide low tech methods for constructing
numerous examples of planar biperiodic bipartite graphs (a.k.a. brane
tilings or dimer models), textile structures, bipartite graphs embedded in
a Riemann surface (a.k.a. dessins d’enfants), links and Seifert surfaces
contained in a thickened 2-torus. They give accurate, nice pictures as
well as manageable algorithms for computations. Zhegalkin Zebra Motives
provide simple tools for exploring connections between topics which are
usually investigated with (seemingly) unrelated methods.
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1 Preface

The present text is somewhat fragmentary, because the work on this paper
has been interrupted and redirected several times by personal circumstances. 1
therefore want to point out that the following sections can be read independently
e Section 2.1 e Section 2.3 e Section 3.1 e Section 4.2 e Section 5.

2 Introduction

2.1 Tilings and Textiles

In 1927 Zhegalkin pointed out that the Boolean formalism used in set theory is
equivalent to the standard addition and multiplication for functions with values
in the field Fy = {0,1}. We apply this observation to subsets of the plane, i.e.
F,-valued functions on R2. The elementary building blocks for our constructions
are functions which we call zebras. The zebra with frequency v € R? \ {0},
denoted as Z°, is defined by

Z°(x) = |2x.0/ mod 2  for x € R? (1)

where . is the dot product on R? and for r € R the integer |r| is defined by

0<r—|r] <L
;\\

Figure 1: Zebra Z°. All bands are | v and have width ﬁ.

The zebras with frequencies in Z? generate a subring of the ring of all Fo-valued
functions on R2. A function Z in this subring gives a tiling of the plane by
white (where Z is 0) and black (where Z is 1) polygons. We say that Z is a
Zhegalkin Zebra Motive if all polygons are bounded and convex.!

The tiling consists of black and white polygons, edges and vertices. We
orient the edges such that the boundaries of the black (resp. white) polygons
run clockwise (resp. counter-clockwise). The vertices and edges form a quiver
(= graph with oriented edges) I'. Combinatorially the polygons and edges form
a bipartite graph I'V dual to T, a.k.a. dimer model or brane tiling.

1In [22] §5.1 it is explained how one can easily draw pictures of these tilings. Boundedness
and convexity of the polygons can then be checked by visual inspection.
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Figure 2: Four classical tilings realized by Zhegalkin Zebra Motives

Examples? are shown in Figures 2, 3, 26, 34, 35, 36, where Z’*¥ denotes the
zebra with frequency kv; with k € Z~o and v; for j =1,...,6 as in (2).

1— y U2 — y U3 — 5
N 1 1 2 (2)
(1) e() ()

A non-negative integer weight function on a Zhegalkin Zebra Motive
Zisamap v : & = Z>o from the set £ of edges in the planar tiling to the
set Z>o of non-negative integers for which there is an integer deg(v), called the
degree of v, such that for every polygon P in the tiling

v(e) = deg(v). (3)

e edge of P

A non-negative integer weight function of degree 1 is called a perfect match-
ing or dimer covering. The latter terminology refers to the following geomet-
ric structure. If v is a non-negative integer weight function of degree 1 it follows

2

announced in [22] as “to appear in a forthcoming paper”



Figure 3: A dimer covering for the Zhegalkin Zebra Motive Z23 4743 4+75!. The
edges are oriented such that the grey polygon is on their right.

from (3) that the only possible values for v(e) are 0 and 1 and that for every
polygon P in the tiling there is exactly one edge e of P with v(e) = 1. Thus for
every black polygon b there is exactly one white polygon w adjacent to b such
that v(e) = 1 for the common edge e. It is standard practice in the literature on
brane tilings to picture a perfect matching by marking on the planar bipartite
graph the edges with v(e) = 1 with a special color; see e.g. [12] Figures 9, 33,
34. On a tiling of the plane by black and white polygons it is more illuminating
to mark the edges with v(e) = 0 with a special color. This illustrates why one
calls this a dimer covering; see Figure 3.3

A positive integer weight function is a non-negative integer weight func-
tion v such that v(e) > 0 for all e. A positive integer weight function v can be
used to mark a point inside each polygon P by taking the convex combination

specified by dclguy of the midpoints of the edges of P.

One can easily upgrade the picture of the planar polygonal black-white tiling
to a tiling TV of the plane by polygons colored black, yellow, green or white
such that the new black polygons are scaled copies of the old black polygons,
the new yellow polygons are scaled copies of the old white polygons, the new
white polygons correspond with the vertices of the original tiling and each green
polygon is a parallelogram which corresponds with an edge of the original tiling
and has two sides parallel to that edge. The tiling T is such that the adjacency
structure of the new polygons is the same as the incidence structure between
edges, vertices and polygons in the original tiling. The actual drawing of I'H
depends of the choice of certain parameters which control the visual appearance,
but do not affect the adjacency structure. For examples see the Z3 pictures in
Figures 2 and 4.

3As an instructive exercise one may search for dimer coverings in Figure 2. The brane
tiling in [12] Figure 9 corresponds with the Zhegalkin Zebra Motive denoted “model 14” in
Figure 35. So, it may also be an instructive exercise to recognize the perfect matchings in [12]
Figure 9 as dimer coverings in this “model 14”.
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Figure 4: The tiling TH for the Zhegalkin Zebra Motive Z5. The new white
polygons are holes in the plane and the union of the black, yellow and green
polygons is a thickening of the bipartite graph T'V. For the original black-white
tiling see Figure 2 top-right. The twist function for the right picture is n = 1.

We define the automorphism group Aut(Z) of the Zhegalkin Zebra Motive
Z to be the group of translations in the plane which leave the tiling invariant:

Aut(Z2) = {TeR*| Z(x+7) = Z(x), VxeR?}, (4)

This is a lattice in R? because by assumption the frequencies of the zebras lie
4

in Z? and the polygons in the tiling are bounded and convex®.
Definition 1 For a Zhegalkin Zebra Motive Z and a sublattice A C Aut(Z) we
say that (Z,A) is dimer complete if a A-invariant positive weight function v
exists. °

For a sublattice A of Aut(Z) the function Z induces an Fa-valued function
on the torus R?/A. The black-white polygonal tiling and the tiling T5 also
descend to the torus R?/A. Taking the graphs I' and I'V modulo A one obtains
the quiver T and the bipartite graph IY, both embedded in the torus R?/A.

We denote the set of edges of the black-white tiling on R?/A by £,. Iden-
tifying Ex with the set {1,...,n} amounts to a labeling of the edges in the
black-white tiling and of the green polygons in the tiling I'™. The oriented
boundary of a polygon (black clockwise, white counter-clockwise) gives a cyclic
permutation of elements of £5. Since every edge is in precisely one black poly-
gon the cyclic permutations coming from the various black polygons are disjoint.

4In [22] §5.2.2 it is explained how one can determine (by computer) the lattice Aut(Z) from
the defining formula for Z. In practice one can see it directly in the picture of the tiling.

5For issues of existence of positive integer weight functions we refer to the text preceding
Corollary 2.




The product of these cycles is a permutation o1 of the set £4. In the same way
the white polygons lead to a permutation o¢ of Ey. The triple (€, 00,01) is
called the superpotential of (Z, A). Identifying £4 with {1,...,n} reduces the
superpotential to a pair of permutations (09, 01) of {1,...,n} ¢ 7. For examples
see Figures 17, 19, 20, 32, 43. The white (resp. black) nodes of the bipartite
graph IV correspond 1-1 with the cycles of the permutation oq (resp. o1). The
edges of IV between two nodes correspond with the common elements in the
cycles. The abstract graph I)Y does not depend on the cyclic ordering within
the cycles of ¢ and 1. The cyclic ordering makes I} into a ribbon graph
and provides a lot of extra structure.

According to [3] Definition 7 (also see [20]) a textile structure is an embed-
ding of (a disjoint union of) infinitely many lines or circles into the thickened
plane R? x [—1,1] C R3 preserved under translations by two linearly indepen-
dent vectors in R%2. One can conveniently picture a textile structure by its torus
diagram; see [3] Definition 7. This is the image of the configuration of lines
and circles under the projection R? x [—1,1] — R? plus the usual indication of
over/under crossings as in knot theory. The diagram should also include a pe-
riod parallelogram for the lattice A of translations which leave the configuration
invariant.

Taking the textile structure modulo the period lattice A one obtains a link in
the thickened torus R*/A x [—1,1].

In the present paper we investigate textile structures which are naturally
associated with a Zhegalkin Zebra Motive Z, a sublattice A C Aut(Z) and a
function . Ex — {£1}. The simplest method for constructing these textiles is
to draw in the planar tiling I'” the diagonals in the green parallelograms with
an indication of the over/under crossing as specified by 7. For an example with
n(e) = 1 for all e € £, see Figure 4 where the threads are the strings of blue
and red line segments.

Putting in a period parallelogram for A one obtains the torus diagram of a
textile structure; see Figures 19, 39.

2.1.1 Textiles and Seifert surfaces

In Section 4.2, we construct real textile structures and not just their torus
diagrams for Zhegalkin Zebra Motives which are dimer complete in the
sense of Definition 1. This textile structure is the boundary of a A-periodic ori-
ented surface 6;%)”7“) in R? x [—1,1]. The construction of this surface involves
a choice of parameters 7, v,w, h. Figure 5 shows an example of how the projec-
tion of 6?’7’7 L in the horizontal plane compares with the tiling I'™ constructed

with the same choice of parameters v, w, h.

60nce one has a picture of the planar polygonal tiling the edges can be labeled by hand.
“In the physics literature, e.g. [13, 14], the superpotential is usually written as a polynomial



Zy =72+ 7% - 7%

Figure 5: The tiling T" for the Zhegalkin Zebra Motive Z3. The new white
polygons are holes in the plane and the union of the black, yellow and green
polygons is a thickening of the bipartite graph I'V. For the original black-white
tiling see Figure 2 top-right. The twist function for the right picture is n = 1.

Taking the surface &5 st n.vw Modulo A yields an oriented surface in the thick-
ened torus R?/A x [—1,1], which can subsequently be embedded into R?. We
thus obtain an explicit, accurate, real world model 6 A B, of a surface of which
the boundary is the desired link in a thickened 2-torus. The surface itself is a
Seifert surface for this link. For examples see Figures 15, 33, 37.

2.1.2 The kernel of the fabric

By construction the surface &S z. A B lies in a thickened torus in R3 which can
be taken to be independent of A and r. By gluing to the thickened torus a solid
torus on the outside and a solid torus on the inside one obtains a 3-sphere S3.
Thus the boundary of GE’,hA,EI,r becomes a link £, in S3.

Now fix h° close to 1 such that 0 < h? < 1. Let £ denote the link £;0. The
link £ together with the central circles X and Y of the two solid tori form the
link £° = XUY U £ in S®. In [20] the link £ is called the kernel of the
fabric.

For 0 < h < h° the surface 62 ASr lies in the surface GZ A and also in
the complement of an open tubular nelghborhood of £°°:

63 g, = S\ £>. (5)

in n non-commuting variables.



2.1.3 Seifert form, Poisson structure and Monodromy

The embedding of 62@\’5# into S* induces on Hl(Gé,hA,El,r’ Z) a bilinear form
known as the Seifert form 8. By our constructions the bipartite graph I’ lies
as a deformation retract in the surface 6§7A,El,r for all choices of the parameters
h, r, H. Consequently

Hy(IV,Z) ~ Hy (65 g, Z)  forallh, 7, B, (6)
So, the Seifert form S is actually a bilinear form on Hy (T, Z). It is explicitly
computed in Section 5.4.

The surface Gé.hA,El,r depends on the superpotential (En,00,01) and all pa-
rameters h, r, B = (n,v,w, A1, A2), but the Seifert form S depends only on
00,01, 1, A\, Ao, while its anti-symmetrization S — St is also independent of the
choice of n, A1, Aa.

The anti-symmetric bilinear form S — S* is used in [11] for the construction
of a Poisson structure on the complex torus H!(I}Y, C*); see Theorem 6. It
only depends on the superpotential (Ea, 09, 071).

Most interesting are the settings for n, A1, A2 for which the Seifert form S is
non-degenerate. In those cases one defines the monodromy transformation
M on Hy (I}, Z) by

M=(s)""s (7)

see Definition 5. For examples see §5.4.1, §5.4.2. The monodromy transforma-
tion induces a Poisson automorphism on the complex torus HY (LY, C*).
The embedding (5) and the isomorphism (6) induce a linear map

Hy (LY, Z) — Hy(S?\ £%°,7). (8)

This map is explicitly computed in Section 6.2. The Seifert form and the mon-
odromy are essential ingredients in this computation; see Formulas (209)-(213).

2.2 Hyperbolic Belyi maps

The superpotential (Ep,00,01) is equivalent to the homomorphism of groups
o«: Fo — 8¢, 0+(00) = 00, 04(01) =01 (9)

from the free group F2 on two generators Jp and d; to the group Sg, = S, of
permutations on the set €4 = {1,...,n}. Via o, the group Fy acts transitively

on €. The group Fy can be identified with the fundamental group of C\ {0, 1}

such that dy and d; are the counter-clockwise oriented circles with radius %

around 0 and 1, respectively, starting at the point % From this geometric inter-
pretation of Fo and o, one obtains with a well-known classical construction (see

8 A physical model of the surface GEhA =

two sides have opposite orientations. The Seifert form then gives the linking numbers of closed
curves on one side with closed curves on the other side.

in R3 actually has a positive thickness and the



Figure 6: Closed unit disk D with interval [0, o] and circles U(1), U(p) with

centre 0 and respective radii 1, g; here p = g and 7 = %

e.g. [17] 1.2.15, 1.2.17, 1.2.18) an oriented compact two-dimensional manifold
Xso,04 and a ramified covering map of degree n

Yoo.o1 * Xop.on — CPL = CU {0} (10)

which ramifies at most over the points 0, 1, co such that the action of F5 on
the fiber cp;ol,a 1(%) is given by the homomorphism o,. The points in the fiber
oty (0) (resp. @yl (1), resp. ¢t (00)) correspond 1-1 with the cycles of
the permutation oq (resp. o1, resp. ogo1). The bipartite graph I’ lies in X, o,
as the inverse image of the interval [0,1] °.

The Euler characteristic of X, ,, is (see [17] Thm 1.3.10)
X(Xoo,01) = [0] +o1] +]o0o1| =7, (11)

where |o| denotes the number of cycles of the permutation o.
For a real number ¢ with 0 < p < 1 we set

Poo,01,0 = 0 Poo,01 5 XUO,ULQ = 90;01701,,9(]1)) ) XUOv”hQ = @;gl,al,g(ﬁ) (12)

where D = {z € C||z| < 1} is the open unit disc and D its closure. Xoq o, , is
an open subset of the surface X,, 5, and X, », o is its closure.
D is a model for the hyperbolic plane. The map

Poo,01,0 * XUO,Ul)Q — D (13)

is a ramified covering map of degree n which ramifies over the points 0, p. It is
a hyperbolic Belyi map in the sense of [8] §3.

91f instead of (9) one takes the homomorphism g +— oq, 61 — 0;1 the constructions yield
the torus R?/A with the graph FAV embedded in it. The appearance of 01_1 here as opposed
to o1 in (9) is the simplest manifestation of the twisting procedure in [9, 11] and of the
specular duality in [14].

10



Let (see Figure 6)

U(1) = circle with centre at 0 and radius 1 = D\ D; (14)
U(p) = circle with centre at 0 and radius g; (15)
C. = D n {circle with centre at o~' and radius v/o=2 —1;  (16)
T = o t—yo2-1 (17)

Note that D and I are invariant under the hyperbolic reflections in the line
[—1,1] and the arc C;; see Figure 6. The first reflection leaves the points 0 and
o invariant. The second one interchanges 0 and p.

The inverse image go;gl’gl_’ Q(U(l)) of the counter-clockwise oriented circle
U(1) is the boundary of X,, 5, ,- Its connected components correspond 1-1
with the cycles of the permutation oj0y.

The bipartite graph I} lies in X, o, o as the inverse image ¢!, ([0, ])
of the closed interval [0, g]. It is a deformation retract of X, »,., and Xo; o, o-
Hence:

H; (FAV7 Z) ~H, (X007017Q7 Z) = Hl(XUO»UlyQ7 Z)' (18)

The fiber ¢!, ,(7) can be identified with the set ;. Let e* denote the
point of gp;{ial’ o(7) which corresponds to e € €. The connected components
of g !, ,(Cr) form a collection of disjoint, simple, oriented curves [, in

Xoo,01,0 Such that Je passes through the point e*. The endpoints of the closure
Je of T, lie on the boundary of X, 4, 0 so that 7. starts (resp. ends) at the
boundary component which corresponds to the cycle of o109 which contains e

(resp. contains gq(e)).

Remark 1 The inverse image ¢, !, ,(U(g)) of the counter-clockwise oriented
o o(0). The arrows of I are
the closures of the connected components of o !, ,(U(o)\{e}). Since I is
embedded in the oriented surface X, ,, , there is at every node a specified
cyclic ordering of the edges incident to that node; i.e. L,° is a directed ribbon
graph. In Section B we give a description of the underlying abstract quiver
L,° directly in terms of the superpotential (Ex,00,01) and discuss its relation
with the bipartite graph I’.

circle U(p) is a quiver I)" with set of nodes ¢

2.3 Hyperbolic Belyi maps and Seifert surfaces

In Section 4.4 Formulas (88), (98), (99) we give a construction of the surfaces
Xop.01.0 and Xy 51, and the hyperbolic Belyi map ¢,,.5,., completely in the
spirit of [8] and independent of the construction of the map (10) in [17]

More precisely in Formula (88), we construct the surface Xoo,m,g by gluing
quadrangles which are explicitly parametrized by the unit square [0, 1] x [0,1].
For every e € &£, there are four quadrangles and these are glued according to
the plan in Figures 14 and 21. This construction works under the condition

o> cos(%) where N is the maximal cycle length in the permutations o, o7.

11



In Section 4.2 we construct surfaces &z g, and GETLAE,T in R? using
the permutations (og,01) from a dimer complete Zhegalkin Zebra Motive Z
and a sublattice A of Aut(Z) as well as auxiliary parameters h,r and B =
(n,v,w, A1, A2) which are subject to certain conditions (see §4.2). We construct
these surfaces by gluing charts I., I1., II1., IV, for e € £\ according to the
plan in Figures 14 and 21. Each chart comes with an explicit parametrization
by the unit square [0, 1] x [0, 1] which is given in Formulas (59), (60), (66), (69).

In Formulas (70)-(71) and (96)-(97) we use the parametrizations to define
the “truncated” surfaces

Xgh X<h 6;,};\,5,7‘ ’ 6;7[&,5,7" . (19)

00,01,0 70,01,07

Since the gluing and truncation schemes in Sections 4.2 and 4.4 agree we con-
clude that the following theorem holds.

Theorem 1 1. For every admissible choice of the parameters o, h, r and
B = (n,v,w, A1, \2) there are orientation preserving homeomorphisms

<h ~ &<h Sh ~ &<h
XUoﬂuQ - GZ,A,EI,T’ XUO»ULQ - 6Z,A,E,r' (20)

In the limit h 1 1 the homeomorphisms (20) converge to a map

Xoo,010 — Sz A8, (21)

which is a homeomorphism away from |Ex| points on the boundary of
Xoo,01,0 and |PX| points on the boundary of Gz 5 g.,.. On the exceptional
boundary points the map (21) corresponds to the cycle decomposition of

the permutation 01_100.

i. For every e € £y the map (21) restricts to a homeomorphism from the
oriented curve J. on Xy, 5., onto the oriented line segment I, in R3
defined in Formula (73). This preserves the orientation if n(e) = 1 and

reverses the orientation if n(e) = —1.
]

Remark 2 In Section C the topic of Theorem 14 is further elaborated with
algebraic combinatorial techniques using the textile code. See in particular
Remark 16.

The surface Xy, 4, ,, is the conjugated surface S, in [11] §1.1. The inclu-
sion Xog 01,0 C Xog,oq (see (12)) induces a surjective homomorphism

Hl(XUO,Ul,QuZ) — HI(XJO,UNZ) (22)

of which the kernel is generated by the homology classes of the connected compo-
nents of the boundary of X, 5, ,. This is the subgroup of H; (I, Z) generated
by the homology classes of the zigzag loops ¢, (z € Pf); see (6), (18), (127).

12



The anti-symmetrization S — S? of the Seifert form is equal to the pull-back
via (22) of the intersection form on H; (X, »,,Z) and is, therefore, the same as
the anti-symmetric bilinear form used in [11] for the construction of a Poisson
structure on the complex torus H! (I}, C*); see Theorem 6.

3 Vistas and revisions
The composition of the maps in (20) and (5) gives an embedding
Xog,o1,0 < SP\ £ (23)

One can trace through the constructions in Section 4 an explicit description of
the map (23) which is, however, very complicated and not illuminating. The
maps in (18) and (8) and the computations in §6.2 yield a fairly simple, explicit
description of the induced map on homology

Hi (Xog,01,0,Z) — Hy(S*\ £2,7). (24)
But that contains only secondary information about the map (23).

For that reason we sketch in this section the beginnings of an alternative ap-
proach via an embedding of the universal covering of X,, »,,, into hyperbolic
three space.

3.1 Schottky dance on a Zhegalkin Zebra Motive

The construction of the universal covering of X, +,., is based on the universal
covering IV of the bipartite graph I}, whereas in Section 4.4.2 we use a rooted

spanning tree fAV for I)Y. Since the bipartite graph I}’ is a deformation retract
of the surface X, 5, , the universal covering of I is a deformation retract of the
universal covering of X, », o. The fundamental group m (I) = 1 (Xsy,01,0)
acts on these universal covering spaces and the constructions in §4.4 amount to
choosing a fundamental domain for this action.

The term Schottky dance is taken from the title of [21] Chapter 4, because
this was a great source of inspiration for our constructions which produce pic-
tures by repeatedly applying transformations from a finite collection of M&bius
transformations to a finite collection of building blocks. Both the M&bius trans-
formations and the building blocks are directly given by the Zhegalkin Zebra
Motive Z and one additional parameter ¢ which is the same o as in X5, ¢, p-
It must be such that ¢ = cos(f) with 0 < SN < 7 where N is the maximal
number of sides of the polygons in the planar tiling defined by Z.

We start from a dimer complete Zhegalkin Zebra Motive Z and a sublattice
A of Aut(Z). We only use the combinatorial data about the number and cyclic
ordering of the sides of the black and white polygons in the planar tiling and

13



which polygons are adjacent 9. As before the sets of edges, black polygons and
white polygons of the planar tiling modulo A are denoted by &4, P{ and Py,
respectively. The set € is identified with {1,...,n}. The combinatorial data
are encoded in the two permutations o and o7 of {1,...,n} such that Py and
P? are identified with the sets of cycles of oy and oy, respectively. For e € Ep
the cycle of o¢ (resp. 1) which contains e is denoted by w(e) (resp. b(e)).
In Section 2.3 the triple (EA,UO,Ul) is called the superpotential of (Z,A).
Adjacency of the polygons is encoded in the “abstract” bipartite graph I,’:
the set of white (resp. black) nodes of T}y’ is identified with P§ (resp. Pp) and the
set of edges is identified with £, such that two nodes w and b are connected by
edge e if and only if the corresponding cycles of oy and o1 both contain e. Here
“abstract” means that this definition of I)Y does not include a cyclic ordering
of the edges incident with a node.

For the purpose of correct bookkeeping we fix a perfect matching mg
This is a map mg : Eo — {0,1} such that every cycle of op and o7 contains
exactly one e € £ with mg(e) = 1. This is then used to normalize the standard
notation for the cycle decomposition of oy and o7 such that in each cycle the
element e with mg(e) = 1 appears in the leftmost position. The positions in the
cycles are numbered from left to right as 0,1,2,.... The cycles and, hence, the
nodes of I may then be labeled as e, resp. e, where e is the leftmost entry.

11

Example 1 For the Zhegalkin Zebra Motive Z = Z2' + 73! + 74 + 752 and
A = Aut(2) = Z(2,2) + Z(2,—2) the planar tiling and the edge labels are
shown in Figure 19. The permutations oy and o are given in Formula (80). We
take the perfect matching mg : Eo = {1,...,14} — {0,1} such that mg(e) =1
for e = 4,8,9,12 and mg(e) = 0 else. Thus the normalized cycle decomposition
for o9 and o7 becomes

oo = [4,14,2,3][8,1,6][9,10,7][12,13,5,11], (25)
o1 = [4,6,7,5][8,3,11,10][9,14,13] [12, 2, 1].
Thus the cycles are 4., 8,90, 12, and 4,, 84,9, 124, respectively. ||

The universal covering I}/ of I}’ can now be constructed as follows. Fix

a white node wq of IY and identify IY with the set of paths on I}’ which start
at wg. Such a path p is a finite string of elements of Ex

p=(e1,e2,...,r_1,6€) such that w(e;) = wo, (26)
blex) = b(egs1) if k is odd, w(ex) = w(egr1) if k is even.
We emphasize that the path p passes alternately through white and black nodes
by writing
p=e1°%e*---e._1%e.°® if r is odd,
P =e1°%e3*°---e,_1%%,.*° if r is even.

(27)

10Unlike Section 4.2 the present section does not make use of the lengths of the sides or the
size of the angles of the polygons in the planar tiling.
U Perfect matchings exist because (Z,A) is dimer complete.
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The number r will be called the length of the path p. The exceptional case
r =0 gives the constant path at wo.
The set T has the structure of a bipartite rooted tree. The set of nodes of

this tree is I’ (i.e. paths on I’ which start wy) and the root is the constant path
at wg. A node is colored white (resp. black) if the length of the corresponding
path is even (resp. odd). Two nodes p and p’ of the tree are connected by an
edge if and only if p=p-etorp =p- e*® for some e € &£5. For every node
p of the tree IV there is a unique path on IY which starts at wo and ends at
p, which is tautologically the same as p viewed as a path on LY.

The bipartite rooted tree I is the universal covering of Iy .

The group of covering transformations is the fundamental group m (I, wo);
i.e. the set of closed paths on I} which start and end at wy with concatenation
as group operation.

One can construct the rooted tree I as follows. The root wq corresponds
with a cycle of 0g. Each edge e in this cycle is the first step on a path in the
tree. For a given e one subsequently takes the cycle of o1 which contains e.
Each edge €’ in the latter cycle, except for e itself, gives the second step on a
path which starts with e. Having ¢’ one looks for the cycle of o9 which contains
e’. One takes e’ # ¢’ from this cycle and thus gets the first three steps of the
path e°® - ¢/*° - ¢”°®. This process continues in the obvious way and produces
the desired abstract bipartite infinite tree with root wg; here “abstract” means
that it only gives the adjacency structure but not a cyclic ordering on the set
of edges incident to a given node.

Remark 3 Paths on [V can easily be drawn as curves on the tiled plane R?
which start and end in the interior of a polygon and do not pass through any
vertex in the planar tiling defined by the Zhegalkin Zebra Motive Z. Given
such a drawing one simply writes the sequence of labels of the edges in the
tiling which the curve intersects plus an indication of whether it passes from
white-to-black or from black-to-white. This results in a path as in (27). See
also Remark 9 in §5.2. |

We will now embed the tree f}? into the Poincaré disk ID such that all edges

are hyperbolic geodesics with length log (%ﬁ) = —2log (tan(% B)) This will
then also exhibit D as the universal covering of the surface X, 5, o-

The construction proceeds by repeatedly applying transformations from a fi-
nite collection of M6bius transformations to a finite collection of building blocks.
The building blocks are given by the cycles of o¢p and o7 and consist of a col-
lection of line segments and an ideal regular hyperbolic polygon as shown in

Figure 7.
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LEGEND:

green: unit circle

light blue line segments:
[0, 7exp(2mij/k)], 0 < j <k

radius: tan(wi/k),

centers: exp(2mij/k)/ cos(mi/k), 0 <j <k

0 7 black-red dotted circle arcs:

/& ends: exp(mi(1+2j5)/k),0<j <k
hyperbolic distances:

4 dy(0,7) = —log(tan(%ﬁ))

dy(0,a) = flog(tan(%))

Figure 7: Basic building block corresponding with a cycle of length k of o¢ or
o1 and T = (cos(ﬁ))_1 — tan(B). In the picture k = 6, 3 = {5. In the sequel
the black-red dotted arcs will be drawn as solid red (resp. solid black) for cycles
of o¢ (resp. o1). Compare this with Figure 23.

Recall that the Mébius transformation defined by the matrix A = (i 3)

is the map A : CU {oo} = C U {0} given by:

az+b .

A(z) = o if detA=1, (28)
az +b .

A(z) = = d if detA=—1. (29)

For e € &5 we define the matrices M (e°®) and M(e*°) by

M (e°®) = | (30)
o (e (04)) 7z (0 28) oo (e (709))
M(e*®) = M) (31)

where ng . (resp. n1 ) is the length of the cycle of o (resp. o1) containing e and
Jo,e (resp. j1,e) gives the position of e in that cycle such that the leftmost entry
in the cycle is in position 0 and the rightmost entry is in position ng . —1 (resp.

nye—1). In (31) M () means complex conjugation. The geometric meaning and
motivation for the Formulas (30)-(31) is given in the discussion around Formulas
(102)-(105). Most relevant for now is that

the Mobius transformations defined by M (e®®) and M (e*°)
map the unit disk D and the unit circle U(1) into themselves.

(32)
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For a path p = €1°%e2*°---e,_1%%¢,.°® with r odd as in (27) we define the
2 x 2-matrix My by

My = M(er*)-M(ez®) ... M{e,1%) - M(e,*)
= M(e;°®) M(ex®®) ™ ... - M(e,_1°*)"' - M(e,®), (33)

where M () means that in the above product the matrices in even position must
be complex conjugated because the matrices in (30) have determinant —1.

oce e0

Similarly, for a path p = e1°%e3*° - --€,_1°%¢,*° with r even we define
My = M(e®) T - M{er1®) - TTer)
= M(e1®®) M(ex®®) ...  M(e,_1°®%) - M(e,°*)" L. (34)
Note that det Mp = (—1)". So for a black node of f‘AT/ the matrix Mp has

determinant —1 and by (29) the corresponding Mébius transformation involves
complex conjugation.

Recall that Py (resp. PR) denotes the set of cycles of the permutation oy
(resp. o1) as well as the set of white (resp. black) polygons in the planar tiling
modulo A. For w € P{ and b € P} we define

e omij Pt omij
Bw = U O,Texp( - ) , By, = U O,Texp( o ) , (35)
j=0 w Jj=0

where ny, and np, denote the number of sides of the polygons w and b. Thus
Hy and Hy, are the sets of light blue line segments in Figure 7. We denote the
ideal hyperbolic polygons in Figure 7 by { and $p:

vertices Ow @ exp(mi(l + 27)/nw) , 0<j<nw, (36)
vertices $p @ exp(mi(l + 25)/ny,) , 0<j<np.

Recall that the nodes of the tree ITV correspond 1-1 with the paths on LY

as in (27). For a black node p = €1°%€3*°---¢,_1%%¢,°® and a white node
pI _ 610.62.0 . 67‘/,10.67,/.0 we set
b(p) = b(er) s w(p') = w(er’)' (37)
Finally we define
FA\y/QyM = U My (EEb(P)) U U My (EEw(p/))' (38)
p black node of I:‘Av p’ white node of f‘;’

17



Figure 8: The rooted tree f}g@ 2 (light blue) up to path length 2 and the poly-

gons Mp (Qp(py) (black) and My (Ou(p)) (red) for the Zhegalkin Zebra Motive
Z3, A = Aut(Z3) and p = cos(27/7). Compare this with Figure 24.

Theorem 2

1.

.

f}gg,M 18 an embedding of the tree f‘AV into the Poincaré disk D such that

all edges are geodesics with length log (%5) = —2log(tan(30)).

The edges are labeled by the elements of En. At a node p of f‘;\VQM the
counter-clockwise cyclic ordering of the labels of the edges incident to p
agrees with corresponding cycle of oo if p is white or o1 if p is black.

For every black (resp. white) node p of f;fg’M the polygon My ((}b(p))
(resp. Mp(Ow(p))) is a regular ideal hyperbolic polygon with k sides which
intersect the k edges of T .,

.0,

distance — log(tan(%)) from p.

incident to p orthogonally at hyperbolic

The sides of the ideal polygons are labeled by the elements of En such that
the counter-clockwise oriented boundary of a red (resp. black) polygon is
a cycle of og (resp. o1). These polygons are pairwise disjoint and between
polygons corresponding to adjacent nodes of I lies a quadrangle with two
opposite sides on the unit circle U(1). These quadrangles together with the
ideal polygons give a tiling of the closed disk D.

See Figures 8 for an illustrative example.

Proof: i+ii: This follows from the same arguments as used in §4.4.2 for proving
Proposition 3.
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iii: This follows from Figure 7 because My, is a hyperbolic isometry.
iv: Obvious from pictures like Figures 8. |

Recall that the bipartite graph I\’ lies as a deformation retract in the surface
Xoy,01,0- Comparing the arguments and constructions which lead to Theorem 2
with those for Proposition 3 we now arrive at the following corollary.

Corollary 1 The disk D is the universal covering of the surface Xs, », o whereby
the fundamental group 71 (Xoy.0,.00 Wo) = m1 (LY, Wo) acts on D via the Mobius
transformations associated with the matrices My (34) for p a path on I with
start and finish at wy. |

Remark 4 The action of the fundamental group in the above corollary amounts
to a group homomorphism

M : m (I, wo) — Sla(C). (39)

One may want to compare this with the definition of line bundles on I’ in
[11] as homomorphisms
T (FAV7WO) — C*. (40)

As C* is commutative the latter homomorphisms factorize through the homology
group H; (LY, Z) and may therefore be identified with elements of the cohomol-
ogy group H'(IY,C*). In [11] one is interested in the whole moduli space of line
bundles on IV which is then identified with the complex torus H! (LY, C*). The
main result of [11] is the construction of a Poisson structure on the complex
torus HY(I, C*). In Formula (177) and Section 5.5 of the present paper this
Poisson structure is explicitly computed in terms of the permutations oq, o1 and
the perfect matching mg. Since the permutations o, o1 and the perfect match-
ing mqg are the only ingredients needed in the construction of the homomorphism
(45) one may wonder if there is a deeper relation between the Poisson structure
on the complex torus HY (I, C*) and the structure of D as universal covering
space of the surface Xs 5 ,0- |

3.2 Schottky dance and twist
3.2.1

For the twisting construction we first embed the tree IA;\V into the Poincaré disk D

1+o
1—-p

at a white (resp. black) node p the counter-clockwise (resp. clockwise) cyclic
ordering of the labels of the edges incident to p agrees with the corresponding
cycle of oy (resp. o1). In order to construct this embedding we define for a

with all edges geodesic with length log ( ) and, more importantly, such that
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node p of f‘AT/ the matrix W, by replacing in the Formulas (33)-(34) the matrices
M(e°®) and M (e*°) from (30)-(31) by the matrices

W(er) = | (41)
oo (e (0 9)) g (o 28) e (e (0 1))
W(e) =W(e™) . (42)

For a geometric motivation of this replacement see the discussion around Formu-
las (102)-(105). Next we define the embedding I}/, y;, of I}’ into D by replacing
in Formula (38) the matrices My and My by Wy and Wy, respectively.

In D one also has the ideal hyperbolic polygons Wy (Ob(p)) and Wy (Ow(p/))

centered around the nodes of T\ W Analogous to Theorem 2iv the sides of the
ideal polygons are labeled by the elements of £ such that the counter-clockwise
(resp. clockwise) oriented boundary of a red (resp. black) polygon is a cycle
of oo (resp. o1). These polygons are pairwise disjoint and between polygons
corresponding to adjacent nodes of I’ lies a quadrangle with two opposite sides
on the unit circle U(1). These quadrangles together with the ideal polygons give
a tiling of D.

For a better understanding of the twisting construction later in this section
we draw the tiling in the Beltrami-Klein model of the hyperbolic plane. Re-
call that in that model the hyperbolic plane is the disk D and that the geodesics
are Euclidean straight line intervals (i.e. connected pieces of chords) in D. In
the Poincaré disk model the hyperbolic plane is the disk D and the geodesics
are connected pieces of Euclidean circles which perpendicularly intersect the
boundary U(1) of D.

The correspondence between the two models is best understood through the
well-known classical map

2z 1— |22
Cu CxR = R? : 43
ook = Ex o (F i) @

It maps the horizontal plane CU{oo} homeomorphically onto the unit sphere S?
through a projection from the point (0,0, —1). It maps the closed unit disk D in
C onto the northern hemisphere and C\DU {co} onto the southern hemisphere.
The unit circle U(1) is mapped onto the equator. The points 0 and co are
mapped to respectively the north pole and the south pole.

The map (43) maps the circle in C which intersects the boundary U(1) of D
perpendicularly in two points a; and as to the circle which is the intersection of
S? with the vertical plane in R? through the points a; and as. Thus the chord
between a; and as in D is a diameter of that circle on S2.
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Figure 9: Tiling of D for Z3 and all paths of length < 3.

In particular, in the Beltrami-Klein model the ideal hyperbolic polygons
Wp (Op(py) and Wy (Ouw(p)) are the convex Euclidean polygons with vertices

vertices Wy (Oppy) @ Wp(exp(mi(l +25)/npp)), 0< 5 < npp))s

vertices Wy (Cuwip)) @ Wol(exp(mi(l+25)/nyp)), 0<4< nw(p));(44)
see Figure 7 and Formula (36). Figure 9 shows an example.
Remark 5 The above construction provides a group homomorphism
W m (LY, wo) — Sla(C) (45)

which exhibits D as the universal covering of the torus R?/A from which (small
disks around) the vertices of the planar tiling modulo A have been deleted.
The tiling of D is the pull-back of the tiling I'7; ¢f. Figure 4. |

HHHHHHHHHH

One can now project this tiling vertically up to the upper hemisphere in
S? and project it vertically down to the lower hemisphere. Each ideal polygon
yields a pair of polygons, one in the upper hemisphere and one in the lower
hemisphere, which have their vertices on the equator and are interchanged by
the reflection in the equatorial plane. Each quadrangle yields an annulus in S?
which is its own image under the reflection in the equatorial plane.

3.2.2

We continue in the Beltrami-Klein model of this tiling of D. The quadrangles
correspond 1-1 with the edges of the tree I}\\jg w and are accordingly labeled
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by the elements of €4 2. In each quadrangle there are two diagonals which we
orient such that the black side of the quadrangle lies to the right of the diagonal.
Next we use the twist function 1 : €y — {£1} to color the two diagonals red
and black according to the rule shown in the diagram (46)

/

n(e) = -1 \ n(e) = +1/
réd black black red (46)

4 Geometric constructions

In this section the Zhegalkin Zebra Motive Z and the lattice A C Aut(Z) are
such that (Z,\) is dimer complete; cf. Definition 1.

4.1 Realizations of the superpotential

The lattice A acts on the sets £, P*, P®, P° of edges, vertices, black and white
polygons in the tiling of R?. We denote the orbit sets (i.e. the sets of edges,
vertices, black and white polygons in the tiling of the torus R?/A) by Ex, PX, P2
and Pg. The superpotential (Ea, 09,01) (see (9)) provides precise information
about the number and cyclic ordering of the edges of the polygons and how the
polygons must be glued together to make a biperiodic tiling of R2. In order
to actually make the tiling one must however also supply a list of edge vectors
w : Eo — R? which satisfies various constraints posed by the superpotential.
We call such a map w a realization of the superpotential (€5, 0¢,01) 3.

The picture of the planar tiling for the Zhegalkin Zebra Motive Z itself
provides one realization wz : E4 — R? = C of the superpotential. Since the
frequencies used in the defining formula for Z lie in Z? the edge vectors wz(e)
lie in Q2. We can therefore rescale the picture so that we obtain a realization of
the superpotential with edge vectors in Z.

The following diagram helps in visualizing the constraints which the super-
potential poses on a realization.

12Figure 9 shows an example. The labels of the quadrangles are suppressed. Therefore the

; ; T ot ; v v v
picture can in this simple case not distinguish between FA,Q,W and FA,Q,M' For D\,g,M the

labels are shown in Figure 24. Labeling the edges of f‘;/ is left as an easy exercise.

oW
13When it seems more convenient we will identify R? with C in the obvious way and view

the realization as a map w : E4 — C.
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°
71 (® ) 7o)
o0(6) t(e) s(e) 1
o o (e)
w(e) 0 (47)

Firstly a realization w : £, — C of (€x, 09, 01) must satisfy

Ve € &) - w(e) #0, (48)
Ywe Py, bePy: Z w(e) =0, Z w(e) =0. (49)
e:w(e)=w e:b(e)=b

Secondly, for every w € P{ (resp. b € Pr) the cyclic ordering on the unit circle
of the complex numbers w(e)|w(e)| ! with w(e) = w (resp. b(e) = b) should be
the same as in the corresponding cycle of o (resp. o7 1) and all interior angles
in the polygon must be > 0 and < 7. This condition can be restated in terms
of the exterior angles and the argument function arg : C* — [0, 27) as follows:

Vee & : arg(@w(ao(e))) <m, arg(w(e)w(oy(e))) <, (50)

Yw € Py : Z arg(w(e)w(og(e))) = 2m, (51)
e:w(e)=w

Vb € P} : Z arg(w(e)w(oy(e))) = 2. (52)
e:b(e)=b

Thirdly, at each vertex v € P} of the tiling the angles must add up to 2m:

Z (27r - arg(@w(ao(e))) - arg(w(e)w(al(e)))) = 27. (53)

e:t(e)=v

Moreover, if a function w : £y — C satisfies the conditions in (48)-(53) and ¢ is
a non-zero complex number, the function cw also satisfies these conditions.

Definition 2 A realization w : €4 — C of the superpotential (€, 00,07) is
said to be a stable realization if all polygons are strictly convex; i.e. all
exterior angles are > 0; cf. (50).

Since one can easily draw the picture of the Zhegalkin Zebra Motive Z
stability of the realization wz can easily be checked by visual inspection. But
even if wz is not stable one can often see a deformation of wz which is stable;
see for example the Zhegalkin Zebra Motive 7?2 + Z*2 4 731 4 761731722 in
Figure 35.
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Lemma 1 Letw : Ex — C be a stable realization of the superpotential (€, 00,071).
Let w : Ex —> C be a map such that |ww(e)| is sufficiently small for all e and

VYw e Py, Vb e Py : > @) =0, > wle)=0. (54)

ecépw(e)=w e€€p:b(e)=b
Then w + w is also a stable realization of the superpotential (En, 0g, 01).

Proof: The conditions (50)-(53) and also the stability condition pertain only
to the directions of the edge vectors of the realization. For stable realizations
these conditions are preserved by small perturbations. |

Theorem 3 The set of realizations of the superpotential (Ep,00,01) is a non-
empty C*-invariant subset of the complex vector space Hy (I}, C) which does
not contain 0. The set of stable realizations is either empty or a mon-empty
C*-invariant open subset of Hy (LY, C). In the latter case the tangent space
to the space of realizations of (En,00,01) at a stable realization w is equal to
H, (LY, C).

Proof: The equalities (49) mean that a realization w is an element of the
homology group Hj (I}, C); also see (116). Thus the conditions (48)-(53) im-
ply that the set of realizations of the superpotential (€4, 00,01) is a subset of
H; (LY, C) which does not contain 0. It is not empty because it contains wz.
The statements about stable realizations follow from Lemma 1. |

We want to view w + w in Lemma 1 as a deformation of w. A special
kind of deformations is obtained by slightly moving the vertices in the tiling.
We call them vertex deformations. A vertex deformation comes from a map
o : Py — C by setting

Vee &y @ wle) = altle)) —a(s(e)). (55)

This can be rewritten as'4

w = — Z a(v)ly, (56)

vePy
where £, denotes the function £, — Z defined by
ly(e) =1if s(e) = v, ly(e) = —1ift(e) = v, ly(e) =0else. (57)

There is only one linear relation between the latter functions, namely their sum
is 0. The vertex deformations therefore form a (|Py| — 1)-dimensional subspace
of the (|Pf|+1)-dimensional complex vector space H; (I, C); see Proposition 4
Formula (119).

14The —-sign in (56) is needed because we want (57) to define the same function £y as (123).
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Figure 10: The realizations wy, (left) and wgr (right) in Example 2.

Definition 3 The tiling of R? given by a realization w of the superpotential
(Er,00,01) is biperiodic. We denote the period lattice by A,.

For the realization wz provided by the picture of the Zhegalkin Zebra Motive
Z the lattice A, is by definition equal to A. Verter deformations do preserve
the period lattice A, but more general deformations do not.

Example 2 The two tilings in Figure 10 are realizations of the superpotential

oo = (1,4,8,5)(2,6,7,3)(9,12,16,13)(10,14,15,11),
o = (1,13,14,2)(3,15,16,4)(5,6,10,9)(7,8,12,11).

The following table lists the edge labels, the labels of the sources and targets and
the complex numbers wy () and wr(e) of the two realizations (where n = 1)

11213 4 5 6 7 8§ 1910|1112 | 13 | 14 | 15 | 16

s | 7T|1]8] 2 1 4 2 3 135|416 5 8 6 7
t | 1|82]| 7 3 1 4 2 |51 41]6 |3 7 5 8 6
wr [ 1| é| 1] ¢ | —¢| -1 |—d|—-1|1] 4 1 ' - | 1] =i | —1
wr|m|t|2|-n|n|-2|—|-=|1|n|7m|2|-20|-T7]|-n|-1

It is an instructive exercise to put edge labels in the pictures in Figure 10 which
match with the data og, 01, wr, wg. The table shows that

WRr — W = %(—V1+V2+7:V3+V4—|—7:V5—7:V6—7:V7—V8),

where vy,...,vg € Z® are the functions associated in (57) with the eight
vertices. So the two realizations are related by a vertex deformation. It is an
amusing exercise to see the vertex deformation in Figure 10.

A Z-basis for the period lattice of the realization wg is given by the vectors

wr(3) + wr(2) +wr(l) +wr(4) = 2+ 2i,
wR(l()) + wR(14) + UJR(Q) + wR(6) = —24 2i.
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Figure 11: The realizations wz (left) and w (right) in Example 3.

A Z-basis for the period lattice of the realization wy, is given by the vectors

wL(3) +wL(2) erL(l) +wL(4)
(,«)L(lo) + WL(14) + wL(Z) + wL(6)

= 242

—2+ 21

This illustrates the fact that vertex deformations preserve the period lattice.

Example 3 The tiling for Z = (1 + Z62)(Z32 + Z75%) 4 Z2%2(Z2%* + 7*) is shown
in Figure 36. The left picture in Figure 11 shows a close-up of this tiling with
edge labels. We see that Aut(Z) = Z(0,4) ® Z(4,2) and that for A = Aut(Z2)
the superpotential (€, 00, 01) is given by €4 = {1,...,12},

oo = (1,5,6,2,9,8)(4,3,7)(11, 10, 12),

o1 = (1,3,2,12)(4,5,10,9)(11,6,7,8) .

The right picture in Figure 11 shows another realization of the superpotential.
The edge vectors for these realizations are given in the following table, with

e=em/6=1(/3+1).

e 1 2 3 4 5 6 7 8 9 10 11 12
wz | 2| -2 -2t | -14¢| 142 | 147 |1+¢|1—2 | —-1—2|1—2 | —-1—12 | 22
w | 1] &8 g9 b g2 et € glo e8 gl e’ ed

The period lattice for the realization wz is A. A Z-basis for A is

wz(5) +wz(6) —wz(3)

A Z-basis for the period lattice A, of the realization w is
w(b) + w(6) —w(3)
w(l) + w(5) — w(11)

wz(l)+wz(5) —wz(11)

52+54—59
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4+21.

(1+v3)i,
1+e?—¢" = 21+ V3) (V3 +1).




A computer check reveals that wz, w and v for v € Py (cf. (57)) span a
subspace of dimension |Px|+ 1 in C#. This implies that no (complex) multiple
of w is related to wz by a vertex deformation.

Note that in this example one can easily see a positive integer weight function
v, namely v(e) = 1 if e is an edge of a white hexagon and v(e) = 2 if e is an
edge of a white triangle. In the realization w all black and white polygons are
regular and the marked points given by v are the centres of the circumcircles.

|

4.2 Surfaces in R3

In this section we construct from input data (Z LA, B8, h, r) a connected oriented
surface 6§7A,B,r in R? which contains the bipartite graph I as a deformation
retract. Here Z is a Zhegalkin Zebra Motive and A is a sublattice of Aut(Z)
such that (£, A) is dimer complete and such that the superpotential (Ea, 09, 01)
admits a stable realization; see Definitions 1 and 2. The other input data consist
of a 5-tuple

B=0uvw A1) (58)

where 7 is a A-invariant function 7 : &€ — {£1} (called twist function), v is
a A-invariant positive integer weight function, w is a stable realization of the
superpotential and {\1, A2} is an ordered basis of the period lattice A,; h and
7 are real numbers such that 0 < h <1 and 0 <r < 37h,

The stable realization w gives a tiling of R? by convex black and white
polygons. We mark a point inside each polygon P by taking the convex combi-
nation specified by ﬁu of the midpoints of the edges of P. The corresponding
barycentric subdivision of the polygonal tiling is constructed by connecting
for every polygon P the marked point to the vertices and the midpoints of the
edges of P. The barycentric subdivision is a triangulation of R%2. By connecting
for every polygon P the marked point to the vertices of P one obtains a tiling of
R? by quadrangles in which each quadrangle is the union of four triangles from
the barycentric subdivison; see Figure 12.

Using the barycentric subdivision and elementary surface charts described
by the parametrization in Equations (59) and (60) we first construct an oriented
surface Sz , ., in the thickened horizontal plane R? x [—log3,log3] !* in R3.

For four not co-planar points A, B,C, D in R3 we take the surface Vapcp
in R? given by the parametrization

z(1-y9A+ (1 —-2)yB+(1—2)(1 —y)C +zyD (59)

with 0 <2 < 1,0 <y < 1. This surface lies in the tetrahedron conv(4, B, C, D);
see Figure 13. The edges x = 0 resp. y = 0 resp. = = 1 resp. y = 1 of the unit
square [0, 1] x [0, 1] are mapped to the edges [C'B] resp. [CA] resp. [AD] resp.
[BD] of the tetrahedron.

15Here and it what follows we use 3 as a notationally convenient number which is a bit
larger than e = exp(1).
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Figure 12: Barycentric subdivision (with v(e) = 1 for all e) of the tilings in
Figure 2. Highlighted is the tiling by the quadrangles formed by the four tri-
angles with a common vertex at the midpoint of an edge in the black-white
tiling. The quiver I' and the bipartite graph I'V appear as the diagonals in
these quadrangles.

D

A

Figure 13: Left: tetrahedron conv(A4, B,C, D). Right: the four triangles adja-
cent to the edge e in the barycentric subdivision. Here w(e), b(e), s(e), t(e) and
m(e) denote the white and black marked points adjacent to e and the source,
target and midpoint of e, respectively.

28



S 2 1
v I
(w(e), 0) (m(e)].0) (b(e), 0) i
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Figure 14: Left: surface chart for S 2 n,v corresponding to one edge e built from

four surfaces Vapcp; cf. (60). Right: surface charts for &z, , corresponding
to the edges e, ag(e), oy (), o1(e), o7 *(e). Note: here g = 0.

For an edge e in the tiling consider the four triangles in the barycentric
subdivision which are adjacent to e; see Figures 12 and 13. Edge e contributes
to the surface &z, .. the four charts Vapcp as in (59) with

I: A= (m(e)vo)v B = (8(6)70), C= (b(e)’0)7 D= (m(e)an(e))7

IT: A= (m(e),0), B=(t(e),0), C=(ble),0), D= (m(e),—n(e)), (60)
IIT: A= (m(e)70)7 B = (8(6),0), C= (w(e)50)7 D = (m(e)v _77(6))7

IV : A= (m(e),0), B=(t(e),0), C=(w(e),0), D= (m(e),nle))-.

These four charts fit together to one chart corresponding to the edge e as shown
in Figure 14. The surface &z, is obtained by glueing the charts for the
various edges exactly as in the barycentric subdivision of the original black-
white tiling given by Z; see Figure 14. It is an oriented surface; i.e. as a
surface in R3 it has two sides which can be colored with two different colors (but
Figure 14 shows just one side; the light-dark shading indicates the barycentric
subdivision).

The coordinate function y on the parametrized chart (59)-(60) defines a
continuous map

2:6z00 — [0,1]. (61)
For 0 < h < 1 we define the surfaces égln,u,w and é‘gﬁww by
65w =0, 63, =ETN(0.R). (62)

The surfaces & Zomw and & 2w 1€ contained in the thickened horizontal

plane R? x [—~hlog3, hlog3] and contain the bipartite graph I'V = Z71(0) as a
deformation retract.
Vertical projection onto the horizontal plane defines a continuous map

q:65" ., — R~ (63)
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If x is not the midpoint of an edge of ' then the inverse image q~!(x) is either
empty or consists of one point. If x is the midpoint of an edge of " then q~!(x)
is the vertical line segment

q '(x) = {t(x,—h) + (1 —t)(x,h) |0 <t <1} (64)
in R?; cf. (60). For illustrative examples showing the projected image of éé}%yw
we refer to Figure 77. The shading in Figure 77 reflects the barycentric subdi-
vision in Figure 12 and indicates the covering of GEZ%W by charts as defined
in Figure 14 and Formulas (59)-(60).

Remark 6 The boundary of ééhnyw is a configuration of non-intersecting
curves in the thickened plane R? x [—1,1] C R3. This configuration is invariant
under the action of A,, by horizontal translations. The pattern of over/under
crossings is determined by the twist function 7. Examples of the projection
diagram of this configuration on the horizontal plane are shown in Figure ?7.
In this diagram the curves are oriented such that the black points are on their
right hand side and the white points are on their left hand side. The shown
diagrams are for the twist function n(e) =1 for all e € £5. For a general twist
function the crossing corresponding to an e where n(e) = —1 must be switched.

The orientation of the curves in the projection diagram is induced by the
orientation we have chosen on the boundaries of the polygons in the planar
tiling, i.e. black clockwise, white counter-clockwise. The over/under crossings
in the diagram are given by the twist function 7 and Formula (60). Comparing
our projection diagram with the standard conventions (see (65)) for assigning a
+1 sign to a crossing of oriented curves we see that in the standard conventions
the sign for the crossing at e is —n(e).

+‘1\ -1 / (65)
N / "

We let A,, act on R? by translations parallel to the horizontal plane and
consider the previous constructions modulo A,,. In order to concretely realize
the “mod A-objects” in R3 we use the basis A1, Ay for the lattice A, and the
positive real number r < 37" to define the A,-periodic map

R? x [~hlog3,hlog3] — R?, (€,2)— (X,Y,Z),

(66)
X = (1 + rexp(z) cos (QW(M)> sin <zﬁm>
y — (1 + rexp(2) cos (mm» o (QWM)
Z = rexp(z) sin <2wM)
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The image of the thickened horizontal plane R? x [—hlog3, hlog3] is the
thickened torus obtained by rotating the annulus in the plane X = 0 with
centre (0,1,0) and radii 737" and 73" around the vertical axis X =Y = 0.
The condition » < 37" ensures that the thickened torus does not intersect the
vertical axis and is contained in the 3-ball (with radius 2)

D ={(X,Y,2) e R®| X?+Y? + Z* < 4} (67)
which is the (W > 0)-half of the 3-sphere (with radius 2)

$*={(X,Y,Z,W) e R* | X* + Y? + 2% + W? = 4}, (68)

Definition 4 (cf. (62)) For0 <h <1 and 0 <r < 3~" we define

Sz am, = tmage under the map (66) of éz,n,u,w, (69)
GE?A’E»T = image under the map (66) of é;%ﬂij (70)
GE’?AE,T = image under the map (66) of ééﬁww' (71)

Proposition 1 This construction/definition has the following properties:

- =<h <h Z<h <h
i. The maps GZ%WJ — 6§,A,E,r and S e — GZ,A,E,r are unram-

ified covering maps with covering group A.

ii. The surfaces Gé,hA,El,T and GE?A,EJ‘ contain the graph T as a deforma-
tion retract. This implies that

Hi(Iy, Z) = Hi(65)y g, 2) = Hi(63, g, 2). (72)

111. The boundary 86§hA g, of the surface Géh/\ g, s a link in the 3-sphere
S? and 6;7/\577, 1s a Seifert surface for this link; i.e. an oriented surface
in S® with boundary equal to the link; see Figure 15.

w. The embedding 6§hA g, C S? induces on its homology a bilinear form

known as the Seiféri form; for the definition and explicit computation
of the Seifert form see §5.4.

v. For every e € Ep the surface 6§hA g, contains the oriented line segment

in R3

Z. = {1 + (trexp(h)+ (1 —t)rexp(—h))Sz |0 <t <1} (73)
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Z2 — 221 + 241

Z4 — 221 + z31 + Z41 + 261 Zﬁ — le + 221 + 231 + Z41 + 251 + Z61

Figure 15: Some Seifert surfaces GE?A,EM with embedded bipartite graphs for
A =Aut(Z), all v(e) = n(e) = 1 and h ~ 0.4. The half edges of the bipartite
graph have the color of the adjacent node of the graph. What looks like triangles
are actually quadrangles on GE’}LAE’T. The light/dark shading of these quad-
rangles reflects the barycentric subdivision in Figure 12. The light-dark blue
quadrangles show one side of the oriented surface; the yellow-green quadrangles
show the other side.
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where (see (64), (66))

. x det(x,\1)
sin (2ﬂ% cos (27 det(>\27)\11)
o et(x o det(x,A1)
D= | cos (omgetbet) | Bo= | cos (2maERRS) | (7)
. det(x,A1)
0 sin (27r7d;(>\2’)\11)>

X 18 the midpoint of any edge in the planar tiling which modulo A is e.

The endpoints of I, lie on the boundary of 6§7A,E|,r' It depends on n(e)
which endpoint lies on which boundary component. More precisely, the
boundary components correspond bijectively with the cycles of the permu-
tation o10¢. If n(e) = 1 then the endpoint X1 + rexp(—h)Xs lies on the
boundary component given by the cycle of o100 which contains o1(e) and
the endpoint X1 4 rexp(h)X2 lies on the boundary component given by the

cycle which contains e. If n(e) = —1 it is precisely the other way round.

vi. The surface 6§hA g, lies in the thickened torus which is obtained by rotat-

ing the annulus in the plane X = 0 with centre (0,1,0) and radii r exp(—h)
and r exp(h) around the vertical axis X =Y = 0.

Since the quantities diit((/\i’)‘fz)) d d‘ictt((/\i’)‘/\ll)) are the coordinates of £ w.r.t.

the basis A1, A2 of R? the map

R? — U®1) xU(1) x Rsg, (75)
_det (&, Ag) det(&, A1)
& 2) (exp (2mdet(x\1,)\2)> , eXp <2mdet(/\2,)\1)> , exp(z)) ,

with U(1) = {z € C| || = 1}, induces an isomorphism

R%/p. =5 U(1) x U(1) x Rsg. (76)

Proposition 2 The maps (66) and (75) induce embeddings of the surfaces
GEhA g, and (‘52";\ g, into the thickened torus U(1) x U(1) x [3=h, 3%].

Proof: See Definition 4 and note that the equalities

e 27i det(&a)\Q) 1X+Y
X | =
P det (0, M) iX +Y]|
det(€, A1) ) X +Y|—1+iZ
5 _ 77
eXp( ™ det(hay M) iX +Y[—1+iZ] (77)

1
exp(z) = ;||iX+Y| —1+iZ|
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22 _ 221 + Z41 ZB — 221 + Z41 + 261

Figure 16: Unfolded charts for Z5 (left) and Z3 (right) both with A = Aut(Z).

are equivalent to (66). |

4.3 Examples
4.3.1 Examples: Z5; and Zj.

Consider the Zhegalkin Zebra Motives Z5 and Z3 with their automorphism lat-
tices. For Z; there are four charts and for Z5 three. Figure 16 shows how these
charts fit together. The letters a,b,c,d indicate which sides should be identified.

This identification can be achieved by folding along the dotted lines. From this
we see that the surface G;;AE,T (resp. GZL’AE,T) is homeomorphic to a 2-
sphere S? from which four (resp. three) disjoint open discs have been removed.
Embeddings of 6;: g, and 6;? A5, into R? are shown in Figure 15.

The superpotentials are (cf. Figure 2)

for  (Z2,Aut(Z22)): o09=(1,2,3,4), o1 = (4,3,2,1), (78)
for (Zg,ALIt(Zg)) 00 = (1,2,3), g1 = (3,2, ].) . (79)

Since in both cases o109 is the identity permutation it follows from (11) that
X(Xoy,01) = 2 and that X, », is indeed a 2-sphere. |

4.3.2 Examples: Z; and Zg.

Consider the Zhegalkin Zebra Motives Z; and Zg with their automorphism
lattices. The fundamental domains and edge labels are shown in Figure 17.
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Z4 — 221 + 231 + Z41 + ZGl Z6 — le + 221 + 231 + Z41

Figure 17: Fundamental domain in tiling with labeled edges for Z4 (left) and
Zg (right) both with A = Aut(Z).

From this we find the permutations og, o1, 0100:

0o = (17 47 6)(23 3a 11)(55 7, 8)(9, 12) 10)
for Z o1 = (1,2,5)(3,12,4)(6,7,10)(8,9,11)
o100 = (1,3,8)(2,12,6)(4,7,9)(5,10,11)

oo = (1,2,17)(3,8,4)(5,6,10)(7,13,11)(9, 12, 14)(15, 18, 16)
for Zg: o1 = (1,7,5)(2,18,3)(4,6,9)(8, 12, 11)(10, 13, 16)(14, 15, 17)
o100 = (1,18,10)(2,14,4)(3, 12, 15)(5,9, 11)(6, 13, 8)(7, 16, 17)

The surface 62 A8, (resp. 62 A8, is covered by 12 (resp. 18) charts
which are glued as shown in Figure 18. Thus we see that these surfaces are
homeomorphic to a 2-torus from which four (resp. six) disjoint open discs have
been removed. This agrees with the fact that according to (11) the surface
Xgy,0, has Euler characteristic 0 and, hence, is a 2-torus. Embeddings of the
surfaces 65 A and 6 A B, into R? are shown in Figure 15.

The atlases in Figure 18 show that the 2-torus Xoo,0, cOmes with a triangula-
tion which is precisely the triangulated torus given by the Zhegalkin Zebra Mo-
tive Z3 and the sublattice Ay = Z(3,1)+7Z(2, —2) (resp. Ag = Z(3,3)+7Z(2, —2))
of Aut(Z3) = Z(1,1) + Z(1, -1).

The pair (24, Aut(Z4)) corresponds to model 15b in [13, 14], while the pair
(Z5,A4) corresponds to model 13 in op.cit.. Similarly, the pair (Zg, Aut(Zs))
corresponds to model 10d, while the pair (25, Ag) corresponds to model 7. These
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Figure 18: Atlas with unfolded charts for Z; and Z both with A = Aut(Z2).
The Z, picture is in fact isomorphic to picture b) in [9] Figure 10.

correspondences are an expression of the phenomenon called specular duality
in [14]; see in particular op.cit. Figure 1. |

4.3.3 Example: Z = 72" + 73" 4+ 74 +7%2,

The planar tiling for the Zhegalkin Zebra Motive Z = 72! 4+ 731 + 74! + 762 i
shown in Figure 34. A close up with edge labelings and period parallelogram
for the lattice A = Aut(Z2) = Z (2,2) + Z (2, —2) are shown in Figure 19. From
this one sees that the superpotential is:

oo = (1,6,8)(2,3,4,14)(5,11,12,13)(7,9,10), (80)
o1 = (1,12,2)(3,11,10,8)(4,6,7,5)(9, 14,13).
The cycle decompositions of the permutations oy loo and oq0¢ are
ortoo = (3,5)(2,8)(6,10)(1,4,9,11)(7,13)(12,14), (81)
o100 = (3,6)(5,10)(2,11)(8,12,9)(4,13)(1,7,14) . (82)

Thus by (11) the surface X,, -, is a torus.

One immediately checks that the superpotential for the Zhegalkin Zebra
Motive Z" and the lattice A’ shown on the left in Figure 20 is given by the pair
of permutations (g, 07 '). Tt follows that the surface X,, ,, for the Zhegalkin
Zebra Motive Z and lattice A with the embedded bipartite graph I} is the same
as the torus with black-white polygonal tiling for the Zhegalkin Zebra Motive
Z’ and lattice A’. The right-hand picture in Figure 20 shows, in the style of

Figures 16-17, how the charts for the surface G;hA g, fit together. It is obtained
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Figure 19: Planar tiling and period parallelogram for the Zhegalkin Zebra Mo-
tive Z =721 + 730 + 74 + 752 and A = Aut(2) = Z(2,2) + Z(2,-2).

by removing small (open) discs around the vertices of the tiling in the left-hand
picture. For an embedding as a surface GETZAEW in R3 see Figure 33.

The Zhegalkin Zebra Motive Z and lattice A correspond to [13] model 10c.
The Zhegalkin Zebra Motive Z’ and the lattice A’ correspond to [13] model 8a.
The observed equality of the surface X, », for (Z,A) and the tiled torus for

(Z’, ') is another example of specular duality; cf. [14] Figure 1. |

4.4 Cartography and hyperbolic Belyi maps
4.4.1

In this section we give a construction of the surface Xy, o, , completely in the

spirit of the constructions in [8]. We set 7= 907! — /o2 —1. Then 0 < 7 < o
and
Wrlan) = ot Mt on) = Ve o1 (83)

On the closed disk D we distinguish the following landmarks (see Figure 6):

e The points 0 < 7 < p < 1 and the closed interval [0, o).
The hyperbolic distances between the points 0 and 7 (resp. 0 and p) are:

1+7 1+o0

e The circles U(1), U(o) and the arc C..
These were defined in (14), (15) and (16) and are oriented counter-clockwise.
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2 =78 478478 N =7(3,1)+Z(0,4) C Aut(Z') =7Z(3,1) + Z(0,2)

Figure 20: Left: Period parallelogram with edge labelings for the Zhegalkin
Zebra Motive 2’ = 723 + 7*3 4 75! and lattice A’. For the biperiodic planar
tiling given by Z’ see Figure 34. Right: atlas with unfolded charts for the
surface GE?AE’T.

The arc C; intersects the interval [0, g] perpendicularly at the point 7
and its closure intersects the circle U(1) perpendicularly at the points

o+iy/1— 02

e The quadrangles

I : corners T, 0, 1, o+ 1iy/1— 02,
II  : corners 7,0, 1, 0—1y/1— 02,

IIT : corners 7,0, —1, 0 —iy/1 — @2,
IV . corners 1,0, =1, o+ i1 — 2.

The sides of these quadrangles are subintervals of [—1, 1] or subarcs of C
or of U(1). Thus we have

(85)

D= IUITUIIIUIV. (86)

These special structures on D lift via (pgol’a ..o o special structures on Xs, 5, o

. w;ol’al’Q(U(l)) is the boundary of X,, ,, ,- Its connected components
correspond 1-1 with the cycles of the permutation o0y.

e vt 0(U(0) is a quiver [,° with set of nodes ot 1 o(0). The arrows of
I)° are the closures of the connected components of oty o (U0)\{0})-
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oo(e) IV, I

Figure 21: Adjacency in the tilings of X,, »,., by quadrangles; see (87)-(88).

e The bipartite graph I} lies in X, o, , as the inverse image ¢!, - ﬁ([O, a]).
The set of white nodes is ¢!, ,(0). The set of black nodes is ¢, , (o).
The white nodes correspond 1-1 with the cycles of the permutation og.
The black nodes correspond 1-1 with the cycles of the permutation o .

e There is a bijection £y ¢ ¢}, (7).
We denote the point on X4, »,,, which corresponds to e € £5 by e*.

e The connected components of ¢!, ,(C-) form a collection of disjoint,
simple, oriented curves J. (e € &) in Ygomyg such that J. passes
through the point e*. The endpoints of the closure J. of J. lie on the
boundary of Xoom,g so that 7, starts (resp. ends) at the boundary com-
ponent which corresponds to the cycle of o100 which contains e (resp.
contains og(e)).

e For every e € £y we have the four quadrangles I, I, I11., IV,:

I, : component of 90[,0 o1.0(I) with a corner at e*
II. : component of @UO,UI o(II) with a corner at e* (87)
III. : component of @ao,nl o(III) with a corner at e*
IV, : component of ¢ ! ~ (IV) with a corner at e*
Then (cf. (86))
Xooore = |J L UITL UIII, UIV,). (88)

e€Ep

In (88) the quadrangles are glued as indicated in Figure 21. For examples
of how the gluing rules work out globally see Figures 16, 18, 20.

For0<ﬁ<oz<%ﬂ'weset

_ 1 —sin(B) .

39



U(].) L gy

L *
- *®
= *
- ‘.
L: . i
- =
= ]
5 [
i .
Ka & C; )
.- -
. i
4
¢ b
ia
: ‘*"— .'ﬁ.'
-
=L T anmnn®® :
0 T L

Figure 22: Parametrization of quadrangle Q. s for a = %, 8 = & and, hence,

6
0=3V3, 7= .

Let Qa5 denote the quadrangle enclosed by the line segments [e'*, 0], [0,7],
the upper half of the arc C, and the arc between e'® and e*’ along U(1); see
Figure 22. Formula (84) now reads

du(0,7) = —log(tan(3p)). (90)

With these notations we have (see Figures 14 and 21)

I. = IlI. = Qup with oz:kle, o1
111, = IV, = Qap with a:nle, (91)

where n. (resp. k) is the length of the cycle of the permutation o (resp. o1)
which contains e and § = arccos(p). In order to glue such a quadrangular chart
Q@' to another one @ such that side S of Q' gets identified with side S of @ one
first puts Q' and @ in the disk D so that S’ coincides with S and subsequently
identifies the side S of @ with the side S’ of the image of @’ under the hyperbolic
reflection in S.

In order to give a parametrization of the quadrangles (), g we take the circle
U(1) as in (14), the arc C, as in (16) and let (see Figure 22)

L = line through 0 and 1, (92)

K = circle with centre at 7 + iT tan(«) and radius 7 tan(«).  (93)
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Then the parametrization is

0,1] x [0,1] — Qap, (z,y) — point of intersection of (94)
the circle through a7 perpendicular to U(1) and K
with the circle through ye'® perpendicular to C, and L.

The parametrization (94) applies to all quadrangles I, II., I11., IV, in (91)
provided

% > length of every cycle of the permutations oy and o . (95)

For 0 < h < 1 we define Q\ﬂ (resp. Q<ﬁ) to be the image under the
parametrization (94) of the rectangle [0,1] x [0, A] (resp. [0,1] x [0, [ ). In this

way Formula (91) yields IS ... IV.<". In combination with (88) this yields
the surfaces XUO 01,0 and X;Ohal o such that for 0 < h' < h <1
n —=<h’ h =<h
X;0 UIQCXUO 01,0 on UlQCXUO 01,07 (96)
— =<1
XUO’UL X;)l,o-l 0 XUO,ULQ = Xao,ol,g (97)

The hyperbolic Belyi map (cf. (13))
Poo,01,0 - X170;01,9 —D (98)

is defined, as follows, so that it maps the quadrangles I, I1., I11., IV, homeo-
morphically onto the respective quadrangles I, I1, III, IV; see (85)-(88). The
homeomorphism which maps the quadrangle IV, = @), g in Figure 22 onto the
quadrangle I'V in Figure 6 and Formula (85) is the identity map on the triangle
with vertices 0, 7, ¢?# and is an obvious homeomorphism from the triangle with
vertices 0, e*?, e’ onto the triangle with vertices 0, e*’, —1. For the quadran-
gles I, (resp. IIl., resp. II. one must subsequently compose this map with
the hyperbolic reflection in the arc C (resp. the reflection in the interval [0, 7],
resp. the composite of these two reflections). The hyperbolic Belyi map

Poo,01,0 * XUO)UDQ — D (99)

is just the restriction of (98).

4.4.2

In this section we give a construction of X, ,, , based on the embedding of
the bipartite graph I\ into X4, 0. For this construction we must fix a rooted

spanning tree I‘A for IY; i.e. a simply connected subgraph I‘A of Ty with the
same set of nodes as I} and one marked white node wq (the root).
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For efficient bookkeeping we also fix a perfect matching mg, i.e. a map mg :
En — {0,1} such that in every cycle of the permutation o and in every cycle
of the permutation oy there is precisely one element e for which mg(e) = 1.

For w € P{ and all e € £ such that w(e) = w - i.e. for a white polygon w
in the planar tiling associated with the Zhegalkin Zebra Motive Z and all of its
sides - the quadrangles I71. and IV, have one angle equal to %, three angles
7 and one side of finite hyperbolic length — log(tan(34)) (cf. (90)); here ny is
the number of sides of the polygon w. In X, 5, , these 2n,, quadrangles form
a polygon

ow = |J (IILUIV) (100)

ecép, w(e)=w

with ny sides which are arcs of length TQTW — 20 along the circle U(1) and ny,
sides which are circular arcs perpendiculafv to U(1). The arcs of the second kind
span an angle m — 20 on a circle with radius tan(/3). The centers of these circles
are the points o~ exp(2mij /nw) for j = 0,...,nyw — 1 and the midpoint of the
arc is 7 exp(2mij /nw); see (83), (89).

The arcs of the first kind on the boundary of £ correspond 1-1 with the
corners of the polygon w in the planar tiling. The arcs of the second kind
correspond 1-1 with the sides of the planar polygon w. These are counter-
clockwise cyclically labeled as the elements of £, in the cycle of o corresponding
to w such that the label of the arc with center p~! and midpoint 7 is e with
mp(e) = 1. See the left picture in Figure 23 where we also have drawn the line
segments from the center 0 of the polygon )y, to the midpoints of its sides.

Similarly, for every b € PR - i.e. a black polygon b in the planar tiling - the
quadrangles I. and IT. with b(e) = b have one angle equal to ﬁ, three angles
Z and one side of finite hyperbolic length —log(tan(18)) (cf. (90)); here k, is
the number of sides of the polygon b. Together these form the polygon

= U (I.UIL) (101)
e€€p,b(e)=b

in Xy,.0,,0 With kp sides which are arcs of length i—: — 23 along the circle U(1)
and kyp sides which are circular arcs perpendicular to the circle U(1). The arcs
of the second kind all span an angle m — 2 on a circle with radius tan(8). The
centers of these circles are at the points o~ ! exp(27ij/kp) for j =0,... kp — 1
and the midpoint of the arc is 7 exp(2mij/kp). The arcs of the first kind on the
boundary of ), correspond 1-1 with the corners of the polygon b in the planar
tiling. The arcs of the second kind correspond 1-1 with the sides of the planar
polygon b. They are clockwise cyclically labeled as the elements of £y in the
cycle of o1 corresponding to b such that the label of the arc with center o'

and midpoint 7 is e with mg(e) = 1.
If the polygons w and b in the planar tiling have a common side e one can
glue the polygon 9y, to the polygon ), as follows. Take the image of ), under
the reflection in its side which is the circular arc with label e and fit this image
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Figure 23: Left: polygon )y, for ny, = 6. Right: image of polygon 9y for kp, = 4
under reflection in one of its boundary arcs of the second kind. Middle: right
polygon glued into an arc of the second kind of the left polygon.

by a rotation with center 0 into the side of )y which is the circular arc with
label e. Note that the reflection reverses the cyclic ordering of the arcs on the
boundary of $y, from clockwise to counter-clockwise. In the same way one can
glue the polygon Hy, to the polygon 9y, along the arc e. See Figure 23.

Recall that the circle with center ¢ € C which intersects the unit circle
perpendicularly has radius yv/c€ — 1 and that the reflection R in this circle is
given by

Re(z) = C=1 g zec (102)

zZ—C¢C

If e is the j' element in the cycle of ¢; corresponding to b (0 < j < ky,), then
c = o texp(—2mij/kp) and (102) is the Mobius transformation with matrix

(03 st D) (3 0) o
kp 0 1 Vi—g2 \e -1 kp 0 1 '
The fact that the determinant of the matrix in (103) is —1 accounts for the
appearance of Z in (102).

The image of $p under the transformation (102) lies in the disc with center
0 Y exp(—2mij/ky). If e is the h*" element in the cycle of oy corresponding to
w (0 < h < ny) the image of ), must subsequently be mapped by a rotation
into the disc with center p~! exp(2mih/ny ). The required rotation amounts to
multiplication by exp(27ri(h/nw + j/kp)) and is the Mébius transformation
defined by the diagonal matrix with entries exp(£mi(h/nw + j/kb)). Thus we
find that the Mobius transformation which puts $y, in the correct arc of )y is
given by the matrix

o= m(Z2( ) s ()2 (1)

(104)
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Similarly, the Mobius transformation which puts £y, in the correct arc of £y, is
given by the matrix

(23 D) et D) (26 )

— M) . (105)

M(e.O)

Using the tree I/ with root wo we now construct a surface X, o, , as

follows. A black node b of fAV is connected to the root wy by a unique path

oe

€1°® - e2°% -+ e9,.41°® in f‘AT/ with r > 0, w(e1) = wo, b(ea,+1) = b (notation as
in (122)). Using the matrices in (104)-(105) we define the 2 x 2-matrix My, by

My, = M(e1°®)  M(e®°) ...  M(e9,*°) - M(egr41°%) (106)
= M(e;°®)  M(ex®®) ... - M(eg,°*) - M(egr11°%),  (107)

where M () means that in the above product the matrices in even position must
be complex conjugated because the matrices have determinant —1. The equality
(107) follows from (106) and (105).

Similarly, a white node w # wq of F? is connected to the root wqg by a
unique path €;°® - €2°° -+ e2,*° in I with r > 1, w(e1) = wo, w(ez,) = w. We
define the 2 x 2-matrix My by

My, = M(e1°*) ~M(62°°)’1 coo.- M(egr—1°%) ~M(egr°‘)’1. (108)

We define My, to be the 2 x 2 identity matrix. Writing My, and My, also for
the Mobius transformations defined by (106)-(108) we can finally construct the

surface Xy,,,,0 @s a subset of D:

Xopore = |J Mw(®w) U | Mp(9) - (109)

wePg bePy

Note that for w’ # w and b’ # b and for w and b which are not connected by
an edge in the tree I}’

Mw (ﬁw) N Mw’ (ﬁw’) = ®7 Mb (ﬁb) N Mb/ (ﬁb/) = wv

(110)
M, (ﬁw) N My (@b) =0 ;
while for nodes w and b which are connected by an edge in the tree I/}\v :
My (Hw) N Mp () = DN { circle perpendicular to U(1)}. (111)
In XUO,ULQ lies the set
Y = (J Mw(Bw) U | Mp(Bs), (112)

weP bePy
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where By, (resp. Hy) denotes the union of the line segments [0, 7 exp(27ij/m))
for j =0,...,m—1 and m = ny (resp. m = kp) connecting the center of 9y,
(resp. $p) to the midpoints of its boundary arcs of the second kind.

The image of such a line segment is a hyperbolic geodesic arc in f‘AV (i.e.
a piece of a circle which is perpendicular to the unit circle U(1)). There are
2|Ex| such arcs. They all have length dg(0,7) (see (90)). Their interiors are
pairwise disjoint and if two arcs v and +' have a common endpoint £ then either
& = Mw(0) for some w € P{ or & = Mp(0) for some b € P} or the endpoints
of v and + are {£, M (0)} and {&, My (0)}, respectively, such that the nodes w
and b in the tree I:AV are connected by an edge e, in which case yU~’ equals the

edge e of f;\? and ¢ is the midpoint of the arc (111).
A white node w corresponds to a cycle of the permutation og. The line
segments in M, are labeled counter-clockwise cyclically with the elements of

Ea in that cycle. As det(My) = 1 the arcs in I:Av with one endpoint equal to
My (0) are also counter-clockwise cyclically labeled with the elements of £ in
that cycle.

A black node b corresponds to a cycle of the permutation ¢;. The line
segments in By, are labeled clockwise /cyclically with the elements of £ in that

cycle. As det(My) = —1 the arcs in 1? with one endpoint equal to My (0) are
counter-clockwise cyclically labeled with the elements of £y in that cycle.
The following proposition summarizes the above results.

Proposition 3

i. f‘AV is a tree with leaves, i.e. a connected graph without loops in which the

edges are incident to one or two nodes. The nodes of the tree I/f are the

—

same as those of I:AV The edges ofI‘y are v U~" where v, v are arcs in

l? with one common endpoint & which is not a node ofI?.

The leaves of I:A\\/ (i.e. edges incident to only one node) come in pairs
which correspond 1-1 with the elements of Ex which are not an edge of
LY.

it. A node My (0) forw € P (resp. My(0) forb € PY) corresponds to a cycle

of the permutation oo (resp. o1) and the arcs of fAV incident to My (0)
(resp. Mp(0)) are counter-clockwise cyclically ordered as the elements in
that cycle.

1. The boundary ofXgom,Q consists of arcs along the circle U(1) and circular
arcs perpendicular to U(1). The arcs of the latter type correspond 1-1 with

the leaves of the tree fAv They come in pairs and when they are pairwise
identified we obtain the surface Xy o 0-
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Figure 24: Polygon XUO’UI, o (red arcs and blue arcs 2 and 3) for Zhegalkin Zebra
Motive Z3, A = Aut(Z3) and o = %ﬁ, =71

There is no identification between arcs on U(1) OXUO,UI,Q, Thus the union
of these arcs is the boundary of Xs 5y ,0-

. The surface Xpy 01,0 15 Xop,01,0 Without its boundary. |

4.4.3 Examples: Z3, Z4, Z;.

In the planar tilings for the Zhegalkin Zebra Motives Z35, Z4, Zg in Figure 2
all polygons are triangles. Therefore, the hyperbolic quadrangles used in the
above construction of Xao’ahg all have angles %ﬂ', %ﬂ', %7‘(’, %ﬂ'. For Z3 and
A = Aut(Z3) there is one white and one black polygon and the permutations

are o9 = (1,2,3), o1 = (3,2,1); see (79). Figure 24 shows the polygon Xgo,ahg

and the tree with leaves Fy; see also Figure 16. Identification of the arcs with
equal labels yields the surface X,, »,.,.- Topologically this surface is a 2-sphere
from which three disjoint open disks have been removed.

We leave it as an instructive exercise to convert the pictures for (24, Aut(Zy))
and (Zg, Aut(Z)) from Figure 18 into the format of Figure 24. |

5 Algebraic structures

5.1 Tabulating the structure

For the investigation of the algebraic structures associated with a Zhegalkin
Zebra Motive Z, a sublattice A of Aut(Z) and a A-invariant positive integer
weight function v : & — Zso we restrict the pictures of the polygonal tiling
given by Z to a period parallelogram for the lattice A; cf. Figure 19.
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The lattice A acts on the sets £, P*, P®, P° of edges, vertices, black and
white polygons in the tiling of R?2. We denote the orbit sets (i.e. the sets of
edges, vertices, black and white polygons in the tiling of the torus R2/A) by &y,
PX, Pt and P{. These are finite sets with cardinalities satisfying the relation

[PR] + IPX[ + [PX] = [€al - (113)

We label the vertices with the numbers 1,...,|Pf|, the black polygons with the
numbers 1,...,|P|, the white polygons with the numbers 1,...,|P3| and the
edges with the numbers 1,...,|Ex|. It suffices to only include the edge labels in
the picture; cf. Figure 19.

The structure maps for the quiver I and the bipartite graph I are

s, t:EN — P}, b:Ex — PY, w:Ep — PR. (114)

These maps can be given in a table as in Figure 25. We also include in the table
two columns for the edge vectors (wi(e),ws(e)), one column for the positive
weight function v and two columns encoding the period parallelogram. The
latter two are constructed as follows. First shift the period parallelogram such
that its sides do not pass through a vertex in the tiling and its corners lie in
the interior of black polygons. Choose a corner of the period parallelogram and
look at how the two sides of the polygon incident to this corner intersect the
edges of the tiling. This yields two maps

0y Ep — {—1,0,+1} (115)

such that [;(e) = 0 if side j does not intersect edge e, [;(e) = —1 if side j
intersects edge e from black to white, [;(e) = +1 if side j intersects edge e from
white to black. Finally we also include in the table a column for a twist function

n.

Remark 7 Note that the picture in Figure 19 and the table in Figure 25
(except for the n-column) are equivalent, in the sense that one can easily be
(re)constructed from the other. Actually there is some redundancy in the table.
For instance, using the columuns e, s(e), t(e), wi(e), wa(e) one can draw the
quiver T' with periodically labeled edges in R?. The (closures of the) connected
components of the complement R? \ T' are the polygons of the tiling. The
boundaries of these polygons are oriented and the polygons can be colored black
(resp. white) if the orientation is clockwise (resp. counter-clockwise). Choosing
labels for the polygons one thus finds the columns b(e) and w(e).
Alternatively, one may use the columns e, b(e), w(e), wi(e), wa(e) and the
requirement that the polygons must be convex to draw the individual polygons.
If the polygons are strictly convex, the labels on the edges are uniquely deter-
mined and thus provide unambiguous instructions for building the planar tiling
by glueing the polygons. Choosing labels for the vertices in the tiling one thus
finds the columns s(e) and t(e). |
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e || s(e) | te) || ble) | wle) || wile)] wale)] v(e) || Lile)] a(e)] nle)
1] 241 1 -1 o 2 o] of 1
26 | 2 1 [ 2 0] —1 1 0 -1 1
3 2 [ 1 2 | 2 1] ol 1 [ 1] 1] 1
A T[4 3 2 0] 2] 1 1| o] -1
50 5 [ 1] 3] 3 —1| o] 1 0] of 1
6 4 [ 3 31 I -1 1T [[—1[ of 1
713 [ 5 [ 3] 4 o] -1 1 0] of 1
8 3 [ 2] 2 1 0] 1] 1 1| o] -1
o 5 [ 4 | 4| 4 1] o 2 0] o -1
0 4 [ 3 2] 4 —1 I 1 0] o 1
1 [ 4 2] 3 0] 2 1 0 1| 1
2] 4 [ 6 [ 1 [ 3 1 I 1 0] 1 -1
B3] 6 | 5 | 4| 3 o] 1] 1 0] of 1
U 4 6 | 4] 2 -1 1] 1 0] o 1

Figure 25: Tabulated version of the data in Figure 19.

Remark 8 The data in the columns e, s(e), t(e), b(e), w(e) are equivalent to
the data of the superpotential (Ex,00,01). Indeed the cycle decompositions of
oo and o1 immediately give the columns b(e) and w(e). The vertices in the tiling
correspond with the cycles of the permutation o L5o. The edges in a cycle are
the incoming edges at the vertex corresponding to that cycle. The outgoing
edges at a vertex are found by applying o( to the incoming edges. In this way,
the superpotential (€, 00, 01) yields columns e through w(e) in the table.

Conversely, column b(e) (resp. w(e)) shows which edges e belong to which
cycle of o1 (resp. op). If edges e and e’ belong to the same cycle, e’ is the
immediate successor of e in the cyclic ordering if and only if ¢(e) = s(e’).

For an illustration of this remark one may compare the table in Figure 25
and Formulas (80)-(81). |

5.2 The (co)homology of I}’

The homology group H;(I}/,Z) is by definition a subgroup of the free abelian
group on the set of edges £y. The latter group can be canonically identified
with the group Z®* of maps from €, to Z. The homology group H; (I}, Z) then
consists of those maps 6 : £, — Z which satisfy

Vb € P}, Vw € Py : > b(e) =0, > 6(e) =0. (116)

e€&p,b(e)=b ecép,w(e)=w

The cohomology group H' (I, C*) = Homgoups (H1 (I}, Z),C*) is a quo-
tient of the group C** of maps from £y to C* whereby a map « : E4 — C*
induces the homomorphism

H(I),Z) — C*, 0 [ a(e)’@. (117)

ecEp
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Two maps aq,as : E4 — C* yield the same element of H! (LY, C*) if and only if
a1 /ag lies in the subgroup of C*€A defined by the equations

I a@@ =1 (118)

ecEp

for all maps 0 : £y — Z which satisfy (116). Of course, it suffices to take (118)
only for a set of 6’s which form a basis for Hy (I}, Z).

Example 4

i. Equation (49) means that a realization w : £ — C of the superpotential
is an element of the homology group H;(I}’,C). If the components of
all edge vectors (wi(e),wsa(e)) are integers wy and wsy are elements of the
homology group H; (I, Z).

ii. Equation (48) means that a realization of the superpotential can also be
viewed as a map w : €4 — C* which then through (117) defines an element
of the cohomology group H' (I, C*).

iii. A twist function n : €4 — {£1} yields an element in the cohomology
group HY (I, C*). [ ]

Proposition 4 The rank of the homology group Hy (I, Z) is
rank Hy (I, Z) = |Epl +1—|Pr| —|Py| = 1+ |P}|. (119)

If (Z,A) is dimer complete (i.e. positive integer weight functions exist) the
group Hy (LY, Z) is the subgroup of Z&* generated by the differences m —m’ of
perfect matchings m, m’.

Proof: The first equality in (119) follows from the fact that (116) is a system
of [Py| + |P3| linear equations for |€x| unknows with exactly one linear relation
between the equations. The second equality in (119) follows from (113).

In [11] §3.4 the matching polytope for I is defined as the set

maps ¥ : £ — R such that for all w € P and all b € P}:

Z d(e) =1 and Z de) =1 - (120)

ecép, w(e)=w ecEp,b(e)=b

Assume that a positive integer weight function v exists. Then for every map
«: Ex — Z representing an element of Hy(I),Z) and every sufficiently large
integer k the map ngy(kl/ + «) is a point in the matching polytope. Thus
(119) implies that the matching polytope is a convex polyhedron of dimension
14 |P5]. By [11] Lemma 3.10 the vertices of the matching polytope are precisely
the perfect matchings.
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Now consider an element of H; (I}, Z) and represent it by a map a : Ep — Z.
Take a positive integer k such that all values of the map kv 4+ «a : Eo — Z are
> 0. Then kv + « is a non-negative integer weight function of degree k degv.
So there are real numbers r, > 0 such that

kv+a = Z Tm M. (121)

m perfect matching

Then kv(e) + a(e) > rmm(e) for all m and e. Now take m such that r, > 0.
Then kv + a — m is a non-negative integer weight function of degree k degv — 1.
If kv 4+ o — m # 0 we repeat this procedure with kv + o« — m in place of kv + «.
After finitely many steps we arrive at the situation that

kv +a — anm =0
m

with all nm € Z and ) nm = kdegr. In the same way one shows that
kv — > nmm = 0 with all n, € Z and ) n;, = kdegv. It follows that

a = Zn;’,m
m
with all n), € Z and ) nj, = 0. This completes the proof of Proposition 4. B

It is an amusing challenge to find positive integer weight functions by just
looking at the picture of the planar tiling, but one may fail. Here is a method
for proving or disproving the existence of positive integer weight functions which
works in general. From (3) one sees that the simplest necessary (but not suffi-
cient) condition for existence of non-negative integer weight functions of degree
> 1 is that in the cycle decompositions of the permutations g and o7 there
must be as many cycles for og as for o;. If that condition is satisfied one can
easily find (by computer) from the cycle decompositions of oy and o all perfect
matchings. If one finds nothing there are no perfect matchings and therefore
according to the Proposition 4 there are no positive integer weight functions
either. So let us now assume that there are perfect matchings. Then the sum of
all perfect matchings is a positive integer weight function if and only if for every
e € & there is a perfect matching m such that m(e) = 1. As said in the proof
of Proposition 4, by [11] Lemma 3.10 the perfect matchings are the vertices of
the matching polytope (120). So every positive integer weight function v must
be a linear combination of perfect matchings with non-negative real coefficients.
Thus if a positive integer weight function exists there must be for every e € Ep
at least one perfect matching m such that m(e) = 1. We conclude:

Corollary 2 Positive integer weight functions exist if and only if the sum of
all perfect matchings is a positive integer weight function. |

This shows that the definitions of dimer completeness — Definition 1 in the
present paper and Definition 1.5. in [22] — agree.
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Figure 26: Zhegalkin Zebra Motives which do not admit positive integer weight
functions.

Example 5 The Zhegalkin Zebra Motives shown in Figure 26 do not admit
positive integer weight functions. For Z2!4-74! 47614762 this is because there
are twice as many black polygons as white polygons. For Z = 72! + 741 4 752
and A = Aut(Z) it turns out that there are 14 edges and 25 perfect matchings.
The sum of the perfect matchings as a function €y = {1,...,14} — Z is

10, 10, 5, 5, 10, 10, 0, 10, 10, 5, 5, 10, 10, 0.

This shows that for this (£, A) there are no positive integer weight functions.
[ |

For e € £y we denote by e*° (resp. e°®) the directed edge of the bipartite
graph IV from b(e) to w(e) (resp. from w(e) to b(e)). Every closed loop £ on
IV can then be written as a string

e0 oce e0 oce [ Je] oe :
=e1%-e3°% - e3%° - e4°® - 91 - €om with (122)

w(eg) = w(eg+1) if k odd, b(eg) = b(eg41) if k even, bean,) = b(ey).

The homology class of the loop ¢ (122) in Hy(I)/,Z) C Z** is given by the
function

0:EN = Z, ) = t{kle=ep, keven } —t{k|e=ex, kodd }. (123)

Remark 9 Loops on I in the format (122) can immediately be seen in the
picture of the planar tiling as paths in R? which start in the interior of some
black polygon b, end in the interior of some A-translate of b, do not pass through
any vertex of the tiling and transversely intersect the edges of the tiling. Thus,
in Figure 19 one can see, for instance, the loop 1°°8°°11°°5°°7°°9°*14*°2°*. N
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In Section 2 we defined the superpotential (Ea,00,01) for the Zhegalkin
Zebra Motive Z and lattice A. Vertices in the tiling modulo A correspond to
the orbits of the permutation o L5y as follows. For a vertex v fix an edge e; with
v = t(e1). Let (e1,e3,€5,...,eam_1) be the orbit of o7 o which contains the
edge eq; i.e. egjqp1 = Uflao(er,l) forj=1,...,m—1 and Ul_lao(egm,l) =e;.
Then the incoming arrows at the vertex v are ey, es, ..., 2,1 and the outgoing
arrows at v are og(e1),00(e3),...,00(€2m—1). Setting es; = o(ezj—1) for j =
1,...m we may combine this to one string of edges

V= (617 €2,€3,...,€2m—1, 62777,)7
ex+1 = ogleg) if k odd, epry1 = ofl(ek) if k even, e = 01_1(62m), (124)
v =t(er) if k odd, v =s(ex)if k even.

This string of edges directly gives the following loop on I in the format (122)

oce ( Jel

Zv = 61'0 - €9 - €3 taet €2m,1.o . €2mo.. (125)

Remark 10 The right-hand side of v = (el,eg,eg, .. .,egm_l,egm) in (124)
gives precisely the cyclic ordering of the arrows in the quiver Iy incident (in-
coming as well as outgoing) to the vertex v. This cyclic ordering at all vertices
of T}y is precisely what makes Iy a ribbon graph. It is obvious from (124)
that one can read the superpotential (¢, 01) directly from this ribbon graph
structure on I}, and vice versa.

Passing from v = (el,eg,eg, .. .,egm_l,egm) in (124) to 4y = e1*° - e9
€3% ... - e2,m-1%° - €2,° in (125) is just a notational make-up which preserves
the information on the cyclic ordering. There is however a clash between the
notation ¢ in (125) and the notation ¢, in (57): the latter gives only the
incoming and outgoing arrows at the vertex v, but contains no information
about the cyclic ordering. Or rather, (125) describes a closed loop on the graph
IV and (57) only gives the homology class of that loop in Hy (I, Z). [ |

ce

In the same way the orbits of the permutation o0y define strings of edges
known as zigzags:

zZ = (61762763;-"76277171)62777,)) (126)
ex+1 = ooler) if k odd, ert1 =o1(e) if k even, ey = o1(eam).

This string of edges directly gives the following loop on I in the format (122)

by, =e1°° €% - e3%° - ... eam_1*ean’". (127)
The string of edges for the zigzag z in (126) also is a path along the edges of
the tiling (i.e. a path on the quiver I}) which alternately turns sharp left and
sharp right. That is why it is called a zigzag. We denote the set of zigzags by
Pz.

Remark 11 Note that one can immediately recover the permutations ¢ and
o1 from the strings of edges v in (124) for all vertices v € Py.

Similarly one can immediately recover the permutations oy and o7 from the
strings of edges z in (126) for all zigzags z € P3. |
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w(e

Proposition 5 The homology classes of the loops £y (v € PY) generate a sub-
lattice of rank |PY| — 1 in Hy(I\,Z). The homology classes of the loops £,
(z € P ) generate a sublattice of rank |P{| — 1 in Hy (I}, Z). [ |

The string of edges z in (126) is a closed loop on the quiver T}, while the string
{5 in (127) is a closed loop on the bipartite graph I}. The correspondence (126)-
(127) is exceptionally simple. In general the correspondence between closed
loops on I} and closed loops on I} is more complicated. Here is a (canonical)
way to convert a closed loop ¢ on IV given in the format (122) to a closed loop on
I\. A pair eg;_