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ABSTRACT 

Bloch [l] defined the formal completion of the group of O-cycles module rational equivalence 
on a surface X and studied it in case X is defined over an algebraic number field. In this paper we 
investigate in detail the situation for ground fields which are extensions of Q of finite transcendence 
degree. We look in particular at the kernel of the formal analogue of the Abel-Jacobi mapping from 
Chow group to Albanese variety. It turns out that the influence of the derivations of the ground 
field R can be described completely in terms of the Gauss-Manin connection on HiR(X/lI). 

INTRODUCTION 

Let X be a smooth projective surface over a field R of characteristic 0 and 
of finite transcendence degree over Q. Given an imbedding of 8. in UZ one can 
form the complex surface X, =Xx spec A Spec 6. The Abel-Jacobi map gives a 
surjective homomorphism 

(0.1) CH2(X,), + Alb (Xc) 

from the group of O-cycles of degree 0 on Xc modulo rational equivalence 
onto the Albanese variety of Xc. Mumford showed in [lo] that, in contrast to 
what happens for O-cycles on curves, this map cannot be an isomorphism, if 
the geometric genus ps of X is not zero. Bloch’s conjecture is that conversely, 
the Abel-Jacobi map (0.1) is an isomorphism if pg= 0 [l]. This has been 
verified in some cases, but the general conjecture is still open. For surfaces with 
pg> 0 the kernel of (0.1) is a true mystery, without even a guess as to what its 
structure may be. 
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In the hope to get more insight into the structure of the group CH2(X) of 
O-cycles modulo rational equivalence on X Bloch proposed to study its “formal 
completion at the origin” [l]. The definition of this completion is motivated 
by Bloch’s formula 

c~2w) = I-r2(X 4, x) I 

where for any scheme Y &, y is the sheaf for the Zariski topology on Y 
associated to the pre-sheaf whose group of sections over an open Uis the group 
K,(r(U, a,)), which Milnor’s functor K, assigns to the ring r(U, @,) [l 11. Let 
V be the category of artinian local R-algebras with residue field L. The objects 
of V will be denoted as (A, m) where A is the local ring and m its maximal ideal. 
For (A, m) E obj GR write X, =Xx spec R Spec A. Now we are ready to define the 
“formal completion at the origin of CH2(X)“, It is the covariant functor 

c?Hj, : %+abelian groups 

given by 

In [l] Bloch studied this functor (denoting it as F$ in case R is algebraic over 
Q (see also [2]). The purpose of the present paper is to show what one finds 
without this assumption. 

We look first for an analogue of the Abel-Jacobi map (0.1). The tangent 
space at the origin of the Albanese variety is H2(X, QiR). This means that the 
formal completion at the origin of the Albanese variety, viewed as a &variant 
functor 

A&X : %+abelian groups, 

is given by 

G&,4, m) = H2(X, t&) 0 &+n 

We shall prove in 5 2: 

THEOREM 1. Let X and a be as above. Then 
(i) There is a surjective natural transformation 

(0.2) C%$+i%i,. 

(ii) Every homomorphism from C?i into a smooth commutative formal 
group (which we viz as a covariant functor from V to ‘abelian groups’) factors 
via (0.2) through Albx. 

(iii) The map (0.2) is an isomorphism if and only if pg=O. El 

Parts (i) and (iii) are in the number field case also proved in [I]. It was 
actually the discovery of (iii) which lead Bloch to his conjecture. 

Next let us concentrate on ker (C@ +a,). This is of course also a 
covariant functor %‘+(abelian groups). On the last line of Bloch’s paper [l] one 
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can read that in case R is algebraic over Q this functor is naturally isomorphic 
to the one which assigns to an object (A,m) of V the group 

H2(X, es,)@&,JdA. 

If R is not algebraic over Q, the description of ker (C%i-+zbb,) and the 
hypotheses which one has to assume, are influenced by the derivations of R over 
Q. The Gauss-Manin connection determines an action of Der(UQ) on 
H&(X/Q (see Q 3 for a summary of the construction and main properties of 
the Gauss-Manin connection). It turns out that the description of 
ker (&i-tax) and the necessary hypotheses can be formulated in terms of 
the Gauss-Manin connection. Generalities are given in 5 3. As a special case we 
mention here 

THEOREM 2. Let X be a smooth projective surface over a field 11. which has 
finite transcendence degree over Q. Then the following statements are 
equivalent: 

(i) The map H1(X, O&J+H’(X, @$J@RQ&Q which is induced by the 
Gauss-Manin connection (and whiti, is equal to cup-product with the Kodaira- 
Spencer mapping) is surjective. 

(ii) The functor ker (@$ +A&,) is naturally isomorphic to the one which 
assigns to an object (A,m) of V the group 

H2(X, @j) @,Q;,,/dA. 0 

This theorem is proved in $ 3 in the form of theorem 2bis. Giving the map 
H’(X, 52j&M2(X, ax)@ &!I R &/Q is equivalent to giving a R-linear map 

(0.3) Der (k/Q) --+Hom,@W, Q&d, H’(X Qh.)) 

(cf. (3.9)). In case X has genus 1, surjectivity of the former map is equivalent 
to injectivity of the latter. Thus we get the following corollary. 

COROLLARY. Let X and tl be as in theorem 2. Assume in addition that X has 
genus pg = 1. Then the following statements are equivalent 

(i) The map Der (R/Q)-+Hom,(H”(X, Qi,J, H’(X, sZ&&)) which is induced 
by the Gauss-Manin connztionds injective. 

(ii) The functor ker (CH, 2 +Alb,) is naturally isomorphic to the one which 
assigns to (A,m) the group G!h,,/dA. El ’ 

The map (0.3) which appears here, is well-known in deformation theory. It 
has the following interpretation. 

Choose a regular Q-algebra of finite type, R, and a smooth projective map 
it : X’-+Spec R = S whose generic fibre is X-Spec 8. (i.e. the field of fractions 
of R is R. and X=X’ x s Spec &). By base change relative to the inclusion Q CC 
we obtain from X’+S*Spec Q a smooth family of complex surfaces 

xh 7tc -Sc-+Spec c3. An imbedding c : Bc+Q: determines a point of Sc, which 
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we also denote by o. The fibre of ~c over this point is precisely the surface 
K7 =Xxspec a Spec C which is obtained from X by base change relative to 
CT : Bc*Q=. The Hodge and De Rham cohomology of X&S, are sheaves of &- 
modules on Sc. The ones relevant for our purpose are Z&(X6&), 
2f+O Hodge 3 &$,~ge. The stalks of these sheaves at the point ci are, respectively, 

(~~~(x~/s~)),=~~~(xu/~)=~~~(x/)ORa: 

(&Age)u =H’(Xu9 Qio/C)2:H1(X, ak/dOkc 

where in the tensor products c is considered as a g-algebra via o. The 
isomorphisms are canonical isomorphisms (see Deligne’s paper [4] for a 
discussion of the compatibilities between various cohomology theories). The 
Gauss-Manin connection for Xb+Sc-+Spec @ induces an @&-linear map 
between sheaves of B&-moclules 

Q&k = Der (SC/C) + ~~~~~~~~~~~ 4?;Age) 

In the stalks at the point o this map is 

(0.4) Ts,, o+HomcWo& Q?Q$ %L Q&N 

where Tsc, c is the tangent space to Sc at 0. It follows from the construction 
that 

(0.4)=(0.3)@& 
(0.3) is injective 6 (0.4) is injective. 

The map (0.4) has the following interpretation (cf. [S] p. 168). As said, 
X&+S, is a smooth family of smooth complex surfaces. We can pass to the 
analytic context (without adding new notations). Choose a marking of the 
family, i.e. an isomorphism from R2nc*H onto a fixed lattice L. Associated 
with such a marked family is a 

period mapping : Sc+(period space). 

The period space is a piece of some flag manifold and the period mapping 
assigns to a point s of Sc the Hodge filtration on H&(X,/C) = LO&. The 
interpretation of (0.4) is: 

(0.5) ‘The map (0.4) is the differential of the period mapping’. 

As the Hodge filtration has the property F1 = F2', the image of s in the period 
space is completely determined by the position of the line N’(X,,!Z&) 
in L@$Z. This is position is classically expressed by the periods of a 
holomorphic 2-form on X. That much to the statement (i) in the corollary. 

As for (ii) in the corollary, one can remark that the simplicity of the result 
allows a simple description of a natural transformation from the functor of 
(infinitesimal) points on X to ker (6%; --+fix). For this we fix a non-zero 
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2-form CL) EHO(X, Q&J. Let (A, m) be an object of K An A-valued point of X 
is just a morphism f : Spec A +X. Let x be the g-rational point underlying f, 
i.e. the composite Spec R+Spec A-+X. Let B = @ix be the completion of the 
local ring at x. Then f is actually just a surjective ring homomorphism 
$ : &+A. The form o “is” an element of G&K. It is a closed form and is 
therefore exact by the formal Poincare lemma. This means that cu lies actually 
in the subspace s2&/dB of Q&k. To the A-valued point f of X we assign the 

’ image of o under the map G?2B,li /dB+sZi,g/dA which is induced by $. This 
gives the natural transformation we wanted. 
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The technical arguments needed to prove theorems 1 and 2 use the 
assumption dim X=2 only to assure that the functor H2(X, -> on the 
category of sheaves of abelian groups on X is right-exact. They work equally 
well for analyzing the functor on V which assigns to an object (A, m) the group 

when X is a smooth projective variety of dimension n over II. This functor is 
the “formal completion at the origin” of Hn(X, yZ,x). Of course, interpre- 
tations in terms of O-cycles and Albanese are not available. Yet, for a curve X 
H’(X, 3$x) seems to be of interest. For this reason the hypothesis for the 
remaining sections of this paper is -X is a smooth projective n-dimensional 
variety over a field R of characteristic 0 and finite transcendence degree over Q. 

Q 1. THE GENERAL DECOMPOSITION OF Hn(X, &‘x) 

Let (A,m) be an object of %? The schemes X and X, have the same 
underlying topological space. The map y2,x,++ between sheaves on this 
space splits. Let us denote its kernel as s&~(A,~). Alternately, one can define 
J$,(A, m) as the sheaf on X associated to the pre-sheaf 

This sheaf varies in a functorial way with (A,m), i.e. we have a covariant 
functor 

ZZpx : $9 (sheaves of abelian groups on X). 

One has obviously for every (A,m) 

H”CX -&AA, 4 = ker WY&, 4,xA)4WX %,A. 
So the functor which we should investigate is W(X, %&), which assigns to 
(A, mm) the group W(X, $ix(A, +tt))* 



Being in characteristic 0 one can use logarithms to translate questions about 
K2 (multiplicative) to questions about Q t (additive). Concretely, one has 
according to [l] or [9] an isomorphism 

&(A, 4 = Qi&4,,,,~~~@XQkd9 

where by definition 

Q&4,x@et= ker EQ&JQ+Q&,QI. 
These isomorphisms, for varying (A, m), constitute actually an isomorphism of 
functors on K We may forget about K-theory. Our problem has become 
analyzing 

For every g-algebra S there is a surjective homomorphism 

(1.1) %&Q~,,@aQ Qa~-ts2~,,,,,l,/d(sQ~~), 

which sends 

adWqdW to (alQOWQW and (a&dQbl to @&WW(aAW, 

module d(S@,&. It is obvious that elements of the form a@db + da@ b are 
in the kerne1 of this map. Passing to sheaves and taking cohomology (H” is 
right exact because dim X = n) we find a surjection from 

(1.2) 
H”(x, @AC) C&Q;, ,,, 0 H”(X, a&,) QRmt 

WA 4 

onto 

H”(X Qig~,xB,/d(@xQam)), 

where I(A,m) is the group generated by the elements co@db+ dw@b with 
COE Hn(X, @*) and bfm. 

THEOREM 3. The homomorphism (1.2) is an isomorphism for every (A, +tt) in 
V. Thus one finds an isomorphism between H”(X, yZ,X) and the functor which 
assigns to an object (A,m) of V the group 

PROOF. We first reduce the question to the case of certain special algebras 
(A, 4. 

Consider a surjective homomorphism (A, m)+(A ‘, m’) in %‘. Let us denote the 
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map and groups in (1.2) schematically as L*A4, and its analogue for (.4 ‘, m’) 
as L’-+M’. The homomorphism (A, m)+(A ‘, m’) induces surjections L-+L’ and 
M-r,M’. This yields a commutative diagram 

One can easily check, starting with simple calculations at ring level and using 
the right-exactness of the fun&or Hn(X, -), that the induced map from 
ker (L-L’,) into ker (M+M’) is surjective. This implies by the snake lemma 
that the induced map from ker (L-+M) into ker (L’+M’) is also surjective. 
Consequently, if L-M is injective, then L ‘+M’ is injective too. Since every 
artinian local R-algebra with residue field R is the homomorphic image of an 
algebra of the form 

(9 
A = lqt,, . . . . qJ/(fl, .-*, tJ 
m= @I, . ..J.) 

our problem is thus reduced to proving the injectivity of (1.2) for (A, m) as 
in (*). 

We need the following lemma: 

LEMMA (1.3). Let (A, m) be as in (*). Let S be any &algebra. Then (1.2) 
induces an isomorphism 

W3&l,,OQLlJ O,p 
JM 4 

=s ~&4,s,J~~SOn~~ 

where J(A, m) is the group generated by the elements a@db -t- da@ b with a E S 
and bEttt. 

PROOF. Put 

We want to give explicitly a map K+H which is inverse to the map H-+K 
coming from (1.1). Note that K has a presentation by generators and relations. 
The generators are expressions <J g} with f, g E SOdA and f or g E SBRm. The 
defining relations are (f,g+h) = (Jgs) + (Ah); (f,gh) = <fg,Izh) + (.Ii?,g); 
( 1,g) = 0. Using the convention ta = rpltp . . . fp we may write elements of 
S@@ uniquely as C, a,# with a, E S. 

To ( C, a#, 1, c,tY) we assign the element 

C a,cy @Pdtu+ C a,dc, @t”+? module J(A, +x) in H. 
aY a? 
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This assignment cIearly respects the above relations. Hence it defines a 
homomorphism K+N. This homomorphism is right-inverse to the map 
induced by (1. l), and it is surjective. Thus we see that it is an isomorphism. 0 

We continue the proof of theorem 3. As a consequence of lemma (1.3) one 
finds an exact sequence of sheaves of abelian groups on X: 

To this sequence we apply the right-exact functor H”(X, - ) and obtain thus 
the exact sequence 

The remark that the group I(A,m) is precisely the image of H”(X, Ox)@Qm 
under the map 1 @d + dQ 1, concludes the proof of theorem 3. 0 

REMARK (1.4) I like the following reformulation of theorem 3. Let 9 be the 
non-commutative polynomial ring in one variable, a[J], modulo the two-sided 
ideal generated by the monomials of degree 2. So 9 is a graded non- 
commutative ring with unit concentrated in degrees 0 and 1, with go = A and 
92 ’ = UkL We view &a;,, as a graded left .%-module with m in degree 0 and 
Qi,, in degree 1, upon which d acts as the usual derivation d : +vL+~;,, and R 
acts by multiplication on the left on ti and a;,,. We view P(X, 0x)@ 
@H”(X, Q&o) as a graded left %-module in the same way. 

Let (m@Qfi,,)(- 1) be the graded left g-module with m in degree + 1 and 
Szi,, in degree +2, and with cl operating as - 1 times the usual d : ~+O~,,. 
So (- 1) is the standard shift of complexes. 

Every graded left &module L’ can be considered as a right g-module if one 
defines: 

laa=a.l, 4%l=(-1)‘ti for all ecL’, all i, all aE&. 

With these conventions we can view 

where deg 2 refers to the homogeneous part of total degree 2; One may interpret 
this formula as saying that the %?-module Hn(X, Ox)@H”(X,Q&$ is for the 
functor IP(X, 2zx) what the Lie algebra is for a formal group or Lie group. 
In characteristic p >0 there is a similar formula for H”(X, &;,,> in which the 
crucial module is the part H”(X, P%~~)@N~(X, z&%2$ of the slope spectral. 
sequence for crystalline cohomology, viewed as a module over the Cartier- 
DieudonnC-Raynaud algebra (see [ 121). 
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~2.THEPROOFOFTHEOREMl 

One obtains theorem 1 by specifying 72 = 2 in the propositions (2.2), (2.4) and 
(2.6) which are proved in this section. 

Let Y be the formal group over R whose tangent space (= Lie algebra) is 
H”(X,G!&,J i.e. the covariant functor 

3 : @+(abelian groups) 

defined by 

(2.U B(A, m) = uyx, Qj&,~) @ Cm. 

PROPOSITION (2.2). There exists a natural surjective homomorphism 

j : wyx, &+ 9. 

PROOF. According theorem 3 Hn(X, s+&) is naturally isomorphic to the 
functor which assigns to an object (A,m) the group 

WX, edOk~fi,,O~“(X, Q&r&BP 
W, 4 

. 

There is a canonical surjection p : H”(X, S2&,)++W(X, Q$&). Now consider 
the surjective homomorphism 

which is the zero map on the first summand andp@ 1 on the second one. Hodge 
theory shows that the differential d : H”(X, @x)-+H”(X, 52&& vanishes. As an 
immediate consequence one finds that i vanishes on I(A,&). Hence the 
proposition follows. q 

REMARK (2.3). Continuing the line of thought started in remark (1.4) one can 
describe the map k : H”(X, $&-+ $7 as being induced by the obvious map of 
?&modules 

WYX, @x)OfmX Q~,Q)PWX, Q&b 
Here N”(X,Q&J is considered as g-module concentrated in degree 1. Note 
that 

PROPOSITION (2.4). The mapb in (2.2) is a natural isomorphism if and only 
if the geometric genus pg of X is zero. (Recall that pg = dim, iY’(X, 52$& = 
= dimA N”(X, ex)). 

PROOF. The kernel of the map i in the proof of (2,2) contains obviously 
Jf”K a,m&,,* From this fact one deduces immediately that there is a 
surjection from ker j (evaluated at (A, m)) onto H”(X, 8x)@&&JdA. Taking 
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A =R[E, ~5]/@‘,6~, es) one has an example in which sZ&g/dA is not zero. 
Therefore, if i is an isomorphism, then U”(X, &) must vanish. 

For the converse implication we first recall the exact sequence of sheaves 
on X 

o-, B,~,sZk,-rQ~,~-,sZ~,~jO. 

The corresponding cohomology sequence shows that the map 

P : ~*(X, S2&QPHYX Q&d 

is an isomorphism if W’(X, ~9~) = 0. This implies that in case H”(X, Ox) = 0 the 
map a in the proof of (2.2) is an isomorphism. The same conclusion follows 
for i. q 

REMARK (2.5) One can arrive at the conclusion of (2.4) without first proving 
theorem 1 by using instead Bloch’s approach via the bi-tangent space (see [3]). 

Let me recall some facts about formal groups over R. In this paper “formal 
group” will always mean “smooth commutative formal group”. These are 
covariant functors 

F : $++(abeIian groups) 

for which the underlying set-valued functor is naturally isomorphic to the 
functor Ar (for some r) which is defined by A’(A, m) = m x . . . x m (r factors). 
The number r is called the dimension of F. It is well-known that over a field 
of characteristic 0 every r-dimensional formal group is naturally isomorphic to 
the direct sum of r copies of the additive formal group, i.e. 

F=G;L:, as group valued functors, 

where GU is the functor which assigns to (A,w) the additive group m. 

PROPOSITION (2.6) Every natural homomorphism from H”(X, y2,x) into a 
formal group over R factors through the formal group Y defined in (2. I). 

PROOF. Since every formal group over R is the direct sum of a number of 
copies of the additive group G3,, it suffices to prove that every natural 
homomorphism H”(X, y2,x)-+G, factors through 9; or rather that it vanishes 
on the kernel of j : H”(X, Z&X)+ % 

Denote by 0’ the covariant functor from V into the category of R-vector 
spaces which sends (A, NL) to Qfi, ,,,. It is obvious from the construction of j in 
proposition (2.2) that there is a natural surjection from the (group valued) 
functor N”(X, &)@&21 onto ker 6. It suffices.therefore to show that there are 
no non-trivial natural homomorphisms 

p : Hn(X, @x)@aS2’-‘G;a. 

So let us take such a homomorphism ~3. For every (A,m) E %? the group 
m-x mORQ;,m is generated by elements o@dt and co@xdy with 
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UEH”(X, Ox), t,x,yfEm. It suffices therefore to prove for all N?2 and 
w E H”(X, ox) 

p(w @ dt) = 0 in case A = &[t]/(P) 

p(u@xdy) = 0 in case A = R[x,y]/(x,y)N. 

Consider the first case. By definition q(o@dt) is some polynomial f(t) in 
#l[t]/(tN). Now look at p(w@d(2t)). On the one hand v, is a natural trans- 
formation, whence 99(~@d(2t))=f(2t), and on the other hand it is a 
homomorphism, whence &o@d(2t)) = 2f(t). This limits the possibilities for 
f(t) to f(t) = ct for some c E 8. 

A similar argument shows that in the second case the element &w@xdy) of 
R[x, y]/(x,y)N has to be of the form bxy for some constant b E 8. The relation 
between b and c is found by looking at the computation 

So c=2b. 
Now consider the elements &w@x@z$), (p(w@xy&) and p(w@xzdy) of 

R[x,y, z]/(x,y, z)? By functoriality all three are equal to bxyz But on the other 
hand 

p(wOxd~z)) = p(u@xydz) + p(oOxzdy). 

Hence b = 0. This completes the proof of proposition (2.6). 0 

Q 3. INVESTIGATION OF ker [a : Hn(X, Z&X)-+ Y] 

9 is the formal group defined in (2.1) andb is the homomorphism constructed 
in (2.2). For (A, mm) E V we let &I, m) be the subgroup of W(X, @x) @,sZi,, 
which is generated by the elements Ci Ui@d(Cit) with WiE Hn(X, @jJ, CjiE 11, 
t E ti and xi cidai -2 0 in Hn(X, G’$jQ). 

We define 

This defines a covariant functor 

& : +?-+(abelian groups). 

It is obvious from the definitions that P(A,+w) is a subgroup of the group 
&A,& which occurs in theorem 3. Combining this fact with theorem 3 we get 
a natural homomorphism 

(3.2) i : &+Hn(X, G&). 

Taking a look at the construction of k in (2.2) one easily sees that the sequence 

ci++HyX, a$#+ Y-+0 

is exact. 
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THEOREM 4. The homomorphism i : &+H”(X, A$~) is injective. In other 
words, the functor ker 6 : N”(X, ,%%+ 9) is naturally isomorphic to the one 
which assigns to (A,*) the group 

HYX, Cc)QaJ?i., 

PROOF. The first step of the proof is to reduce the general problem to 
showing the injectivity of the map i : &(A, w)+ H”(X, &&4, m)) for certain 
special objects (A, m). 

Consider a surjective homomorphism (A, m)--+ (A ‘, m’) in K It gives rise to a 
commutative diagram with exact rows and columns: 

The groups To, . . . . T4 are defined by the requirement that the rows and 
columns be exact. The snake lemma shows that the map T3-+ T4 is surjective if 
and only if the map T 2-+ 9(A,m) is injective, i.e. if and only if the surjection 
Tz*ker ( @A, m)+ 9&4 ‘, m’)) has an inverse. Let M= ker (A+A ‘). The 
definition of 9 in (2.1) implies immediately that 

Let 

ker ( Y(A, m) -+ &4 ‘, m’)) = H”(X, Q&J @,&E 

and let I(A,M) be the subgroup of I(A, m) which is generated by those elements 
co@db+da@b with bEM and weH”(X, &) (cf. (1.2)). Using the fact that 
the natural maps P(A, m)+P(A ‘, m) and I(A, m)+1(A ‘, m’) are surjective, the 
ubiquitous snake lemma, theorem 3 and the definition of Bone can easily see 
that there are surjective homomorphisms 
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and 

Taking the quotient of the first expression by the second one gets a surjection 
~“(X, a&> 0 &- T2 - 

This map is obviously right-inverse to the map T~+fP(X,Q&,~)@&f. So 
they are isomorphisms. The conclusion is that the map T3+T4 is surjective and 
that therefore T4 will be zero if T3 is so. Thus the problem has been reduced 
to proving the injectivity of &(A, a)+H”(X, ~&+4,m)) only for 

A =k&, . . . , t,]/(tl, . . . , t(J 

mm= (tl, . . . . q. 

It is obvious from theorem 3 that there is a surjection 

WX, &,x(A,4+Nn(X, ~*)@&2~,~/dml. 

The composite of this map with i : &(A, ++W{X, L&&I, WI)) is the obvious 
projection, the kernel of which is generated by the classes of the elements 
a@dct”, with w E Hn(X, Ox), c E 8, ta = tfl . . . t$ This kernel contains ker i. 

CLAIM. If 

C, Ci ui,.@dc$” mod P(A,m) is in ker i 

then 

Ci wi, a @dC, ata mod &I, m) is in ker i for every GI. 

PROOF OF THIS CLAIM. By means of the substitutions tl - Pt, for P= 1,2, . . m9 r 
we obtain from the one given element r elements: 

siops .gs 7 Wj,a@dcj,.ta mod P(A, m). 
’ I 

By functoriality each of these r elements belongs to ker i. Let 

D=det 

i 11 1 1 . * r 2 . * 22 r2 1 . . . . . . . . . . . 2’ r’ 1. 

Then D is a non-zero integer. For each s one can write 

D c C Oi,a@dCi,atCr mod P(A,m) 
a,q=s i 

as a Z-linear combination of the above r elements. So each of these terms is in 
ker i. Using the substitution tl - D-Jtr and functoriality one can now conclude 
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that for each s 

belongs to ker i. 
Repeat this trick with each of these terms and with tz instead of tl. And so 

on. This proves the claim. 

Thus the problem of showing ker i= 0 has been reduced to the question: If 
Ci wi @dc$’ mod P(A, m) belongs to ker i, is then necessarily Ci C&B~ = 0 in 
fwfi QhrJY 

Consider the substitution 

A = R[tl, . . . , tpt,, . . . , tpB = a[t]/(t’) 

sending ti to t for i=l, . . . . q. It transforms Ci cui@dcita mod P(A,m) into 
Ci ui@dcits mod P(B, tls) with s= al + . . . + a,. If the former element is in 
ker i, then the latter element is in ker i too., 

Take the description of H”(X, &,&$tB)) which is given in theorem 3. 
There is a homomorphism 

H’YX ~~)ORSZ~,~BOH”(X,JZ~,~)O~(~B)~H”(X,O~,,)~R(~B) 

which on Hn(X,03u/Q)@g(tB) is the identity map and which on 
Hn(X, &) @&2:, tB is defined by 

This map obviously annihilates the group Z(B, tZ?). So it induces a homo- 
morphism H”(X, s&&3, tB))+ H”(X, C2$,Q)@a(tB). 

Let us compose it with the map i : &(B, tB)+H”(X, &@, tB)). Evaluating 
the composite map at the element Cj wj@d(cjts) mod P(B, tB) one finds 
(- Cicidai)@tS. Since the former element is in ker i, this implies Ci cidai=O. 
This concludes the proof of theorem 4. q 

Thus the problem of understanding ker b : Hn(X, y2,.J- 91 is essentially 
reduced to the question: Which relations of the form Ci cidWj= 0 do exist in 
H’YX, Qk,c$ 

The answer is most simple if the canonical map H”(X, Ll&)+H”(X, Q&k) 
is an isomorphism; for then d : Hn(X, @X)-+Hn(X, sZ&& is the zero map, 
since d : Hn(X, &)-+Hn(X, 524,& is always zero. 

In that case the group P(F&~) is generated by the elements w@dt with 
WEH”(X, &), t~-m i.e. 

P(A, ML) = H”(X, &&&kdm. 

As a consequence we find (cf. (3.1)) 

8(A, 4 =HYX, ~,)O#&&W 
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for all (A,Mz) E ?Z Hence to prove theorem 2 we check that the condition 
mentioned in this theorem, implies Hn(X, B&& 2: H”(X, D&J. Consider the 
exact ‘sequence of sheaves on X: 

(3.3) o+ @~O,f-&, -+L?~,Q%&+0. 

and the following part of the associated long exact sequence of cohomology 
groups 

Hn- ‘(X9 l&)+Hn(X, @J@&&--+H”(X, B&$*H”(X, G&)+0. 

It shows that H”(X,Q$~) is isomorphic to Hn(X,Ofu/R) if and only if the 
coboundary map Hn-’ (X, 52$&+Hn(X, &)@,&,$Q is surjective. 

The fact that this coboundary is equal to the map induced by the Gauss- 
Manin connection on H&(X/k), as well as to cup-product with the Kodaira- 
Spencer mapping, is proved in (151 (1.3.2), (1.4.1.7)). (See also below for a 
summary of the construction and main properties of the Gauss-Manin 
connection.) 

Thus we have proved most of the following theorem. 

THEOREM 2BIS. Let X be a smooth projective n-dimensional variety over a 
field g, which has finite transcendence degree over Q. Then the following 
statements are equivalent. 

(i) The canonical map Hn(X, $2 i/Q) + H”(X, a~,~) is a isomorphism. 
(ii) The map Hn-i(X,i2&g)-+H”(X, Ox)@RQ&Q which is induced by the 

Gauss-Manin connection, is surjective. 
(iii) The functor ker [i : H”(X, &J&+ 91 is naturally isomorphic to the 

one which assigns to an object (A,m) of V the group 

PROOF. The implications (i)# (ii) =$ (iii) have been shown above. We are left 
with (iii)*(i). So, assume (iii) holds. Take A =R[E]/(E~). Then GA,R/dA =O. 
Hence 

j : H”(X, &&A, m))-’ %A d 
is an isomorphism for this A. On the other hand we have for this A 

Y(A, m) = Hn(X, L&J by (2.1) 

H”(x, 35,x64,4 = H’YX, Qh$ 
by Van der Kallen’s theorem [7]. So (iii) does imply (i). 0 

We conclude this paper with an analysis of the functor & in case the 
conditions of the above theorem are not satisfied. Eventually we shall assume 
that X has genus 1. 

First we briefly recall the Katz-Oda construction of the Gauss-Manin 
connection [6]. 
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The De Rham complex Q& carries a natural filtration by subcomplexes, 
which are defined as follows 

K&j= image (L&& @a!2~,Q+Q~~Q). 

Using (3.3) one can show that the associated graded complex is 
gri.. =Ki,./@+ I,. =Q~T;QJ&., 

In particular gr*‘* =Qi,, and gr’*. =~‘2k$ @,Q,$,. Take the long exact 
sequence of hypercohomology groups which is associated with the short exact 
sequence of complexes of sheaves on X 

O--*gr’i.“K*t./K2l.,gr*~.~O. 

The Gauss-Manin connection on H&(X/@ (= IH “(X, 9~~~)) relative to Q is by 
definition the coboundary map 

(3.4) V : H~~(X/R)jHZlR(X/B)~RS2to 

which appears in this sequence between IH’ and l/-lnfl (cf. [5] p. 14). Recall 
that the Hodge filtration on H&(X/k) is defined by 

F’ = image (IH “(X, L!$$J+ IH “(X, Q,)). 

Griffths’ transversality theorem states VF’CF’-‘O,O& (cf. [5] p. 14). So V 
induces a map 

V : F”,‘F2+Fo/F’@nf2;,Q. 

Standard facts in Hodge theory, in particular the degeneracy of the Hodge-De 
Rham spectral sequence, imply 

F*/F’ = W(X, &), F”/F2 = IH “(X, @%2;,,) 

(the right-hand group is the n-th hypercohomology of the two-term complex 
@zQk,L, concentrated in degrees 0 and 1). We summarize these facts in the 
following commutative square 

Now consider the following commutative diagram in which the lines are short 
exact sequences of complexes concentrated in degrees 0 and 1. 
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The degree 1 part in the top line is precisely (3.3). Taking hypercohomology 
groups we get the following commutative square which involves the 
coboundaries between IHn and IH ‘+ ‘: 

It is easy to see that the bottom line of (3.5) and the top line of (3.6) are indeed 
the same. This gives the relation between the map d : H”(X, O,)+Hn(X, Qfy/~) 
and the Gauss-Manin connection on H&(X/Q. We extend (3.6) a bit: 

Hn - ‘(X, G&) - IH “(X, Ox- 22&J- H”(X, &) -H”(X, 52j& 

I d 

H” - ‘(x, Qj&-+ H’(X, &) 0 ,&&- Hn(X, i&,,)- H”(X, ~-2&,~) 

The top line is the long exact sequence associated with the obvious filtration of 
the complex (@j@-+Qfy/re). The bottom line .is the long exact sequence 
associated with (3.3). The left-hand square is commutative according to ([5] 
(1.3.2), (1.4.1.7)). The middle square is just (3.6); so it is commutative. The 
right-hand square is trivially commutative. The map d : H”(X, @x)-+ 
-+W(X, D&J is zero. So the map d : H”(X, GYX>-+Hn(X, 9&) factors 
through the subgroup 

coker (Hnel(X, O&)-+H”(X, 8’x)@aQ&) of H”(X, &I&,), 

Giving the Gauss-Manin connection in the form (3.4) is equivalent to giving a 
R-linear homomorphism 

(3.8) V : Der (A./Q)-+Homs(H&(X/@, H&(X/Q). 

Here “Homq” means “space of Q-linear maps”. Note that the map in (3.8) 
is also denoted as B. It assigns to a derivation D the composite 

Griffths’ transversality theorem becomes in this formulation V(D)F’cF’-’ 
for all DEDer (fUQ) and i= l,..., n. Thus V(D) induces a A-linear homo- 
morphism V @) : F’/F” ‘+Fi- l/F’. W e get in particular B-linear maps 

(3.9) 
71 : Der (Ik/Q)+HomR (H”- ‘(X, Q,&,>, Hfl(X, c&)) 

V, : Der (UQ)+Homa (H’(X, 12$,k), H’(X, ~2&~)). 
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This time the target space consists of &linear homomorphisms. Serre duality 
gives isomorphisms 

H”(X,52$,~)“=N”(X, &) and H’(X,~~~‘)“=H”-‘(X,~~,~). 

And V t and 7, are related by 

(3.10) O,(O)“= - V,(D) for all DEDer (UQ) 

(cf. [6] p. 204 formula (11)). In particular ker V, = ker V t . From now on we 
assume 

(3.11) X has genus 1 i.e. dim, HR(X, &) = dim, H*(X, Q$,J = 1. 

This condition allows us to view V, as the ‘dual’ of the map Hn-‘(X, l2&)+ 
-+H”K @xF&Q:~. This yields an isomorphism 

coker (H”-‘(X,52&,,&-+H”(X, @‘x>@,Q&)=H”(X, &)@,(ker 0,)“. 

As we have seen the left-hand side is a subgroup of H”(X, D&$ which 
contains the image of the map d : H”(X, &)+Hn(X, !Ji&. We now see that 
d factors as the composite of a map 

(3.12) 6 : H”(X, &)+H”(X, ex)OR(ker VI)” 

and an injection. This injection is a &linear map. The definition of the group 
P&m) at the beginning of this section can now be reformulated as follows: 
P(A,m) is the subgroup of H”(X, @x)@152f3,m which is generated by the 
elements Ci oi@dcjt with wi E H”(X, a,), ci E R, t E m and Ci ciSwi = 0 in 
Hn(X, &)aR(ker VI)“. 

In the introduction we discussed extensively the situation which arises when 
V, is injective. So let us assume from now on that V r is not injective. Fix a 
basis II,, . . . . D,of ker V, andletDy,..., Dybe the dual basis in (ker 0,)“. Let 

R’=(x~@x=0 for all DEker VI}+ 

Then L’ is a subfield of a and ker VI CDer (UR?. For reasons which will 
become clear below, we have to assume 

(3.13) assumption: ker V 1 = Der -@/R’), 

Dualizing (3.13) we get (ker V,)’ = Qi,gr. We will consider Dy, . , . , Dy also as 
basis for Q&r. 

Let P’(A, nz) be the subgroup of Hn(X, @x)@,nfi,, which is generated by the 
elements cu@ tdc with CI) E Hn(X, a,), f em and c E R’, This group is contained 
in P(A, m) because w @ tdc = w 0 dct - cw 0 dt and 

COW-&w= -CUQ i DJc)Di=O for CER’. 
q=l 

It is obvious that 
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where 

Szi, m,Rr = ker (J-2;,&+ Qkls). 

Let &I, +w) = P(A, +P’(A, w). Then we find, in view of (3.1) 

Now fix a non-zero element o E W”(X, @‘x). Then w@Dy, . . , , o@Dy is a basis 
for H”(X, &)Oa(ker Or)‘. 

Define s 1, . . ..sr by 

(3.15) c&D= i; sqoQD;. 
q=l 

Then 

6(hw) = i (hsq + D,(h))w QD,V for every h E R. 
q=l 

A relation Ci ciS(hi~) = 0 in IP(X, QBn(ker 77 r)’ is therefore equivalent to 

(*I C 
i 

(cihisq + I@,) = 0 for 4 = 1, . . . , r. 

By definition, &4,~) is the subgroup of H”(X, @“)@,Qi,m,,f which is 
generated by the elements Ci hp@dqt with hi, CiER, t em, satisfying the 
relation (*). For such a generator we calculate 

c hiW@dcit= C m@dhicit- C w@citdhi 
i i i 

= T w@dhicit- C w@citDq(hi)Di 
i, 4 

= ‘$W@[dhicit+ hicit qc, ~qD:]s 

The assumption (3.13) has been used on the second line of this computation to 
allow the replacement of the form citdhi by C CitDq(h,)D,V; both forms are in 
Qi,,,lt, or rather in the image of m@a~$af. The above calculation shows that 
every generator of &I,m) can be written as a sum of elements of the form 

# w@[dt+t i: s D”] 
q=l q q 

with t E m variable and o,sq,Dl fixed as before. 
Now look at # mod &4,m), which is an element of C&&W). The image of 

this element in W(X, &J is clearly the same as the image of w @dt + dco @ t, 
as one can see by using (3.15) and the definition of the map 6 in (3.12). Since 
CvQdt + da@ t is an element of I(A, w), this means that this image is zero (cf. 
theorem 3). This implies by theorem 4 and (3.14) that # is in &I, m). Thus we 
have shown that &f,m) is actually generated by the elements of the form # . 

Before stating our final conclusion as theorem 5 we give another inter- 
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pretation of the elements.s, which were defined in (3.15). From (3.8) and (3.9) 
one sees: 

(3.16)’ DeEker VI= ker V,~V(D)F'CF'~V(D)F"CF". 

The first of these equivalences implies that for DE ker V r the following 
diagram is commutative 

In particular, if &EN&(X/Q lifts w, then 

V(D,)cG mod F’ =s4a for q= 1, . . ..r. 

Let w” E H’(X, QlZ-/) =F” be dual to &j and to o under the standard pairing 
on H&(X/k) and Serre duality respectively. Recall that F’ =F” for the 
standard pairing, and that therefore (w”, V(D,)Q) depends only on the class 
of O(D,)& mod F’. Thus we get 

(co”, V(Dq)&) = wys,w> =sq. 

On the other hand 

(co”, V(D&ij) = - ( V(Dq)d, a>. 
The second equivalence in (3.16) implies that V(Dq)ov is a multiple of w”. In 
view of the preceding computation we have in fact 

V(DJ0” = -sqw”. 

This gives a nicer interpretation of s4 than the one in (3.15). Summarizing the 
above analysis we find 

THEOREM 5. Let W be a field of finite transcendence degree over Q. Let X be 
a smooth projective variety over I of dimension n and genus 1. Let 

Vn : Der (UQ)-+Hom,(H”(X, C&J, H’(X, Q&l)) 

be the map induced by the Gauss-Manin connection 

V : Der (4/Q) -+ HomQ (HER (X/R), HER (X/Q), 

Let R’=(x~RiDx=o for all DEker 8,). And assume 

ker Vn =Der (U-41). 

Let Dr, . . . . 0, be a basis of ker V,, and let 0:: . . . . Dy be the dual basis in Q&,J. 
Fix a non-zero n-form o” E p(X, a&&). 
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Then the functor ker Q : H”(X, $2x)+ 3’) is naturally isomorphic to the one 
which assigns to an object (A, W) of V the group 

where 

52~,mjkt = ker (Q&aJ+52&~) 

and where sl, . . . , S,EP are defined by O(D,)w”= -s4wv. q 

COROLLARY. Let 8. and R’ be fields of finite transcendence degree over Q, 
with R’CR. Let X’ be a smooth projective variety over R’ of dimension n and 
genus 1. Assume that the map 

v n : Der (&‘/Q) -+ Homn(Ho(X’, 8$,,,), H’(X’, Qg$r)) 

is injective. Let 

X=x’X Spec k%ec R- 

Then the functor ker 6 : H”(X, LX!&) + 9) (for X) isomorphic to the one 
which assigns to (A, m) E V the group 

Oh, ,,ghi?Un. 

PROOF. The functoriality properties of the construction of the Gauss-Manin 
connection yield a commutative diagram 

It shows that Der (R/R’) = ker V,, (this is VJ, for X). So the hypotheses of the 
theorem are satisfied. The functoriality properties of the construction of the 
Gauss-Manin connection also show that the following square is commutative 

From this one can easily conclude that for w” E H*(X’, Q$,FLj) c H&&Y/Q and 
D E ker V, (V, for X) one has 0(D)o~” = 0. So the s4 which occur in theorem 
5 are all zero. q 
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