The Generalized De Rham-Witt Complex and Congruence Differential Equations

Jan Stienstra

April 4, 2018*

1 Introduction.

The De Rham-Witt complex is a powerful instrument for studying the crystalline cohomology of a smooth projective variety over a perfect field of positive characteristic. In [9] the De Rham-Witt complex is constructed for schemes on which some prime number p is zero. Here in section 2 we construct on every scheme X on which 2 is invertible the generalized De Rham-Witt complex $\underline{W\Omega}_X^{\cdot}$; this is a Zariski sheaf of anti-commutative differential graded algebras with the additional structures and properties described in (2.1)–(2.6). Section 3 gives the (obvious) definition of the relative generalized De Rham-Witt complex $\underline{W\Omega}_{X/S}^{\cdot}$ for $f: X \to S$ a morphism of schemes over $\mathbf{Z}[\frac{1}{2}]$.

Now consider a proper smooth morphism $f: X \to S$ of smooth schemes over some open part of Spec $\mathbb{Z}[\frac{1}{2}]$. For simplicity we assume that S is affine. Let s be a closed point of S with residue field k(s) of characteristic p > 2. Let X_s be the fiber of f over s. Using the functoriality of the constructions and the projection onto the p-typical part (see (2.4)) one obtains for all $m \ge 0$ a specialization map

 $\mathbf{H}^m(X, \underline{\mathcal{W}\Omega}^{\cdot}_{X/S}) \to \mathbf{H}^m(X_s, \mathcal{W}\Omega^{\cdot}_{X_s})$

compatible with the Frobenius endomorphisms \underline{F}_p on its source and target. Here $\mathcal{W}\Omega_{X_s}^{\cdot}$ is the classical De Rham-Witt complex on X_s . Since X_s is a smooth proper scheme over the perfect field k(s) one knows from ([9] II(1.4),(2.8)) that $\mathbf{H}^m(X_s, \mathcal{W}\Omega_{X_s}^{\cdot})$ is isomorphic to the crystalline cohomology $\mathrm{H}^m_{\mathrm{crys}}(X_s)$ of X_s .

On the other hand from (2.2) one gets a homomorphism

$$\mathbf{H}^m(X, \underline{\mathcal{W}\Omega}^{\cdot}_{X/S}) \to \mathbf{H}^m(X, \Omega^{\cdot}_{X/S})$$

for every $m \ge 0$. In order to turn this effectively into a result on the interaction of Frobenius on the crystaline cohomology of the fibers X_s and the Gauss-Manin

^{*}this paper was published in Arithmetic Algebraic Geometry, Van der Geer, Oort, Peters (eds), Progress in Mathematics 89, Boston: Birkhuser (1991)

connection on the De Rham cohomology of X/S we must however replace our complexes by the projective systems of complexes

$\{\underline{\mathcal{W}\Omega}_X^{\cdot} \mod N\}_{N \in \mathbf{N}}$,	$\{\underline{\mathcal{W}\Omega}_{X/S}^{\cdot} \mod N\}_{N \in \mathbf{N}}$
$\{\Omega^{\boldsymbol{\cdot}}_{X/S} \mod N\}_{N \in \mathbf{N}},$	$\{\mathcal{W}\Omega^{\cdot}_{X_s} \mod N\}_{N \in \mathbf{N}},\$

indexed by the multiplicative monoid of the positive integers. This respects the relation with crystalline cohomology: see (5.9). The reason for looking at the complexes modulo N is that now the Frobenius homomorphism F_N induces a homomorphism

 $F_N^* : \operatorname{H}^m(X, \underline{\mathcal{WO}}_X) \to \operatorname{H}^m(X, \underline{\mathcal{W\Omega}}_X \mod N)$

for every $m \ge 0$ (see (4.5)). This simple observation is the key to theorem (4.6) and its corollary (4.7) which states that matrices which come from the action of the Frobenius operator F_N on the generalized Witt vector cohomology group $\mathrm{H}^m(X, \underline{\mathcal{WO}}_X)$ provide solutions to the differential equations taken modulo Nassociated with the Gauss-Manin connection acting on $\mathrm{H}^{r-m}(X, \Omega^r_{X/S})$. In a number of interesting examples these matrices can explicitly be calculated via Čech cocycles for generalized Witt vector cohomology (see [18] (5.6)).

A result of this type was first observed by Igusa for the Legendre family of elliptic curves $y^2 = x(x-1)(x-\lambda)$ over $S = \text{Spec } \mathbb{Z}[\lambda, (2\lambda(1-\lambda))^{-1}]$ with N = p an odd prime number. Manin [15] proved it for general smooth families of curves in characteristic p > 0. Katz ([11] prop. (2.3.6.3)) generalized it to higher dimensions, but still in characteristic p > 0. In [12] Katz reinterpreted Igusa's observation and greatly generalized it to congruence differential equations modulo arbitrary N for the coefficients of formal expansions of differential forms.

In [13] Katz used the expansion coefficients of differential forms to describe the top slope quotient crystal of $\mathbf{H}_{DR}^m(X/S)$ for certain families of varieties X/S. In section 5 we prove a similar result for the *unit root sub-crystal*. One can imagine a kind of Hodge symmetry relating (5.6) and the main theorem of [13].

Our work on $\underline{W\Omega}_{X/S}^{\cdot}$ was in part motivated by the remark in [13] p.246 that the result of op. cit. might perhaps be considered as evidence for the existence of a theory of De Rham-Witt with parameters. A second motivation comes from the comparison isomorphism between crystalline cohomology in characteristic p and De Rham cohomology in characteristic 0 (see [1] (7.26.3)). There the De Rham side has no natural Frobenius and the crystalline side has no Hodge filtration. $\underline{W\Omega}_{X/S}^{\cdot}$ is an object with Frobenius and good filtrations of its own, which sees both $\mathrm{H}^*_{\mathrm{crys}}$ and $\mathrm{H}^*_{\mathrm{DR}}$; see (5.9) for a more explicit example of how this works out.

2 Construction of the generalized De Rham-Witt complex.

In this section we give the construction of the generalized De Rham-Witt complex $\underline{W\Omega}_X^{\cdot}$ on a scheme X on which 2 is invertible. This is a Zariski sheaf of anti-commutative differential graded algebras with the additional structures and properties described in (2.1)–(2.6).

2.1 Let $\underline{W\Omega}_X^i$ be the homogeneous component of degree i of $\underline{W\Omega}_X^{\cdot}$. Then $\underline{W\Omega}_X^i = 0$ for i < 0 and $\underline{W\Omega}_X^0$ is the sheaf of generalized Witt vectors on X (cf. [3, 8, 2]). We shall usually write \underline{WO}_X instead of $\underline{W\Omega}_X^0$.

2.2 Let Ω_X^{\cdot} be the absolute De Rham complex on X i.e. the complex of differential forms relative to **Z**. Put $\widetilde{\Omega}_X^i := \Omega_X^i / (i!$ -torsion in $\Omega_X^i)$ and $\widetilde{\Omega}_X^{\cdot} := \bigoplus_{i \ge 0} \widetilde{\Omega}_X^i$. Then there is a homomorphism of sheaves of differential graded algebras

$$\pi: \underline{\mathcal{W}\Omega}_X^{\boldsymbol{\cdot}} \to \widetilde{\Omega}_X^{\boldsymbol{\cdot}}$$

in degree 0 this is the projection onto the first Witt vector coordinate $\underline{WO}_X \to O_X$.

2.3 For every integer $m \ge 1$ and every $i \ge 0$ there are homomorphisms of additive groups

$$F_m, V_m : \underline{\mathcal{W}\Omega}^i_X \to \underline{\mathcal{W}\Omega}^i_X$$

satisfying the following relations

$$\begin{array}{ll} F_m V_m = m, & F_m F_n = F_{mn}, & V_m V_n = V_{mn}, \\ V_m d = m d V_m, & d F_m = m F_m d, & F_m d V_m = d, \\ F_m (ab) = (F_m a) (F_m b), & V_m (a (F_m b)) = (V_m a) b, \end{array}$$

for all m, n and for all sections a, b of $\underline{W\Omega}_X^{\cdot}$, and

$$V_n F_m = F_m V_n \quad \text{if} \quad (n,m) = 1;$$

here $d: \underline{W\Omega}_X^i \to \underline{W\Omega}_X^{i+1}$ is the differential of the differential graded algebra $\underline{W\Omega}_X^{\cdot}$. On the sheaf of generalized Witt vectors \underline{WO}_X the operators F_m and V_m coincide with the usual Frobenius and Verschiebung operators (cf.[3, 8, 2]).

Obviously F_m does not commute with d. However one obtains an endomorphism \underline{F}_m of the sheaf of differential graded algebras $\underline{W}\Omega_X^{\cdot}$ by taking $\underline{F}_m = m^i F_m$ on $\underline{W}\Omega_X^i$.

2.4 Let p be an odd prime number and let X be a scheme of characteristic p. Then there is an idempotent endomorphism E_p of the differential graded algebra $\underline{\mathcal{W}\Omega}_X^{\cdot}$ which projects $\underline{\mathcal{W}\Omega}_X^{\cdot}$ onto its p-typical part: $E_p\underline{\mathcal{W}\Omega}_X^{\cdot} = \bigcap\{\ker F_m \mid m \text{ prime } \neq p\}$. So $E_p\underline{\mathcal{W}\Omega}_X^{\cdot}$ is a sheaf of anti-commutative differential graded algebras. Its component in degree 0 is the sheaf \mathcal{WO}_X of p-typical Witt vectors on X. Since E_p commutes with F_p and V_p , the operators F_p and V_p act on $E_p\underline{\mathcal{W}\Omega}_X^{\cdot}$ and here in characteristic p they commute: $V_pF_p = F_pV_p = p$. There is an isomorphism of sheaves of differential graded algebras

$$\underline{\mathcal{W}\Omega}_X^{\cdot} \simeq (E_p \underline{\mathcal{W}\Omega}_X^{\cdot})^{\mathbf{N} \setminus p\mathbf{N}}$$

where the right hand side is the product of copies of $E_p \mathcal{W}\Omega_X^{\cdot}$ indexed by the set of positive integers prime to p. Let $\mathcal{W}\Omega_X^{\cdot}$ be the De Rham-Witt complex on

X constructed by Deligne and Illusie [9]. There is a surjective homomorphism of sheaves of differential graded algebras from $\mathcal{W}\Omega_X^{\cdot}$ onto $E_p \mathcal{W}\Omega_X^{\cdot}$ compatible with the operators F_p and V_p on both sides. If X is a smooth scheme over a perfect field of characteristic p this is an isomorphism:

$$\mathcal{W}\Omega_X^{\cdot} \simeq E_p \underline{\mathcal{W}\Omega}_X^{\cdot}$$

2.5 Let X be a scheme over **Q**. Then there is an idempotent endomorphism E_0 of the differential graded algebra $\underline{W\Omega}_X^{\cdot}$ with image $E_0\underline{W\Omega}_X^{\cdot} = \bigcap_{m>1} \ker F_m$. There are isomorphisms of sheaves of differential graded algebras

$$E_0 \underline{\mathcal{W}} \Omega_X^{\cdot} \simeq \Omega_X^{\cdot}, \qquad \underline{\mathcal{W}} \Omega_X^{\cdot} \simeq (\Omega_X^{\cdot})^{\mathbf{N}}$$

2.6 The constructions are functorial: let $f: Y \to X$ be a morphism of schemes over $\mathbf{Z}[\frac{1}{2}]$. Then there is a homomorphism $\underline{\mathcal{W}\Omega}_X^{\cdot} \to f_*\underline{\mathcal{W}\Omega}_Y^{\cdot}$ of sheaves of differential graded algebras on X compatible with the operators F_m and V_m on both sides. On (hyper-) cohomology groups this induces homomorphisms like

$$\mathrm{H}^{n}(X, \underline{\mathcal{W}\Omega}_{X}^{i}) \to \mathrm{H}^{n}(Y, \underline{\mathcal{W}\Omega}_{Y}^{i}), \qquad \mathrm{H}^{n}(X, \underline{\mathcal{W}\Omega}_{X}^{\cdot}) \to \mathrm{H}^{n}(Y, \underline{\mathcal{W}\Omega}_{Y}^{\cdot}).$$

The construction of the generalized De Rham-Witt complex with its additional structures is essentially given in [19]. However in op. cit. it is specialized to characteristic p situations too early for our present purpose. Therefore we shall briefly recall the constructions in in such a way that the general statements in (2.1) - (2.6) become completely justified.

2.7 Let A be a commutative ring with 1. In [19] K-theory is used to construct an anti-commutative graded ring with 1

$$\widetilde{K}_*(\operatorname{End}(A)) = \bigoplus_{i>0} \widetilde{K}_i(\operatorname{End}(A))$$

equipped with homomorphisms for the additive structure

$$F_m, V_m : \widetilde{K}_i(\operatorname{End}(A)) \to \widetilde{K}_i(\operatorname{End}(A)), \quad i \ge 0,$$

for every positive integer m, and with a derivation

$$d: K_i(\operatorname{End}(A)) \to K_{i+1}(\operatorname{End}(A)), \quad i \ge 0$$

The relations listed in (2.3) hold also for F_m , V_m and d on $\widetilde{K}_*(\text{End}(A))$ except for $F_m dV_m = d$ which here only holds for odd m, and for $d^2 = 0$ which here is weakened to $2d^2 = 0$ (see [19] theorem (1.8)).

2.8 In [20] the graded ring $\widetilde{K}_*(\operatorname{End}(A))$ is equipped with a decreasing filtration by homogeneous ideals $\{\operatorname{Fil}_n \widetilde{K}_*(\operatorname{End}(A))\}_{n\geq 1}$ with $\operatorname{Fil}_1 \widetilde{K}_*(\operatorname{End}(A)) = \widetilde{K}_*(\operatorname{End}(A))$. Define

$$\widetilde{K}_*(\operatorname{End}(A))^c := \lim_{\leftarrow n} [\widetilde{K}_*(\operatorname{End}(A))/\operatorname{Fil}_n \widetilde{K}_*(\operatorname{End}(A))]$$

with the topology of a projective limit of discrete spaces. From the proof of the proposition in [20] one gets

$$F_m(\operatorname{Fil}_{mn}) \subset \operatorname{Fil}_n, \quad V_m(\operatorname{Fil}_n) \subset \operatorname{Fil}_{mn}, \quad d(\operatorname{Fil}_{qn}) \subset \operatorname{Fil}_n$$

for all $m, n \ge 1$ and for some positive integer q independent of n and A. Thus F_m, V_m and d extend to continuous operators on $\widetilde{K}_*(\operatorname{End}(A))^c$ satisfying the same relations as in (2.7). Moreover, $\widetilde{K}_0(\operatorname{End}(A))^c$ is canonically isomorphic with the ring of generalized Witt vectors over A ([20] p.220).

2.9 If 2 is invertible in A it is also invertible in $\widetilde{K}_0(\operatorname{End}(A))^c$. Therefore all relations in (2.3)(see also (2.7)) are valid for the operators acting on $\widetilde{K}_*(\operatorname{End}(A))^c$

2.10 From now on we assume that 2 is invertible in A.

Definition
$$\underline{W\Omega}_A^{\cdot}$$
 := closure of the graded subring of $K_*(\operatorname{End}(A))^c$
generated by $\widetilde{K}_0(\operatorname{End}(A))^c$ and $d\widetilde{K}_0(\operatorname{End}(A))^c$.

2.11 In particular, $\underline{W\Omega}_A^0$ is the ring of generalized Witt vectors over A. Its additive group is isomorphic with the multiplicative group $(1 + tA[[t]])^*$. Every element of the latter group can be written uniquely in the form $\prod_{n\geq 1}(1-a_nt^n)^{-1}$ with all $a_n \in A$. The elements of $\underline{W\Omega}_A^0$ can therefore be written uniquely as $\sum_{n\geq 1} V_n \underline{a_n}$, where \underline{a} is the Witt vector which corresponds to the power series $(1-at)^{-1}$.

2.12 Proposition For all $i \ge 0$ and $m \ge 1$ one has

$$d\underline{W\Omega}_A^i \subset \underline{W\Omega}_A^{i+1}, \qquad V_m\underline{W\Omega}_A^i \subset \underline{W\Omega}_A^i, \qquad F_m\underline{W\Omega}_A^i \subset \underline{W\Omega}_A^i.$$

Proof The results for d and V_m follow immediately from the relations in (2.3). The problem for F_m is easily reduced to showing $F_m dV_n \underline{a} \in \underline{\mathcal{W}}\Omega^1_A$ for all $m, n \geq 1$ and $a \in A$; the Witt vector \underline{a} is defined in (2.11). In view of the relations in (2.3) we may even assume (m, n) = 1. Choose integers q and r such that qn + rm = 1. Then

$$F_m dV_n \underline{a} = qV_n F_m d\underline{a} + r dF_m V_n \underline{a}.$$

Formula (8.3.3) in [19] shows

$$F_m d\underline{a} = \underline{a}^{m-1} d\underline{a}$$

Thus we find

$$F_m dV_n \underline{a} = q(V_n \underline{a}^{m-1}) d(V_n \underline{a}) + r dF_m V_n \underline{a} \in \underline{\mathcal{W}} \Omega^1_A$$
(1)

2.13 The preceding construction depends functorially on A: if $g : A \to B$ is a homomorphism of $\mathbb{Z}[\frac{1}{2}]$ -algebras, then there is a continuous homomorphism of graded topological rings

$$g_*: \underline{\mathcal{W}\Omega}_A^{\cdot} \to \underline{\mathcal{W}\Omega}_B^{\cdot}$$

which commutes with the operators d, F_m and V_m $(m \ge 1)$. It sends the Witt vector $\underline{a} \in \underline{W}\Omega^0_A$ to $g(a) \in \underline{W}\Omega^0_B$.

2.14 We get on every scheme X over $\mathbf{Z}[\frac{1}{2}]$ a pre-sheaf for the Zariski topology

(Zariski open $U \subset X$) $\mapsto \underline{\mathcal{W}\Omega}^{\cdot}_{\Gamma(U,\mathcal{O}_X)}$.

We define

 $\underline{\mathcal{W}\Omega}_X^{\cdot} :=$ the sheaf associated with the above pre-sheaf.

and call this the generalized De Rham-Witt complex of X. We shall usually write \underline{WO}_X instead of $\underline{W\Omega}_X^0$.

This completes the construction of $\underline{\mathcal{W}\Omega}_X^{\cdot}$ and of the operators d, F_m and V_m $(m \geq 1)$ acting on it. It follows from (2.7) and (2.9) that $\underline{\mathcal{W}\Omega}_X^{\cdot}$ with d is a sheaf of anti-commutative differential graded algebras and that the relations in (2.3) hold. Moreover (2.8) proves (2.1); in particular, $\underline{\mathcal{W}\mathcal{O}}_X$ is the sheaf of generalized Witt vectors on X. The functoriality property in (2.6) is a consequence of (2.13).

We now turn to the construction of the homomorphism π in (2.2).

2.15 Let A be a commutative ring with 1 and 2 invertible in A. By [19](3.4) (see also [20]) we have a bilinear pairing

$$\langle,\rangle: \widetilde{K}_i(\operatorname{End}(A))^c \times \widetilde{K}_0(\operatorname{Nil}(\mathbf{Z}[t]/(t^2))) \to K_{i+1}(A[t]/(t^2)).$$

From this we get in particular a homomorphism

$$\langle,\underline{\underline{t}}\rangle: K_i(\operatorname{End}(A))^c \to K_{i+1}(A[t]/(t^2))$$

where $\underline{\underline{t}}$ is the element of $\widetilde{K}_0(\operatorname{Nil}(\mathbf{Z}[t]/(t^2)))$ defined in [19](5.2). On the other hand one has Gersten's map (see [2] p.206 (3.2),(3.3))

dlog :
$$K_{i+1}(A[t]/(t^2)) \to \Omega^{i+1}_{A[t]/(t^2)};$$

here we work with differential forms relative to Z. Let

$$\rho: \underline{\mathcal{W}\Omega}^i_A \to \Omega^{i+1}_{A[t]/(t^2)}$$

be the composite $d\log\langle, \underline{t}\rangle$ restricted to $\underline{W}\Omega_A^i$.

2.16 The group $\underline{W}\Omega_A^i$ is topologically generated by the elements

$$(V_{n_0}\underline{a_0})d(V_{n_1}\underline{a_1})\cdots d(V_{n_i}\underline{a_i})$$

with $n_0, \ldots, n_i \in \mathbf{N}, a_0, \ldots, a_i \in A$ (cf.(2.11)).

Lemma In the above situation let $\alpha = (V_{n_0}\underline{\underline{a_0}})d(V_{n_1}\underline{\underline{a_1}})\cdots d(V_{n_i}\underline{\underline{a_i}})$. If all $n_j = 1$ then

$$\rho(\alpha) = (-1)^{i} i! d(-ta_0 da_1 \wedge \dots \wedge da_i)$$

Otherwise $\rho(\alpha) = 0$.

Proof Let $n = \max(n_0, \ldots, n_i)$. Assume first $n \ge 2$. Using (2.3) one easily rewrites α in the form $\alpha = V_n\beta + dV_n\gamma$ with $\beta \in \underline{W\Omega}_A^i, \gamma \in \underline{W\Omega}_A^{i-1}$. From [19](3.2) one gets $\langle \alpha, \underline{t} \rangle = \langle \beta, F_n \underline{t} \rangle + (-1)^i \langle \gamma, F_n d\underline{t} \rangle$. Loc.cit. (1.6) and (5.2) show $F_n \underline{t} = \underline{t}^n = 0$. Loc.cit. (8.3.3) yields $F_n d\underline{t} = \underline{t}^{n-1} d\underline{t} = 0$ for $n \ge 3$. For n = 2 we compute $F_2 d\underline{t} = 2^{-1} dF_2 \underline{t} = 0$. This proves $\rho(\alpha) = 0$ if $n \ge 2$. The formula for $\rho(\alpha)$ in case n = 1 follows from [19](7.6) and [2] p.206 (3.3);

The formula for $\rho(\alpha)$ in case n = 1 follows from [19](7.6) and [2] p.206 (3.3); more precisely the argument is as follows. By functoriality it suffices to prove the formula for the case that a_0, \ldots, a_i are the indeterminates in the polynomial ring $P := \mathbf{Z}[\frac{1}{2}][a_0, \ldots, a_i]$. Set $Q := P[a_0^{-1}, \ldots, a_i^{-1}]$. Using the injectivity of the natural homomorphism

$$\Omega_{P[t]/(t^2)}^{i+1} \to \Omega_{Q[t]/(t^2)}^{i+1}$$

9

and functoriality we see that it suffices to prove the formula with a_0, \ldots, a_i in Q. Then [19](3.1) and the proof of [19](7.6) give

$$\langle \alpha, \underline{t} \rangle = \{1 - ta_0 a_1 \cdots a_i, a_1, \dots, a_i\}.$$

The right hand side is a Steinberg symbol in $K_{i+1}(Q[t]/(t^2))$. Applying [2] p.206 (3.3) to compute the dlog of this Steinberg symbol we find

$$\rho(\alpha) = (-1)^i i! (1 - ta_0 a_1 \cdots a_i)^{-1} d(-ta_0) \wedge da_1 \wedge \cdots \wedge da_i$$

This is equal to $(-1)^{i} i! d(-ta_0 da_1 \wedge \cdots \wedge da_i)$ because $t^2 = 0$ and $\frac{1}{2} \in Q$.

2.17 Lemma Let A be as in (2.15). Define

$$\psi: \Omega_A^i \to \Omega_{A[t]/(t^2)}^{i+1}, \qquad \psi(\eta) = (-1)^i i! d(-t\eta).$$

Then

$$\ker \psi = (i! - \text{torsion in } \Omega_A^i) := \ker(i! : \Omega_A^i \to \Omega_A^i).$$

Proof Consider the map $\Omega^1_{A[t]/(t^2)} \to \Omega^1_A \oplus \Omega^1_{A[t]/(t^2)/A}$ which is the direct sum of the map induced by $t \mapsto 0$ and the map taking differentials relative to A. Its (i+1)-fold exterior power over $A[t]/(t^2)$ is a map $\Omega^{i+1}_{A[t]/(t^2)} \to \Omega^{i+1}_A \oplus \Omega^i_A dt$ which sends $d(t\eta)$ to $(-1)^i \eta dt$. The lemma is now clear.

2.18 Define $\widetilde{\Omega}_A^i := \Omega_A^i / (i!$ -torsion in $\Omega_A^i)$. Then the map ψ from (2.17) induces an isomorphism $\overline{\psi} : \widetilde{\Omega}_A^i \xrightarrow{\sim} \text{image } \psi$. From (2.16) one sees that the image of ρ is contained in the image of ψ . So we can compose ρ with $\overline{\psi}^{-1}$. Define

$$\pi_i := \overline{\psi}^{-1} \rho : \underline{\mathcal{W}} \underline{\Omega}^i_A \to \widetilde{\Omega}^i_A$$

2.19 From (2.16) one obtains explicit formulas for π_i :

$$\pi_i((V_{n_0}\underline{\underline{a_0}})d(V_{n_1}\underline{\underline{a_1}})\cdots d(V_{n_i}\underline{\underline{a_i}})) = 0 \text{ if some } n_j \neq 1$$
$$\pi_i(\underline{\underline{a_0}}d\underline{\underline{a_1}}\cdots d\underline{\underline{a_i}}) = a_0da_1 \wedge \cdots \wedge da_i.$$

These formulas show that π_i is surjective. They also show that the direct sum π of the maps π_i is a homomorphism of differential graded algebras $\pi : \underline{\mathcal{W}\Omega}_A^{\cdot} \to \widetilde{\Omega}_A^{\cdot}$.

2.20 Let X be a scheme over $\mathbb{Z}[\frac{1}{2}]$. Then sheafification of the above construction provides the homomorphism of sheaves of differential graded algebras on X

$$\pi: \underline{\mathcal{W}\Omega}_X^{\cdot} \to \Omega_X^{\cdot}$$

for (2.2).

2.21 Let *P* be a set of prime numbers and let *X* be a scheme such that every prime number in *P* is invertible in \mathcal{O}_X . Then every $l \in P$ is also invertible in \mathcal{WO}_X . Moreover with notations as in (2.8) we have $F_l \operatorname{Fil}_1 \subset \operatorname{Fil}_1$ and $V_l \operatorname{Fil}_1 \subset \operatorname{Fil}_l$ for every *l*. Therefore the expression

$$E^P := \prod_{l \in P} (1 - l^{-1} V_l F_l)$$

defines an operator on $\underline{W\Omega}_X^{\cdot}$. One easily checks that it is an idempotent operator, that it commutes with d, V_p and F_p for all primes $p \notin P$ and that $E^P(ab) = (E^P a)(E^P b)$ for all sections a, b of $\underline{W\Omega}_X^{\cdot}$. Furthermore it is clear that for every $l \in P$ the image of E^P is contained in ker F_l and that E^P is the identity on ker F_l . Consequently

$$E^P \underline{\mathcal{W}} \underline{\Omega}_X^{\cdot} = \bigcap_{l \in P} \ker F_l.$$

Let $\overline{P} \subset \mathbf{N}$ be the multiplicatively closed subset with 1 generated by P. Then there is an isomorphism of sheaves of differential graded algebras

$$\underline{\mathcal{W}\Omega}_X^{\cdot} \simeq (E^P \underline{\mathcal{W}\Omega}_X^{\cdot})^P;$$

on homogeneous sections of degree i the map \rightarrow sends a to $(m^i E^P F_m a)_{m \in \overline{P}}$ and the map \leftarrow sends $(b_m)_{m \in \overline{P}}$ to $\sum_{m \in \overline{P}} m^{-i-1} V_m b_m$. All this is an easy consequence of the relations in (2.3). We apply it in the situation of (2.5) (resp. (2.4)) with P the set of all primes (resp. all primes $\neq p$) and write E_0 (resp. E_p) for E^P . The results relating in (2.4) $E_p \underline{\mathcal{W}} \Omega_X$ to the De Rham-Witt complex of Deligne and Illusie are proved in [19] section 8. The isomorphism

$$E_0 \underline{\mathcal{W}} \Omega_X^{\cdot} \simeq \Omega_X^{\cdot}$$

in (2.5) is proved as follows. Note that $E_0V_m = 0$ for all $m \ge 2$. Combining this with the definition of the ring structure on generalized Witt vectors one sees that there is a ring homomorphism

$$\lambda: \mathcal{O}_X \to E_0 \underline{\mathcal{WO}}_X$$

which on sections is defined by $\lambda(a) = E_0 \underline{\underline{a}}$ (see (2.11) for $\underline{\underline{a}}$). Because of the universal property of Ω_X^{\cdot} this homomorphism from \mathcal{O}_X into the degree 0 component of the differential graded algebra $E_0 \underline{\mathcal{W}} \Omega_X^{\cdot}$ extends uniquely to a homomorphism of differential graded algebras

$$\lambda: \Omega^{\cdot}_X \to E_0 \underline{\mathcal{W}} \Omega^{\cdot}_X.$$

This homomorphism is surjective because $\underline{W\Omega}_X$ is topologically generated by the sections described in (2.16) and because $E_0V_m = 0$ for $m \ge 2$. A simple computation shows that $\pi\lambda$ is the identity map on Ω_X^{\cdot} , where π is the homomorphism π from (2.2) restricted to the image of E_0 . This proves that π induces an isomorphism $E_0\underline{W\Omega}_X^{\cdot} \simeq \Omega_X^{\cdot}$.

3 The relative generalized De Rham-Witt complex.

3.1 Let $f: X \to S$ be a morphism of schemes over $\mathbb{Z}[\frac{1}{2}]$. We define the relative generalized De Rham-Witt complex $\underline{\mathcal{W}\Omega}_{X/S}^{\cdot}$ on X to be the quotient of $\underline{\mathcal{W}\Omega}_{X}^{\cdot}$ by the closure of the ideal generated by $d(f^{-1}\underline{\mathcal{W}\mathcal{O}}_{S})$. It is clear that $\underline{\mathcal{W}\Omega}_{X/S}^{\cdot}$ is a sheaf of anti-commutative differential graded algebras with $\underline{\mathcal{W}\Omega}_{X/S}^{0} = \underline{\mathcal{W}\mathcal{O}}_{X}$. The homomorphism $\pi: \underline{\mathcal{W}\Omega}_{X}^{\cdot} \to \widetilde{\Omega}_{X}^{\cdot}$ induces a homomorphism

$$\pi: \underline{\mathcal{W}\Omega}^{\boldsymbol{\cdot}}_{X/S} \to \widetilde{\Omega}^{\boldsymbol{\cdot}}_{X/S},$$

where $\Omega_{X/S}^{i}$ is the usual relative De Rham complex of X/S and $\widetilde{\Omega}_{X/S}^{i} := \Omega_{X/S}^{i}/(i!-\text{torsion})$. Using the relations in (2.3) and formula (1) in (2.12) one easily checks that the operators F_m and V_m on $\underline{W}\Omega_X^{i}$ map the ideal $(d(f^{-1}\underline{W}\mathcal{O}_S))$. $\underline{W}\Omega_X^{i}$ into itself and thus induce operators F_m and V_m on $\underline{W}\Omega_{X/S}^{i}$. The relations in (2.3) pass without change to $\underline{W}\Omega_{X/S}^{i}$. Notice also the analogue of the functoriality property (2.6): a commutative square

leads naturally to a homomorphism $\underline{\mathcal{W}\Omega}_{X/S}^{\cdot} \to g_*\underline{\mathcal{W}\Omega}_{Y/T}^{\cdot}$.

3.2 Suppose S is the spectrum of a perfect field of characteristic p > 2. Then F_p is surjective on $\underline{\mathcal{WO}}_S$. Because of $dF_p^r = p^r F_p^r d = V_p^r F_p^{2r} d$ in characteristic p and $V_p^r \operatorname{Fil}_1 \subset \operatorname{Fil}_{p^r}$ (see (2.8)), the subsheaf $d(f^{-1}\underline{\mathcal{WO}}_S)$ of $\underline{\mathcal{WO}}_X$ is zero. So $\underline{\mathcal{WO}}_{X/S} = \underline{\mathcal{WO}}_X$ if S is the spectrum of a perfect field of characteristic p > 2.

4 Congruence differential equations.

4.1 Let $S = \operatorname{Spec} A$ be an affine scheme which is smooth over an open part of $\operatorname{Spec} \mathbf{Z}[\frac{1}{2}]$. Let $f : X \to S$ be a projective smooth morphism of relative dimension r. We assume that all Hodge cohomology groups $\operatorname{H}^{j}(X, \Omega^{i}_{X/S})$ are free A-modules and $\operatorname{H}^{r}(X, \Omega^{r}_{X/S}) \simeq A$.

4.2 These hypotheses imply that the Hodge-De Rham spectral sequence $\mathbf{E}_1^{ij} := \mathbf{H}^j(X, \Omega_{X/S}^i) \Rightarrow \mathbf{H}^{i+j}(X, \Omega_{X/S}^{\cdot})$ degenerates at \mathbf{E}_1 (note that A is flat over \mathbf{Z} and use [4] th.(5.1)). So in particular all De Rham cohomology groups $\mathbf{H}^m(X, \Omega_{X/S}^{\cdot})$ are also free A-modules and $\mathbf{H}^{2r}(X, \Omega_{X/S}^{\cdot}) \simeq A$. Moreover the homomorphism

$$\beta: \mathbf{H}^m(X, \Omega^{\cdot}_{X/S}) \to \mathrm{H}^m(X, \mathcal{O}_X),$$

induced by the projection of the complex $\Omega_{X/S}^{\cdot}$ onto its degree 0 component \mathcal{O}_X , is surjective and the homomorphism

$$\mathbf{H}^{r-m}(X,\Omega^{r}_{X/S}) \to \mathbf{H}^{2r-m}(X,\Omega^{\cdot}_{X/S}),$$

induced by the inclusion of $\Omega^r_{X/S}$ as degree r component into $\Omega^{\cdot}_{X/S}$, is injective for every $m \geq 0$. One has a perfect pairing

$$\langle,\rangle: \mathbf{H}^m(X,\Omega^{\cdot}_{X/S}) \times \mathbf{H}^{2r-m}(X,\Omega^{\cdot}_{X/S}) \to \mathbf{H}^{2r}(X,\Omega^{\cdot}_{X/S}) \simeq A$$

which induces the duality

$$\mathrm{H}^{r-m}(X, \Omega^r_{X/S}) = \mathrm{H}^m(X, \mathcal{O}_X)^{\vee}.$$

4.3 Recall the Katz-Oda construction of the Gauss-Manin connection [14, 11]. The Koszul filtration $\{K^{i}\}_{i\geq 0}$ on the absolute De Rham complex Ω_X^{\cdot} is defined by

$$K^{i^{\cdot}} := \operatorname{image}(f^*\Omega^i_S \otimes \Omega^{\cdot -i}_X \to \Omega^{\cdot}_X)$$

It satisfies

$$K^{0^{\cdot}}/K^{1^{\cdot}} \simeq \Omega^{\cdot}_{X/S}, \qquad K^{1^{\cdot}}/K^{2^{\cdot}} \simeq f^* \Omega^1_S \otimes \Omega^{\cdot-1}_{X/S}.$$

The boundary map in the long exact hypercohomology sequence associated with the exact sequence of complexes $0 \to K^{1^{\circ}}/K^{2^{\circ}} \to K^{0^{\circ}}/K^{2^{\circ}} \to K^{0^{\circ}}/K^{1^{\circ}} \to 0$ yields the Gauss-Manin connection

$$\nabla: \mathbf{H}^m(X, \Omega^{\cdot}_{X/S}) \to \Omega^1_S \otimes \mathbf{H}^m(X, \Omega^{\cdot}_{X/S})$$

for $m \ge 0$.

These constructions work equally well if we take the complexes modulo a positive integer N. They then provide the Gauss-Manin connection ∇ on $\mathbf{H}^m(X, \Omega^{\cdot}_{X/S} \mod N)$ and show that the image of $\mathbf{H}^m(X, \Omega^{\cdot}_X \mod N)$ lies in the kernel of ∇ . **4.4** Let Diff_S be the algebra of differential operators on A relative to **Z** and let Diff'_S be the subalgebra of Diff_S generated by the derivations of A (cf. [7] (16.11)). The Gauss-Manin connection defines a Lie algebra homomorphism ∇ : DerA \rightarrow End_{**Z**} ($\mathbf{H}^*(X, \Omega_{X/S})$) so that $\nabla(D)$ is the composite of ∇ with $D \otimes 1$. This Lie algebra homomorphism extends to an algebra homomorphism

$$\nabla : \operatorname{Diff}'_S \to \operatorname{End}_{\mathbf{Z}} (\mathbf{H}^*(X, \Omega^{\cdot}_{X/S})).$$

4.5 Fix a positive integer N. Because of the relation $dF_N = NF_N d$ one can extend the homomorphism $F_N : \underline{\mathcal{WO}}_X \to \underline{\mathcal{WO}}_X \mod N$ to a homomorphism of complexes

$$F'_N: \underline{\mathcal{WO}}_X \to \underline{\mathcal{WO}}_X \mod N$$

where $\underline{\mathcal{WO}}_X$ is viewed as a complex concentrated in degree 0. This leads to a homomorphism

$$F_N^* : \mathrm{H}^m(X, \underline{\mathcal{WO}}_X) \to \mathrm{H}^m(X, \underline{\mathcal{W\Omega}}_X \mod N)$$

for every $m \ge 0$. One has the following commutative diagram

n*

where τ_N is induced by $\underline{\mathcal{W}\Omega}_X \mod N \to \Omega_X \mod N \to \Omega_{X/S} \mod N$; notice that there is no *i*!-torsion in Ω_X^i and $\Omega_{X/S}^i$ because X is smooth over a subring of **Q**.

4.6 Theorem Let $f: X \to S$ be as in (4.1). Fix an integer $m \ge 0$. Take a basis $\{\omega_1, \ldots, \omega_h\}$ of $\operatorname{H}^m(X, \mathcal{O}_X)$. Let $\{\check{\omega}_1, \ldots, \check{\omega}_h\}$ be the dual basis of $\operatorname{H}^{r-m}(X, \Omega^r_{X/S})$. Take $\xi \in \operatorname{H}^m(X, \underline{\mathcal{WO}}_X)$ and define for every positive integer $N \ B_{N,1}, \ldots, B_{N,h} \in A$ by

$$\pi F_N \,\xi = \sum_{j=1}^h B_{N,j} \,\omega_j$$

Suppose $P_1, \ldots, P_h \in \text{Diff}'_S$ are such that

$$\nabla(P_1)\check{\omega}_1 + \dots + \nabla(P_h)\check{\omega}_h = 0 \qquad in \quad \mathbf{H}^{2r-m}(X,\Omega^{\cdot}_{X/S}), \tag{2}$$

then

$$P_1 B_{N,1} + \dots + P_h B_{N,h} \equiv 0 \mod N.$$

for all $N \in \mathbf{N}$.

Proof From (4.5) one deduces for all j

$$\langle \tau_N F_N^* \xi, \check{\omega}_j \rangle \equiv B_{N,j} \mod N$$

The map τ_N factors via $\mathbf{H}^m(X, \Omega_X \mod N)$. Therefore the image of τ_N in $\mathbf{H}^m(X, \Omega_{X/S} \mod N)$ is contained in the kernel of the Gauss-Manin connection. So for every derivation D of A we have

$$\nabla(D)(\tau_N F_N^*\xi) = 0$$
 in $\mathbf{H}^m(X, \Omega_{X/S}^{\boldsymbol{\cdot}}) \mod N.$

In view of the compatibility of \langle, \rangle and ∇ ([14] th.1) we find for all $D \in \text{Der}A$ and all j

$$DB_{N,j} \equiv \langle \tau_N F_N^* \xi, \nabla(D) \check{\omega}_j \rangle \mod N.$$

The theorem is now obvious.

4.7 In [18](2.6) it is shown that the hypotheses in (4.1) imply that the map π : $\operatorname{H}^{m}(X, \underline{\mathcal{WO}}_{X}) \to \operatorname{H}^{m}(X, \mathcal{O}_{X})$ is surjective. So there are elements $\tilde{\omega}_{1}, \ldots, \tilde{\omega}_{h} \in$ $\operatorname{H}^{m}(X, \underline{\mathcal{WO}}_{X})$ such that $\pi \tilde{\omega}_{i} = \omega_{i}$ for $i = 1, \ldots, h$. Define for $N \in \mathbb{N}$ the $h \times h$ -matrix B_{N} with entries in A by

$$\pi F_N \,\underline{\tilde{\omega}} = B_N \,\underline{\omega}$$

where $\underline{\omega}$ resp. $\underline{\tilde{\omega}}$ is the column vector with components $\omega_1, \ldots, \omega_h$ resp. $\tilde{\omega}_1, \ldots, \tilde{\omega}_h$. For a prime number p the matrix $B_p \mod p$ is known as the Hasse-Witt matrix of $X \otimes \mathbf{F}_p$ in degree m (cf. [11] p.27).

Corollary The congruence differential equations in theorem (4.6) are valid for the rows of the matrices B_N .

4.8 Example The Gauss-Manin connection makes $\mathbf{H}^{2r-m}(X, \Omega_{X/S})$ a module over the algebra Diff_{S}' (a so-called \mathcal{D} -module [17]). The full set of differential equations (2) (or a generating subset thereof) gives a presentation for the sub-Diff_S-module generated by $\mathrm{H}^{r-m}(X, \Omega_{X/S}^{r})$. In practice in explicit examples one finds these differential equations as Picard-Fuchs equations for the periods of regular differential forms.

For explicit examples based on families of curves of the form

$$y^n = x^a (x-1)^b (x-\lambda)^c$$

with $n, a, b, c \in \mathbf{N}$, (n, a, b, c) = 1, a, b, c < n and connected with hypergeometric differential equations we refer to section 5 of [18]; there one also finds a full detail example illustrating (4.7).

Further explicit examples of Picard-Fuchs equations can be found in ([6] p. 73-76) for the 1-parameter family of elliptic curves

$$X^{3} + Y^{3} + Z^{3} - 3\lambda XYZ = 0$$

and for the 1-parameter family of K3 surfaces

$$W^4 + X^4 + Y^4 + Z^4 - 4\lambda WXYZ = 0$$

and in [16] for the 2-parameter family of K3 surfaces

$$w^{2} = xy(1-x)(1-y)(1-\lambda x - \mu y)$$

For these examples the matrices B_N (see (4.7)) can be calculated with the method of ([18] (5.6)).

5 Reconstruction of the unit root crystal.

In this section we prove theorem (5.6). This theorem shows great similarities with the main theorem of [13]. The two theorems seem related by a kind of Hodge symmetry. The actual congruences in our theorem look however weaker than the congruences in Katz's theorem. I do not yet understand this phenomenon.

5.1 We keep the situation and assumptions of (4.1). Fix an integer $m \ge 0$ and a prime number p > 2. We assume condition HW(m) of [13]:

hypothesis: For every point Spec $k \to S$ with k a perfect field of characteristic p the Frobenius endomorphism F_p on $\mathrm{H}^m(X \otimes k, \mathcal{O}_{X \otimes k})$ is bijective.

Now fix a basis $\omega_1, \ldots, \omega_h$ of $\operatorname{H}^m(X, \mathcal{O}_X)$. Take elements $\tilde{\omega}_1, \ldots, \tilde{\omega}_h$ in $\operatorname{H}^m(X, \underline{\mathcal{WO}}_X)$ such that $\pi \tilde{\omega}_i = \omega_i$ for $i = 1, \ldots, h$ and define the matrices B_N as in (4.7). Then by [18] (4.2) the above hypothesis is equivalent with

hypothesis: The Hasse-Witt matrix $B_p \mod p$ is invertible over the ring A/pA.

5.2 Set

$$\begin{array}{ll} A_n = A/p^n A, & S_n = \operatorname{Spec} A_n, & X_n = X \otimes A_n, \\ A_\infty = \lim_{k \to \infty} A_n, & S_\infty = \operatorname{Spec} A_\infty, & X_\infty = X \otimes A_\infty. \end{array}$$

Since the ring A_{∞} is formally smooth over \mathbf{Z}_p it carries an endomorphism σ such that for all $a \in A_{\infty}$

$$\sigma(a) \equiv a^p \bmod pA_{\infty}.$$

In general there are many endomorphisms with this property. Given one choice for σ there is a unique homomorphism of rings

$$\lambda: A_{\infty} \to W(A_{\infty})$$

into the ring $W(A_{\infty})$ of *p*-typical Witt vectors over A_{∞} , such that $\pi F_p^n \lambda = \sigma^n$ for all $n \in \mathbf{N}$; in particular $\pi \lambda = id$ [8](17.6.9).

In the sequel we will often write a^{σ} instead of $\sigma(a)$. For a matrix $M = (m_{ij})$ with entries in A_{∞} we set $M^{\sigma^n} = (m_{ij}^{\sigma^n}), \ \lambda(M) = (\lambda(m_{ij})).$

5.3 In [18] theorem (3.4) it is shown that under the hypotheses of (5.1) there exist an invertible $h \times h$ -matrix H with entries in A_{∞} and elements $\hat{\omega}_1, \ldots, \hat{\omega}_h$ in $\operatorname{H}^m(X_{\infty}, \mathcal{WO}_{X_{\infty}})$ such that

$$B_{p^{n+1}} \equiv B_{p^n}^{\sigma} H \mod p^{n+1} \quad \text{for all} \quad n \ge 0,$$

$$\pi \hat{\omega}_i = \omega_i \quad \text{in} \quad \mathrm{H}^m(X_{\infty}, \mathcal{O}_{X_{\infty}}) = \mathrm{H}^m(X, \mathcal{O}_X) \otimes A_{\infty},$$

$$F_p \underline{\hat{\omega}} = \lambda(H) \underline{\hat{\omega}},$$

where $\underline{\hat{\omega}}$ is the column vector with components $\hat{\omega}_1, \ldots, \hat{\omega}_h$.

5.4 We apply (4.5) with X_n instead of X and with $N = p^n$. This provides homomorphims

$$\begin{array}{rcl} \tau_N \, F_N^* & : & \mathrm{H}^m(X_n, \underline{\mathcal{WO}}_{X_n}) & \to & \mathbf{H}^m(X, \Omega^{\boldsymbol{\cdot}}_{X/S}) \otimes_A A_n \\ \psi_N \, F_N^* & : & \mathrm{H}^m(X_n, \underline{\mathcal{WO}}_{X_n}) & \to & \mathbf{H}^m(X_n, \underline{\mathcal{W\Omega}}_{X_n/S_n} \bmod N) \end{array}$$

where ψ_N is induced by $\underline{\mathcal{W}\Omega}_{X_n}^{\cdot} \mod N \to \underline{\mathcal{W}\Omega}_{X_n/S_n}^{\cdot} \mod N$. Writing $\hat{\omega}_i$ also for the image of $\hat{\omega}_i$ in $\mathrm{H}^m(X_n, \underline{\mathcal{W}\mathcal{O}}_{X_n})$ we get

$$\begin{aligned} &\tau_N \, F_N^* \, \hat{\omega}_1, \dots, \tau_N \, F_N^* \, \hat{\omega}_h &\in \mathbf{H}^m(X, \Omega^{\boldsymbol{\cdot}}_{X/S}) \otimes_A A_n, \\ &\psi_N \, F_N^* \, \hat{\omega}_1, \dots, \psi_N \, F_N^* \, \hat{\omega}_h &\in \mathbf{H}^m(X_n, \underline{\mathcal{W}\Omega}^{\boldsymbol{\cdot}}_{X_n/S_n} \bmod N). \end{aligned}$$

Using (4.5) and (5.3) we compute

$$\tau_{p^{n+1}} F_{p^{n+1}}^* \underline{\hat{\omega}} \mod p^n = \tau_{p^n} F_{p^n}^* F_p \underline{\hat{\omega}} = \tau_{p^n} F_{p^n}^* \lambda(H) \underline{\hat{\omega}} = H^{\sigma^n} \tau_{p^n} F_{p^n}^* \underline{\hat{\omega}}$$

in $\mathbf{H}^m(X, \Omega^{\cdot}_{X/S}) \otimes A_n$. From this computation one obtains

$$(H^{\sigma^n} H^{\sigma^{n-1}} \cdots H^{\sigma} H)^{-1} \tau_{p^{n+1}} F^*_{p^{n+1}} \underline{\hat{\omega}} \equiv (H^{\sigma^{n-1}} H^{\sigma^{n-2}} \cdots H^{\sigma} H)^{-1} \tau_{p^n} F^*_{p^n} \underline{\hat{\omega}} \mod p^n$$

for all $n \geq 1$. So in $\mathbf{H}^m(X, \Omega^{\cdot}_{X/S}) \otimes A_{\infty} = \lim_{\leftarrow n} \mathbf{H}^m(X, \Omega^{\cdot}_{X/S}) \otimes A_n$ there exist elements $\varpi_1, \ldots, \varpi_h$ such that

$$\underline{\varpi} \bmod p^n = (H^{\sigma^{n-1}} H^{\sigma^{n-2}} \cdots H^{\sigma} H)^{-1} \tau_{p^n} F_{p^n}^* \underline{\hat{\omega}}$$

in $\mathbf{H}^m(X, \Omega^{\boldsymbol{\cdot}}_{X/S}) \otimes A_n$. Define

$$\mathbf{H}^{m}(X, \underline{\mathcal{W}\Omega}_{X/S}^{\cdot})_{\infty} = \lim_{\leftarrow n} \mathbf{H}^{m}(X_{n}, \underline{\mathcal{W}\Omega}_{X_{n}/S_{n}}^{\cdot} \mod p^{n})$$

With a simple computation as above one sees that there exist elements $\lambda(\varpi_1), \ldots, \lambda(\varpi_h)$ in $\mathbf{H}^m(X, \underline{\mathcal{W}\Omega}^{\boldsymbol{\cdot}}_{X/S})_{\infty}$ such that

$$\underline{\lambda(\varpi)} \mapsto \lambda((H^{\sigma^{n-1}} H^{\sigma^{n-2}} \cdots H^{\sigma} H)^{-1}) \psi_{p^n} F^*_{p^n} \underline{\hat{\omega}}$$
(3)

in $\mathbf{H}^m(X_n, \underline{\mathcal{W}\Omega}^{\cdot}_{X_n/S_n} \mod p^n).$

5.5 $\mathbf{H}^m(X, \underline{\mathcal{W}\Omega}^{\boldsymbol{\cdot}}_{X/S})_{\infty}$ is a module over the ring $W(A_{\infty})$. Via the homomorphism $\lambda : A_{\infty} \to W(A_{\infty})$ it becomes also an A_{∞} -module. We set:

$$\mathcal{U} := \text{ the sub-} A_{\infty} \text{-module of } \mathbf{H}^{m}(X, \Omega'_{X/S}) \otimes_{A} A_{\infty}$$

generated by $\varpi_{1}, \dots, \varpi_{h}$
 $\lambda(\mathcal{U}) := \text{ the sub-} A_{\infty} \text{-module of } \mathbf{H}^{m}(X, \underline{\mathcal{W}}\Omega'_{X/S})_{\infty}$
generated by $\lambda(\varpi_{1}), \dots, \lambda(\varpi_{h})$

5.6 Theorem

(a) The homomorphism $\pi : \mathbf{H}^m(X, \underline{\mathcal{W}\Omega}^{\cdot}_{X/S})_{\infty} \to \mathbf{H}^m(X, \Omega^{\cdot}_{X/S}) \otimes_A A_{\infty}$ restricts to an isomorphism of A_{∞} -modules

$$\lambda(\mathcal{U}) \simeq \mathcal{U}$$
 with

$$\pi\lambda(\varpi_i) = \varpi_i \quad \text{for } i = 1, \dots, h.$$

(b) The homomorphism $\beta : \mathbf{H}^m(X, \Omega^{\cdot}_{X/S}) \otimes_A A_{\infty} \to \mathbf{H}^m(X, \mathcal{O}_X) \otimes_A A_{\infty}$ (see 4.2)) restricts to an isomorphism of A_{∞} -modules

$$\mathcal{U} \simeq \mathrm{H}^m(X, \mathcal{O}_X) \otimes_A A_\infty$$
 with
 $\beta \, \varpi_i = \omega_i \quad \text{for } i = 1, \dots, h.$

Consequently

$$\mathbf{H}^{m}(X, \Omega^{\cdot}_{X/S}) \otimes_{A} A_{\infty} = \mathcal{U} \oplus \mathrm{Fil}^{1}_{\mathrm{Hodge}} \mathbf{H}^{m}(X, \Omega^{\cdot}_{X/S}) \otimes_{A} A_{\infty}$$

(c) The Frobenius endomorphism F_p on $\mathbf{H}^m(X, \underline{\mathcal{W}\Omega}^{\cdot}_{X/S})_{\infty}$ stabilizes $\lambda(\mathcal{U})$. The matrix of F_p^k on $\lambda(\mathcal{U})$ with respect to the basis $\lambda(\varpi_1), \ldots, \lambda(\varpi_h)$ satisfies the congruences

$$\operatorname{matrix}[F_p^k] \equiv \lambda[B_{p^n}^{-\sigma^k} B_{p^{n+k}}] \mod p^{n+1}$$

for every $n \geq 0$.

(d) The Gauss-Manin connection on $\mathbf{H}^m(X, \Omega^{\cdot}_{X/S}) \otimes_A A_{\infty}$ stabilizes \mathcal{U} i.e. $\nabla \mathcal{U} \subset \Omega^1_S \otimes \mathcal{U}$. If D is a derivation of A the matrix of $\nabla(D)$ on \mathcal{U} with respect to the basis $\varpi_1, \ldots, \varpi_h$ satisfies the congruences

$$\operatorname{matrix}[\nabla(D)] \equiv -B_{p^{2n}}^{-1} D(B_{p^{2n}}) \mod p^n$$

for every $n \geq 0$.

Proof The results in (a) and (b) are immediate consequences of the constructions in (5.4) and (4.5) and of the formula

$$\pi F_{p^n} \ \underline{\hat{\omega}} = (H^{\sigma^{n-1}} H^{\sigma^{n-2}} \cdots H^{\sigma} H) \underline{\omega}$$

For (c) and (d) one should first observe

$$H^{\sigma^{k-1}} H^{\sigma^{k-2}} \cdots H^{\sigma} H \equiv B_{p^n}^{-\sigma^k} B_{p^{n+k}} \mod p^{n+1}$$

This together with formula (3) proves the result in (c). One checks by induction that for every $x \in A_{\infty}$ there exist $x_i \in A_{\infty}$ $(i \ge 0)$ such that for every $n \ge 0$

$$x^{\sigma^n} = \sum_{i=0}^n p^i x_i^{p^{n-i}}$$

Consequently $D(x^{\sigma^n}) \equiv 0 \mod p^n$. Using that $\tau_{p^n} F_{p^n}^* \underline{\hat{\omega}}$ lies in the kernel of Gauss-Manin one now computes

$$\begin{aligned} \nabla(D)(\underline{\varpi}) &\equiv & [D((B_{p^n}^{-\sigma^n} B_{p^{2n}})^{-1})][B_{p^n}^{-\sigma^n} B_{p^{2n}}] \underline{\varpi} \\ &\equiv & [D(B_{p^{2n}}^{-1})] B_{p^{2n}} \underline{\varpi} \qquad \mod p^n \end{aligned}$$

This proves (d).

5.7 Remark From (c) one sees that \underline{F}_p is an automorphism of $\lambda(\mathcal{U})$. Via the isomorphism in (a) it gives a Frobenius automorphism on \mathcal{U} . Thus \mathcal{U} becomes a unit root crystal. Since the rank of \mathcal{U} is $h = \operatorname{rank} \operatorname{H}^m(X, \mathcal{O}_X)$ which is the maximal rank for a unit root sub-crystal of $\operatorname{\mathbf{H}}^m(X, \Omega^{\cdot}_{X/S}) \otimes A_{\infty}$, \mathcal{U} is the unit root sub-crystal of $\operatorname{\mathbf{H}}^m(X, \Omega^{\cdot}_{X/S}) \otimes A_{\infty}$, \mathcal{U} is the unit root sub-crystal of $\operatorname{\mathbf{H}}^m(X, \Omega^{\cdot}_{X/S}) \otimes A_{\infty}$ (cf. [13] p.249).

5.8 The canonical filtration on a sheaf complex C consists of the subcomplexes $t_{\leq i}C$ for $i \in \mathbb{Z}$ defined by $(t_{\leq i}C^{\cdot})^{j} = C^{j}$ for j < i, = 0 for $j > i, = \ker(d : C^{j} \to C^{j+1})$ for j = i. It induces on the hypercohomology $\mathbf{H}^{m}(C^{\cdot})$ the increasing filtration

$$\operatorname{Fil}_{\operatorname{con}}^{i} \mathbf{H}^{m}(C^{\cdot}) := \operatorname{image}(\mathbf{H}^{m}(t_{\leq i}C^{\cdot}) \to \mathbf{H}^{m}(C^{\cdot})), \quad i \in \mathbf{Z}.$$

This gives in particular the *conjugate filtrations* on $\mathbf{H}^m(X, \underline{W\Omega}^{\cdot}_X \mod N)$, $\mathbf{H}^m(X, \underline{W\Omega}^{\cdot}_{X/S} \mod N)$, $\mathbf{H}^m(X_s, W\Omega^{\cdot}_{X_s} \mod p^n)$, $\mathbf{H}^m(X, \Omega^{\cdot}_{X/S} \mod N)$ (the terminology conjugate filtration is adopted from [11, 10]). The homomorphisms

are compatible with the conjugate filtrations on their source and target.

5.9 Let s be a closed point of S with perfect residue field k(s) of characteristic p. By ([9] p.577 (3.17.3)) the canonical homomorphism

$$\mathcal{W}\Omega^{\boldsymbol{\cdot}}_{X_{\ast}} \mod p^n \to \mathcal{W}_n\Omega^{\boldsymbol{\cdot}}_{X_{\ast}}$$

onto the De Rham-Witt complex of level n is a quasi-isomorphism. Thus we get an isomorphism

$$\mathbf{H}^m(X_s, \mathcal{W}\Omega^{\cdot}_{X_s} \mod p^n) \simeq \mathbf{H}^m(X_s, \mathcal{W}_n\Omega^{\cdot}_{X_s})$$

and a specialization homomorphism

$$\mathbf{H}^{m}(X_{n}, \underline{\mathcal{W}\Omega}^{\cdot}_{X_{n}/S_{n}} \bmod p^{n}) \to \mathbf{H}^{m}(X_{s}, \mathcal{W}_{n}\Omega^{\cdot}_{X_{s}}).$$

$$(4)$$

Moreover from ([9] II(1.4), (2.8)) one knows

$$\mathrm{H}^{m}_{\mathrm{crys}}(X_{s}) \simeq \mathbf{H}^{m}(X_{s}, \mathcal{W}\Omega^{\cdot}_{X_{s}}) \simeq \lim_{\leftarrow n} \mathbf{H}^{m}(X_{s}, \mathcal{W}_{n}\Omega^{\cdot}_{X_{s}})$$

Thus the homomorphisms in (4) give in the limit

$$\mathbf{H}^{m}(X, \underline{\mathcal{W}\Omega}^{\cdot}_{X/S})_{\infty} \to \mathbf{H}^{m}_{\mathrm{crys}}(X_{s}).$$
(5)

The homomorphism $A \to k(s)$ corresponding with the point $s \in S$ and the homomorphism $\lambda : A_{\infty} \to W(A_{\infty})$ lead to the composite map $A \to A_{\infty} \to W(A_{\infty}) \to W(k(s))$. From the basic comparison theorem of crystalline and De Rham cohomology ([1] (7.26.3)) and from the hypotheses in (4.1) one gets isomorphisms

$$\begin{aligned} \mathbf{H}^{m}_{\mathrm{crys}}(X_{s}) &\simeq & \mathbf{H}^{m}(X \otimes W(k(s)), \Omega^{\cdot}_{X \otimes W(k(s))/W(k(s))}) \\ &\simeq & \mathbf{H}^{m}(X, \Omega^{\cdot}_{X/S}) \otimes_{A} W(k(s)) \end{aligned}$$

So $\operatorname{H}_{\operatorname{crvs}}^m(X_s)$ is a free W(k(s))-module.

The conjugate filtration on the finite levels $\mathbf{H}^m(X_s, \mathcal{W}_n \Omega'_{X_s})$ induces on the limit $\mathrm{H}^m_{\mathrm{crys}}(X_s)$ the conjugate filtration $\{\mathrm{Fil}^i_{\mathrm{con}}\mathrm{H}^m_{\mathrm{crys}}(X_s)\}_{i\geq 0}$ (see [10]). One of the main results in [10] describes $\mathrm{Fil}^i_{\mathrm{con}}\mathrm{H}^m_{\mathrm{crys}}(X_s) \otimes \mathbf{Q}$ as precisely that part of $\mathrm{H}^m_{\mathrm{crys}}(X_s) \otimes \mathbf{Q}$ where Frobenius \underline{F}_p acts with slopes $\leq i$. In particular $\mathrm{Fil}^0_{\mathrm{con}}\mathrm{H}^m_{\mathrm{crys}}(X_s)$ is the *unit root part* of $\mathrm{H}^m_{\mathrm{crys}}(X_s)$ ([10] III(6.8)). Since $\mathrm{H}^m_{\mathrm{crys}}(X_s)$ is a free W(k(s))-module, $\mathrm{Fil}^0_{\mathrm{con}}\mathrm{H}^m_{\mathrm{crys}}(X_s)$ is also a free W(k(s))module. By the theory of the *conjugate spectral sequence* [10] its rank is at most $h = \dim_{k(s)} \mathrm{H}^m(X_s, \mathcal{O}_{X_s})$.

The conjugate filtration on the finite levels induces the conjugate filtration on the limit $\mathbf{H}^m(X, \underline{\mathcal{W}\Omega}_{X/S})_{\infty}$. The specialization homomorphism (5) is compatible with the conjugate filtrations. It is clear from the construction in (5.4) and (5.5) that $\lambda(\mathcal{U})$ is contained in $\operatorname{Fil}_{\operatorname{con}}^0 \mathbf{H}^m(X, \underline{\mathcal{W}\Omega}_{X/S})_{\infty}$. So by (5) it is mapped into $\operatorname{Fil}_{\operatorname{con}}^0 \mathrm{H}_{\operatorname{crys}}^m(X_s)$.

We compose (5) with the projection $\operatorname{H}^m_{\operatorname{crys}}(X_s) \to \operatorname{H}^m(X_s, \mathcal{O}_{X_s})$. One easily checks that the composite map $\lambda(\mathcal{U}) \to \operatorname{H}^m(X_s, \mathcal{O}_{X_s})$ sends $\lambda(\varpi_i)$ to $\omega_i(s)$,= the image of ω_i under the map $\operatorname{H}^m(X, \mathcal{O}_X) \to \operatorname{H}^m(X_s, \mathcal{O}_{X_s})$. Because the W(k(s))-rank of $\operatorname{Fil}^0_{\operatorname{con}} \operatorname{H}^m_{\operatorname{crys}}(X_s)$ is at most h and because $\{\omega_1(s), \ldots, \omega_h(s)\}$ is a k(s)-basis of $\operatorname{H}^m(X_s, \mathcal{O}_{X_s})$ we conclude:

5.10 Theorem Let s be a closed point of S with perfect residue field of characteristic p. Then the specialization homomorphism (5) restricts to a surjection $\lambda(\mathcal{U}) \to \operatorname{Fil}_{con}^{0} \operatorname{H}_{crys}^{m}(X_{s}).$

5.11 Remark The conjugate filtration on $\mathbf{H}^m(X, \Omega^{\boldsymbol{\cdot}}_{X/S}) \otimes_A A_n$ for $n \geq 0$ induces the conjugate filtration on $\mathbf{H}^m(X, \Omega^{\boldsymbol{\cdot}}_{X/S}) \otimes_A A_\infty$. Clearly \mathcal{U} is contained in $\operatorname{Fil}^0_{\operatorname{con}} \mathbf{H}^m(X, \Omega^{\boldsymbol{\cdot}}_{X/S}) \otimes_A A_\infty$. One may hope that this inclusion is in fact an equality (cf. [5] p.97).

References

 Berthelot, P., Ogus, A. Notes on crystalline cohomology. Princeton: Princeton University Press 1978

- Bloch, S. Algebraic K-theory and crystalline cohomology. Publ. Math. IHES 47 (1977) 187-268
- [3] Cartier, P. Groupes formels associés aux anneaux de Witt généralisés. resp. Modules associés à un groupe formel commutatif. Courbes typiques. C.R. Acad. Sc. Paris 265 (1967) 49-52 resp. 129-132
- [4] Deligne, P. Théorème de Lefschetz et critères de dégénérescence de suites spectrales. Publ. Math. IHES 35 (1968) 259-278
- [5] Deligne, P. Cristaux ordinaires et coordonnées canoniques. in: Surfaces algébriques. Lectures Notes in Math 868, Springer Verlag 1981
- [6] Dwork, B. p-Adic cycles. Publ. Math. IHES 37 (1969) 27-116
- [7] Grothendieck, A., Dieudonné, J. Éléments de géométrie algébrique IV, quatrième partie. Publ. Math. IHES 32 (1967)
- [8] Hazewinkel, M. Formal groups and applications. New York: Academic Press 1978
- [9] Illusie, L. Complexe de De Rham-Witt et cohomologie cristalline. Ann. scient. Éc. Norm. Sup. 12 (1979) 501-661
- [10] Illusie, L., Raynaud, M. Les suites spectrales associées au complexe de De Rham-Witt. Publ. Math. IHES 57 (1983) 73-212
- [11] Katz, N. Algebraic solutions of differential equations (p-curvature and the Hodge filtration). Inv. Math. 18 (1972) 1-118
- [12] Katz, N. Expansion-coefficients as approximate solution of differential equations. Astérisque 119-120 (1984) 183-189
- [13] Katz, N. Internal reconstruction of unit-root F-crystals via expansion-coefficients. Ann. scient. Éc. Norm. Sup. 18 (1985) 245-268
- [14] Katz, N., Oda,T. On the differentiation of De Rham cohomology classes with respect to parameters. J. Math. Kyoto Univ. 8 (1968) 199-213
- [15] Manin, Ju. The Hasse-Witt matrix of an algebraic curve. AMS Translations (2) 45 (1965) 245-264
- [16] Nishiyama, S. Appell's hypergeometric function F₂ and periods of certain elliptic K3 surfaces. Tokyo J. Math. 10 (1987) 33-67
- [17] Pham, F. Singularités des systèmes différentiels de Gauss-Manin. Progress in Math. 2, Boston: Birkhauser 1979
- [18] Stienstra, J., van der Put, M., van der Marel, L. On the variation of p-adic periods, Mathematische Zeitschrift 208 (1991), p.309-325.

- [19] Stienstra, J. Cartier-Dieudonné theory for Chow groups. J. f. d. reine u. angew. Math. 355 (1985) 1-66
- $[20]\,$ correction to $[19]\,$ same journal vol. 362 (1985) 218-220

Author's address:

MATHEMATISCH INSTITUUT DER RIJKSUNIVERSITEIT TE UTRECHT BUDAPESTLAAN 6, POSTBUS 80.010, 3508 TA UTRECHT THE NETHERLANDS