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1 Introduction.

The De Rham-Witt complex is a powerful instrument for studying the crys-
talline cohomology of a smooth projective variety over a perfect field of positive
characteristic. In [9] the De Rham-Witt complex is constructed for schemes on
which some prime number p is zero. Here in section 2 we construct on every
scheme X on which 2 is invertible the generalized De Rham-Witt complexWΩ·X ;
this is a Zariski sheaf of anti-commutative differential graded algebras with the
additional structures and properties described in (2.1)–(2.6). Section 3 gives the
(obvious) definition of the relative generalized De Rham-Witt complex WΩ·X/S
for f : X → S a morphism of schemes over Z[ 1

2 ].
Now consider a proper smooth morphism f : X → S of smooth schemes over

some open part of SpecZ[ 1
2 ]. For simplicity we assume that S is affine. Let s be

a closed point of S with residue field k(s) of characteristic p > 2. Let Xs be the
fiber of f over s. Using the functoriality of the constructions and the projection
onto the p-typical part (see (2.4)) one obtains for all m ≥ 0 a specialization map

Hm(X,WΩ·X/S)→ Hm(Xs,WΩ·Xs
)

compatible with the Frobenius endomorphisms F p on its source and target.
HereWΩ·Xs

is the classical De Rham-Witt complex on Xs. Since Xs is a smooth
proper scheme over the perfect field k(s) one knows from ([9] II(1.4),(2.8)) that
Hm(Xs,WΩ·Xs

) is isomorphic to the crystalline cohomology Hm
crys(Xs) of Xs.

On the other hand from (2.2) one gets a homomorphism

Hm(X,WΩ·X/S)→ Hm(X,Ω·X/S)

for every m ≥ 0. In order to turn this effectively into a result on the interaction
of Frobenius on the crystaline cohomology of the fibers Xs and the Gauss-Manin

∗this paper was published in Arithmetic Algebraic Geometry, Van der Geer, Oort, Peters
(eds), Progress in Mathematics 89, Boston: Birkhuser (1991)
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connection on the De Rham cohomology of X/S we must however replace our
complexes by the projective systems of complexes

{WΩ·X mod N}N∈N , {WΩ·X/S mod N}N∈N ,

{Ω·X/S mod N}N∈N , {WΩ·Xs
mod N}N∈N ,

indexed by the multiplicative monoid of the positive integers. This respects the
relation with crystalline cohomology: see (5.9). The reason for looking at the
complexes modulo N is that now the Frobenius homomorphism FN induces a
homomorphism

F ∗N : Hm(X,WOX)→ Hm(X,WΩ·X mod N)

for every m ≥ 0 (see (4.5)). This simple observation is the key to theorem (4.6)
and its corollary (4.7) which states that matrices which come from the action
of the Frobenius operator FN on the generalized Witt vector cohomology group
Hm(X,WOX) provide solutions to the differential equations taken modulo N
associated with the Gauss-Manin connection acting on Hr−m(X,ΩrX/S). In a
number of interesting examples these matrices can explicitly be calculated via
Čech cocycles for generalized Witt vector cohomology (see [18] (5.6)).

A result of this type was first observed by Igusa for the Legendre family
of elliptic curves y2 = x(x − 1)(x − λ) over S = SpecZ[λ, (2λ(1 − λ))−1] with
N = p an odd prime number. Manin [15] proved it for general smooth families
of curves in characteristic p > 0. Katz ([11] prop. (2.3.6.3)) generalized it to
higher dimensions, but still in characteristic p > 0. In [12] Katz reinterpreted
Igusa’s observation and greatly generalized it to congruence differential equa-
tions modulo arbitrary N for the coefficients of formal expansions of differential
forms.

In [13] Katz used the expansion coefficients of differential forms to describe
the top slope quotient crystal of Hm

DR(X/S) for certain families of varieties X/S.
In section 5 we prove a similar result for the unit root sub-crystal. One can
imagine a kind of Hodge symmetry relating (5.6) and the main theorem of [13].

Our work onWΩ·X/S was in part motivated by the remark in [13] p.246 that
the result of op. cit. might perhaps be considered as evidence for the existence
of a theory of De Rham-Witt with parameters. A second motivation comes from
the comparison isomorphism between crystalline cohomology in characteristic
p and De Rham cohomology in characteristic 0 (see [1] (7.26.3)). There the
De Rham side has no natural Frobenius and the crystalline side has no Hodge
filtration. WΩ·X/S is an object with Frobenius and good filtrations of its own,

which sees both H∗crys and H∗DR; see (5.9) for a more explicit example of how
this works out.

2 Construction of the generalized De Rham-Witt
complex.

In this section we give the construction of the generalized De Rham-Witt com-
plex WΩ·X on a scheme X on which 2 is invertible. This is a Zariski sheaf
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of anti-commutative differential graded algebras with the additional structures
and properties described in (2.1)–(2.6).

2.1 Let WΩiX be the homogeneous component of degree i of WΩ·X . Then
WΩiX = 0 for i < 0 andWΩ0

X is the sheaf of generalized Witt vectors on X (cf.
[3, 8, 2]). We shall usually write WOX instead of WΩ0

X .

2.2 Let Ω·X be the absolute De Rham complex on X i.e. the complex of differen-

tial forms relative to Z. Put Ω̃iX := ΩiX/(i!-torsion in ΩiX) and Ω̃·X :=
⊕

i≥0 Ω̃iX .
Then there is a homomorphism of sheaves of differential graded algebras

π :WΩ·X → Ω̃·X ;

in degree 0 this is the projection onto the first Witt vector coordinate WOX →
OX .

2.3 For every integer m ≥ 1 and every i ≥ 0 there are homomorphisms of
additive groups

Fm, Vm :WΩiX →WΩiX

satisfying the following relations

FmVm = m, FmFn = Fmn, VmVn = Vmn,
Vmd = mdVm, dFm = mFmd, FmdVm = d,
Fm(ab) = (Fma)(Fmb), Vm(a(Fmb)) = (Vma)b,

for all m,n and for all sections a, b of WΩ·X , and

VnFm = FmVn if (n,m) = 1;

here d : WΩiX → WΩi+1
X is the differential of the differential graded algebra

WΩ·X . On the sheaf of generalized Witt vectors WOX the operators Fm and
Vm coincide with the usual Frobenius and Verschiebung operators (cf.[3, 8, 2]).

Obviously Fm does not commute with d. However one obtains an en-
domorphism Fm of the sheaf of differential graded algebras WΩ·X by taking
Fm = miFm on WΩiX .

2.4 Let p be an odd prime number and let X be a scheme of characteristic p.
Then there is an idempotent endomorphism Ep of the differential graded algebra
WΩ·X which projects WΩ·X onto its p-typical part: EpWΩ·X = ∩{kerFm |
m prime 6= p}. So EpWΩ·X is a sheaf of anti-commutative differential graded
algebras. Its component in degree 0 is the sheafWOX of p-typical Witt vectors
on X. Since Ep commutes with Fp and Vp, the operators Fp and Vp act on
EpWΩ·X and here in characteristic p they commute: VpFp = FpVp = p. There
is an isomorphism of sheaves of differential graded algebras

WΩ·X ' (EpWΩ·X)N \pN ,

where the right hand side is the product of copies of EpWΩ·X indexed by the
set of positive integers prime to p. LetWΩ·X be the De Rham-Witt complex on
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X constructed by Deligne and Illusie [9]. There is a surjective homomorphism
of sheaves of differential graded algebras from WΩ·X onto EpWΩ·X compatible
with the operators Fp and Vp on both sides. If X is a smooth scheme over a
perfect field of characteristic p this is an isomorphism:

WΩ·X ' EpWΩ·X .

2.5 Let X be a scheme over Q. Then there is an idempotent endomorphism E0

of the differential graded algebra WΩ·X with image E0WΩ·X =
⋂
m>1 kerFm.

There are isomorphisms of sheaves of differential graded algebras

E0WΩ·X ' Ω·X , WΩ·X ' (Ω·X)N .

2.6 The constructions are functorial: let f : Y → X be a morphism of schemes
over Z[ 1

2 ]. Then there is a homomorphism WΩ·X → f∗WΩ·Y of sheaves of
differential graded algebras on X compatible with the operators Fm and Vm on
both sides. On (hyper-) cohomology groups this induces homomorphisms like

Hn(X,WΩiX)→ Hn(Y,WΩiY ), Hn(X,WΩ·X)→ Hn(Y,WΩ·Y ).

The construction of the generalized De Rham-Witt complex with its addi-
tional structures is essentially given in [19]. However in op. cit. it is specialized
to characteristic p situations too early for our present purpose. Therefore we
shall briefly recall the constructions in in such a way that the general statements
in (2.1) –(2.6) become completely justified.

2.7 Let A be a commutative ring with 1. In [19] K-theory is used to construct
an anti-commutative graded ring with 1

K̃∗(End(A)) =
⊕
i≥0

K̃i(End(A))

equipped with homomorphisms for the additive structure

Fm, Vm : K̃i(End(A))→ K̃i(End(A)), i ≥ 0,

for every positive integer m, and with a derivation

d : K̃i(End(A))→ K̃i+1(End(A)), i ≥ 0.

The relations listed in (2.3) hold also for Fm, Vm and d on K̃∗(End(A)) except
for FmdVm = d which here only holds for odd m, and for d2 = 0 which here is
weakened to 2d2 = 0 (see [19] theorem (1.8)).

2.8 In [20] the graded ring K̃∗(End(A)) is equipped with a decreasing fil-

tration by homogeneous ideals {FilnK̃∗(End(A))}n≥1 with Fil1K̃∗(End(A)) =

K̃∗(End(A)). Define

K̃∗(End(A))
c

:= lim
←n

[K̃∗(End(A))/FilnK̃∗(End(A))]
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with the topology of a projective limit of discrete spaces. From the proof of the
proposition in [20] one gets

Fm(Filmn) ⊂ Filn, Vm(Filn) ⊂ Filmn, d(Filqn) ⊂ Filn

for all m, n ≥ 1 and for some positive integer q independent of n and A. Thus
Fm, Vm and d extend to continuous operators on K̃∗(End(A))

c
satisfying the

same relations as in (2.7). Moreover, K̃0(End(A))
c

is canonically isomorphic
with the ring of generalized Witt vectors over A ([20] p.220).

2.9 If 2 is invertible in A it is also invertible in K̃0(End(A))
c
. Therefore all re-

lations in (2.3)(see also (2.7)) are valid for the operators acting on K̃∗(End(A))
c

.

2.10 From now on we assume that 2 is invertible in A.

Definition WΩ·A := closure of the graded subring of K̃∗(End(A))
c

generated by K̃0(End(A))
c

and dK̃0(End(A))
c
.

2.11 In particular, WΩ0
A is the ring of generalized Witt vectors over A. Its

additive group is isomorphic with the multiplicative group (1 + tA[[t]])∗. Every
element of the latter group can be written uniquely in the form

∏
n≥1(1−antn)−1

with all an ∈ A. The elements of WΩ0
A can therefore be written uniquely as∑

n≥1 Vnan , where a is the Witt vector which corresponds to the power series

(1− at)−1.

2.12 Proposition For all i ≥ 0 and m ≥ 1 one has

dWΩiA ⊂ WΩi+1
A , VmWΩiA ⊂ WΩiA, FmWΩiA ⊂ WΩiA.

Proof The results for d and Vm follow immediately from the relations in (2.3).
The problem for Fm is easily reduced to showing FmdVna ∈ WΩ1

A for allm,n ≥ 1
and a ∈ A; the Witt vector a is defined in (2.11). In view of the relations in (2.3)
we may even assume (m,n) = 1. Choose integers q and r such that qn+rm = 1.
Then

FmdVna = qVnFmda+ rdFmVna.

Formula (8.3.3) in [19] shows

Fmda = am−1da

Thus we find

FmdVna = q(Vna
m−1)d(Vna) + rdFmVna ∈ WΩ1

A (1)

�
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2.13 The preceding construction depends functorially on A: if g : A → B is a
homomorphism of Z[ 1

2 ]-algebras, then there is a continuous homomorphism of
graded topological rings

g∗ :WΩ·A →WΩ·B
which commutes with the operators d, Fm and Vm (m ≥ 1). It sends the Witt
vector a ∈ WΩ0

A to g(a) ∈ WΩ0
B .

2.14 We get on every scheme X over Z[ 1
2 ] a pre-sheaf for the Zariski topology

(Zariski open U ⊂ X) 7→ WΩ·Γ(U,OX).

We define

WΩ·X := the sheaf associated with the above pre-sheaf.

and call this the generalized De Rham-Witt complex of X. We shall usually
write WOX instead of WΩ0

X .

This completes the construction ofWΩ·X and of the operators d, Fm and Vm
(m ≥ 1) acting on it. It follows from (2.7) and (2.9) thatWΩ·X with d is a sheaf
of anti-commutative differential graded algebras and that the relations in (2.3)
hold. Moreover (2.8) proves (2.1); in particular,WOX is the sheaf of generalized
Witt vectors on X. The functoriality property in (2.6) is a consequence of (2.13).

We now turn to the construction of the homomorphism π in (2.2).

2.15 Let A be a commutative ring with 1 and 2 invertible in A. By [19](3.4)
(see also [20]) we have a bilinear pairing

〈, 〉 : K̃i(End(A))
c × K̃0(Nil(Z[t]/(t2)))→ Ki+1(A[t]/(t2)).

From this we get in particular a homomorphism

〈, t〉 : K̃i(End(A))
c → Ki+1(A[t]/(t2))

where t is the element of K̃0(Nil(Z[t]/(t2))) defined in [19](5.2). On the other
hand one has Gersten’s map (see [2] p.206 (3.2),(3.3))

dlog : Ki+1(A[t]/(t2))→ Ωi+1
A[t]/(t2);

here we work with differential forms relative to Z. Let

ρ :WΩiA → Ωi+1
A[t]/(t2)

be the composite dlog〈, t〉 restricted to WΩiA.

2.16 The group WΩiA is topologically generated by the elements

(Vn0
a0)d(Vn1

a1) · · · d(Vni
ai)

with n0, . . . , ni ∈ N, a0, . . . , ai ∈ A (cf.(2.11)).
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Lemma In the above situation let α = (Vn0a0)d(Vn1a1) · · · d(Vniai). If all nj =

1 then
ρ(α) = (−1)ii!d(−ta0da1 ∧ · · · ∧ dai).

Otherwise ρ(α) = 0.

Proof Let n = max(n0, . . . , ni). Assume first n ≥ 2. Using (2.3) one easily
rewrites α in the form α = Vnβ + dVnγ with β ∈ WΩiA, γ ∈ WΩi−1

A . From
[19](3.2) one gets 〈α, t〉 = 〈β, Fnt〉 + (−1)i〈γ, Fndt〉. Loc.cit. (1.6) and (5.2)

show Fnt = tn = 0. Loc.cit. (8.3.3) yields Fndt = tn−1dt = 0 for n ≥ 3. For

n = 2 we compute F2dt = 2−1dF2t = 0. This proves ρ(α) = 0 if n ≥ 2.
The formula for ρ(α) in case n = 1 follows from [19](7.6) and [2] p.206 (3.3);
more precisely the argument is as follows. By functoriality it suffices to prove
the formula for the case that a0, . . . , ai are the indeterminates in the polynomial
ring P := Z[ 1

2 ][a0, . . . , ai]. Set Q := P [a−1
0 , . . . , a−1

i ]. Using the injectivity of
the natural homomorphism

Ωi+1
P [t]/(t2) → Ωi+1

Q[t]/(t2)

and functoriality we see that it suffices to prove the formula with a0, . . . , ai in
Q. Then [19](3.1) and the proof of [19](7.6) give

〈α, t〉 = {1− ta0a1 · · · ai, a1, . . . , ai}.

The right hand side is a Steinberg symbol in Ki+1(Q[t]/(t2)). Applying [2] p.206
(3.3) to compute the dlog of this Steinberg symbol we find

ρ(α) = (−1)ii!(1− ta0a1 · · · ai)−1d(−ta0) ∧ da1 ∧ · · · ∧ dai

This is equal to (−1)ii!d(−ta0da1 ∧ · · · ∧ dai) because t2 = 0 and 1
2 ∈ Q. �

2.17 Lemma Let A be as in (2.15). Define

ψ : ΩiA → Ωi+1
A[t]/(t2), ψ(η) = (−1)ii!d(−tη).

Then
kerψ = (i!− torsion in ΩiA) := ker(i! : ΩiA → ΩiA).

Proof Consider the map Ω1
A[t]/(t2) → Ω1

A⊕Ω1
A[t]/(t2)/A which is the direct sum

of the map induced by t 7→ 0 and the map taking differentials relative to A.
Its (i+ 1)-fold exterior power over A[t]/(t2) is a map Ωi+1

A[t]/(t2) → Ωi+1
A ⊕ ΩiAdt

which sends d(tη) to (−1)iηdt. The lemma is now clear. �

2.18 Define Ω̃iA := ΩiA/(i!-torsion in ΩiA). Then the map ψ from (2.17) induces

an isomorphism ψ : Ω̃iA
∼→ image ψ. From (2.16) one sees that the image of ρ is

contained in the image of ψ. So we can compose ρ with ψ
−1

. Define

πi := ψ
−1
ρ :WΩiA → Ω̃iA.
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2.19 From (2.16) one obtains explicit formulas for πi:

πi((Vn0
a0)d(Vn1

a1) · · · d(Vni
ai)) = 0 if some nj 6= 1

πi(a0da1 · · · dai) = a0da1 ∧ · · · ∧ dai.

These formulas show that πi is surjective. They also show that the direct sum
π of the maps πi is a homomorphism of differential graded algebras π :WΩ·A →
Ω̃·A.

2.20 LetX be a scheme over Z[ 1
2 ]. Then sheafification of the above construction

provides the homomorphism of sheaves of differential graded algebras on X

π :WΩ·X → Ω̃·X

for (2.2).

2.21 Let P be a set of prime numbers and let X be a scheme such that every
prime number in P is invertible in OX . Then every l ∈ P is also invertible in
WOX . Moreover with notations as in (2.8) we have FlFil1 ⊂ Fil1 and VlFil1 ⊂
Fill for every l. Therefore the expression

EP :=
∏
l∈P

(1− l−1VlFl)

defines an operator on WΩ·X . One easily checks that it is an idempotent op-
erator, that it commutes with d, Vp and Fp for all primes p 6∈ P and that
EP (ab) = (EPa)(EP b) for all sections a,b of WΩ·X . Furthermore it is clear
that for every l ∈ P the image of EP is contained in kerFl and that EP is the
identity on kerFl. Consequently

EPWΩ·X =
⋂
l∈P

kerFl.

Let P ⊂ N be the multiplicatively closed subset with 1 generated by P . Then
there is an isomorphism of sheaves of differential graded algebras

WΩ·X ' (EPWΩ·X)P ;

on homogeneous sections of degree i the map → sends a to (miEPFma)m∈P
and the map ← sends (bm)m∈P to

∑
m∈P m

−i−1Vmbm. All this is an easy
consequence of the relations in (2.3). We apply it in the situation of (2.5) (resp.
(2.4)) with P the set of all primes (resp. all primes 6= p ) and write E0 (resp. Ep)
for EP . The results relating in (2.4) EpWΩ·X to the De Rham-Witt complex of
Deligne and Illusie are proved in [19] section 8. The isomorphism

E0WΩ·X ' Ω·X
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in (2.5) is proved as follows. Note that E0Vm = 0 for all m ≥ 2. Combining this
with the definition of the ring structure on generalized Witt vectors one sees
that there is a ring homomorphism

λ : OX → E0WOX
which on sections is defined by λ(a) = E0a (see (2.11) for a). Because of

the universal property of Ω·X this homomorphism from OX into the degree 0
component of the differential graded algebra E0WΩ·X extends uniquely to a
homomorphism of differential graded algebras

λ : Ω·X → E0WΩ·X .

This homomorphism is surjective because WΩ·X is topologically generated by
the sections described in (2.16) and because E0Vm = 0 for m ≥ 2. A simple
computation shows that πλ is the identity map on Ω·X , where π is the homo-
morphism π from (2.2) restricted to the image of E0. This proves that π induces
an isomorphism E0WΩ·X ' Ω·X .

3 The relative generalized De Rham-Witt com-
plex.

3.1 Let f : X → S be a morphism of schemes over Z[ 1
2 ]. We define the relative

generalized De Rham-Witt complex WΩ·X/S on X to be the quotient of WΩ·X
by the closure of the ideal generated by d(f−1WOS). It is clear that WΩ·X/S is

a sheaf of anti-commutative differential graded algebras with WΩ0
X/S =WOX .

The homomorphism π :WΩ·X → Ω̃·X induces a homomorphism

π :WΩ·X/S → Ω̃·X/S ,

where Ω·X/S is the usual relative De Rham complex of X/S and Ω̃iX/S :=

ΩiX/S/(i!−torsion). Using the relations in (2.3) and formula (1) in (2.12) one eas-

ily checks that the operators Fm and Vm onWΩ·X map the ideal (d(f−1WOS)) ·
WΩ·X into itself and thus induce operators Fm and Vm on WΩ·X/S . The rela-

tions in (2.3) pass without change to WΩ·X/S . Notice also the analogue of the

functoriality property (2.6): a commutative square

Y
g−→ X

↓ ↓
T −→ S

leads naturally to a homomorphism WΩ·X/S → g∗WΩ·Y/T .

3.2 Suppose S is the spectrum of a perfect field of characteristic p > 2. Then
Fp is surjective onWOS . Because of dF rp = pr F rp d = V rp F

2r
p d in characteristic

p and V rp Fil1 ⊂ Filpr (see (2.8)), the subsheaf d(f−1WOS) of WΩ·X is zero. So
WΩ·X/S =WΩ·X if S is the spectrum of a perfect field of characteristic p > 2.
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4 Congruence differential equations.

4.1 Let S = SpecA be an affine scheme which is smooth over an open part
of SpecZ[ 1

2 ]. Let f : X → S be a projective smooth morphism of relative

dimension r. We assume that all Hodge cohomology groups Hj(X,ΩiX/S) are

free A-modules and Hr(X,ΩrX/S) ' A.

4.2 These hypotheses imply that the Hodge-De Rham spectral sequence Eij1 :=
Hj(X,ΩiX/S)⇒ Hi+j(X,Ω·X/S) degenerates at E1 (note that A is flat over Z and

use [4] th.(5.1)). So in particular all De Rham cohomology groups Hm(X,Ω·X/S)

are also free A-modules and H2r(X,Ω·X/S) ' A. Moreover the homomorphism

β : Hm(X,Ω·X/S)→ Hm(X,OX),

induced by the projection of the complex Ω·X/S onto its degree 0 component
OX , is surjective and the homomorphism

Hr−m(X,ΩrX/S)→ H2r−m(X,Ω·X/S),

induced by the inclusion of ΩrX/S as degree r component into Ω·X/S , is injective
for every m ≥ 0. One has a perfect pairing

〈, 〉 : Hm(X,Ω·X/S)×H2r−m(X,Ω·X/S)→ H2r(X,Ω·X/S) ' A

which induces the duality

Hr−m(X,ΩrX/S) = Hm(X,OX)∨.

4.3 Recall the Katz-Oda construction of the Gauss-Manin connection [14, 11].
The Koszul filtration {Ki·}i≥0 on the absolute De Rham complex Ω·X is defined
by

Ki· := image(f∗ΩiS ⊗ Ω·−iX → Ω·X).

It satisfies

K0·/K1· ' Ω·X/S , K1·/K2· ' f∗Ω1
S ⊗ Ω·−1

X/S .

The boundary map in the long exact hypercohomology sequence associated with
the exact sequence of complexes 0 → K1·/K2· → K0·/K2· → K0·/K1· → 0
yields the Gauss-Manin connection

∇ : Hm(X,Ω·X/S)→ Ω1
S ⊗Hm(X,Ω·X/S)

for m ≥ 0 .
These constructions work equally well if we take the complexes modulo

a positive integer N . They then provide the Gauss-Manin connection ∇ on
Hm(X,Ω·X/S mod N) and show that the image of Hm(X,Ω·X mod N) lies in
the kernel of ∇.
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4.4 Let DiffS be the algebra of differential operators on A relative to Z and
let Diff′S be the subalgebra of DiffS generated by the derivations of A (cf. [7]
(16.11)). The Gauss-Manin connection defines a Lie algebra homomorphism
∇ : DerA → EndZ (H∗(X,Ω·X/S)) so that ∇(D) is the composite of ∇ with
D ⊗ 1. This Lie algebra homomorphism extends to an algebra homomorphism

∇ : Diff′S → EndZ (H∗(X,Ω·X/S)).

4.5 Fix a positive integer N . Because of the relation dFN = NFNd one can
extend the homomorphism FN :WOX →WOX mod N to a homomorphism of
complexes

F ′N :WOX →WΩ·X mod N

where WOX is viewed as a complex concentrated in degree 0. This leads to a
homomorphism

F ∗N : Hm(X,WOX)→ Hm(X,WΩ·X mod N)

for every m ≥ 0. One has the following commutative diagram

Hm(X,WOX)
F∗N−→ Hm(X,WΩ·X mod N)

FN ↓ ↓ τN
Hm(X,WOX) Hm(X,Ω·X/S) mod N

π ↓ ↓ β
Hm(X,OX) −→ Hm(X,OX) mod N

where τN is induced by WΩ·X mod N → Ω·X mod N → Ω·X/S mod N ; notice

that there is no i!-torsion in ΩiX and ΩiX/S because X is smooth over a subring
of Q.

4.6 Theorem Let f : X → S be as in (4.1). Fix an integer m ≥ 0. Take a basis
{ω1, . . . , ωh} of Hm(X,OX). Let {ω̌1, . . . , ω̌h} be the dual basis of Hr−m(X,ΩrX/S).

Take ξ ∈ Hm(X,WOX) and define for every positive integer N BN,1, . . . , BN,h ∈
A by

πFN ξ =

h∑
j=1

BN,j ωj

Suppose P1, . . . , Ph ∈ Diff′S are such that

∇(P1) ω̌1 + · · ·+∇(Ph) ω̌h = 0 in H2r−m(X,Ω·X/S), (2)

then
P1BN,1 + · · ·+ PhBN,h ≡ 0 mod N.

for all N ∈ N.
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Proof From (4.5) one deduces for all j

〈τNF ∗Nξ, ω̌j〉 ≡ BN,j mod N.

The map τN factors via Hm(X,Ω·X mod N). Therefore the image of τN in
Hm(X,Ω·X/S mod N) is contained in the kernel of the Gauss-Manin connection.
So for every derivation D of A we have

∇(D)(τNF
∗
Nξ) = 0 in Hm(X,Ω·X/S) mod N.

In view of the compatibility of 〈, 〉 and ∇ ([14] th.1) we find for all D ∈ DerA
and all j

DBN,j ≡ 〈τNF ∗Nξ,∇(D)ω̌j〉 mod N.

The theorem is now obvious. �

4.7 In [18](2.6) it is shown that the hypotheses in (4.1) imply that the map π :
Hm(X,WOX) → Hm(X,OX) is surjective. So there are elements ω̃1, . . . , ω̃h ∈
Hm(X,WOX) such that π ω̃i = ωi for i = 1, . . . , h. Define for N ∈ N the
h× h-matrix BN with entries in A by

πFN ω̃ = BN ω

where ω resp. ω̃ is the column vector with components ω1, . . . , ωh resp. ω̃1, . . . , ω̃h.
For a prime number p the matrix Bp mod p is known as the Hasse-Witt matrix
of X ⊗ Fp in degree m (cf. [11] p.27).

Corollary The congruence differential equations in theorem (4.6) are valid for
the rows of the matrices BN .

4.8 Example The Gauss-Manin connection makes H2r−m(X,Ω·X/S) a module

over the algebra Diff′S ( a so-called D-module [17]). The full set of differential
equations (2) (or a generating subset thereof) gives a presentation for the sub-
Diff′S-module generated by Hr−m(X,ΩrX/S). In practice in explicit examples
one finds these differential equations as Picard-Fuchs equations for the periods
of regular differential forms.

For explicit examples based on families of curves of the form

yn = xa(x− 1)b(x− λ)c

with n, a, b, c ∈ N, (n, a, b, c) = 1, a, b, c < n and connected with hypergeometric
differential equations we refer to section 5 of [18]; there one also finds a full detail
example illustrating (4.7).

Further explicit examples of Picard-Fuchs equations can be found in
([6] p. 73-76) for the 1-parameter family of elliptic curves

X3 + Y 3 + Z3 − 3λXY Z = 0

and for the 1-parameter family of K3 surfaces

W 4 +X4 + Y 4 + Z4 − 4λWXY Z = 0
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and in [16] for the 2-parameter family of K3 surfaces

w2 = xy(1− x)(1− y)(1− λx− µy).

For these examples the matrices BN (see (4.7)) can be calculated with the
method of ([18] (5.6)).

5 Reconstruction of the unit root crystal.

In this section we prove theorem (5.6). This theorem shows great similarities
with the main theorem of [13]. The two theorems seem related by a kind of
Hodge symmetry. The actual congruences in our theorem look however weaker
than the congruences in Katz’s theorem. I do not yet understand this phe-
nomenon.

5.1 We keep the situation and assumptions of (4.1). Fix an integer m ≥ 0 and
a prime number p > 2. We assume condition HW(m) of [13]:

hypothesis: For every point Spec k → S with k a perfect field of characteristic p
the Frobenius endomorphism Fp on Hm(X ⊗ k,OX⊗k) is bijective.

Now fix a basis ω1, . . . , ωh of Hm(X,OX). Take elements ω̃1, . . . , ω̃h in Hm(X,WOX)
such that πω̃i = ωi for i = 1, . . . , h and define the matrices BN as in (4.7). Then
by [18] (4.2) the above hypothesis is equivalent with

hypothesis: The Hasse-Witt matrix Bp mod p is invertible over the ring A/pA.

5.2 Set

An = A/pnA, Sn = SpecAn, Xn = X ⊗An,
A∞ = lim

←n
An, S∞ = SpecA∞, X∞ = X ⊗A∞.

Since the ring A∞ is formally smooth over Zp it carries an endomorphism σ
such that for all a ∈ A∞

σ(a) ≡ ap mod pA∞.

In general there are many endomorphisms with this property. Given one choice
for σ there is a unique homomorphism of rings

λ : A∞ →W (A∞)

into the ring W (A∞) of p-typical Witt vectors over A∞, such that π Fnp λ = σn

for all n ∈ N; in particular πλ = id [8](17.6.9).
In the sequel we will often write aσ instead of σ(a). For a matrix M = (mij)

with entries in A∞ we set Mσn

= (mσn

ij ), λ(M) = (λ(mij)).

5.3 In [18] theorem (3.4) it is shown that under the hypotheses of (5.1) there
exist an invertible h× h-matrix H with entries in A∞ and elements ω̂1, . . . , ω̂h
in Hm(X∞,WOX∞) such that

Bpn+1 ≡ Bσpn H mod pn+1 for all n ≥ 0,
πω̂i = ωi in Hm(X∞,OX∞) = Hm(X,OX)⊗A∞,
Fp ω̂ = λ(H) ω̂,
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where ω̂ is the column vector with components ω̂1, . . . , ω̂h.

5.4 We apply (4.5) with Xn instead of X and with N = pn. This provides
homomorphims

τN F
∗
N : Hm(Xn,WOXn

) → Hm(X,Ω·X/S)⊗A An
ψN F

∗
N : Hm(Xn,WOXn

) → Hm(Xn,WΩ·Xn/Sn
mod N)

where ψN is induced by WΩ·Xn
mod N → WΩ·Xn/Sn

mod N . Writing ω̂i also

for the image of ω̂i in Hm(Xn,WOXn) we get

τN F
∗
N ω̂1, . . . , τN F

∗
N ω̂h ∈ Hm(X,Ω·X/S)⊗A An,

ψN F
∗
N ω̂1, . . . , ψN F

∗
N ω̂h ∈ Hm(Xn,WΩ·Xn/Sn

mod N).

Using (4.5) and (5.3) we compute

τpn+1 F ∗pn+1 ω̂ mod pn = τpn F
∗
pn Fp ω̂ = τpn F

∗
pn λ(H) ω̂ = Hσn

τpn F
∗
pn ω̂

in Hm(X,Ω·X/S)⊗An. From this computation one obtains

(Hσn

Hσn−1 · · ·HσH)−1 τpn+1 F ∗pn+1 ω̂ ≡
(Hσn−1

Hσn−2 · · ·HσH)−1 τpn F
∗
pn ω̂ mod pn

for all n ≥ 1. So in Hm(X,Ω·X/S) ⊗ A∞ = lim
←n

Hm(X,Ω·X/S) ⊗ An there exist

elements $1, . . . , $h such that

$ mod pn = (Hσn−1

Hσn−2

· · ·HσH)−1 τpn F
∗
pn ω̂

in Hm(X,Ω·X/S)⊗An.
Define

Hm(X,WΩ·X/S)∞ = lim
←n

Hm(Xn,WΩ·Xn/Sn
mod pn)

With a simple computation as above one sees that there exist elements λ($1), . . . , λ($h)
in Hm(X,WΩ·X/S)∞ such that

λ($) 7→ λ((Hσn−1

Hσn−2

· · ·HσH)−1)ψpn F
∗
pn ω̂ (3)

in Hm(Xn,WΩ·Xn/Sn
mod pn).

5.5 Hm(X,WΩ·X/S)∞ is a module over the ring W (A∞). Via the homomor-

phism λ : A∞ →W (A∞) it becomes also an A∞-module. We set:

U := the sub-A∞-module of Hm(X,Ω·X/S)⊗A A∞
generated by $1, . . . , $h

λ(U) := the sub-A∞-module of Hm(X,WΩ·X/S)∞
generated by λ($1), . . . , λ($h)
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5.6 Theorem
(a) The homomorphism π : Hm(X,WΩ·X/S)∞ → Hm(X,Ω·X/S)⊗AA∞ restricts
to an isomorphism of A∞-modules

λ(U) ' U with

πλ($i) = $i for i = 1, . . . , h.

(b) The homomorphism β : Hm(X,Ω·X/S) ⊗A A∞ → Hm(X,OX) ⊗A A∞ (see

4.2)) restricts to an isomorphism of A∞-modules

U ' Hm(X,OX)⊗A A∞ with

β $i = ωi for i = 1, . . . , h.

Consequently

Hm(X,Ω·X/S)⊗A A∞ = U ⊕ Fil1HodgeH
m(X,Ω·X/S)⊗A A∞.

(c) The Frobenius endomorphism Fp on Hm(X,WΩ·X/S)∞ stabilizes λ(U). The

matrix of F kp on λ(U) with respect to the basis λ($1), . . . , λ($h) satisfies the
congruences

matrix[F kp ] ≡ λ[B−σ
k

pn Bpn+k ] mod pn+1

for every n ≥ 0.
(d) The Gauss-Manin connection on Hm(X,Ω·X/S) ⊗A A∞ stabilizes U i.e.

∇U ⊂ Ω1
S ⊗ U . If D is a derivation of A the matrix of ∇(D) on U with re-

spect to the basis $1, . . . , $h satisfies the congruences

matrix[∇(D)] ≡ −B−1
p2n D(Bp2n) mod pn

for every n ≥ 0.

Proof The results in (a) and (b) are immediate consequences of the construc-
tions in (5.4) and (4.5) and of the formula

πFpn ω̂ = (Hσn−1

Hσn−2

· · ·HσH)ω

For (c) and (d) one should first observe

Hσk−1

Hσk−2

· · ·HσH ≡ B−σ
k

pn Bpn+k mod pn+1

This together with formula (3) proves the result in (c).
One checks by induction that for every x ∈ A∞ there exist xi ∈ A∞(i ≥ 0) such
that for every n ≥ 0

xσ
n

=

n∑
i=0

pi xp
n−i

i
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Consequently D(xσ
n

) ≡ 0 mod pn. Using that τpn F
∗
pn ω̂ lies in the kernel of

Gauss-Manin one now computes

∇(D)($) ≡ [D((B−σ
n

pn Bp2n)−1)][B−σ
n

pn Bp2n ]$
≡ [D(B−1

p2n)]Bp2n $ modpn

This proves (d). �

5.7 Remark From (c) one sees that F p is an automorphism of λ(U). Via the
isomorphism in (a) it gives a Frobenius automorphism on U . Thus U becomes
a unit root crystal. Since the rank of U is h = rank Hm(X,OX) which is the
maximal rank for a unit root sub-crystal of Hm(X,Ω·X/S) ⊗ A∞, U is the unit

root sub-crystal of Hm(X,Ω·X/S)⊗A∞ (cf. [13] p.249).

5.8 The canonical filtration on a sheaf complex C· consists of the subcomplexes
t≤iC

· for i ∈ Z defined by (t≤iC
·)j = Cj for j < i, = 0 for j > i, = ker(d :

Cj → Cj+1) for j = i. It induces on the hypercohomlogy Hm(C·) the increasing
filtration

FiliconH
m(C·) := image(Hm(t≤iC

·)→ Hm(C·)), i ∈ Z.

This gives in particular the conjugate filtrations on Hm(X,WΩ·X mod N),
Hm(X,WΩ·X/S mod N), Hm(Xs,WΩ·Xs

mod pn), Hm(X,Ω·X/S mod N)

(the terminology conjugate filtration is adopted from [11, 10]). The homomor-
phisms

Hm(X,WΩ·X mod N) → Hm(X,WΩ·X/S mod N)

Hm(X,WΩ·X/S mod N) → Hm(X,Ω·X/S mod N)

Hm(X,WΩ·X/S mod N) → Hm(Xs,WΩ·Xs
mod N)

are compatible with the conjugate filtrations on their source and target.

5.9 Let s be a closed point of S with perfect residue field k(s) of characteristic
p. By ([9] p.577 (3.17.3)) the canonical homomorphism

WΩ·Xs
mod pn →WnΩ·Xs

onto the De Rham-Witt complex of level n is a quasi-isomorphism. Thus we
get an isomorphism

Hm(Xs,WΩ·Xs
mod pn) ' Hm(Xs,WnΩ·Xs

)

and a specialization homomorphism

Hm(Xn,WΩ·Xn/Sn
mod pn)→ Hm(Xs,WnΩ·Xs

). (4)

Moreover from ([9] II(1.4), (2.8)) one knows

Hm
crys(Xs) ' Hm(Xs,WΩ·Xs

) ' lim
←n

Hm(Xs,WnΩ·Xs
).
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Thus the homomorphisms in (4) give in the limit

Hm(X,WΩ·X/S)∞ → Hm
crys(Xs). (5)

The homomorphism A → k(s) corresponding with the point s ∈ S and the
homomorphism λ : A∞ → W (A∞) lead to the composite map A → A∞ →
W (A∞) → W (k(s)). From the basic comparison theorem of crystalline and
De Rham cohomology ([1] (7.26.3)) and from the hypotheses in (4.1) one gets
isomorphisms

Hm
crys(Xs) ' Hm(X ⊗W (k(s)),Ω·X⊗W (k(s))/W (k(s)))

' Hm(X,Ω·X/S)⊗AW (k(s))

So Hm
crys(Xs) is a free W (k(s))-module.

The conjugate filtration on the finite levels Hm(Xs,WnΩ·Xs
) induces on the

limit Hm
crys(Xs) the conjugate filtration {FiliconHm

crys(Xs)}i≥0 (see [10]). One

of the main results in [10] describes FiliconHm
crys(Xs) ⊗ Q as precisely that

part of Hm
crys(Xs) ⊗ Q where Frobenius F p acts with slopes ≤ i. In partic-

ular Fil0conHm
crys(Xs) is the unit root part of Hm

crys(Xs) ([10] III(6.8)). Since

Hm
crys(Xs) is a free W (k(s))-module, Fil0conHm

crys(Xs) is also a free W (k(s))-
module. By the theory of the conjugate spectral sequence [10] its rank is at most
h = dimk(s) Hm(Xs,OXs

).
The conjugate filtration on the finite levels induces the conjugate filtration

on the limit Hm(X,WΩ·X/S)∞. The specialization homomorphism (5) is com-

patible with the conjugate filtrations. It is clear from the construction in (5.4)
and (5.5) that λ(U) is contained in Fil0conH

m(X,WΩ·X/S)∞. So by (5) it is

mapped into Fil0conHm
crys(Xs).

We compose (5) with the projection Hm
crys(Xs)→ Hm(Xs,OXs

). One easily
checks that the composite map λ(U) → Hm(Xs,OXs

) sends λ($i) to ωi(s),=
the image of ωi under the map Hm(X,OX) → Hm(Xs,OXs

). Because the
W (k(s))-rank of Fil0conHm

crys(Xs) is at most h and because {ω1(s), . . . , ωh(s)} is
a k(s)-basis of Hm(Xs,OXs

) we conclude:

5.10 Theorem Let s be a closed point of S with perfect residue field of char-
acteristic p. Then the specialization homomorphism (5) restricts to a surjection

λ(U)→ Fil0conHm
crys(Xs). �

5.11 Remark The conjugate filtration on Hm(X,Ω·X/S)⊗AAn for n ≥ 0 induces

the conjugate filtration on Hm(X,Ω·X/S) ⊗A A∞. Clearly U is contained in

Fil0conH
m(X,Ω·X/S) ⊗A A∞. One may hope that this inclusion is in fact an

equality (cf. [5] p.97).
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trième partie. Publ. Math. IHES 32 (1967)

[8] Hazewinkel, M. Formal groups and applications. New York: Academic
Press 1978

[9] Illusie, L. Complexe de De Rham-Witt et cohomologie cristalline. Ann.
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