ZHEGALKIN ZEBRA MOTIVES

Algebra and Geometry in Black and White

Jan Stienstra

Nijmegen Geometry Seminar, November 1, 2018 Motives in Algebraic Geometry need (technically very complicated)

intersection theory of algebraic cycles

.

Zhegalkin zebra motives just need the usual operations

intersection/union/complement for subsets of the plane !! subsets of $\mathbb{R}^2 = \mathbb{F}_2$ -valued functions on \mathbb{R}^2

Zhegalkin (1927): Boolean formalism for subsets \Leftrightarrow usual \times and + for \mathbb{F}_2 -valued functions

Zebra with frequency $\mathfrak{v} \in \mathbb{R}^2 \setminus \{\mathbf{0}\}$

 $\mathsf{Z}^{\mathfrak{v}}$: $\mathbb{R}^2 \longrightarrow \mathbb{F}_2$

 $\mathsf{Z}^{\mathfrak{v}}(\mathbf{x}) = \lfloor 2\mathbf{x} \cdot \mathfrak{v} \rfloor \bmod 2$

Zebras $Z^{\mathfrak{v}}$ with frequencies $\mathfrak{v} \in \mathbb{Z}^2$ generate a subring of the ring of \mathbb{F}_2 -valued functions on \mathbb{R}^2 .

I call the elements of this subring *Zhegalkin zebra motives*.

Only use zebras with frequencies positive integer multiples of the six basic frequencies

Short hand notation: $Z^{jk} = Z^{kv_j}$

 $\mathcal{F}_2 = \mathsf{Z}^{21} + \mathsf{Z}^{41}$

 $\mathcal{F}_3 = \mathsf{Z}^{21} + \mathsf{Z}^{41} + \mathsf{Z}^{61}$

 $\mathcal{F}_4 = \mathsf{Z}^{21} + \mathsf{Z}^{31} + \mathsf{Z}^{41} + \mathsf{Z}^{61}$

 $\mathcal{F}_6 = \mathsf{Z}^{11} + \mathsf{Z}^{21} + \mathsf{Z}^{31} + \mathsf{Z}^{41} + \mathsf{Z}^{51} + \mathsf{Z}^{61}$

 $(1 + Z^{62})(Z^{32} + Z^{61}) + Z^{62}(Z^{24} + Z^{44})$

 Γ and Γ^{\vee} are dual graphs

$$\mathcal{F}_2 = \mathsf{Z}^{21} + \mathsf{Z}^{41}$$

 $\mathcal{F}_3 = \mathsf{Z}^{21} + \mathsf{Z}^{41} + \mathsf{Z}^{61}$

 $\mathcal{F}_4 = \mathsf{Z}^{21} + \mathsf{Z}^{31} + \mathsf{Z}^{41} + \mathsf{Z}^{61}$

 $\mathcal{F}_6 = \mathsf{Z}^{11} + \mathsf{Z}^{21} + \mathsf{Z}^{31} + \mathsf{Z}^{41} + \mathsf{Z}^{51} + \mathsf{Z}^{61}$

Positive integer weight function

$$\nu : \{ \text{edges of } \Gamma \} \longrightarrow \mathbb{Z}_{>0}$$

such that for every polygon P

Necessary for existence of a positive integer weight function:

 \sharp black = \sharp white polygons

This fails for

 $Z^{21} + Z^{41} + Z^{61} + Z^{62}$

Positive integer weight function ν marks a point in every polygon P by:

$$\sum_{e \text{ edge } P} \frac{\nu(e)}{\deg(\nu)} (\text{midpoint of } e)$$

Automorphism group of Zhegalkin zebra motive \mathcal{F} $\operatorname{Aut}(\mathcal{F}) =$ $\{ \tau \in \mathbb{R}^2 \, | \, \mathcal{F}(\mathbf{x} + \tau) = \mathcal{F}(\mathbf{x}) \, , \, \forall \mathbf{x} \in \mathbb{R}^2 \, \} \, .$

This is a lattice in \mathbb{R}^2 if all polygons in the tiling for \mathcal{F} are convex.

For sublattice $\Lambda \subset \operatorname{Aut}(\mathcal{F})$ the tiling of \mathbb{R}^2 by black and white polygons descends to a black-white polygonal tiling on the torus \mathbb{R}^2/Λ .

 ${\sf Z}^{21}+{\sf Z}^{31}+{\sf Z}^{41}+{\sf Z}^{61}+{\sf Z}^{63}$

e	s(e)	t(e)	$\omega_1(e)$	$\omega_2(e)$	ν
1	2	9	-1	0	2
2	7	2	0	-1	2
3	2	1	1	0	1
4	1	8	0	2	1
5	6	1	-2	0	1
6	9	3	1	-1	1
7	3	6	0	-2	1
8	3	2	0	1	2
9	6	5	1	0	1
10	4	3	-1	1	1
11	5	4	0	1	2
12	1	4	0	-2	1
13	9	5	-1	0	2
14	4	9	1	-1	1
15	9	7	1	1	1
16	7	6	0	2	1
17	8	7	-1	-1	1
18	5	8	0	-1	2
19	8	9	1	1	1

Weight functions with values in $\mathbb{Z}_{\geq 0}$:

 $\nu_1(e) = \omega_1(e) + 2\nu(e)$ $\nu_2(e) = \omega_2(e) + 2\nu(e)$ $\nu_3(e) = 2\nu(e)$

 $\deg \nu_1 = \deg \nu_2 = \deg \nu_3 = 10.$

Convert table to 9×9 -matrix:

edge e contributes monomial $u_1^{\nu_1(e)}u_2^{\nu_2(e)}u_3^{\nu_3(e)}$ to matrix entry in position (s(e), t(e))

0	0	0	$u_1^2 u_3^2$	0	0	0	$u_1^2 u_2^4 u_3^2$	0
$u_1^3 u_2^2 u_3^2$	0	0	0	0	0	0	0	$u_1^3 u_2^4 u_3^4$
0	$u_1^4 u_2^5 u_3^4$	0	0	0	$u_{1}^{2}u_{3}^{2}$	0	0	0
0	0	$u_1 u_2^3 u_3^2$	0	0	0	0	0	$u_1^3 u_2 u_3^2$
0	0	0	$u_1^4 u_2^5 u_3^4$	0	0	0	$u_1^4 u_2^3 u_3^4$	0
$u_2^2 u_3^2$	0	0	0	$u_1^3 u_2^2 u_3^2$	0	0	0	0
0	$u_1^4 u_2^3 u_3^4$	0	0	0	$u_1^2 u_2^4 u_3^2$	0	0	0
0	0	0	0	0	0	$u_1 u_2 u_3^2$	0	$u_1^3 u_2^3 u_3^2$
0	0	$u_1^3 u_2 u_3^2$	0	$u_1^3 u_2^4 u_3^4$	0	$u_1^3 u_2^3 u_3^2$	0	0

Contribution of edge e:

matrix $\Phi_{\nu_1,\nu_2,\nu_3}(e)$ with (\mathbf{s}, \mathbf{t}) -entry

 $u_1^{\nu_1(e)} u_2^{\nu_2(e)} u_3^{\nu_3(e)}$ if $\mathbf{s} = s(e), \mathbf{t} = t(e),$ 0 otherwise.

$$e \mapsto \Phi_{\nu_1,\nu_2,\nu_3}(e)$$

defines algebra homomorphism

$$\Phi_{\nu_1,\nu_2,\nu_3} : \text{Path algebra of } \Gamma_{\Lambda}$$

$$\longrightarrow \quad \mathsf{Mat}_{\mathsf{P}^{\star}_{\Lambda}}(\mathbb{Z}[u_1,u_2,u_3])$$

Image of Φ_{ν_1,ν_2,ν_3}

 \simeq Jacobi algebra of (\mathcal{F}, Λ)

$$= \mathbb{Z}[\mathsf{path}(\Gamma_{\Lambda})]/\langle \mathsf{D}^{\circ}(e) \,|\, e \in \mathcal{E}_{\Lambda} \rangle$$

 $\sim \rightarrow$

By connecting the marked points in the polygons to the vertices one obtains a tiling by quadrangles

or

The latter is a triangulation of the plane with vertices in 3 colors such that every triangle has one vertex of each color.

Modulo period lattice Λ get similar triangulation of the torus \mathbb{R}^2/Λ .

This gives a ramified covering

 $\mathbb{R}^2/\Lambda \longrightarrow \mathbb{P}^1 = \mathbb{S}^2$ ramified only over 0, 1, ∞ .

$$\sim \rightarrow$$

Dessins d'enfants, Belyi maps

Decorations on quadrangles

These are typically the pictures of a *Seifert surface for a link* constructed from a link projection.

Taken modulo a period lattice Λ this is a link and Seifert surface in \mathbb{S}^3 .

 $\sim \rightarrow$

Knot theory

What is the relation between the Jacobi algebra of (\mathcal{F}, Λ) and the fundamental group of the complement of the link in \mathbb{S}^3 ?

Bipartite graph Γ_{Λ}^{\vee} is deformation retract of Seifert surface.

- Seifert form on $H_1(\Gamma_{\Lambda}^{\vee}, \mathbb{Z})$
- Poisson structure on torus $H^1(\Gamma^{\vee}_{\Lambda}, \mathbb{C}^*)$
- non-commutative (quantum) torus

 \rightsquigarrow

Cluster integrable systems (work of Goncharov and Kenyon)

untwist

Seifert surface for $\mathcal{F}_4 = \mathsf{Z}^{21} + \mathsf{Z}^{31} + \mathsf{Z}^{41} + \mathsf{Z}^{61}$

untwist "is"

From this we see that there is a ramified covering map from the Seifert surface to the disc

 $\{z \in \mathbb{C} \mid |z - \frac{1}{2}| \le 1\}$

which ramifies only over 0 and 1.

Seifert surface
$$\hookrightarrow \mathbb{S}^3$$

 $\downarrow_{\mathbb{S}^2}$

The inverse image of the boundary circle of the disc is the link.

~→ ???!!!!????