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Physicists want a unified theory for

relativistic, gravitational and quantum effects.

a Theory of Everything

String Theory and M-theory seem good candidates.

♠♠♠♠
Mathematicians want a theory for patterns

– named Motives –

recurring throughout number theory and geometry.

♠♠♠♠
Occasionally they hit on the same examples.

‘Is there a more unifying theory?’

‘Does Everything include Numbers?’

‘The M in M-theory seems to stand for

magic or mystery or mother of all strings,

but could it also mean Motive?’
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What is ....... a Motive ?
Barry Mazur in Notices of the AMS october 2004:

Algebraic topology: one cohomology theory,

characterized by the Eilenberg-Steenrod axioms,

representable by Eilenberg-MacLane spaces and

Postnikov towers.

Algebraic geometry: a profusion of different cohomology

theories, no axioms, no representing objects:

• Hodge cohomology

• algebraic De Rham cohomology

• crystalline cohomology (for every prime number p)

• étale `-adic cohomology (for every prime number `)

and comparison isomorphisms between these.

Cohomology theories assign to varieties vector spaces

(some with additional structure).

Inverse problem: given a collection of vector spaces

(+ additional structure, comparison isomorphisms),

is this produced by the various cohomology theories

from one common source?

The common source is called a MOTIVE.
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More precisely:

a variety X is defined over some field K,

often with positive transcendence degree over Q.

Every embedding σ of K into C leads to a complex

variety to which algebraic topology and differential ge-

ometry with their cohomology theories apply.

Every embedding σ of K into a p-adic field Qp leads

to crystalline cohomology spaces.

As the embeddings σ vary, with fixed target C or Qp,

the variation in the cohomology spaces is described partly

by the action of Galois groups and partly by Picard-Fuchs

differential equations and Gauss-Manin connections.

As yet no theory to mix the targets C and/or

the various Qp!
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There are at least five String Theories:

• Type I

• Type IIa

• Type IIb

• Heterotic SO(32)

• Heterotic E8 × E8

plus 11D supergravity.

These are interrelated by dualities

e.g.

Mirror Symmetry between IIa and IIb

These are limits of one 11-dimensional theory: M-THEORY

M-theory,
the theory formerly known as
Strings
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Why look for MOTIVE-STRING relation ?

Computations in Type IIb string theory proceed by

manipulating solutions of certain differential equations.

During the computations there are many denominators.

In the end these drop out and true integers remain.

Many differential equations in Type IIb string can be

recognized as Picard-Fuchs equations in De Rham coho-

mology of families of varieties.

The integrality statements can be recognized as conse-

quences of theorems about crystalline cohomology.

Challenge for Motive people:

Crystalline cohomology deals with only one prime p at a

time and puts out statements about p-adic integrality.

What mechanism synchronizes the primes

and leads to true integers?

Challenge for String people:

Crystalline cohomology implies extra symmetries in the

differential equations.

Where are these extra symmetries in Nature?
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Line & Additive Group

arclength
∫ b

a dx = b − a

invariant differential form dx

invariant derivation d
dx

dx = dz ⇒ z = x + y , y constant
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Circle

equations for the unit circle in the plane:

r = 1 polar coordinates

x2 + y2 = 1 Cartesian coordinates

arclength
∫ b

a
dx√
1−x2

= arcsin(b) − arcsin(a)

arcsin(x) =
∑

n≥0

(−1)n
(

−1
2

n

)

x2n+1

2n + 1

= 2
∑

n≥0

(2n)!

n!2
(x/2)2n+1

2n + 1

better

1

2
arcsin(2x) =

∑

n≥0

(2n)!

n!2
x2n+1

2n + 1
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invariant differential form
dx√

1 − x2

invariant derivation
√

1 − x2
d

dx

Addition law for trigonometric functions:

dx√
1 − x2

=
dz√

1 − z2
⇒

z = sin(arcsin(x) + arcsin(y)) y constant

= x
√

1 − y2 + y
√

1 − x2

= x + y +
∑

n≥1

(−1)n
(

1
2

n

)

(x y2n + y x2n)

Better, with z = 2w, x = 2u, y = 2v,

w = u + v − 4
∑

n≥1

(2n − 3)!

n!(n − 2)!
(u v2n + v u2n)

The coefficients are integers:

−4
(2n − 3)!

n!(n − 2)!
= 2

(

2n − 2

n

)

− 4

(

2n − 3

n − 1

)

So, this is a formal group law over Z !
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Multiplicative Group

arclength
∫ b

a
dx
x

= log(b) − log(a)

invariant differential form
dx

x

invariant derivation x
d

dx

dx

x
=

dz

z
⇒ z = xy , y constant

Coordinate change z = 1 + w, x = 1 + u, y = 1 + v

gives

w = u + v + uv ,

the standard multiplicative formal group law over Z.
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Circle & Multiplicative Group

Substitution x → ix, y → iy, z → iz

transforms the addition law for trigonometric sine:

z = x
√

1 − y2 + y
√

1 − x2

into the addition law for hyperbolic sine:

z = x
√

1 + y2 + y
√

1 + x2

The series

sinh(log(1 + u)) =
1

2

(

(1 + u) − (1 + u)−1
)

= u − 1

2

∑

n≥2

(−u)n

establishes an isomorphism, defined over Z[1
2
],

between the multiplicative group law and the

addition law for the hyperbolic sine.
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Lemniscate & its group law

equations Bernouilli’s Lemniscate in the plane:

r2 = cos(2φ) polar coordinates

(x2 + y2)2 = x2 − y2 Cartesian coordinates

arclength

∫ b

a

dx√
1 − x4

∫

dx√
1 − x4

=
∑

n≥0

(−1)n
(

−1
2

n

)

x4n+1

4n + 1

=
√

2
∑

n≥0

(2n)!

n!2
(x/

√
2)4n+1

4n + 1

Coefficients can be made integral by substitution

x → x
√

2
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Euler

dx√
1 − x4

=
dz√

1 − z4
⇒

z =
x
√

1 − y4 + y
√

1 − x4

1 + x2y2
, y constant

Euler’s result was the first example of an addition law for

elliptic integrals.

This marked the beginning of the theory of elliptic

curves !

The elliptic curve in this case is, in homogeneous

coordinates in the weighted projective plane P[1,1,2],

X4 + Y 4 + Z2 = 0
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X4 + Y 4 + Z2 − tXY Z = 0

with t a complex (deformation) parameter.

Viewed in C3 this equation has for t4 6= 64 only one

singular point, namely (0, 0, 0).

This is a so-called simple elliptic singularity

known as the Ẽ7 singularity.

♠♠♠♠

Viewed in P[1,1,2] this equation describes for t4 6= 64 a

smooth elliptic curve.

We have a family of elliptic curves with

singular fibres at t = ±2
√

2 , ±2
√
−2 , ∞
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The elliptic curve

X4 + Y 4 + Z2 − tXY Z = 0

a rank 2 period lattice.

One period (of a suitably normalized 1-form along a suit-

able closed path)

can be computed via the residue theorem:

with u = t−1 and |u| sufficiently small:

f0 =
1

2πi

∮

γ0

−t dx

2z − tx

∣

∣

∣

∣

x4+1+z2=txz , |z|<1

=

(

1

2πi

)2 ∮ ∮ −t dx dz

x4 + 1 + z2 − txz

=

(

1

2πi

)2 ∮ ∮

1

1 − ux−1z−1(x4 + 1 + z2)

dx

x

dz

z

=
∑

n≥0

un

(

1

2πi

)2 ∮ ∮ (

x4 + 1 + z2

xz

)n
dx

x

dz

z

=
∑

m≥0

(4m)!

m!2(2m)!
u4m
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A second period

f1 =
1

2πi

∮

γ1

−t dx

2z − tx

∣

∣

∣

∣

x4+1+z2=txz , |z|<1

can be determined from the formula (with ε2 = 0)

f0 + f1ε ≡
∑

m≥0

(1 + 4ε)4m
(1 + ε) 2

m (1 + 2ε)2m
u4m+4ε

using the rising Pochhammer symbol: for k ≥ 0

(a)k := a(a + 1) · · · · · (a + k − 1)

(so (1)k = k! )

Note

f1 = 4f0 log u + g1

where g1 is a power series in u4 with constant term 0.

Thus if we define τ and q by

τ :=
f1

4f0
, q := exp(τ ) = u exp(

g1

4f0
)

then q is another local coordinate on the u-line

near u = 0.
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More formal group laws.

Put

`(u) =

∫

f0 du =
∑

m≥0

(4m)!

m!2(2m)!

u4m+1

4m + 1

and

L(x) =
1√
2

∫

dx√
1 − 4x4

=
∑

n≥0

(2n)!

n!2
x4n+1

4n + 1

Then

`−1(`(u) + `(v))

L−1(L(x) + L(y))

are two formal group laws over Z and they are isomorphic

over Z.

Moreover L−1(L(x) + L(y)) is the integer version of

the addition law for the lemniscate.

i.e. the base of the elliptic pencil

X4 + Y 4 + Z2 − tXY Z = 0

carries in the neighborhood of t = ∞ , u = 0 a formal

group law over Z, in the coordinate u, which is over Z

isomorphic to the formal group law of the fiber at

t = 0 , u = ∞
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Seiberg-Witten
‘Electric-Magnetic Duality, Monopole Condensation,

and Confinement in N = 2 Supersymmetric Yang-Mills

Theory’

illustrate their general theory with a first example star-

ring the functions

a =

∫

f0 dt

aD =

∫

f1 dt

They show that a and aD give the periods of some

meromorphic 1-form without residues

on the elliptic curve X4 + Y 4 + Z2 − tXY Z = 0 .
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The functions a and aD are used to construct the

potential

K :=
1

2i
(a aD − a aD)

for a so-called rigid special Kähler metric on the base

space (Moduli space) of the pencil; the metric is

∂2K

∂a ∂a
da da =

1

2i

(

∂aD

∂a
− ∂aD

∂a

)

da da

=
1

2i

(

f1

f0
− f1

f0

)

f0f0 dt dt

= −2i(τ − τ )f0f0 dt dt
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A Glimpse of Mirror Symmetry

Golyshev looked at the system of differential equations

d

dt
Φ = (t − A)−1PΦ

where

A =





12 552 7488

1 40 552

0 1 12



 , P =





2 0 0

0 1 0

0 0 0



 .

He showed that it has a solution

Φ =





∗ ∗ 0

∗ ∗ 0

aD a 1





and he showed that the entries of A count how many

curves of certain kinds there exist on the DelPezzo surface

dP7, i.e. the blow up of P2 at seven points.

Note: classical theory relates this DelPezzo to the root

system E7.
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More formal group laws.

Recall

a =

∫

f0 dt = −
∫

f0
du

u2
= −

∑

m≥0

(4m)!

m!2(2m)!

u4m−1

4m − 1

Note that the coefficients

(4m)!

m!2(2m)!

1

4m − 1
= 4

(4m − 3)!

m!2(2m − 2)!

= −2
(4m − 2)!

m!2(2m − 2)!
+ 8

(4m − 3)!

m!(m − 1)!(2m − 2)!

are sums of multinomial coefficients

and, hence, are integers.

This can also be stated as: The function

1

a
= u + 4u5 + 76u9 + 2224u13 + . . .

is the logarithm of a formal group law over Z which

is over Z isomorphic to the additive group law.
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Lerche, Mayr, Warner
‘Non-critical Strings, Del Pezzo Singularities

and Seiberg-Witten curves’

work in one of their examples with the functions

b =

∫

f0
du

u

bD =

∫

f1
du

u

They relate these to periods of multivalued 1-forms

on the elliptic curve X4 + Y 4 + Z2 − tXY Z = 0 .

They also define a function F so that

bD =
dF
db

.

The functions b and F are then used to construct the

potential

K = − log (ReF + Imb ImbD)

for a so-called local special Kähler metric on the base

space (Moduli space) of the pencil.
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A Glimpse of Mirror Symmetry

The function F − b
3

6
is a function of eb. It can be

written as a series

F =
1

6
b

3 +
∑

k≥1

akLi3(e
kb)

with integers ak;

here Li3 is the trilogarithm function :

Li3(x) :=
∑

n≥1

xn

n3

The integers ak count instantons.
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More formal group laws.

Recall

b =

∫

f0
du

u
= log u +

∑

m≥1

(4m)!

m!2(2m)!

u4m

4m

It can be shown that the series
∑

m≥1

(4m)!

m!2(2m)!

xm

m

is the logarithm of a formal group law over Z which over

Z is isomorphic to the multiplicative formal group law.
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From curves to surfaces.

The total space of our elliptic pencil can be embedded

as the surface

S : (X4 + Y 4 + Z2) U − XY Z T = 0

of bidegree (4, 1) in P[1,1,2] × P[1,1].

The elliptic pencil arises via the projection from S onto

the projective line P[1,1].

On the other hand, the projection onto the weighted

projective plane P[1,1,2] shows S as the blow up of this

plane in 8 points.
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From 1-forms to 2-forms.

In the coordinate patch Y 6= 0 , U 6= 0 with affine

coordinates x = X
Y , z = Z

Y , t = T
U one has

(x4 + 1 + z2) − xz t = 0

and thus

(4x3 − zt) dx − (2z − xt) dz − xz dt = 0

and
− dx dt

2z − tx
=

dx

x

dz

z

So we have on S a meromorphic 2-form ω, which on

the above coordinate patch is

ω =
dx

x

dz

z

Our previously defined functions `, a and b can now

be written as integrals over some disc D in S :

`(u) =

∫

f0 du = −
∫

D
t−1 ω

a =

∫

f0 dt =

∫

D
t ω

b =

∫

f0
du

u
= −

∫

D
ω
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Recall

b =

∫

f0
du

u

=

∫

∑

n≥0

un

(

1

2πi

)2 ∮ ∮ (

x4 + 1 + z2

xz

)n
dx

x

dz

z

du

u

=

(

1

2πi

)2 ∮ ∮

[

log u +
∑

n≥1

1

n
un

(

x4 + 1 + z2

xz

)n
]

dx

x

dz

z

= −
(

1

2πi

)2 ∮ ∮

log

[

txz − (x4 + 1 + z2)

xz

]

dx

x

dz

z

So −Reb is the logarithmic Mahler measure of the

Laurent polynomial

txz − (x4 + 1 + z2)

xz
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The Mahler measure M(F ) of a Laurent polynomial

F (x, y) with complex coefficients is defined as:

M(F ) := exp(m(F ))

where m(F ) is the logarithmic Mahler measure :

m(F ) :=

∫ 1

0

∫ 1

0

log |F (e2πiu, e2πiv)|du dv

=
1

(2πi)2

∫ ∫

|x|=|y|=1

log |F (x, y)| dx

x

dy

y
.

C. Smyth, D. Boyd and others found many examples

of Laurent polynomials F for which the (logarithmic)

Mahler measure equals up to a rational factor and to

many decimal places the value at s = 0 of the derivative

of an L-function of the zero locus of F (suitably compact-

ified)

txz − (x4 + 1 + z2)

xz
with integer values for the parameter t, is not in their

lists; probably one did not look for it.

Thus, special values of L-functions, the main enu-

merative problem about Motives, appear alongside with

instanton counts, the main enumerative problem about

Strings
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