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Motivation
We can use ultracold neutral atoms in a regular periodic potential called an optical lattice to map 
out the Fermi-Hubbard model, which consists of interacting fermions in the tight-binding limit. 
At half-filling, corresponding to one fermion per lattice site, the ground state of this model is an-
tiferromagnetic, i.e., a Néel-ordered state, for strong enough on-site interactions. As the filling 
factor is reduced by doping, the system is conjectured to undergo a quantum phase transition to a 
d-wave superconducting state. Understanding this transition would be a major step towards un-
derstanding high-temperature superconductivity of the cuperates.

An experimental exploration of this issue using ultracold atoms is now within reach. In view of 
this, a significant problem is determining how to reach the Néel state with untracold atoms?

Fig. 2. The entropy per particle in the har-
monic trapping potential (dashed line), and 
in the lattice from usual mean field theory 
(solid curve) and including fluctuations 
(red curve). The horizontal lines illustrate 
cooling and heating which may occur in 
going from the harmonic trap to the lattice 
adiabatically.

(Results plotted in a lattice of depth V0 = 6.5ER, 
where ER is the recoil energy).

The Fermi-Hubbard Model
Our starting point is the Fermi-Hubbard model describing fermions in a periodic potential
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On-site interaction: U Inter-site tunneling: t

• Sums depend on dimension (d=3) and number 
of occupied sites N;
• Sum         over nearest-neighbours only;
• Consider positive-U (=repulsive) Hubbard 
model, relevant to high-temperature superconduc-
tivity.
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The Néel state is the antiferromagnetic 
ground state of the Hubbard model at 
half filling, in the limit             :U À tU À t
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Néel order parameter                          measures amount of “anti-
alignment”:

Below some critical temperature Tc,        becomes non-zero and we enter 
the Néel phase.
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Since we consider balenced gases 
with              here, we now enter 
the Mott insulator phase with one 
particle per site.

The physics is now understood in 
terms of the Heisenberg model!

Heisenberg Model - Mean Field Theory

Cooling into the Néel state
1. We start with a gas of ultracold fermionic atoms in a harmonic trap at temperature Tini  .

Entropy in the harmonic trap:
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The number of particles is N and 
the Fermi temperature in the trap 
is:

2. Next, adiabatically turn on the optical lattice. The entropy remains constant.

3. The temperature of the atoms changes as their entropy does not. Eventually, we cross 
the critical temperature Tc and they begin to antialign: 

The initial entropy in the trap at 
temperature Tini  equals the final en-
tropy in the lattice below Tc

Thus, we need to know the en-
tropy in the lattice.

SFG(Tini) = SLat(T · Tc)SFG(Tini) = SLat(T · Tc)

U À tU À t

At half filling, for lattice depths such that             , and temperatures                 , the dynamics are 
descibed by an the effective Hamiltonian for the spins alone - the Heisenberg model:

U À tU À t kBT ¿ UkBT ¿ U
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where                  is the spin operator and                is superexchange constant describing virtual 
hops to neighbouring lattice sites.
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Usual mean-field analysis: Treat the interaction of site j with its nearest neigh-
bours within mean-field theory,

Improved mean-field analysis: Attempt to improve on standard mean-field 
approach by the including interaction between a site and one of its nearest 
neighbours exactly, treating the rest of the neigbours within mean-field theory.

H ' JS1 ¢ S2 + J(z ¡ 1)jnj(Sz1 ¡ Sz2) + J(z ¡ 1)n2H ' JS1 ¢ S2 + J(z ¡ 1)jnj(Sz1 ¡ Sz2) + J(z ¡ 1)n21 2

Diagonalize the resulting 4 × 4 problem to obtain the Landau free energy     , then we obtain the 
entropy thus:
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(1) Solve self-consisten-
cy condition for       :hnihni

S = ¡N @fL(hni)
@T

S = ¡N @fL(hni)
@T

(2)  Calculate the en-
tropy with this       :hnihni
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The entropy and Néel order parameter obtained in this way are plotted as the black curves in 
Fig. 1 below. Although this theory has the correct T = 0 and T = ∞ limits, is does not include 
spin waves present near T = 0 nor critical fluctuations:    

Temperature dependence above Tc.

 Incorrect low temperature behaviour 

 Incorrect critical temperature behaviour 



Fig. 1. Results from 1-site (black) 
and 2-site (blue) mean-field 
theory. The inset shows the en-
tropy per particle.
(Results plotted in a lattice of depth V0 
= 6.5ER, where ER is the recoil energy).

Néel order parameter and entropy obtained as above. Results plotted in Fig. 1. Now, there is a 
2% depletion of        at T = 0 due to quantum fluctuations, and the entropy has temperature 
dependence above Tc:
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 No temperature dependence above Tc: S =                  .

 Incorrect low temperature behaviour 

 Incorrect critical temperature behaviour 

NkB ln(2)NkB ln(2)

Fluctuations
Using the critical temperature Tc = 0.957 kB/J found from numerical simulations [Staudt], the 
correct entropy curve interpolates between three regiemes: 
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(1) Low temperature entropy, 
dominated by magnons:
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(3) High temperature entropy, 
from 2-site mean-field theory:

(2) Critical behaviour:

d = 3; º = 0:63; A+=A¡ ' 0:54d = 3; º = 0:63; A+=A¡ ' 0:54[Zinn-Justin]:
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Result: Initial temperature in the trap required 
to reach Tc in the lattice is significantly lowered 
by fluctuations compared to mean-field theory, 
see Fig. 2.
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Conclusion
• We find, for all lattice depths such that             , the Néel state is reached by adiabatically ram-
ping up an optical lattice if the initial temperature is at or below 0.059TF

• Initial temperature close to limit of what is experimentally viable, accurate determination of 
the critical temperature is therefore crucial; fluctuations play an important role and must be 
included.
Future research:
• d = 2 case: start with d = 3 Néel state then decrease tunneling in one direction
• Doping: introduce an imbalence in the population of atomic spin states
• Quantum magnetism: frustration by non-cubic lattice, impurity scattering, etc.
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