Achieving the Neel state in an optical lattice
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/ M O ti va ti on \ ﬁ)iagonalize the resulting 4 % 4 problem to obtain the Landau free energy fi,, then we obtain th}
We can use ultracold neutral atoms 1n a regular periodic potential called an optical lattice to map entropy thus:
out the Fermi-Hubbard model, which consists of interacting fermions 1n the tight-binding limat. ﬁ) Solve sel f—consisterm /(2) Calculate the en- \
At half-filling, corresponding to one fermion per lattice site, the ground state of this model 1s an- ¢y condition for (n): tropy with this (n):
tiferromagnetic, 1.€., a Neel-ordered state, for strong enough on-site interactions. As the filling 9 ' > df.((n))
factor 1s reduced by doping, the system 1s conjectured to undergo a quantum phase transition to a fr(n) — () g —_NIL -
d-wave superconducting state. Understanding this transition would be a major step towards un- K on n=(n) / K oT /
derstanding high-temperature superconductivity of the cuperates.
An experimental exploration of this issue using ultracold atoms 1s now within reach. In view of The entropy and Néel order parameter obtained 1n this way are plotted as the black curves in
this, a significant problem 1s determining how to reach the N¢el state with untracold atoms? Fig. 1 below. Although this theory has the correct 7= 0 and T = oo limits, 1s does not include
. spin waves present near 7 = 0 nor critical fluctuations:
The Fermi-Hubbard Model P P
Our starting point is the Fermi-Hubbard model describing fermions in a periodic potential X No temperature dependence above 7c: S =Nkg In(2) .
X 1 t low t ture behavi
H=—tS C;[ g+ U Z c;- TC;L' GG ncorrect low temperature behaviour
o (ji'y j X Incorrect critical temperature behaviour

* Sums depend on dimension (d=3) and number

of occupied sites V; ﬂmproved mean-field analysis: Attempt to improve on standard mean-field \

* Sum (j4') over nearest-neighbours only; approach by the including interaction between a site and one of its nearest

T\ | Inter-site tunneling: ¢ Consider positive-U (=repulsive) Hubbard neighbours exactly, treating the rest of the neigbours within mean-field theory.
On-site mnteraction: U model, relevant to high-temperature superconduc- D @
tivity.
~ ) L z  QZ . 2

The Néel state is the antiferromagnetic @ O O @ H=JS: S5+J(z-1)n|S]-8;)+J(z—1)n

ground state of the Hubbard model at
half filling, in the limit U > t¢:

N /

N¢el order parameter and entropy obtained as above. Results plotted in Fig. 1. Now, there 1s a

0.5

N¢el order parameter 0 < (|n|) < 0.5 measures amount of “anti- 2% depletion of (n) at 7= 0 due to quantum fluctuations, and the entropy has temperature
alignment’: - dependence above Tc:
S n; = (—1)7(S;) pos
Below some critical temperature 7, (|n|) becomes non-zero and we enter \/ Temperature dependence above T-.
°o o T the Neel phase. 0.4} X Incorrect low temperature behaviour
CO OI In g n tO the N eel S ta te 03l 0.6 X Incorrect critical temperature behaviour
~ A
- pd
1. We start with a gas of ultracold fermionic atoms in a harmonic trap at temperature 7ini . - 05 & 04 Fig. 1. Results from [-site (black)
| | ' 0ol and 2-site (blue) mean-field
Entropy in the harmonic trap: . | theory. The inset shows the en-
T ' 0 - - tropy per particle.
_ 2
Srq = Nkpm T_F | kg™ 2 | (Results plotted in a lattice of depth V%
, , OO 05 Kk_T/J 1 1.5 = 6.5ERr, where Er 1s the recoil energy).

The number of particles 1s N and B

the Fermi temperature in the trap

is: Fluctuations

kgTr = (3N) /3 hw Using the critical temperature 7. = 0.957 ks/J found from numerical simulations [Staudt], the
correct entropy curve interpolates between three regiemes:
2. Next, adiabatically turn on the optical lattice. The entropy remains constant. m) Low temperature en tropy,\ /(2) Critical behaviour- N\
Since we consider balenced gases dominated by magnons: S(T=T,)=S(T.) £ AT|t|™~1 4= g e

with U > t here, we now enter 42 kT \° | | +Tc )
the Mott insulator phase with one S(T < T.) = Nks—; ( ) [Zinn-Justin]: d=3,  v=063, AT/A" ~0.54

particle per site. \ 2\/§J<n>/ \— /

@) High temperature entroPYﬂ\ Result: Initial temperature in the trap required

The physics 1s now understood 1n

. from 2-site mean-tield theory: to reach Tc in the lattice is significantly lowered
terms of the Heisenberg model! ,
5 72 by fluctuations compared to mean-field theory,
S\(T > T.) = Nkgp [ln(Z) — 64k§TJ see Fig. 2.
3. The temperature of the atoms changes as their entropy does not. Eventually, we cross o
the critical temperature Tt and they begin to antialign: In2) | | — — Fig. 2. The entropy per particle in the har-
monic trapping potential (dashed line), and
The 1n1tlal entropy in the trap at 067 (o DIIIRIRY PRI ORI -’-,O', 1 in the lattice fI'OIn usual mecan ﬁeld thCOI‘y
temperature ﬂni equals the ﬁnal en- ’l,, (SOhd CurVe) and lnCIUdlng ﬂUCtuationS
tropy in the lattice below Tt <1f;> ig (red curve). The horizontal lines 1llustrate
E’m 0.4 5 1 cooling and heating which may occur in
Sra(Tini) = Srat(T < T) A going from the harmonic trap to the lattice
adiabatically.
Thus, we need to know the en- 0.2} — Lattice, MFT
tropy in the lattice. - #f;:)'ce’ fluc. (Results plotted in a lattice of depth Vo = 6.5Ex,
where ERr 1s the recoil energy).
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Heisenberg Model - Mean Field Theory F
At half filling, for lattice depths such that U > ¢, and temperatures kg T’ < U, the dynamics are -
descibed by gn the effectivepHamiltonian for the spins along - the Heis]znberg model:y Con CI usi On . . .
*  We find, for all lattice depths such that U > ¢, the Neel state 1s reached by adiabatically ram-
H — £ Z S..S, ping up an optical lattice if the initial temperature is at or below 0.0597x
2 o / « Initial temperature close to limit of what 1s experimentally viable, accurate determination of
fltz the critical temperature 1s therefore crucial; fluctuations play an important role and must be
where S = %a' is the spin operator and J = ¥ is superexchange constant describing virtual included.
hops to neighbouring lattice sites. Future research:
ﬁs;lal mean-field analysis: Treat the interaction of site j with its nearest neigm * d=2 case: start with d = 3 Neel state then decrease tunneling in one direction | | Insignt into
bours within mean-field theory, * Doping: introduce an imbalence in the population of atomic spin states High-T¢ SC
D * (Quantum magnetism: frustration by non-cubic lattice, impurity scattering, etc.
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