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For two atoms on a single site the two-channel Feshbach problem in the rel-
ative coordinate, after splitting of the center-of-mass motion, is given by the
Schrödinger equation:

(

H0 +Vaa Vam

Vam δB

)(

|ψa〉
|ψm〉

)

= E

(

|ψa〉
|ψm〉

)

.

Here the noninteracting atomic Hamiltonian is H0 =−h̄2∇2
r/m+mω2r2/4. The

bare detuning is denoted by δB, r is the relative coordinate between the atoms
and m is the atomic mass. The nonresonant or background atom-atom interac-
tion is Vaa and the atom-molecule coupling is denoted by Vam. In first instance
only the relative part is relevant, since only this part is affected by the inter-
actions between the atoms. The center-of-mass part determines the tunneling.
From the above equation we obtain the following equation for the molecules

〈ψm|Vam
1

E −H0−Vaa
Vam|ψm〉 = E −δB,

where |ψm〉 is the bare molecular wavefunction. Note that in the above we have
implicitely taken the extend of this wavefunction to be so small that its energy
is not affected by the optical lattice, which is well justified in practice. From
this we then find that the energy of the molecules obeys

E −δB = 2g2 ∑
m

φ ∗
m(0)φm(0)

E −Em

= g2

[

G(E)√
2πl3h̄ω

− lim
r→0

m

2π h̄2r

]

.

The function G(E) is the ratio of two gamma functions G(E) = Γ(−E/2h̄ω +
3/4)/Γ(−E/2h̄ω + 1/4). The divergence in the selfenergy is energy-
independent and is related to an ultraviolet divergence that comes about be-
cause we have used pseudopotentials. To deal with this divergence we have
to use the renormalized detuning instead of the bare detuning. The former is
defined as δ = δB− limr↓0 mg2/2π h̄2r, where δ = ∆µ(B−B0) is determined by
the experimental value of the magnetic field B0 at resonance.

ABSTRACT

We present the theory for ultracold atomic gases in an optical lattice near a Fes-
hbach resonance. In the single-band approximation the theory describes atoms
and molecules which can both tunnel through the lattice. Moreover, an avoided
crossing between the two-atom and the molecular states occurs at every site.
We determine the microscopic parameters of the generalized Hubbard model
that describes this physics, using the experimentally known parameters of the
Feshbach resonance in the absence of the optical lattice. As an application we
also calculate the zero-temperature phase diagram of an atomic Bose gas in an
optical lattice.

The effective atom-molecule coupling in the optical lattice is given by g′ =
g(

∫

dx|ψ0(x)|4)1/2 = g/(2πl2)3/4, where ψ0(x) is the Wannier function in the
lowest band of the optical lattice. The effective atom-atom interaction is now
given by Ueff = Ubg−2(g′)2/(δ −3h̄ω/2), where the background on-site inter-
action strength Ubg =

(

4πabgh̄2/m
)
∫

dx|ψ0(x)|4 =
√

2/π h̄ω (abg/l). In order
for the single-band approximation to be valid we must have that Ueff � h̄ω .
This condition implies that sufficiently close to the Feshbach resonance it is
always necessary to use a multi-band Hubbard model to accurately describe the
atomic gas. In Fig. 2 we also show a close-up of the avoided crossing and the
wavefunction renormalisation factors Zσ that give the amplitude of the closed
channel part of the molecules in the state |ψσ〉. Explicitely, we thus have that

|ψ↓,↑〉 =
√

Z↓,↑|ψm〉±
√

1−Z↓,↑|ψ0ψ0〉.

As mentioned previously, in the single-band approximation σ can be either up
or down. The probability Zσ is determined by the selfenergy of the molecules
through the relation Zσ = 1/(1−∂ h̄Σm(E)/∂ E). Combining the above we thus
find a generalized Hubbard Hamiltonian that is given by

H = −ta ∑
〈i, j〉

a†
i a j − tm∑

σ
∑
〈i, j〉

b†
i,σb j,σ +∑

σ
∑

i

(εσ −2µ)b†
i,σbi,σ +∑

i

(εa−µ)a†
i ai

+
Ubg

2 ∑
i

a†
i a†

i ai ai +g′∑
σ

∑
i

√

Zσ

(

b†
i,σai ai +a†

i a†
i bi,σ

)

.

Here ta and tm are the tunneling amplitudes for the atoms and the molecules,
respectively, and 〈i, j〉 denotes a sum over nearest neighbours. Also εa = 3h̄ω/2
is the on-site energy of a single atom.
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Left:
The relative energy levels of the atom-molecule system as a function of the
detuning δ . Both figures was calculated for g2/

√
2πl3(h̄ω)2 = 0.1 From this

figure we see that for very negative detuning the molecular state lies below the
ground-state of the on-site microtrap and the bound-state energy is well ap-
proximated by the detuning. As it approaches the ground-state level of the trap
there is an avoided crossing and as a result the lowest trap state is shifted up-
ward. If the avoided crossings between the molecular level and subsequent trap
states do not strongly overlap, the system can be well described by considering
only the lowest trap state. The overlap between the avoided crossings is deter-
mined by the strength of the atom-molecule coupling and can be neglected if
g2/

√
2πl3(h̄ω)2 � 1. Here we restrict ourselves to a single-band approxima-

tion, although the generalization to the multi-band situation is straightforward.
Right:
A close-up of the avoided crossing and the wavefunction renormalisation fac-
tors Zσ that give the amplitude of the closed channel part of the molecules in the
state |ψσ〉. Note that the probability Z↑ already shows the effect of the avoided
crossing at a detuning of about 3h̄ω . As long as the single-band approximation
is valid this will, however, not affect any of the results because the two-atom
state that is involved in this avoided crossing will not be populated.
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(b)

Zero temperature phase diagram as a function of the filling fraction per site
and the detuning δ in units of h̄ω . The different curves that separate the MC
and the AC+MC phases correspond to values of g′/h̄ω = 0.10 (full curve) and
g′/h̄ω = 0.12 (dashed curve) respectively. In both cases we have taken ω to be
104 rad/s. Note that in the limit of vanishing density the quantum critical point
is determined by the ideal gas condition for Bose-Einstein condensation, i.e.,
µ = εm/2 = εa− zta. From this condition it follows that for low enough filling
fractions the location of the quantum phase transition shifts to higher detuning
with increasing strength of the atom-molecule coupling. On the other hand at
large negative detuning a larger value of the atom-molecule coupling implies
a larger quantum depletion and hence a smaller molecular condensate fraction.
This effect shifts the Ising transition to lower detuning.

Top left: For sufficiently negative detuning there is a quantum phase transition
to a phase with only a Bose Einstein condensate of dressed molecules. These
molecules have a large bare molecule amplitude.
Top right: Above the QPT are mainly dressed molecules that have a large bare
molecule amplitude. There are very few single atoms.
Bottom: For large positive detuning there are primarily single Bose condensed
atoms and only a few dressed molecules that have a small bare molecule am-
plitude.

To find the mean-field phase diagram of a Bose gas in an optical lattice, we
consider at sufficiently negative detuning the phase with only a Bose-Einstein
condensate of molecules and perform a quadratic expansion of the Hamilto-
nian in the fluctuations of the molecular annihilation operator bk,σ around the
nonzero expectation value 〈bk,σ〉 =

√
nmcδk,0δσ ,↓. The effective Hamiltonian is

then diagonalized by a Bogoliubov transformation and from the result we de-
termine the equation of state of the gas as a function of the detuning δ and the
temperature T ≡ 1/kBβ . For the equation of state for the total filling fraction
we find n = na +2∑σ nσ

m with the molecular filling fractions obeying

n↓
m = nmc +

1
Ns

∑
k6=0

1

eβ h̄ωk,↓−1
,

n↑
m =

1
Ns

∑
k

1

eβ h̄ωk,↑−1
, (1)

and the atomic filling fraction

na =
1
Ns

∑
k

{

2εa
k− εm

2h̄ωk

1
eβ h̄ωk −1

+
2εa

k− εm−2h̄ωk

4h̄ωk

}

. (2)

Moreover, we have that Ns is the total number of sites in the lat-
tice, εa

k = −2ta ∑3
j=1 cos (k jλ/2)+ εa, εm

k,σ = −2tm ∑3
j=1 cos(k jλ/2)+ εσ , and

h̄ωk,σ = εm
k,σ + εm is the molecular dispersion. Likewise we find that

h̄ωk = [(εa
k− εm/2)2−4g′2Z↓nmc]

1/2 is the atomic Bogoliubov dispersion with
εm = ε↓− ztm equal to twice the chemical potential and z is the number of near-
est neighbours.


