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Feshbach resonances provide an experimentally accessible way to tune
interactions and molecule formation in atomic gases. If used under low
temperature circumstances, these techniques can lead to some interesting
phenomena. For example, one can use Feshbach resonances to reach the
BCS transition, or Bose-Einstein condensation of Cooper pairs, in trapped
gases of fermionic atoms. Regal et al. were able to convert a fraction
of fermionic atoms into diatomic molecules as a first step [1]. Another
interesting application is the observation of coherent atom-molecule
oscillations [2]. An atomic condensate is coherently coupled to a molecular
condensate, which can be detected in a Ramsey experiment [3].

On this poster, we present work [4] that shows that near a Feshbach
resonance, a quantum phase transition occurs between a phase with only a
molecular Bose-Einstein condensate and a phase with both an atomic and a
molecular condensate. We have shown that the transition is characterized
by an Ising order parameter, and determined the phase diagram of this
transition.

This is an illustration of a Feshbach
resonance for alkali atoms. The up-
per potential curve corresponds to the
closed-channel interaction potential
V↓↓(x − x′) that contains the bound
state responsible for the Feshbach
resonance, indicated by the dashed
line. The lower potential curve cor-
responds to the open-channel interac-
tion potential V↑↑(x−x′).

For large positive detuning δ , molecules have an energy that is far higher
than the treshold of the two-atom continuum. Our gas consists of atoms
only, and the critical temperature for an ideal gas at which Bose-Einstein
condensation takes place is

T = T0 = (2π h̄2/mkB)(n/ζ (3/2))2/3 (δ � 0)

For large negative detuning, the molecular energy lies far below the treshold
of the two-atom continuum. We expect the gas to consist solely of stable
molecules, that condense at a temperature

T = T0/25/3

In the initial calculations we have not included the effects of the finite
lifetime of the molecules at positive δ , or the rogue-dissociation process
(molecular dissociation into thermal atoms) [5] for negative δ . Especially
for positive detuning, this makes a big difference, as it decreases the average
energy of the bound state significantly, making them more accessible for the
system. For the critical T for BEC, these effects are included in the dashed
line in the figure. In the future we would like to include the effects of rogue
dissociation on the critical line of the Ising transition.
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The essence of a Feshbach resonance is that there is a resonance in the scat-
tering process of two particles, that is due to a long-lived bound state. This
state has a binding energy close to the energy of the incoming particle. Also,
the bound state exists in another part of the quantum-mechanical Hilbert
space than the part associated with the incoming particles. In the simplest
case, these two parts of the Hilbert space are referred to as the closed and
open channel, respectively.

So we expect two possible symmetry-broken phases. In the normal phase,
the gas is invariant under the phase transition

ψa(x) → eiθψa(x), (1)
ψm(x) → e2iθ ψm(x) (2)

If the gas contains an atomic and a molecular condensate (AC+MC), this
U(1) symmetry is completely broken. Then, there can also be a molec-
ular condensate (MC), where a residual discrete symmetry remains, be-
cause 〈ψm(x)〉 → 〈ψm(x)〉 for θ = π . This phase therefore only breaks the
U(1)/Z2 symmetry spontaneously. Between the AC+MC and MC phases
there must exist an Ising-like transition, breaking the residual Z2 symmetry.
The full phase diagram is shown in this figure.

Two incoming atoms can form a
long-lived bound state (a molecule)
during a collision. The two incoming
atoms are said to be in the open state,
while the bound atoms have a differ-
ent hyperfine state, and are said to be
in the closed state. Due to their dif-
ferent hyperfine state, the two chan-
nels have a different Zeeman shift
∆µB in a magnetic field.
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The coupling between atoms and molecules in the gas is
provided by an interaction energy that is proportional to
g

∫

dx
(

ψ†
m(x)ψa(x)ψa(x)+ψ†

a (x)ψ†
a (x)ψm(x)

)

, where ψa(x) and ψm(x)
annihilate an atom and a molecule at position x, respectively. This implies
that if the gas contains an atomic Bose-Einstein condensate, and therefore
has a nonzero value of 〈ψa(x)〉, the gas must necessarily also contain a
molecular Bose-Einstein condensate and have a nonzero value of 〈ψm(x)〉.
However, the reverse is not true and it is possible for the gas to contain only
a molecular Bose-Einstein condensate. Thus

〈ψa(x)〉 6= 0 ⇒ 〈ψm(x)〉 6= 0


