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We have applied the method of single atom trajectories to study the mechanism behind some
cooling schemes in laser cooling. In several cases we recognize the cooling mechanism as being due
to a \Sisyphus" process, where the atoms move in a spatially varying light shift potential and are
optically pumped towards the most light shifted states. In other cases we identify a \Sisyphus"
process in time, where the light shift is constant and the force on the atom alternates between
positive and negative. This process is interrupted by quantum jumps at random instants and in
each case we depict the mechanism leading to a cooling force on the atom. In the special case of
sub-Doppler laser cooling in a strong magnetic �eld we obtain 12 jump operators and identify the
jump operators responsible for the cooling. The versatility of the single atom trajectory method
allows it to be applied to any cooling process and is therefore a very valuable tool in unraveling the
physical mechanisms behind cooling processes.

I. INTRODUCTION

Simulation methods of quantum mechanical open systems are based upon the representation of the system's density
matrix �(t) as an ensemble fj  i(t) >g of pure state vectors. Each of these time-dependent state vectors may be
thought of as a possible history of the evolution of the system. The requirement is, of course, that ensemble averages
of physical quantities evaluated on the basis of such a history, reproduce the results obtained by using the density
matrix.
A prototype case of an open system in quantum optics is a two-state atom coupled to the continuum of empty

modes of the radiation �eld, which gives rise to spontaneous decay. Then the density matrix of the total system
consisting of the atom and the �eld modes can be written as a sum of terms, each corresponding to a speci�c number
of photons. Each of these terms represents a pure state of the atom. This expansion of the state in photon numbers
has been applied by Mollow [1] to the study of the spectrum of resonance 
uorescence, and by Cook [2] to the number
statistics of 
uorescent photons.
The recent renewed interest in the representation of the solution of a quantum master equation as an ensemble

of pure states arises in part from the advantage of numerically simulating an n-dimensional state vector over the
evaluation of an n� n density matrix in cases where the number of states n is large. This has led to the introduction
of Monte Carlo simulations of the ensemble of atomic wave functions, where spontaneous emission is described in
terms of quantum jumps [3{5]. The method has been applied also to the evaluation of the spectrum of resonance

uorescence of atoms in an optical molasses [6]. The same technique is shown to be applicable to a general class of
master equations, describing a small system coupled to a large reservoir [7]. Apart from the computational advantage
of the method of quantum trajectories of open systems, it also provides a new insight in the physics of the processes
involved, in particular of the statistical nature of the evolution of open systems that is added to the normal probabilistic
character of the quantummechanical description. For complex processes in quantum optics, such as sub-Doppler laser
cooling, this can be important, in particular in situations where a clear physical picture of the cooling mechanism is
lacking. Also it provides a means to test whether the adopted qualitative picture really applies. For example, the
laser cooling process of velocity-selective coherent population trapping has been simulated by various ensembles of
trajectories with quantum jumps [8].
In the present paper, we evaluate the quantum trajectories based on the picture of quantum jumps for several

situations of sub-Doppler cooling. We consider an atom moving with a given classical velocity v through the light
�eld. The quantum trajectories only refer to the internal state of the atom. Both the case of polarization gradients [9]
and magnetically induced cooling [10] will be considered.
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II. STRUCTURE AND SIMULATIONS OF THE MASTER EQUATION

A. Separation of the density matrix in pure states

A system undergoing dissipative relaxation due to its coupling to a reservoir is commonly described by a density
matrix � that obeys a master equation of the form

d

dt
� = � i

�h
[H0; �] +

X
�

�
C��C

y
� �

1

2
Cy
�C�� � 1

2
�Cy

�C�

�
; (2.1)

with H0 the Hamiltonian of the uncoupled system, and C� are jump operators describing the coupling to the reservoir.
This form of the Master equation is rather generally valid when the evolution of an open system has a Markovian
nature [11]. In the standard case of a two-state atom undergoing spontaneous decay, only a single type of operator

C occurs, which is equal to S�
p
�, with � the spontaneous decay rate, and S� =j g >< e j the atomic lowering

operator, coupling the excited state j e > to the ground state j g > [12]. Another simple case is the decay of a cavity
mode, where C must be taken proportional to the annihilation operator. The Hamiltonian H0 may contain external
�elds driving the system, and it can be time-dependent. In general, master equations of the type of (2.1) arise when
the coupling to the reservoir can be described by fast disruptive events, for which the operators C� are the transition
operators [13].
The Monte Carlo simulation of the solution � of Eq. (2.1) in terms of an ensemble of pure states executing quantum

jumps has been discussed in refs. [3{5]. Equation (2.1) can be expressed in the alternative form

d

dt
� = � i

�h
H� +

i

�h
�Hy +G�; (2.2)

where

H = H0 � iH1 (2.3)

is an e�ective non-Hermitian Hamiltonian, with

H1 =
X
�

1

2
�hCy

�C�: (2.4)

The (super)operator G, which acts on density matrices, is de�ned by

G =
X
�

G�; (2.5)

with

G�� = C��C
y

�: (2.6)

When � represents the state of the system before a jump, the state after the jump is proportional to G�. Hence, the
operator G represents the gain term in the master equation. A simple way to represent the solution of the master
equation as a statistical mixture of pure states is to write the density matrix �(t) as a Dyson expansion in powers of
G. This gives

�(t) = U (t; 0)�(0) +

Z t

0

dt1U (t; t1)GU (t1; 0)�(0)

+

Z t

0

dt2

Z t2

0

dt1U (t; t2)GU (t2; t1)GU (t1; 0)�(0) + : : : ; (2.7)

The evolution operator U is de�ned by its action on a density matrix � as

U (t; t0)� = u(t; t0)�u
y(t; t0); (2.8)

with u the Schr�odinger evolution operator corresponding to the Hamiltonian H. Hence, u obeys the equation of motion
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d

dt
u(t; t0) = � i

�h
H(t)u(t; t0); (2.9)

with the initial condition u(t0; t0) = 1. As H is not Hermitian, the operator u is not unitary. Equation (2.7) depicts
the evolution of the system as a continuous evolution determined by the operator u, interrupted at discrete instants
of time by a jump, described by G. The �rst term in Eq. (2.7) gives the contribution to �(t) corresponding to the
case that no jumps occur in the time interval [0; t], the second term describes the case that a single jump occurs, etc.
This illustrates the nature of the jumps as random events. In the case of an atom driven by an external radiation
�eld, Eq. (2.7) is a convenient starting point to study the statistics of 
uorescent photons [14]. When the initial state
is a pure state, we may write

�(0) =j  (0) ><  (0) j : (2.10)

Then if we replace the gain operator G by the summation (2.6), one easily checks that each integrand in the expansion
in (2.7) is a summation over pure states. For instance, the �rst integrand is equal to

U (t; t1) G U (t1; 0)�(0)P
� u(t; t1)C�u(t1; 0) j  (0) ><  (0) j uy(t1; 0)Cy

�u
y(t; t1): (2.11)

Hence, Eq. (2.11) de�nes the pure states in which the state �(t) can be separated.

B. Simulations of pure-state histories

The simulation of single histories j  (t) > of normalized pure states as introduced in refs. [4] and [5] is now obvious.
The probability P0(t; 0) that no jump occurs in the time interval [0; t] is given by the trace of the �rst term on the
right-hand side of (2.7). For the initial state (2.10), this is equal to

P0(t; 0) =<  (0) j uy(t; 0)u(t; 0) j  (0) > : (2.12)

This probability can be evaluated as a (monotonously decreasing) function of t. The decay of P0 is due to the anti-
Hermitian part H1 of the e�ective Hamiltonian. Since the complement W (t; 0) = 1 � P0(t; 0) is the probability that
the �rst jump occurs before the time t, the probability distribution for the time intervals that one has to wait for the
�rst jump is

w(t j 0) = d

dt
W (t; 0) = � d

dt
P0(t; 0): (2.13)

This waiting-time distribution can also be expressed as

w(t j 0) =
X
�

w�(t j 0); (2.14)

with

w�(t j 0) =<  (0) j uy(t; 0)Cy

�C�u(t; 0) j  (0) > : (2.15)

The physical signi�cance of the partial waiting-time distribution w� is that w�(t1 j 0)dt1 is the probability that
the �rst jump after time zero occurs between the times t1 and t1 + dt1, and that it is of the type �. In general,
the probability P0(t; 0) of zero jumps, and the waiting-time distribution function w(t j 0) depend on the initial state
j  (0) >.
The time instant t1 of the �rst jump is now simulated by drawing a random number �, homogeneously distributed

between 0 and 1, and determining t1 by � = W (t1; 0). This is veri�ed by noticing that for a homogeneous distribution
of �, the density of points t1 is equal to w(t1 j 0). Up to the jump instant t1, the system is described by the normalized
pure state

j  (t) >= 1p
P0(t; 0)

u(t; 0) j  (0) >; (2.16)

where the normalization factor follows from (2.12).
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After determining the instant t1 of the �rst jump, we must decide the type of this jump. The probability that it is
of type �1 is

p�1 = w�1(t1 j 0)=
"X

�

w�(t1 j 0)
#
; (2.17)

and a second random number is needed to determine �1. The normalized state vector after this �rst jump at time t1
is

j  (t1) >= 1p
w�1(t1 j 0)

C�1u(t1; 0) j  (0) > : (2.18)

The normalization factor in (2.18) follows from (2.15). This �nal state after the �rst jump serves as the initial state
for a jumpless evolution until the instant t2 of the second jump, that is to be determined in the same fashion. In this
way ensembles of pure-state histories can be created, which correspond to the result of a Gedanken measurement,
in which the time instants and the types of the jumps are continuously recorded. The only stochastic input that is
needed is just the outcome of this measurement, which consists of the instants and the types of the jumps. With this
information, the pure state j  (t) > is fully determined. Apart from normalization, the evolution in between jumps
is governed by the operator u, and the e�ect of a jump of type � is given by the action of the jump operator C�.
By repeating this procedure, one can create an ensemble of N such histories j  1(t) >; j  2(t) >; : : : . This ensemble

fj  (t) >g can be used to evaluate expectation values < Q(t) > of any physical quantity, according to the prescription

< Q(t) >=
1

N

NX
i=1

<  i(t) j Q j  i(t) > : (2.19)

For large values of N , the results are indistinguishable from the result Tr�(t)Q, determined with the solution �(t) of
the master equation. This is explicitly demonstrated in ref. [7]. We point out that this is obvious already from the
Dyson expansion (2.7).
In summary, a single pure-state history is obtained by simulating successively the time instants and the types of

the jumps. The series (t1; �1); (t2; �2); : : : then determines the pure state j  (t) >, which for tk < t < tk+1 can be
expressed as

j  (t) >= [N (t)]�1=2u(t; tk)C�ku(tk; tk�1) : : :C�1u(t1; 0) j  (0) > (2.20)

with N (t) a time-dependent normalization constant. The simulation of (ti; �i) can be drawn as soon as the normalized
state j  (ti�1) > is known.

C. Evolution between jumps

Equation (2.20) demonstrates that when we ignore the normalization, the time dependence of a single history
j  (t) > is simply determined by the action of the evolution operator u, interrupted by the action of C� at the jump
instants. Without normalization, the evolution would be linear. However, the normalization is essential in the �nal
step, where the ensemble is used to evaluate physical averages, in order to give each history its proper weight. For a
speci�c outcome of the continuous measurement, it is the normalized state vector j  (t) > that describes the actual
history of the system.
The continuous evolution in between two jumps can be described as in Eq. (2.16). The di�erential form of this

equation yields the di�erential equation [7]

d

dt
j  >= � i

�h
H0 j  > � 1

�h
H1 j  > +

1

�h
j  ><  j H1 j  >; (2.21)

where the last term is needed to conserve the normalization. It is remarkable that this evolution equation, which
describes the actual state during a single run, is nonlinear. The expectation value

< Q(t) >=<  (t) j Q j  (t) > (2.22)

of a physical quantity Q obeys the corresponding di�erential equation
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d

dt
< Q >=

i

�h
< [H0; Q] > � 1

�h
< (H1Q+QH1 > +

2

�h
< H1 >< Q > : (2.23)

The last two terms in (2.23) express the correlation between the quantity Q and the non-Hermitian part H1 of the
e�ective Hamiltonian. Only in the presence of such correlation does the evolution equation deviate from the result
for a closed system. This may be understood as resulting from the information that is obtained from the null result
of the Gedanken measurement of the jumps. It is noteworthy that the evolution equation (2.23) implies that energy
or momentum is not always conserved during a single history.

III. TWO-STATE ATOM IN TRAVELLING WAVE

In this section we brie
y discuss the quantum-trajectory picture in the simplest possible case of a two-state atom

in a single travelling wave with wave vector ~K . It is well-known that in this case the net force on the atom in the

steady state is simply �h ~K��ee [2], with �ee the constant population of the excited state. This corresponds to the

picture of a constant rate of photon scattering by the atom, with a momentum change of �h ~K per scattered photon.
Here we wish to point out that the picture arising from single quantum trajectories is slightly di�erent. We make the
dipole and rotating-wave approximation, and describe the atomic density matrix �(t) in a frame rotating with the
light frequency !. In the atomic rest frame, the Hamiltonian H0 of the driven atom is

H0 = ��h�Sz � �h
Sx; (3.1)

with 
 the Rabi frequency, and � = ! � !0 the detuning of the light frequency from resonance. The quasi spin
operators have their usual signi�cance Sz = [Pe � Pg]=2 and Sx = [S+ + S�]=2, with

Pe =j e >< e j; Pg =j g >< g j; S+ =j e >< g j; S� =j g >< e j : (3.2)

The master equation (2.1) reproduces the well-known optical Bloch equations, when we substitute Eq. (3.1) for H0,

and the single jump operator C� is S�
p
�. In the present case of a single travelling wave, the force exerted by the

radiation �eld on the atom is given by [15]

~F = �h ~KA; (3.3)

where

A =
1

2
i
 < S+ � S� > : (3.4)

The quantity A is the power transferred from the beam to the atomic dipole, measured in photon energies, which is
equal to the rate of photon absorption.
Now we turn to the picture of a single pure-state trajectory. For the internal evolution of a two-state atom, this

picture has been discussed in ref. [4]. We represent the pure state in terms of two amplitudes as

j  (t) >= ae(t) j e > +ag(t) j g > : (3.5)

The force on the atom during this single history is given by (3.3), where the photon absorption rate (3.4) is

A(t) =
1

2
i
[a�eag � a�gae]: (3.6)

The time dependence of the state vector (3.5) is given by the continuous evolution (2.21), disrupted at discrete
stochastic time instants by a quantum jump. In the present case, the decay Hamiltonian H1 is

H1 =
1

2
�h�Pe: (3.7)

The jumps occur at a rate � j ae j2, and simply reduce the atom to its ground state. Equation (2.21) for the
continuous evolution between jumps gives the nonlinear evolution equations

d

dt
ae =

1

2

�
i�ae � i
ag � �ae j ag j2

�
;

d

dt
ag =

1

2

��i�ag � i
ae + �ag j ae j2
�
: (3.8)
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The terms proportional to � result from the coupling to the vacuum �eld, which leads to decay of the excitation
even in the period between two spontaneous emissions. For the solution �(t) of the optical Bloch equations, the time
derivative of the excited-state population is equal to the absorption rate. This is an expression of energy conservation.
However, in the present case of the evolution in between two jumps we �nd from (3.8) that

d

dt
j ae j2= A(t)� � j ae j2j ag j2; (3.9)

so that the energy gain of the atom is smaller than the energy loss of the �eld during this evolution. This temporary
loss of energy is regained on average during the subsequent jump, which can take place also when j ae j2 is less than
1.
In Fig. 1 we plot for a single trajectory the value of the excited-state population j ae j2 and the value of the force F ,

which is proportional to the absorption rate < A(t) > according to Eq. (3.3). At t = 0 the atom is in the ground state
and starts to absorb radiation, which causes the force to become negative. The population then oscillates back and
forth between the ground and excited state and the force alternates between negative and positive. In the absence
of quantum jumps the force becomes on the average zero. However, after a certain time a quantum jump occurs
(indicated in the lower part of Fig. 1) and the atom jumps back to the ground state. Then the cycle starts over again.
So after a quantum jump the atom absorbs radiation and the force will always be negative, whereas the quantum
jumps occur at random instants, in which case the force before the jump can be either positive or negative. The
average force will then always be negative and oppose the atomic motion.
Note that the distribution of positions where a quantum jump occurs is completely uniform, since the intensity

and the polarization of the light �eld are constant. Therefore there is no \Sisyphus" mechanism to explain the
force, as is done for instance in the case of sub-Doppler laser cooling in the lin ? lin con�guration (see ref. [9] and
below). Consequently we cannot de�ne in this case a spatially dependent light shift for di�erent states and identify
the positions at which the atom predominantly jumps. In fact the jumps occur at random instants in time and we
would therefore call this mechanism a \Sisyphus" mechanism in time. Although this mechanism seems rather trivial
in this case, we will see that this mechanism plays a role in other cooling schemes and that the same features also
occur in these cases.

IV. RADIATIVE FORCES ON ATOMS WITH TWO DEGENERATE LEVELS

A. Force and absorption rates

We consider an atom with two degenerate levels in a monochromatic radiation �eld that is expressed as a superpo-

sition of travelling waves. The atom is assumed to follow a classical path ~R(t), so that it experiences a time-dependent
�eld

~E(t) =
X
n

~E+
n exp[i ~Kn: ~R(t)� i!t] + c.c.: (4.1)

The Hamiltonian of the atom coupled to the �eld is

H0 = Hat � �h[R(t) +Ry(t)]; (4.2)

with

R(t) =
X
n

1

�h
~�eg � ~E+

n exp[i ~Kn: ~R(t)] =
X
n

Rn(t) (4.3)

a Rabi operator that is the sum of partial Rabi operators for each of the beams. Here ~�eg is the raising part of the
atomic dipole operator, which couples a lower level g to an excited level e, with angular momenta Jg and Je. Both
levels can have magnetic degeneracy. The free-atom Hamiltonian in the rotating frame is

Hat = �1

2
�h�[Pe� Pg]; (4.4)

with Pe and Pg projection operators on the substates of the two levels. The time dependence of the Hamiltonian H0

results from the motion of the atom.
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The density matrix � of the atom obeys the master equation (2.1), with H0 given by (4.2). Since the ground state
can have magnetic degeneracy, the e�ect of spontaneous decay depends on the polarization of the emitted photon.
Therefore for the jump operators C� in (2.1) one can take the three spherical components of the lowering part of the
dipole. As before [16], we introduce the spherical components Q� of the dimensionless transition vector, coupling the
ground-level substates to the excited states. These operators, which generalize the raising operator S+ of a two-state
atom, are de�ned by the statement that their matrix elements are Clebsch-Gordan coe�cients, so that [16]

< JeMe j Q� j JgMg >=< JeMe j JgMg; 1� > : (4.5)

The jump operators C�, which transfer excited states to ground states, are then proportional to the Hermitian
conjugates of the operators Q�. Equation (2.1) gives the correct evolution equation for � if we take

C� = Qy

�

p
�: (4.6)

for � = �1; 0; 1, with � the rate of spontaneous decay. With the substitution (4.6), the anti-Hermitian part H1 of the
Hamiltonian is still given by (3.7), which re
ects the isotropy of the decay of the excited state.
In the �eld (3.1), the radiative force on the atom is

~F =
X
n

�h ~KnAn; (4.7)

where

An =< i[Rn �Ry
n] > (4.8)

is the rate of photon absorption from beam n [15].

B. Low-intensity limit

If we substitute Eq. (4.2) and (4.6) in the master equation (2.1), we obtain the equation of motion for the atomic
density matrix �(t). This equation may be viewed as a set of coupled linear equations for the four submatrices

�ee; �gg; �eg, and �ge. When the atomic velocity ~v is su�ciently low, so that the Doppler shift ~K � ~v is smaller than
the decay rate �, the imposed time dependence is slow, and the optical coherences �eg and �ge can be shown to follow
the excited-state and ground-state submatrices �ee and �gg adiabatically. When moreover the intensity is so low that
the absorption rates are much smaller than the decay rate �, the submatrix �ee for the excited states follows the
coherences. This situation of an atom slowly moving through a weak light �eld is typical for situations of sub-Doppler
cooling [9].
In this case, one can derive a closed equation of motion for the ground-state submatrix �gg, in the form [17]

d

dt
�gg = � (P + iS) �gg � �gg (P � iS) + �

�2=4 +�2

X
�

Qy
�R�ggRyQ� ; (4.9)

with the Hermitian operators P and S de�ned by

P + iS =
1

�=2� i�
RyR: (4.10)

The light-shift operator S has a dispersive dependence on the detuning �, whereas the operator P has a Lorentzian
line shape. It is obvious that (4.10) is a master equation of the type (2.1), or, equivalently, (2.2). One recognizes in
(4.10) three jump operators

C� =

s
�

�2=4 + �2
Qy
�R; (4.11)

for � = �1; 0; 1. These operators reduce a substate of the ground level into a di�erent substate. This transfer represents
an optical pumping cycle, consisting of absorptive excitation by the light �eld, and a subsequent spontaneous emission
of a photon with polarization speci�ed by �. The e�ective Hamiltonian H is now given by
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H = �h(S � iP): (4.12)

The pure-state histories j  (t) > corresponding to this Master equation are now state vectors for the atom in the
lower state only. The force on the atom can be expressed as an average

~F = � i=�h

�=2 + i�
< Ry~rR > +c.c.: (4.13)

Since both the e�ective Hamiltonian (4.12) and the jump rates are proportional to the intensity, the ensemble
of trajectories fj  (t) >g obeys a simple scaling law with intensity. When we multiply both the velocity and the
intensity by a factor �, the resulting single histories j  �(t) > can be found from the original ensemble by the simple
substitution

j  �(t) >=j  (�t) > : (4.14)

Hence at a lower intensity, an atom passes through the same histories, but at a slower pace. This result is analogous
to the scaling law derived before for the density matrix [17].

C. lin ? lin

In this section we discuss the single-history simulation for the con�guration of two counterpropagating plane waves
with orthogonal linear polarization and the same intensity. An equivalent picture is provided by two standing waves
with opposite circular polarization �+ and ��, and which are spatially shifted by a quarter wavelength. Then the
Rabi operator R is given by

R =
1p
2

[Q1 cos(KZ) +Q�1 sin(KZ)]; (4.15)

with 
 an e�ective Rabi frequency. For simplicity we will discuss the case of a Jg = 1=2 to Je = 3=2 transition. This
is the standard con�guration where the Sisyphus mechanism for sub-Doppler cooling has been discussed [9]. We shall
demonstrate how the picture changes when one considers single histories. These results also hold for other angular
momentum values.
The two lower states j � > with Mg = �1=2 are eigenstates of the light-shift operator S, with eigenvalues

S� =
1

3
�s0[2� cos(2KZ)]; (4.16)

where

s0 =

2=2

�2 + �2=4
(4.17)

is the saturation parameter. The jump operators C0 transfers an atom in the state j � > to the state j + > at a rate

j< + j C0 j � >j2= 2

9
�s0 cos

2(KZ); (4.18)

and the jump rate for the opposite transition is

j< � j C0 j + >j2= 2

9
�s0 sin

2(KZ): (4.19)

The other jump operators C�1 leave the states j � > unchanged, and they play no part in the evolution of a single
history. The force in the state j � > is given by

F� = �2

3
�h�Ks0 sin(2KZ): (4.20)

Hence an atom moving with a given velocity through the light �eld simply jumps back and forth between the two
eigenstates j � > of the light-shift operator, so that it has a potential energy �hS�. In Fig. 2 we have plotted a single
quantum trajectory for this situation. The force at any instant during the history can be expressed as a positive
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constant times sin�, whereas the light shifted energy of its state is proportional to cos�. The e�ect of a jump of the
atomic state is a phase jump of �, which according to (4.16) implies a change in the optical potential equal to

�S = �2�h

3
j � j s0 cos�: (4.21)

During the motion of the atom it has to climb again an additional potential step, which leads to the net momentum
change �P = �S=v,

�P = � 2

3v
�h j � j s0 cos�: (4.22)

The histories are fully characterized by the normalized phase distribution R(v; �) of the rate of these jumps as a
function of the velocity v, which gives rise to the average force

F = � 2

3v
�h j � j s0

Z
d�R(v; �) cos�: (4.23)

If the jumps occur at random phases, the average force will be zero. In Fig. 3 we have depicted the situation for the
potential energy of the atom for four di�erent values of �.
In Fig. 4 we have plotted for various velocities the distribution over the phase � just before the jumps. For an

atom at a very low velocities v � s0�=K, this distribution is proportional to the product of the jump rates (4.18)
and (4.19), so that the phase distribution is proportional to sin2 �. In Fig. 4a we have plotted the results for an atom
with a reduced velocity w = Kv=s0� of 0.01. For this low velocity, the distribution of jumps is almost identical to
the prediction for an atom at rest (indicated by the dashed line). The atom adiabatically adjusts its populations to
the local �eld. If we increase the velocity, the population lags behind the local �eld [9]. According to the Sisyphus
picture, the probability to be optically pumped from the state j + > to the state j � > near the antinode of the ��
standing wave will increase, which leads to a damping force for negative detuning �. However, the plots of Fig. 4b
and 4c show that the main change is that the distribution R(�) attains an asymmetry, which favors jumps at instants
that the force is negative over instants with positive values of the force. This demonstrates that the Sisyphus picture
does not really apply for velocities below the capture range, which is the region where the cooling is most prominent,
and where the limiting temperature is determined. For high velocity, where v � s0�=K the atomic state has no time
to adapt its state during the passage of a wavelength. Then the distribution R(�) is simply determined by the rates
(4.18) and (4.19), so that it proportional to � cos2(�=2) for positive �, and to cos2(�=2) for negative �. Since the
distribution R becomes independent of the velocity, one recognizes with (4.23) that the force scales as 1=v. In Fig. 5
we compare this high-velocity result with numerical calculations [15] and our MCWF results. The agreement between
the high-velocity result and the numerical calculations is good for velocities larger than the capture velocity. The
conclusion is that the standard Sisyphus picture applies best in the high-velocity limit.
The simplicity of this picture is due to the fact that the states j � > are position-independent eigenstates of the

Hermitian part H0 of the Hamiltonian (the light-shift operator), and of the contributions C
y

�C� to the anti-Hermitian
part. Therefore, in a single history the atom is always in one of the eigenstates.

D. �+-��

Our second example is the other standard con�guration of sub-Doppler cooling in a polarization gradient, consisting
of two counter-propagating waves with opposite circular polarization. We will discuss the case of a Jg = 1 to Je = 2
transition, which case has been treated in the literature before [9]. The main contribution to the force arises from
the di�erence in absorption rate of the two counterpropagating travelling waves, which is due to a motionally induced
population imbalance between the ground states withMg =j �1 >. The Rabi operator for the �+-�� con�guration is

R =
1

2

 [Q1 exp(iKZ) + Q�1 exp(�iKZ)] : (4.24)

Since the �eld has a linear polarization for all values of Z, each position is fully equivalent for the cooling mechanism.
The direction of the polarization is ŷ cosKZ+ x̂ sinKZ. It is convenient to introduce the Z-dependent rotating states

jMg >
0=jMg > exp(iMgKZ) (4.25)

for Mg = 0;�1. Then the Z-dependence of the linear states
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j x >0 = � 1p
2
[j 1 >0 � j �1 >0] ;

j y >0 = +
ip
2
[j 1 >0 + j �1 >0] ;

j z >0 = j 0 >0 (4.26)

is simply given by the rotation

j x >0 = j x > cosKZ� j y > sinKZ;

j y >0 = j x > sinKZ+ j y > cosKZ (4.27)

These states j x >0 and j y >0 are eigenstates of the operator RyR with eigenvalues 
2=4 and 
2=3 respectively. The
third eigenstate j z >0=j z > has the same eigenvalue 
2=4 as j x >0.
The e�ect of the jump operators C� on the states jM >0 is simply expressed in terms of the rate of optical pumping

�p � �s0=2. The operator C0 couples the state j 0 >0 to the states j �1 >0 and vice versa, according to the rules

C0 j 0 >0 =

p
�p

2
[j 1 >0 + j �1 >0] ;

C0 j 1 >0= C0 j �1 >0 =

p
�p

3
j 0 > : (4.28)

On the other hand, the operators C�1 transfer the state j 0 >0 to itself, and a linear combination of j �1 >0 to a
di�erent linear combination, according to

C�1 j 0 >0 =

p
�p

2
j 0 >0 ;

C1 [�+ j 1 >0 +�� j �1 >0] =
p
�p

�
�+ j 1 >0 +

1

6
(�+ + ��) j �1 >0

�
(4.29)

The jump rate for � = 1 in the state �+ j 1 >0 +�� j �1 >0 is equal to �p
�j �+ j2 + 1

36
j �+ + �� j2

�
. Hence, during

a single trajectory the atom jumps back and forth between the state j 0 >0 (which is independent of Z), and a linear
combination of the states j �1 >0 . While the atom is in j 0 >0 , the force is zero, and the atom can only leave this
state by a jump with � = 0. When the atom is in the linear combination �+ j 1 >0 +�� j �1 >0, the force is equal to

F =
1

2
�hKs0

�
5

6
�
�j �+ j2 � j �� j2�+ 2i�

�
����+ � ��+��

��
: (4.30)

From eq. (4.28) it follows that immediately after the atom has left the state j 0 >0 by a jump with � = 0, the force
is still zero, since the amplitudes �� are equal. Moreover, the change of the basis states j �1 >0 during the motion
of the atom in the Z-direction does not modify the population of these states. Equation (4.29) shows that when
the atom is in a linear combination of j �1 >0 with (almost) balanced populations, a jump with � = 1 strongly
enhances the population of j 1 >0 . However, since the probabilities for jumps with � = �1 are (almost) equal, these
mechanisms do not explain the average population imbalance that is responsible for the net force. In fact, the only
source of an average population imbalance is the evolution in between jumps. This evolution is described by the
e�ective Hamiltonian (4.12). The eigenstate j y >0 su�ers a stronger damping and dephasing than the eigenstate
j x >0. For the pure state of the atom the net result is that the population of j �1 >0 is favored for negative detuning
�. This is illustrated in Fig. 6. Notice that the evolution of the state and of the resulting force following a jump with
� = 0 is always identical, up to the instant of the �rst next jump. Single histories do not always correspond to an
eigenstate of the light-shift operator. The mixing of eigenstates arises from non-adiabatic coupling, due to the fact
that these eigenstates vary with position.
Hence the single histories of the force on an atom display �nite periods of zero force, when the atom is in the state

jMg = 0 >. After the atom has left this state by a jump with � = 0, it starts its evolution until the next jump with
an equal population of the states j �1 >, and zero force. It is the evolution between jumps that is the seed of a net
population imbalance, and subsequent jumps with � = �1 enhance this imbalance. The next jump with � = 0 brings
the atom back in the state j 0 >, and makes the force disappear again. The probability distribution of the positions
at which these jumps can occur is completely homogeneous, and all positions are fully equivalent.
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E. Laser cooling in weak magnetic �eld

Sub-Doppler cooling at low intensities is possible when the anisotropy of the atomic ground state varies appreciably
during the passage of a wavelength. In the examples discussed above, this variation was due to the polarization
gradient of the �eld. An alternative possibility is the use of a magnetic �eld, so that the combined action of the Zeeman
precession and the level shifts leads to a position-dependent anisotropy [10,19]. We discuss now the characteristics
of single histories of the atomic state when a Jg = 1=2 to Je = 3=2 transition is driven by a standing wave with
�+ circular polarization, in the presence of a transverse magnetic �eld. The Zeeman precession frequency !Z has a
similar magnitude as the rate of optical pumping, which is low compared to the natural width of the transition. The
Rabi operator is

R = 
Q1 cos(KZ); (4.31)

and the e�ective Hamiltonian (4.12) must be supplemented by the Zeeman term HZ = �h!ZSx, in terms of a Pauli
matrix. When the atom is in the state �+ j + > +�� j � >, the force on the atom is given by

F = 2�hKs0�(j �+ j2 +1

3
j �� j2) sin(2KZ): (4.32)

Jumps with � = 0 occur at a rate 4

9
�s0 cos

2(KZ) j �� j2, and put the atom in the state j + >. Jumps with � = 1

occur at a rate 2�so cos
2(KZ)(j �+ j2 +1

9
j �� j2). Their e�ect is to enhance the population of the state j + >.

Therefore the jumps drive the atom towards the state j + >, whereas the Zeeman precession mixes the states. The
evolution in between jumps is described by the total e�ective Hamiltonian. The Hermitian part (comprising the light-
shift operator and the Zeeman term) can be viewed as the action of a magnetic �eld, with a �ctitious longitudinal
component proportional to the local �eld intensity. The anti-Hermitan part tends to enhance the population of the
state j � >, since its absorption rate is lower than that of the state j + >.
The intermittent process of Zeeman mixing and optical pumping leads to a Sisyphus-type cooling when the detuning

� is negative [10,19]. The naive picture of this process is that the atom is optically pumped near the antinodes to
j + > by jumps with � = 0, where its light-shifted energy is minimal. We have calculated an ensemble of single
histories, and results are plotted in Fig. 7. Inspection shows that in reality the optical pumping towards j + > takes
place mostly by jumps with � = 1, whereas jumps with � = 0 are relatively rare. When the atom passes a node just
after making a jump, the population of j + > is typically decreasing. This decrease arises both due to the Zeeman
precession and to the stronger damping of this state by the operator P. When accidentally no jumps occur between
two successive nodes, the populaton of j + > tends to be minimal at the antinode, and it is increasing at the second
node, in contrast to the average behavior. The net negative force arises since in the �rst half of the distance between
two nodes (where the atom is sliding down a slope), the population of j + > tends to be lower than in the second half
(where the atom is climbing a hill). But this is by no means true for all passages from node to node.
Since the Hamiltonian contains a Zeeman term in addition to the light-shift operator, the eigenstates j � > of the

operators Cy

�C� do not coincide with the eigenstates of H0, so that a single history is generally a linear combination
of these states. This makes the picture arising from single histories more complex than in con�gurations without a
magnetic �eld.

V. LASER COOLING IN A STRONG MAGNETIC FIELD

The picture of jumps at random instants is modi�ed in the presence of a strong magnetic �eld that gives a Zeeman
splitting that is much larger than the pump rate �p. On the other hand, the Zeeman splitting is still small compared
with the natural width, so that the atomic evolution can be described completely within the ground level. In two
counterpropagating plane waves, a moving atom sees running waves with di�erent Doppler-shifted frequencies, and
when this e�ective frequency di�erence coincides with the Raman resonance between two Zeeman substates, a resonant
enhancement of the atom-�eld coupling occurs. This leads to cooling of atoms with non-zero velocities [20]. This
situation can be conveniently described in a frame rotating about the magnetic �eld, by neglecting rapidly oscillating
terms [18]. In the e�ective rotating-wave approximation, the evolution operator is independent of time.
As an illustrative case, we take the situation of a standing wave with �+ circularly polarized light driving a Jg = 1=2

to Je = 3=2 transition, in the presence of a strong transverse magnetic �eld. Then the force displays a strong resonant
velocity dependence at velocities v �= �!Z=2K [18], so that the atom traverses about half a wavelength during a
precession period. Here we investigate the velocity region around !Z=2K. It is natural to take the quantization axis
(the Z-direction) along the magnetic �eld, and the X-direction is taken as the propagation direction. The circular
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components of the polarization vector are then �0 = 1=
p
2; ��1 = 1=2. The e�ect of the rotating-wave approximation

is that the jump operators (4.11) are separated in various terms, each with a di�erent oscillation frequency in the
rotation frame. Mixing of terms with di�erent frequencies is then neglected. The evolution equation in the rotating
frame then takes the general form (2.2), where the jump operators are labeled by two indices � and �, indicating

spherical components of ~Q. Their explicit expression is

C�� =
p
�pQ

y

� [��Q� + ��+1Q�+1] : (5.1)

The term with label � describes the coupling to the travelling wave in the positive X-direction, whereas the term
�+ 1 arises from the counterpropagating part of the standing wave (see Fig. 8). The index � can take the values -2,
-1, 0 and 1, where for the lowest value only the term �+ 1 contributes. In the present case of a Jg = 1=2 to Je = 3=2
transition the index � cannot take the value 1 for � = �2, whereas for � = 1 the value � = �1 does not contribute.
Hence there are e�ectively 10 di�erent jump operators, and the picture gets rather complex. The jump operators with
(�; �) = (-2,0) and (-1,1) simply transfer the state j + > to the state j � >, and conversely the jumps with (�; �) =
(0,-1) and (1,0) transfer j � > to j + >. The other six jump operators mix the two counterrunning travelling waves,
and create coherence between the states j � >.
The e�ective Hamiltonian in the present case is given by

H = (!Z � 2Kv)JZ + �h(S � iP); (5.2)

where the light shift operator and the pump operator are speci�ed by

P + iS = (
1

2
+ i

�

�
)
X
�;�

Cy

��C��

=
1

4
s0(

�

2
+ i�)

h
Qy
�1Q�1 + 2Qy

0Q0 +Qy
1Q1

+
1p
2
(Q

y
�1Q0 +Q

y
0Q1 +Q

y
0Q�1 + Q

y
1Q0)

�
(5.3)

When the atom is in the state �+ j + > +�� j � >, the force in the propagation direction is given by [18]

F =
1

3
�hKs0�i(���

�
+ � �+���); (5.4)

which is proportional to the orientation of the atomic ground state in the Y -direction.
In Fig. 9 we illustrate the evolution of a single history for this case. One should notice that each position is

fully equivalent, since the position dependence of the evolution operator has disappeared after the rotating-wave
approximation. This is due to the fact that the only coherence between the two counterpropagating travelling waves
that matters is that between the polarization component �� of the beam in the positiveX-direction, and the component
��+1 in the negative X-direction.
Jumps of the type 2, 5, 6 and 9 always end up with zero force, since they reduce the atom to one of the states j � >.

All other jumps tend to diminish the force. The evolution between jumps is mainly due to the net Zeeman precession
in the rotating frame, which arises from the term proportional to JZ in (5.2). The force attains its maximal value
when the orientation of the state is in the Y -direction. Then the two populations are equal.
Obviously, the picture of single histories remains quite complicated. This is mainly due to the large number of

jump types. Also, each jump operator C
y
��C�� has di�erent eigenstates. The non-zero average value of the force is

due to the e�ect of the �rst term in (5.2), which breaks the left-right symmetry of the con�guration.

VI. CONCLUSIONS

We have analyzed the internal state dynamics of an atom during single histories in several situations where radiative
forces arise. Some standard situations of laser cooling are considered, both with and without a transverse magnetic
�eld. Even in situations where each position is physically equivalent, so that the atomic density matrix is constant,
the single histories in which the density matrix can be unraveled display wildly varying characteristics. In the simple
case of a two-state atom in a single travelling wave (Sec. III), the net force may be understood as arising from
a Sisyphus-type mechanism in time (not in position), since the spontaneous emissions have a preference to occur
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when the atom has picked up a photon momentum. In the situation of sub-Doppler laser cooling in weak counter-
propagating beams with opposite circular polarizations (Sec. IVD), the atom displays periods where the force leads
to cooling, interrupted by periods when the force is exactly zero. The population imbalance that is responsible for the
cooling arises exclusively from the coherent evolution between quantum jumps. The Sisyphus picture explaining the
cooling e�ect in two counterrunning plane waves with linear polarization turns out to be most convincing at higher
velocities, where the force is proportional to 1=v (Sec. IVC).
The picture of single histories becomes more complicated in the presence of a transverse magnetic �eld. This is

partly due to the fact that the eigenstates of the jump operators do not coincide with the eigenstates of the Hamiltonian
H0. When the magnetic �eld is high (Sec. V), the e�ective number of types of quantum jumps becomes large, and
the picture of cooling to non-zero velocities in terms of single histories gets surprisingly complicated. These examples
demonstrate that the history of a single atom in situations where laser cooling occurs leads to pictures that are quite
di�erent from the standard descriptions in terms of steady-state density matrices. Moreover, the ensemble of these
single histories contains not only the average behavior of an atom, but also all higher moments of the 
uctuating force.
In particular, when an ensemble has been calculated, the heating e�ect of the momentum di�usion can be directly
extracted.
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FIG. 1. Excited state population j ae j
2 and force F on the atom for a single atom-trajectory in the case of a two-level atom

at rest in a travelling wave. The detuning � = 0 and the saturation parameter s0 = 50. The lower part indicates the instants
at which a quantum jump occurs (denoted by the diamonds).

FIG. 2. Populations j a
�1=2 j

2 and j a+1=2 j
2 and the force F on the atom as a function of the position for a single atom

trajectory in the case of the lin ? lin con�guration. The velocity of the atom is w = Kv=s0� = 1 and the detuning of the laser
� = �2�. Bottom part of the �gure indicates when the quantum jumps with � = 0;�1 occur.

FIG. 3. Schematic diagram of the potential energy of an atom travelling in a polarization gradient of lin ? lin for di�erent
values of the phase � when a jump occurs. The thin lines indicate the potential energy, when the atom is in either state
j �1=2 > or state j +1=2 >, the thick line indicates the path of the atom. Note, that the maximum energy loss for the atom
occurs for � = 0.
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FIG. 4. The distribution R(�) of the phase � when the atom makes a jump from one state to another state with a quantum
jump � = 0 for several reduced velocities w = Kv=s0�.

FIG. 5. Comparison for the reduced force � = F=�hk�s0 on the atom as a function of reduced velocity w = Kv=s0� for three
di�erent situations: 1) Numerical calculation using optical Bloch Equations [15], 2) Monte-Carlo Wavefunction Method (this
paper) and 3) Estimate using the high-velocity limit (see text).

FIG. 6. Populations j a
�1 j

2 (||), j a0 j
2 (. . . ) and j a+1 j

2 ({ { { {) and the force F on the atom as a function of position
for a single atom trajectory in the case of the �+-�� con�guration. Bottom part of the �gure indicate when the quantum
jumps with � = 0;�1 occur. Note, that from KZ=� = 10.5 to 18 the atom runs through a cycle as described in the text.

FIG. 7. Populations j a
�1=2 j

2 (||) and j a+1=2 j
2 (. . . ) and the force F on the atom as a function of position for a

single atom trajectory in the case of the MILC con�guration. Bottom part of the �gure indicate when the quantum jumps with
� = 0;�1 occur. Note, that since the light is �+ polarized that no jumps with � = �1 are possible.

FIG. 8. Schematic diagram for the quantum jumps in the case of cooling in a strong magnetic �eld. The coupling of one
laser beam is indicated by an open arrow, the coupling of the other beam by a solid arrow. Spontaneous emission is indicated
by wavelets.

FIG. 9. Populations j a
�1=2 j

2 (||) and j a+1=2 j
2 (. . . ) and the force F on the atom as a function of position for a single

atom trajectory in the case of the laser cooling in a strong magnetic �eld. Bottom part of the �gure indicate when the di�erent
quantum jumps occur (see Fig. 8 for the numbering of the quantum jumps).
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