Seminar Coastal Morphodynamics
IMAU, Utrecht University, 2008

Lecturers:

Prof. dr. Paolo Blondeaux
Prof. dr. Giovanna Vittori
Dpt. of Environmental Engineering
University of Genoa, Italy

Huib de Swart
General objective of this seminar

Discuss physical processes that cause the presence of undulations of the sea bottom

Example 1: Ripples at the beach

- Horizontal length scale ~ 10 cm; height ~ 2 cm
- Generation timescale ~ hours
- Due to: waves
- Relevance: wave prediction, estimation of sediment transport

Example 2: Tidal sand waves

- Horizontal length scale ~ 500 m; height ~ 2 m
- Generation timescale ~ years
- Due to: tides
- Relevance: e.g. buckling of pipelines, navigation
Sand waves in the Marsdiep

Example 3: Sand ridges on the outer and inner shelf

- Tidal sand ridges
- Shoreface-connected sand ridges

Horizontal length scale ~ km; height ~ 5-10 m
Generation timescale ~ 100 years
Due to: tides and storm-driven currents
Relevance: sand mining, coastal stability
Research questions

1. Which mechanisms are responsible for the formation and maintenance of rhythmic topography in coastal seas?

2. Can we predict the characteristics of bedforms?
 - spatial pattern
 - migration speed
 - height

3. What is the response of bottom patterns to
 - human interventions (e.g., extraction of sand)?
 - sea level changes?

Research approaches:

1. Collection and analysis of field observations
 (identify phenomena + describe behaviour)

Problems:
 - lack of data
 - selection of spatial + temporal resolution
 - selection of spatial + temporal extent
 - what is transient/nontransient behaviour?
2. Collection and analysis of **laboratory data**

Advantages: data obtained under controlled conditions
Problems: link to reality (scaling problems)

3. Use of **empirical** or **semi-empirical models**

Model is proposed, field data -> parameter values, next predictions

Example: Regeneration of sand waves after dredging (Seto Inland Sea, Japan)

Advantages: fast and flexible
Disadvantage: yields little insight in basic physics
4. Use **process-oriented numerical models**

These models use physical laws for water motion, sediment transport and bottom evolution.

Examples:
- DELFT3D-MOR
- MIKE21 (Denmark)
- Telemac (France)

Advantages: based on physics, results often reliable and useful

Disadvantages: slow, difficult to gain insight
4. Use **idealised process-oriented models**

- Based on simplified descriptions regarding the
 - geometry
 - physical processes involved
- Designed to gain understanding about the basic physics

Example 1: model for tidal sand waves

![Diagram of tidal sand waves](image1)

Advantages: fast + flexible, suitable for sensitivity studies

Disadvantages: how to choose relevant processes?

Example 2: Model for shoreface-connected sand ridges

![Diagram of shoreface-connected sand ridges](image2)

Advantages: fast + flexible, suitable for sensitivity studies

Disadvantages: how to choose relevant processes?

link with reality
Idealised models are successful in explaining the formation of many different types of bottom patterns.

Two types of models:

1. **Template models**
 - Pattern in the water motion forces the pattern in the bottom.
 - No feedback bottom → water motion.

 Example of template pattern: submarine longshore bars.

2. **Self-organisation models**
 - Bed forms develop as inherent (or free) instabilities of the coupled water-coupled system.
 - Feedback water motion and erodible bottom is crucial.

 Spatial/temporal scales of bedforms are uncorrelated with those of external forcing.
Specific objectives of this seminar

1. Discuss structure of models that simulate water motion + their feedbacks with sediment transport and morphology in coastal seas.

2. Demonstrate that many bottom patterns in coastal seas emerge as inherent instabilities of the coupled water-bottom system (focus on sand ridges, sand waves and ripples).

3. Behaviour of bedforms can be analysed with mathematical methods (stability analysis).

Structure of morphodynamic models:

- We need to
 - solve the flow structure
 - find expressions for transport of sediment (due to the water motion)
 - evolution of the bottom
Four steps to explore morphodynamic self-organisation:

1. **Formulation of a model:**
 - Water motion
 - Sediment transport
 - Bottom evolution

2. **Find an equilibrium state** (without bedforms)

3. **Perform linear stability analysis**
 - Dynamics of small perturbations, arbitrary scales, do they grow?
 - Each perturbation → growth rate
 - Mode with the largest growth rate: the preferred mode
 => spatial pattern, migration speed, growth time scale

4. **Perform nonlinear (stability) analysis**
 - Finite-amplitude behaviour of bars and ridges

Example of model output

(Here: shoreface-connected sand ridges)

- Growth rate versus longshore wavenumber:
 - Spacing: 7.6 km
 - Timescale: ~1000 yr
 - Migration: 2 m/yr

- Spatial patterns of modes:
 - Light colours: crests
 - Dark colours: troughs
Overview of this seminar:

- 9 oral sessions (default: Monday 11.00-13.00)
- 9 practise periods (Wednesday 9.00-11.00)

Specific time schedule:
www.phys.uu.nl/~deswart/morpho08_seminar

Credits (3.75 ECTS) will be based on
- * presence at oral lectures
- * answers to exercises during practise periods

Oral sessions

- based on recent key literature
- read 1 paper/session as preparation

Practise periods

- questions about theory
- simulations with numerical codes
Session 2: Modelling sediment transport (29-09-2008)

Literature:

Session 3: Introduction boundary layer theory (06-10)

- Internal friction and coastal morphodynamics
- Laminar versus turbulent flow
- Vertical structure of oscillatory currents and streaming

Literature:
Session 4: Tidal sand ridges

(13-10-2008)

Literature:

Session 5: Sand waves

(20-10-2008)

Details of the bathymetric survey of the "Sand Hills" area along the pipeline LANGELED.

Literature:
Session 6: Shoreface-connected sand ridges

Literature:
Trowbridge, J. 1995. A mechanism for the formation and maintenance of shore-oblique sand ridges on storm-dominated shelves. J. Geophys. Res. 100 (C8), 16071-16086.

Session 7: Turbulent boundary layers under sea waves

Literature:
lecture notes of G. Vittori
Session 8: Turbulent bottom boundary layers II (17-11)

Computed shear stress at the wall versus dimensionless time ωt

Literature:
lecture notes of G. Vittori

Session 9: Sand ripples under sea waves (24-11)

Brick-pattern ripples 3D Vortex ripples

Literature:
lecture notes of G. Vittori
Session 8: Turbulent bottom boundary layers II

Literature:
lecture notes of G. Vittori
Computed shear stress at the wall versus dimensionless time ωt.

Literature:
lecture notes of G. Vittori