
OCEAN WAVES

Lecture notes

course presented in 2015 as part of the Master’s Programme
’Meteorology, Physical Oceanography and Climate’

Utrecht University, The Netherlands.

H.E. de Swart



General introduction
The phenomena to be studied in this course are wave-like features in the ocean with
characteristic timescales of seconds up to several hours and length scales ranging
between centimetres and several hundreds of kilometres. Together, they constitute
a substantial part of the entire spectrum of sea surface variations (see Figure 1).

Figure 1: Energy density spectrum of sea surface variability,
showing the different types of surface waves occurring in the
ocean. From LeBlond and Mysak [1978].

The aim of the present course is to discuss the current knowledge of the physical
characteristics of two classes of ocean surface waves. The first class, considered in
part A, comprises short waves. These phenomena have timescales that are much
smaller than that of the revolution period of the earth and horizontal length scales
that may be of the same order as the water depth. Consequently, their behaviour is
hardly influenced by the Coriolis force and they are essentially three-dimensional
features. Examples of short waves are wind-generated waves and swell at sea.

The second class, discussed in part B of these notes, comprises long waves in shal-
low water. Their horizontal length scales are large with respect to the water depth,
so that they are quasi two-dimensional phenomena and they can be modelled with
shallow water equations. Besides, their behaviour is significantly affected by the
Coriolis force. Examples of such waves are tides.

Knowledge about the waves mentioned above is important for understanding the
physics of coastal systems, which are discussed in a subsequent course. Only sur-
face waves are considered; internal waves are discussed in the courses ’Dynamical
Meteorology’ and ’Wave Attractors’. Furthermore, only waves are considered for
which it is not essential that the Coriolis parameter varies with latitude. Hence, no
Rossby waves will be studied; they are discussed in the courses ’Dynamical Mete-
orology’ and ’Dynamical Oceanography’.

The course consists of 16 oral lectures and 6 tutorials.

H.E. de Swart; August 2015
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Part A

Wind waves
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Chapter 1

Short waves: specific topics

Figure 1.1
shows a sketch of the amplitude spectrum of surface waves, including information
about the generating and restoring forces.

Figure 1.1: Amplitude spectrum of ocean surface waves and
wave classification. From Kinsman [1965].

In part A of these notes the focus is on

• surface waves: variation of sea surface;

• periods T=O(seconds, minutes);

• wavelengths λ=O(mm, km).

These waves are not significantly affected by the Coriolis force, since T � f−1,
where f ∼ 10−4 s−1 is the Coriolis parameter. Hence short waves.

Restoring forces: the gravitational force or the force due to surface tension. Thus
two subclasses: gravity waves and capillary waves.
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Topics to be discussed:

I. Which free short waves are possible in an unbounded sea?

Figure 1.2
shows the movement of particles suspended in the water during one wave
period in case of both standing and progressive waves.

Figure 1.2: Particle orbits in case of pure standing waves (top) and
pure progressive waves (bottom). From Van Dyke [1982].

As long as the amplitude of the waves is small compared to their wavelength
the profile is sinusoidal. In case of progressive waves the particle orbits al-
most closed: circles nearby the free surface, ellipses at larger depths.

Figure 1.3
shows that with increasing amplitudes (with respect to wavelength) the profile
of the wave becomes more peaked: sharper crests, flatter troughs.

Figure 1.4
shows that for even larger steepness 3D waves develop.

If the wave steepness exceeds a critical value (∼ 0.4) waves will break and
lose energy, see Figure 1.5. At open sea this process is called whitecapping.
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Figure 1.3: Waves generated in a laboratory with a moderate steep-
ness (∼ amplitude/wavelength). From Van Dyke [1982].

(a) (b)

Figure 1.4: Three-dimensional surface waves observed in the At-
lantic Ocean (left) and in the laboratory (right). From Van Dyke
[1982].
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(a) (b)

Figure 1.5: Left: whitecaps; right: wave breaking near the beach.
From Kinsman [1965].

II. How are waves generated by wind?

Mechanism: the turbulent wind induces fluctuations in atmospheric pressure,
which cause variations if the sea surface. Subsequently, a positive feed-
back occurs: waves reinforce the atmospheric pressure fluctuations, such that
growth of waves occurs. Necessary condition: the wind speed must exceed a
critical value (of roughly 0.23 ms−1).

Figure 1.6(a)
just below this value artificially induced disturbances already grow.

Figure 1.6(b)
Above the critical wind speed spontaneous wave growth occurs.
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(a) (b)

Figure 1.6: Growth of surface waves by wind. Left: behaviour of artifically-induced distur-
bances just below the critical wind speed of approximately 0.23 ms−1. Right: spontaneous
wave growth above the critical wind speed. From Van Dyke [1982].
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III. How to describe an observed (irregular) wave field?

Figure 1.7(a):
a 2D wave field can be reconstructed with the help of stereo photography.
Other possibilities: radar altimeters from satellites.

(a) (b)

Figure 1.7: Left: Aircraft flight pattern for the aerial stereo photography
of waves. Right: topography of the sea surface derived from stereo
photographs of the sea surface. Taken at Jan. 23, 1926 at latitude 59oS,
longitude 64o4’W, contours in metres. From Neumann and Pierson jr.
[1966].

Figure 1.7(b):
result is an irregular structure of sea surface height.
Necessary to describe the wave field by using statistical methods.
Nevertheless, a clear ordening is observed, e.g., wave crests more or less
perpendicular to wind direction.

Figure 1.8:
shows variation of sea surface at a fixed time along a transect parallel to the
wind direction and an observed time series of sea surface variations at a fixed
position. Despite the irregular variations a characteristic wavelength can be
identified.

Figure 1.9
shows a characteristic frequency spectrum of wind waves. The concept of
wave spectrum was introduced in 1955 by Pierson.

Noticeable: the exponential increase in the low-frequency regime, the peak
frequency (spectrum attains a maximum) and the algebraic decay in the high-
frequency regime (proportional to σ−n with n ∼ 4− 5). Also, note that most
(but not all) waves propagate in the direction of the wind.
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Figure 1.8: Wave profile as a function of distance obtained by stereophotogrammetry. Hor-
izontal and vertical scales are in feet. From Neumann and Pierson jr. [1966].

(a) (b)

Figure 1.9: Left: Characteristic shape of the frequency spectrum of wind waves (variance
of sea surface elevation per frequency). From Groen and Dorrestein [1976]. Right: wave
spectrum as a function of frequency and direction of wave propagation. From Neumann and
Pierson jr. [1966].
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IV. How does a wavefield develop in space and time and how is this modelled?

Figure 1.10: JONSWAP (JOint North Sea WAve Project); large
measuring campaign in 1973 near the west coast of Denmark.
From Hasselman et al. [1973].

Figure 1.11: Location of observation points during JONSWAP.
Data collected with wave buoys during offshore winds. From
Hasselman et al. [1973].
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Figure 1.12: Curves indicate, for different offshore windspeeds, at which depth waves feel
the presence of the bottom. In most cases: growth of waves in deep water. From Hasselman
et al. [1973].
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Figure 1.13: Data fitted to a theoretical spectrum, that contains 5 parameters.
Remarkable new results: sharp peak in the spectrum and shift of peak fre-
quency towards lower values with increasing fetch (distance to coast). The lat-
ter is due to nonlinear interactions between different wave components. From
Hasselman et al. [1973].

Figure 1.14: Observed growth of energy of the wave component with its phase
velocity equal to the wind speed (at 10 m height) as a function of the fetch. In
the initial stage linear growth, next exponential increase and finally an equilib-
rium value is reached. The overshoot is due to nonlinear wave-wave interac-
tions. From Hasselman et al. [1973].
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Figure 1.15: Wave field in the North Atlantic Ocean at 12 UTC,
5 November 1988. The dot shows the track of the storm at 12 h
intervals. Isolines at 1 m intervals. From Komen et al. [1994].

Figure 1.15:
Example of output produced by the WAM-model, a modern wave predic-
tion model. The WAve Modeller group was founded in 1984 by K. Has-
selman with the objective to develop a standard wave prediction model. It
is a so-called third-generation model: it is based on a spectral description
of the wavefield and fully accounts for (nonlinear) wave-wave interactions.
Other models: SWAN (described in Holthuijsen [2007]) for applications in
the nearshore zone. An overview of different wave forecast methods is given
in WMO [1998].
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Figure 1.16: Intercomparison between WAM model results and measured data (dots). From
Komen et al. [1994]. The model turns out to be quite successful.
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Chapter 2

Basic theory

2.1 Equations of motion
The phenomena to be modelled are short waves at the free surface between water
and air. Here, short means that characteristic wave periods are small compared
to the rotation period of the earth. Furthermore, baroclinic features (variation of
internal density surfaces) are not essential.
The most convenient way to filter baroclinic features is to assume that sea water is
a homogeneous fluid, i.e., its density

ρ = constant. (2.1)

Now a closed set of equations of motion is derived from conservation of mass and
of momentum.
Consider a volume element V , enclosed by a surface S with an external normal
vector ~n. The three-dimensional velocity field of water particles is denoted by ~u.
Then conservation of mass yields

∂

∂t

∫∫∫
V

ρ dV = −
∫∫
S

ρ ~u · ~n dS.

Application of the Gauss theorem to the right-hand side and considering infinitesi-
mally small volume elements finally yields

∂ρ

∂t
+ ~∇ · ( ρ ~u ) = 0 continuity equation.

Momentum balance:

∂

∂t

∫∫∫
V

ρ ~u dV = −
∫∫
S

(ρ ~u) ~u · ~n dS +

∫∫
S

σ
=
· ~n dS +

∫∫∫
V

ρ~f dV.

Here, σ
=

is the stress tensor; its components σij denote the i’th component of the
stress acting on a surface elements with a normal in the j’th direction. Furthermore,
~f are volume forces per mass unit.
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Again, use the theorem of Gauss and consider infinitesimally small volume ele-
ments. After substitution of the continuity equation the result is

ρ

{
∂~u

∂t
+ ( ~u · ~∇ ) ~u )

}
= ~∇ · σ

=
+ ρ~f momentum equation .

Impose the following assumptions:

• homogeneous fluid;
• ideal fluid no frictional effects, so

σ
=

= −p δ
=
,

where p is pressure and δ
=

the unity tensor;

• ~f is a potential force per mass unit:

~f = −~∇Φ .

With this the continuity equation and momentum equation reduce to

~∇ · ~u = 0 , (2.2)

∂u

∂t
+ ( ~u · ~∇ ) ~u = −1

ρ
~∇p− ~∇Φ . (2.3)

Together with equation (2.1) they form a closed set of equations.

The system is further analysed by deriving the equation for the vorticity

~ω = ~∇× ~u. (2.4)

Application of the curl operator to the rewritten momentum equation

∂~u

∂t
+ ~ω × ~u = −∇

[
p

ρ
+

1

2
~u 2 + Φ

]
(2.5)

yields after some manipulations:

∂~ω

∂t
+ (~u · ~∇) ~ω = (~ω · ~∇) ~u . (2.6)

The terms on the right-hand side describe production of vorticity due to stretching
and tilting of vortex tubes.

From equation (2.6): if at some time ~ω = 0, then ~ω = 0 for all times. Assume that
this is the case, then

~ω ≡ ~∇× ~u = 0, hence ~u = ~∇φ . (2.7)

Thus the velocity field is irrotational, the velocity components are computed from
the gradient of a velocity potential φ, hence potential flow.
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Substitute equation (2.7) in continuity equation (2.2) and in the rewritten momen-
tum equation (2.5). This yields

∇2φ = 0 , (2.8)
∂φ

∂t
+
p

ρ
+

1

2
(~∇φ)2 + Φ = 0 . (2.9)

These are the Laplace equation and the Bernouilli equation for the velocity potential
and pressure, respectively.

2.2 Boundary conditions
In case of surface waves in a homogeneous sea there are two types of boundaries,
as shown in Figure 2.1 below:

Figure 2.1: Situation sketch.

• the free surface z = ζ(x, y, t) between water and air;

• the fixed boundary z = −D(x, y) (the bottom).

Here, a Cartesian frame is considered with the z-axis pointing in the vertical direc-
tion. The location of the undisturbed water level is z = 0. Each boundary can be
written as G(~x, t) = 0, where ~x is a position vector with coordinates (x, y, z).

The first condition is that fluid elements at any boundary must stay at this boundary,
hence

dG

dt
≡ ∂G

∂t
+ ~u · ~∇G = 0 at G(~x, t) = 0 . (2.10)

This is the so-called kinematic boundary condition.
Hence, for the free surface G = z − ζ(x, y, t) = 0 it follows

∂φ

∂z
=

∂ζ

∂t
+ ~∇hφ · ~∇hζ at z = ζ(x, y, t) , (2.11)

where equation (2.7) has been used. Furthermore, ~∇h is the horizontal nabla vector
with components (∂/∂x, ∂/∂y).
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Likewise for the bottom G = z + D(x, y) = 0. From now on a horizontal bottom
will be assumed, i.e., D(x, y) = H = constant. Then

∂φ

∂z
= 0 at z = −H . (2.12)

In order to determine the variable location of the free surface an additional bound-
ary condition is needed. The latter follows from the principle that the stresses (i.e.,
forces per surface area) acting on each element at the free surface must be contin-
uous. If not, a net force would act on a surface element and it would result in an
infinite acceleration, because surface elements have no mass.
In this case the fluid is ideal, so there are only stresses that act in the normal di-
rection. The normal stresses acting on a surface element S, enclosed by a curve Γ,
are
• water pressure;
• atmospheric pressure;
• a stress that is induced by surface tension.

Surface tension is a consequence of cohesive forces between water molecules. Within
the fluid the net effect is zero, but at the free surface a net force is present because
there are no water molecules above this surface. Apart from a, dynamically not rel-
evant, constant force downward there is a variable contribution in case of a curved
surface, as is sketched in Figure 2.2 below.

air

water

Figure 2.2: In case of positive curvature surface tension induces
a net upward-directed force.

Clearly, this restoring mechanism describes wave propagation. Thus, the free sur-
face behaves as a membrane: there is a uniform surface tension τ (∼ 0.08 Nm−1).

As seen from Figure 2.3, the net cohe-

Figure 2.3: Net cohesive force acting at line
element d~l. Force is in the direction ~n× d~l.

sive force acting on a surface element
is

~Fc = −τ
∮

Γ

~n× d~l

where ~n: normal vector;
d~l: line element.

Computation of the net work induced by this force in case of a small displacement
δ~r:

~Fc · δ~r = −τ
∫∫
S

(~∇ · ~n) δ~r · ~n dS ,
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where the theorem of Stokes and some vector identities have been used.

The normal ~n at the free surface G = z − ζ(x, y, t) = 0 is given by

~n =
~∇~G
|~∇~G|

=
−~∇hζ + ~ez[

1 + (~∇hζ)2
]1/2

, (2.13a)

where ~ez is a unity vector in the vertical direction. Hence, the work done by the
cohesive forces is known.

Likewise, the work done by the water pressure force and atmospheric pressure force
are

~Fp · δ~r =

∫∫
S

p~n · δ~r dS , ~Fp0 · δ~r = −
∫∫
S

p0 ~n · δ~r dS ,

with p0 the atmospheric pressure.
Now, the net work done by the three forces must be zero. In that result, consider
infinitesimal surface elements and infinitesimal displacements. It then follows the
dynamic boundary condition

∂φ

∂t
+

1

2
(~∇φ)2 + gζ +

p0

ρ
+
τ

ρ
~∇ · ~n = 0 at z = ζ(x, y, t) , (2.13b)

where ~n is given in (2.13a). Here, use has been made of the Bernouilli equation (2.9)
with Φ = Φg = gz the gravitational potential.

Summary: the final equations of motion and boundary conditions governing short
waves are:

(2.8) : ∇2φ = 0 ,

(2.12) : ∂φ
∂z

= 0 at z = −H,
(2.11) : ∂φ

∂z
= ∂ζ

∂t
+ ~∇hφ · ~∇hζ at z = ζ, (2.14)

(2.13b) : ∂φ
∂t

+ 1
2
(~∇φ)2 + g ζ + p0

ρ
+ τ

ρ
~∇ · ~n = 0 at z = ζ,

(2.13a) : ~n =
~∇ ~G
|~∇ ~G|

= −~∇hζ+~ez
[1+(~∇hζ)2]

1/2 ,

2.3 Construction of solutions
From system (2.14) it follows: the velocity potential is governed by the Laplace
equation and two boundary conditions, a second condition at the free surface surface
determines the position of that boundary.

The general procedure is to search for solutions that describe waves propagating in
the horizontal plane and that have an unknown vertical structure. Hence

φ(x, y, z, t) = f(z) χ(x, y, t) , (2.15a)
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where χ(x, y, t) is periodic in x, y, t and an O(1) function.
Substitution in the Laplace equations yields

∇2
h χ+ κ2 χ = 0 ,

d2f

dz2
− κ2 f = 0 , (2.15b)

with κ2 > 0 a separation constant; κ = 2π/λ can be interpreted as the wavenumber
and λ as the wavelength.

The general solution of the first equation is

χ = χ̂(t) cos(kx+ ly − ϕ(t)) , with κ2 = k2 + l2

and ϕ an as yet arbitrary phase.
The solution of the second equation, which already obeys the bottom boundary
condition, is

f(z) = f̂ cosh [κ(z +H)] ,

which determines the vertical structure of the velocity potential.

Since the Laplace equation is linear and wavenumbers can be arbitrarily chosen, a
general solution can be written as

φ =

∫∫
dkdl Â(k, l, t) cosh [κ(z +H)] sin [kx+ ly − ϕ(k, l, t)] , (2.16)

i.e., a superposition of travelling waves. The temporal behaviour of amplitudes Â
and phases ϕ is governed by the two conditions at the free surface.
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Chapter 3

Linear analysis: dispersion relation

3.1 Linearisation conditions
If the procedure of constructing solutions, as mentioned in section 2.3 is adopted,
the resulting analysis becomes very complicated, because of the following prob-
lems:

• the location of the sea surface (free surface) is a priori unknown;

• two of the three boundary conditions are nonlinear.

Therefore, no simple solutions of the full system (2.14) can be found, only of sub-
systems that can be derived from this system under certain conditions.

In this chapter, a tractable subset of the full equations of motion will be derived. For
this purpose, first the following questions are addressed:

• under which condition(s) can the free boundary be replaced by a fixed bound-
ary?
• under which condition(s) can the boundary conditions be linearised?

Ad question 1: from eq. (2.16) it follows that each wave component has a charac-
teristic horizontal length scale κ−1, whilst this is also a characteristic vertical length
scale. Furthermore, the wave amplitude a is a typical scale for the elevation of the
free surface. Now, suppose that a� κ−1 and a� H , thus

ε = aκ� 1, α =
a

H
� 1. (3.1)

Then, the velocity potential hardly changes over a vertical distance of order a and
the actual depth is almost identical to the undisturbed water depthH . The parameter
ε is called the wave steepness; apart from a factor of 2π it is the ratio of amplitude
and wavelength. Under these conditions the boundary conditions at the free surface
z = ζ can, to a first approximation, be applied at the undisturbed water level z = 0
instead. Note that the condition of a small wave steepness implies that |~∇hζ| � 1,
thereby implying that the dominant contribution to the capillary term in the dynamic
boundary condition (fourth equation of system (2.14)) is linear, viz. −(τ/ρ)∇2

hζ .
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Ad question 2: in order to linearise the boundary conditions it is necessary that[
~∇φ · ~∇hζ

]
�
[
∂φ

∂z

]
,

[
~∇hφ · ~∇hζ

]
�
[
∂ζ

∂t

]
,[

(~∇φ)2
]
�
[
∂φ

∂t

]
,

[
(~∇φ)2

]
� max

(
[gζ] ,

[
−τ
ρ
∇2
hζ

])
,

where [·] denotes the characteristic magnitude of the terms between the brackets.
Furthermore, the term ∂φ/∂t in the dynamic boundary condition must be of the
same order of magnitude as that of the term gζ or (τ/ρ)∇2

hζ , otherwise there is no
force balance at the free surface. This yields a scale for the velocity potential:

[φ] =
g a + (τ/ρ)κ2 a

σ
, (3.2)

where σ = 2π/T is the (radian) frequency and T the corresponding wave period.

The four linearisation criteria listed above result in the following two conditions:

ε� 1 and ε� F ≡ σ2

g κ+ (τ/ρ)κ3
(3.3)

Their meaning is that the wave steepness must be small and that the velocity of
water particles must be small compared to the phase velocity of the wave. The
first condition can be obeyed by considering small enough wave amplitudes. To
understand the second condition it is convenient first to assume that it is obeyed,
next find the solution of the linear system and then re-interpret this condition.

3.2 Solution of the linear system
Now assume that the conditions (3.1) and (3.3) are obeyed. The equations of motion
and boundary conditions then, to a first approximation, become

∇2φ = 0
∂φ

∂z
= 0 at z = −H,

(3.4)
∂φ

∂z
=

∂ζ

∂t
at z = 0,

∂φ

∂t
+ g ζ − τ

ρ
∇2
hζ = 0 at z = 0.

Here, free waves are considered, hence the atmospheric pressure p0 has been as-
sumed constant and has been subsequently transformed away (by choosing a new
reference level of the velocity potential).

The structure of the velocity potential that satisfies both the Laplace equation and
bottom boundary condition has already been given in eq. (2.16) as a superposition
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of waves. In this case system (3.4) is linear, so a plane harmonic wave, described
by a velocity potential

φ = Â cosh[κ(z +H)] sin(κx− σt) ,

with a constant amplitude Â, will be a solution. Note that the wavevector points in
the same direction as the x-axis, an assumption that has no dynamical consequences.
The corresponding variations of the free surface are

ζ = a cos(κx− σt) . (3.5)

Substitution of the expressions for the velocity potential and the free surface in the
boundary conditions of system (3.4) that apply at z = 0 yields two equations. In
matrix form they can be written as(

κ sinh(κH) −σ
−σ cosh(κH) g + (τ/ρ)κ2

)
·
(
Â
a

)
= 0.

Non-trivial solutions exist only if the determinant of the coefficient matrix vanishes.
This condition yields

σ2 =

(
gκ +

τ

ρ
κ3

)
tanh(κH), (3.6)

the dispersion relation for linear free capillary gravity waves.

The velocity potential thus becomes

φ =
σ

κ
a

cosh[κ(z +H)]

sinh(κH)
sin(κx− σt). (3.7)

The solution of the linear system (3.4) is now given by equations (3.5), (3.6) and
(3.7).

Finally, reconsider the second condition in eq. (3.3), which was necessary to lin-
earise the boundary conditions at the free surface. Using dispersion relation (3.6) it
follows that this condition can also be written as

ε� tanh β with β = κH ∼ water depth
wavelength

. (3.8)

With respect to the condition of a small wave steepness this only implies an addi-
tional constraints if β � 1, i.e., in shallow water. It then follows that α� 1, where
parameter α was defined in eq. (3.1).

So the final conclusion: the use of the linear system (3.4) is allowed to a first ap-
proximation if the wave amplitude is small with respect to both the wavelength and
the undisturbed water depth. Thus, strictly speaking, linear waves are valid only
in the limit ε → 0 and α → 0. In other words, linear waves have infinitesimal
amplitudes. Finite-amplitude waves will be discussed in the last section of the next
chapter.

22



Chapter 4

Further analysis of linear free waves

4.1 Deep and shallow water
In this chapter additional information about linear free capillary gravity waves is
obtained. First, consider the case

κH � 1 : tanh(κH) ∼ 1 , sinh(κH) ∼ cosh(κH) ∼ 1

2
eκH .

This is the deep water limit : the wavelength is much smaller than the water depth
and the waves do not experience the presence of the bottom. In this case the solu-
tions (3.6)-(3.7) become

κH � 1 : σ2 → gκ +
τ

ρ
κ3 ,

(4.1)
φ → σ

κ
a eκz sin(κx− σt) .

The counter case is the shallow water limit:

κH � 1 : tanh(κH) ∼ sinh(κH) ∼ κH , cosh(κH) ∼ 1 +
1

2
(κH)2 ,

with corresponding solutions

κH � 1 : σ2 → gH κ2 +
τ

ρ
κ4H ,

(4.2)
φ → σ

κ
a

[
1 + 1

2
κ2(z +H)2

κH

]
sin(κx− σt) .

4.2 Phase velocity
In this section the so-called phase (or phase function) is investigated, which is de-
fined as

ϑ = κx − σt . (4.3)

23



A wave crest is a phase plane ϑ =constant. An observer moving with the velocity
of a phase plane will always see the same phase, i.e.,(

dϑ

dt

)
θ=constant

≡ ∂ϑ

∂t
+ c

∂ϑ

∂x
= 0 .

The use of definition (4.3) yields

c =
σ

κ
. (4.4)

This is the phase velocity. Application of the dispersion relation (3.6) yields

c2 =

[
g

κ
+
τ

ρ
κ

]
tanh(κH). (4.5)

with the deep and shallow water limits

κH � 1 : c2 → g

κ
+
τ

ρ
κ , (4.6a)

κH � 1 : c2 → gH +
τ

ρ
κ2H . (4.6b)

The two values for c correspond to waves travelling in the positive and negative
x-direction. The phase velocity consists of a contribution due to gravity effects,
for which |c| decreases with increasing κ, and a capillary contribution for which |c|
increases with increasing κ. The behaviour of c(κ) is shown in Figure 4.1.

Figure 4.1: Phase velocity c of free linear capillary-gravity waves
as a function of wavenumber κ.

For wavenumber κ = κcrit the phase velocity attains a minimum. The wavenumber
and minimum velocity can be computed from

d

dκ
c2 = 0 for κ = κcrit .
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Elaboration in case of the deep water limit yields

κcrit =

√
ρ g

τ
' 3.5× 102 m−1 and cmin ' 23× 10−2 ms−1

for ρ = 103 kgm−3, τ = 0.08 Nm−1 and g = 9.81 ms−2.

Thus, for

B ≡ τκ2

ρ g
� 1 : gravity waves,

B � 1 : capillary waves.

Parameter B is the Bond number or Weber number.

4.3 Pressure and velocity field
The pressure field is found by substitution of the dispersion relation (3.6) and ex-
pression (3.7) for the velocity potential in linearised version of the Bernouilli equa-
tion (2.9), i.e.

p = −ρ
{
∂φ

∂t
+ gz

}
.

The result is

p = −ρgz + ρga (1 +B)
cosh[κ(z +H)]

cosh(κH)
cos(κx− σt) . (4.7)

The contributions on the right-hand side describe the hydrostatic pressure and the
pressure induced by variations of the free surface, respectively. This result is often
used in practice to convert registrations of pressure sensors to sea level variations.
Note that the wave-induced pressure decreases with depth and that this decrease is
larger for larger wavenumbers. So, if a sensor with a finite resolution is located at a
certain depth, it will not detect waves with too small wavelengths.

The deep- and shallow water limits for the pressure are

κH � 1 : p → −ρgz + ρga (1 +B) eκz cos(κx− σt) , (4.8a)
κH � 1 : p → −ρgz + ρga (1 +B) cos(κx− σt) . (4.8b)

In shallow water the wave-induced pressure is independent of depth, hence in that
case the vertical momentum equation reduces to hydrostatic balance.

As shown by (2.7), the velocity field is governed by the gradient of the velocity
potential, given by expression (3.7). The results are
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u ≡ ∂φ

∂x
= σa

cosh[κ(z +H)]

sinh(κH)
cos(κx− σt) ,

v ≡ ∂φ

∂y
= 0 , (4.9)

w ≡ ∂φ

∂z
= σa

sinh[κ(z +H)]

sinh(κH)
sin(κx− σt) ,

with the deep- and shallow water limits

κH � 1 : u → σa eκz cos(κx− σt) ,
(4.10a)

w → σa eκz sin(κx− σt) ,

κH � 1 : u → σa

κH
cos(κx− σt) ,

(4.10b)
w → σa

(
1 +

z

H

)
sin(κx− σt) .

Note that the amplitude of the vertical velocity field is always smaller than (or at
most equal to) that of the horizontal velocity field. The amplitudes are equal in the
deep water limit. Furthermore, in the shallow water limit the horizontal velocity
field is independent of depth, whereas the vertical velocity component decreases
linearly from its maximum value at the free surface to zero at the bottom.

From the expressions for the velocity field the orbits of individual water particles in
the x, z-plane can be computed. By definition,

dx

dt
= u ,

dz

dt
= w ,

so

x(t) = x0 +

∫ t

0

u(x, z, t ′) dt ′ , z(t) = z0 +

∫ t

0

w(x, z, t ′) dt ′ , (4.11)

where x0, z0 is the initial position of a particle. An exact computation of the orbits is
complicated, because both the velocity components u and w explicitly depend on x
and z. It is however possible to find approximate expressions for the particle orbits
in case of linear waves, by using the fact that their amplitudes are small (with respect
to both their wavelength and depth). By means of Taylor expansions it follows that

u(x, z, t) = u(x0, z0, t)
[
1 +O(κH,

a

H

]
,

w(x, z, t) = w(x0, z0, t)
[
1 +O(κH,

a

H

]
.

To lowest order it follows for the particle orbits

x = x̃0 − a
cosh[κ(z0 +H)]

sinh(κH)
sin(κx0−σt) ,

(4.12)
z = z̃0 + a

sinh[κ(z0 +H)]

sinh(κH)
cos(κx0−σt) ,
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where

x̃0 = x0 +
a cosh[κ(z0 +H)]

sinh(κH)
sin(κx0) ,

z̃0 = z0 −
a sinh[κ(z0 +H)]

sinh(κH)
cos(κx0) .

These expressions describe an ellipse in the x, z-plane, of which the length of the
major and minor axes depend on depth. The deep- and shallow water limits are

κH � 1 : x− x̃0 = −a eκz0 sin(κx0 − σt) ,
(4.13a)

z − z̃0 = a eκz0 cos(κx0 − σt) ,

κH � 1 : x− x̃0 =
−a
κH

sin(κx0 − σt) ,
(4.13b)

z − z̃0 = a
(

1 +
z0

H

)
cos(κx0 − σt) ,

In deep water the ellipse reduces to a circle, whereas in shallow water the particles
move almost exclusively in the horizontal plane. Some particle orbits for different
cases are sketched in Figure 4.2.

surface

z=0

bottom

z=-H

deep water intermediate depth shallow water

Figure 4.2: Particle orbits at different depths in case of deep water
(left), intermediate depth (middle) and shallow water (right).

4.4 Group velocity and energy balance
Next we consider the group velocity. Three different interpretations will be dis-
cussed, which all require the introduction of the concept of a wave group. The
simplest way to understand its meaning is to realise that solution (3.5)–(3.7) is only
one specific solution of the linear system (3.4). A more general solution is found
by superposition of waves with different wavenumbers, amplitudes, and directions
of propagation. A simple example is the case of two waves moving in the same
direction, but having slightly different wavenumbers and frequencies:

ζ1 = a cos(κx− σt) , ζ2 = a cos[(κ+ ∆κ)x− (σ + ∆σ)t].
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Superposition yields

ζ = 2a cos

{
1

2
[(2κ+ ∆κ)x− (2σ + ∆σ) t]

}
cos

[
1

2
(∆κx−∆σ t)

]
' 2a cos

[
1

2
(∆κx−∆σ t)

]
cos(κx− σt) .

This describes a sinusoidal wave with a slowly varying amplitude, as can be seen in
Figure 4.3. The envelope wave has wavenumber 1

2
∆κ, frequency 1

2
∆σ and propa-

ζ

t

Figure 4.3: A modulated wave.

gates with velocity ∆σ/∆κ. In the limit ∆σ → 0,∆κ→ 0 this becomes the group
velocity

cg =
∂σ

∂κ
. (4.14)

So the envelope of a wave group travels with the group velocity.

A second interpretation of the group velocity is that it is the propagation velocity
of the local wavenumber. For this, consider definition (4.3) of the wave phase and
assume that both the wavenumber and frequency are slowly varying functions of
space and time:

ϑ = κ(x, t)x − σ(x, t) t .

The latter means that κ and σ vary on a spatial (temporal) scale that is large com-
pared to the local wavelength (period) of the wave. Thus, locally

κ =
∂ϑ

∂x
, σ = −∂ϑ

∂t
,

from which it follows that

∂κ

∂t
+
∂σ

∂x
= 0 . (4.15)

This is the law of conservation of wave crests. Its interpretation is that the change
in the number of wave crests in a certain domain is determined by the difference
between incoming and outgoing waves through the boundaries.
Using the dispersion relation allows equation (4.15) to be rewritten as

∂κ

∂t
+ cg

∂κ

∂x
= 0 . (4.16)
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Hence, an observer moving with the group velocity will always see the same wavenum-
ber and frequency, but individual wavecrests move because the phase velocity gen-
erally differs from the group velocity. This follows from elaboration of the defini-
tions (4.4) and (4.14), which yields

cg = c + κ
∂c

∂κ
(4.17)

Using the dispersion relation (3.6) yields for the group velocity of free linear capillary-
gravity waves:

cg = c

{
1

2
+

κH

sinh(2κH)
+

τκ2

ρ g + τκ2

}
. (4.18)

Now consider the dispersion properties of these waves. A wave is called disper-
sionless if the phase velocity equals the group velocity. For many waves, the phase
velocity decreases with increasing wavenumber (long waves travel faster than short
waves); this is called normal dispersion. Investigation of the different limits of the
group velocity yields the results summarised in the table below.

gravity waves capillary waves

cg = 1
2
c cg = 3

2
c

deep water
normal dispersion anormal dispersion

cg = c cg = 2 c
shallow water

no dispersion anormal dispersion

The third interpretation of the group velocity is that it is the propagation velocity
of the energy. To understand this, return to the equations of motion (2.2) and (2.5)
and use that the vorticity ~ω = 0 (irrotational flow). The energy balance is derived
by multiplication of the momentum equations with ~u and subsequent substitution
of the continuity equation. The result is

∂

∂t

(
1

2
ρ|~u|2

)
+ ~∇ ·

[(
p+ ρg z +

1

2
ρ|~u| 2

)
~u

]
= 0 .

The first term describes the local change of the kinetic energy per volume unit, the
second term is the divergence of the energy flux vector (related to work per unit area
done by the wave-induced pressure force and advection of kinetic energy).
Next, consider the energy balance of a column of seawater with unit surface by
integration of this expression over the entire depth (from bottom to free surface).
Using the kinematic and dynamic boundary conditions, given in equation (2.14), it
follows in case of free waves:

∂E

∂t
+ ~∇h · ~F = 0 , (4.19a)
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with

E =

∫ ζ

−H

1

2
ρ |~u| 2dz +

1

2
ρgζ2 + τ

[
1 + |~∇hζ|2

]1/2

− τ

(1) (2) (3)

and

~F =

∫ ζ

−H
(p+

1

2
ρ|~u|2 + ρgz) ~uh dz + τ ~n

∂ζ

∂t
. (4.19b)

Here, ~uh is the horizontal velocity field and ~n is the normal vector at the free surface;
the latter is defined in (2.14). Furthermore, E is the instantaneous energy density,
i.e., the total energy per surface unit. It consists of a kinetic energy density (1), the
potential energy density (2) due to gravity and the potential energy density (3) due
to surface tension. Finally, ~F is the energy density flux.

Consider again weakly modulated linear waves of the type (3.5), where both the
wave amplitude, wavenumber and frequency are slowly varying functions of space
and time. Since the focus is on linear waves, it is only necessary to compute the
lowest-order contributions, i.e., up to O(a2). Use the expressions for the pressure
field (4.7) and velocity field (4.9) to calculate the energy density and the energy
density flux vector (in this case ~F = (F§, ′)). Finally, average these results over the
phase of the wave, such that quantities are obtained that only vary slowly in space
and time. The final results are

<E> ≡ 1

2π

∫ 2π

0

E dϑ =
1

2
(ρg + τκ2) a2 , (4.20a)

<Fx> =
1

2

σ

κ
a2

{
(ρg + τκ2)

[
1

2
+

κH

sinh(2κH)

]
+ τκ2

}
. (4.20b)

The corresponding energy balance is

∂

∂t
<E> +

∂

∂x
<Fx>= 0 , (4.21a)

with, by definition,

<Fx>= cE <E> (4.21b)

and cE is the propagation velocity of the energy density.
Substitution of expressions (4.20a) and (4.20b) in (4.21b) shows, after comparison
with (4.18), that

cE = cg . (4.22)
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4.5 Waves and currents
So far, linear free capillary gravity waves have been considered in the absence of
any background current. In many cases, such currents are present and they influence
the wave dynamics in two ways: they cause a Doppler shift of the frequency (hence,
the dispersion relation is modified) and they affect the energy balance of the waves.

In case of a background current ~U , the modified dispersion relation is

σ2
i ≡ (σ − ~U · ~κ)2 = g κ (1 +B) tanh(κH) . (4.23)

Here, σ is called the absolute frequency (as experienced by an inertial observer) and
σi the intrinsic wave frequency, as experienced by an observer who moves with the
current.

To compute the energy balance of gravity waves is quite a difficult task, full deriva-
tions are given in Crapper [1984] and Mei [1989]. In fact the energy of waves is no
longer conserved, because transfer of energy between waves and currents is possi-
ble. The most compact way to express the final result is that, in case of currents,
another wave quantity is conserved, viz. the wave action A. The conservation law
for the wave action reads

∂

∂t
A + ~∇h ·

[
(~U + ~cg,i)A

]
= 0 , A =

<E>

σi
, (4.24)

with ~cg,i the intrinsic group velocity. It is interesting to note that this equation is not
only valid for linear waves, but even for nonlinear waves. The latter fact follows
from the analysis of a variational formulation for water waves, as is for example
discussed in the book of Whitham [1974].

Finally, it is remarked that currents not only affect waves, but waves also affect (and
even force) currents. The latter is due to two facts: waves transfer net mass and
waves transfer net momentum. The fact that waves transfer net mass follows from
computing the over the wave period averaged vertically integrated mass flux:

M =<

∫ ζ

−H
ρ u dz =

<E>

c
(4.25)

The latter result is obtained by substitution of the velocity field (4.9) and making
a Taylor expansion of the integral. This implies two things. First, orbits of water
particles are not exactly closed: particles experience a small net displacement in
the direction of wave propagation. This is known as the Stokes drift and it can
be computed by returning to equation (4.11) and including higher-order correction
terms. The derivation is not discussed here,details are given in Kinsman [1965]. A
sketch of the particle orbits and net Lagrangain current (i.e., the net displacement
of particles per wave period) is given in Figure 4.4.
The second consequence of the net transfer of mass by waves is that close to
the coast (an almost inpermeable boundary) this mass flux is compensated by a
(seaward-directed) return flow: the undertow.
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<u >

residual current profile

(Lagrangian)
particle orbits

Figure 4.4: Stokes drift. Left: particle orbit in a few wave peri-
ods. Right: Lagrangian residual current profile.

As already mentioned, waves also cause a net transfer of momentum. In fact, this
is equivalent to stating that waves induce net stresses, similar as turbulent eddies.
The computation of these so-called radiation stresses Sij (net transfer by waves of
j-momentum in the ith direction) will be discussed in the course ’Physics of coastal
systems’. Here, it suffices to state that these stresses depend on the wave properties,
like amplitude, wavenumber and wave direction. Hence, if these stresses vary in
space then net forces occur that drive net currents. Well-known examples of such
currents are longshore currents in the nearshore zone.

4.6 A few remarks about nonlinear waves
As mentioned in the beginning of chapter 3, the problems in constructing solutions
of the full equations of motion (2.14) are that

• two conditions are specified at the free surface, of which the position is part
of the final solution;
• the conditions at the free surface are nonlinear.

The solutions considered so far are strictly valid in case of infinitesimal amplitudes
only, i.e., the wave steepness ε = aκ → 0 and parameter α = (a/H) → 0. It is
however possible to construct more general solutionsof system (2.14) which have
small, but finite amplitudes. In other words, they are valid for ε � 1 and α � 1.
The results are so-called weakly nonlinear waves. Here, only a few general re-
marks are made and no details are discussed. There is a vast amount of literature on
this topic, for example the books of Whitham [1974]; Mei [1989]; Debnath [1994];
Dingemans [1997] and scientific journals like Journal of Fluid Mechanics.

Weakly nonlinear solutions are obtained by application of perturbation methods,
which assume that approximate solutions of the equations of motion can be found
as series expansions in the small parameters ε and α. For example, in the deep water
limit (when ε is the only relevant parameter):

φ = φ0 + εφ1 + ε2φ2 + . . . ,

ζ = ζ0 + εζ1 + ε2ζ2 + . . . .

Here, the solutions φ0, ζ0 represent the linear wave solution and variables like φ1, ζ1, φ2

and ζ2 represent higher-order, nonlinear corrections to the linear solution.
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Furthermore, by using Taylor expansions, the boundary conditions at the free sur-
face can be transformed to conditions at the fixed surface z = 0. For example, the
kinematic boundary condition at the free surface (third equation in system (2.14))
can be written as

∂φ

∂z
+ ζ

∂2φ

∂z2
+ . . . =

∂ζ

∂t
+ ~∇hφ · ~∇hζ + ζ ~∇h

∂φ

∂z
· ~∇hζ + . . . at z = 0 .

The procedure is now to substitute the perturbation series in the rewritten equations
of motion (conditions at z = ζ converted to conditions at z = 0) and collect terms
with equal powers in the small parameter. This yields at each order a system of
equations that can be successively solved, since the solutions at the previous order
are known.

This method was first successfully used by Stokes in 1834; he constructed a free
periodic gravity wave (no surface tension) in deep water with a small, but finite
amplitude (wave steepness ε� 1). His results were the following:

• the profile of the waves becomes asymmetrical: the crests are sharper and the
troughs are flatter (see Figure 4.5).

Figure 4.5: Profiles of a linear wave and of a Stokes wave, i.e.,
the sea surface elevation at a function of coordinate x at a fixed
time. The waves travel from left to right.

• Nonlinear terms modify the dispersion relation; it reads

σ =
√
gκ

(
1 +

1

2
ε2 + . . .

)
.

The new term (proportional to ε2) describes amplitude dispersion: large waves
travel faster than small waves.

• The results of Stokes and others indicate that, by increasing the number of
terms in the perturbation series, the crests become more sharp and ultimately
tend to peak. Stokes demonstrated that, if the waves peak, then the peak angle
is 120o, as illustrated in Figure 4.6.

Figure 4.6: A Stokes wave with a peak angle of 120o.
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All these findings are consistent with laboratory and field observations, as can be
concluded from inspection of e.g. Figure 1.3 in chapter 1.

The Stokes expansion can also be applied in case the water depth is finite (i.e.,
parameter β = κH has a finite value). As shown in Whitham [1974] the condition
under which the result is valid is that the wave steepness is small (ε� 1) and that

ε� 1 , Ur =
ε

β3
� 1 . (4.26)

Parameter Ur is called the Ursell parameter and it measures the relative influence
of amplitude dispersion with respect to linear wave dispersion. In case that the
conditions (4.26) apply the new dispersion relation becomes

σ2

gκ
= tanh β

{
1 + ε2

[
9 tanh4 β − 10 tanh2 β + 9

8 tanh4 β

]
+O

(
ε4
)}

. (4.27)

The calculations are much more extensive than in case of the deep water limit,
whereas no new physical insights are obtained.

Regarding the convergence of the Stokes expansion, it turns out to be possible to
prove convergence of the series, although no explicit expressions for the radius of
convergence are known. However, the value is probably very small. A more serious
problem is that deep water Stokes waves are unstable: they lose energy due to inter-
action with waves with a slightly different wavelength. The underlying mechanism
is called side-band instability and was first decsribed in 1967 by Benjamin and Feir.
Their results show that Stokes waves are only stable in case that β < 1.36. The lim-
itation of the Stokes wave expansion is that it is a priori assumed that the solution is
periodic with wavenumber κ. Consequently, only modulations in time are allowed,
thereby resulting in a modified dispersion relation. A more general case involves
modulations both in space and time. This means that, to lowest order, a wave is
described as

ζ =
1

2
Aei(κx−σt) + c.c. ,

with c.c. denoting a complex conjugation, where the complex amplitude A is a
function of slow space and time variables. By exploiting this method the final result
is the so-called nonlinear Schrödinger equation, which contains the Stokes wave as
a specific solution. Those who are interested in this (popular) topic are referred to
the book of Mei [1989] and journals like Physica D.

It is also possible to apply a Stokes expansion for the case of pure capillary waves.
This even results in exact solutions (albeit of a subset of the full system of equa-
tions), which are called Crapper waves. In contrast with gravity waves their profiles
are characterised by flat troughs and sharp crests (see also Figure 4.7).
Finally, it is remarked that finite-amplitude waves can also be constructed in case
of shallow water. In practice, this is only done for gravity waves as capillary waves
never occur in shallow water. Rather than wave steepness ε, parameter α = a/H
is the relevant parameter measuring the relative influence of nonlinear terms with
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x

Figure 4.7: Profile of the Crapper wave, a finite-amplitude capillary
wave.

respect to linear terms. Different results are obtained, depending on the value of
parameter Ur, which can also be written as Ur = α/β2. The results are

• if Ur � 1:
a classical Stokes wave solution can be constructed;

• if Ur � 1:
system (2.14) reduces to the nonlinear shallow water equations. This system
describes waves that ultimately break, as shown in Figure 4.8;

Figure 4.8: Profile of a gravity wave at different times computed
from solving the nonlinear shallow water equations. After some
time this wave breaks.

• if Ur ∼ 1:
system (2.14) can be approximated by the so-called Boussinesq equations,
or (in case that waves travel in one direction only) the Korteweg-de Vries
equation. These systems allow for exact analytical solutions that describe
solitary waves and periodic waves (cnoidal waves). The profiles of these
waves are sketched in Figure 4.9. The physical reason that these shape-pre-
serving solutions exist is that amplitude dispersion (causing the steepening of
spatial gradients) is balanced by linear wave dispersion (that tends to smooth
spatial gradients).
All these solutions have the characteristic property that their phase velocity
increases with increasing amplitude. Another interesting property is that soli-
tary waves are quite robust: they survive after mutual interactions.
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(a)

x

ζ

(b)

Figure 4.9: Wave profiles described by the Boussinesq and
Korteweg-de Vries equation. Left: a solitary wave, right: a
cnoidal wave. Remark: these are solutions of fully nonlinear
equations, but it should be realised that these equations are de-
rived from a more general system of equations by assuming that
the wave amplitude is small.



Chapter 5

Generation of short waves by wind

5.1 Introductory remarks
Investigation of the physical mechanisms that cause the growth of waves at the
sea surface is still an actual topic of research. Basic theories are available, but
there still are discrepancies between observations and model predictions. It took
a relatively long time before quantitative hypotheses for growth of waves by wind
were developed. Indeed, the theory of linear and nonlinear water waves was already
developed in the 19th century, in particular by Airy, Stokes and Rayleigh, but it was
not clear how this knowledge could be used to describe wave evolution at sea. This
is partly due to lack of a theoretical concept to describe irregular waves (for this,
see chapter 6 hereafter), but also lack of good data was a problem.

In 1925 H. Jeffreys presented the first (semi-empirical) theory of growth by waves,
which was based on the sheltering hypothesis. This theory was applied for almost
50 years, for instance it was part of the so-called Sverdrup-Munk theory, which was
developed in relation to the landing operations at D-day in World War II. Basically,
this theory survived for such a long time because of lack of a better alternative.

The idea underlying the sheltering hypothesis is that if a wind blows over a wavy
sea, it causes an underpressure at the lee side of the wave and an overpressure at the
stoss side, as shown in Figure 5.1.

Figure 5.1: A wind blowing over a wavy surface causes over and
underpressure. The vertical arrows indicate the direction of the
vertical velocity of the wave.
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Since these atmospheric pressure fluctuations are in phase with the vertical velocity
of the wave, an energy transfer from atmosphere to waves takes place and the waves
thereby grow. The empirical part of the theory concerns the relationship between the
pressure fluctuation and the free surface. Jeffreys modelled this, using dimensional
analysis, as

p0
′ = s ρa (Ua − c)2 ∂ζ

∂x
,

with s a dimensionless sheltering coefficient, ρa the density of air, Ua the wind
speed and c the phase velocity of the wave.

Jeffreys considered both the production of wave energy (by wind) and dissipation
of energy by viscous terms. He stated that growth of waves would only occur in
case that the production term exceeds the dissipation term. From this he derived an
expression that relates the minimum wind speed Umin (below which waves will not
grow) to the sheltering coefficient. Based on observations Umin = 1.1 m s−1 was
taken, thereby yielding s ' 0.27.

The drawbacks of the sheltering hypothesis are that measured pressure fluctuations
in the laboratory turned out to be much smaller than predicted by the theory. Also,
waves can grow even in the case that their phase velocity is smaller than the wind
speed. Finally, the sheltering mechanism only acts if waves are already present at
the sea surface.

In 1957 two important new theorical concepts related to growth of waves by wind
were presented, which were both based on fundamental physical laws. They were
the resonance mechanism, developed by Phillips, and the shear instability mechanism
developed by Miles. The Phillips mechanism assumes that turbulent eddies, with
many different length scales, are present in the atmospheric boundary layer. They
are advected by the mean wind, which has a logarithmic profile (see Figure 5.2).

x

z

Figure 5.2: Mean wind profile in the atmospheric boundary layer
and the presence of turbulent eddies.

These eddies induce pressure fluctuations at the sea surface. If the number of eddies
per time unit, σ1, that pass a fixed observation point equals the frequency σ of a free
wave, then resonant growth of this wave will occur. Now, σ1 = ~Ua · ~κ, where ~Ua
is the velocity by which the turbulent eddy is advected and ~κ the wavevector of the
eddy. For frequency σ the dispersion relation (3.6) can be used. The resonance
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condition thus reads:

σ1 = σ , or
[
g

κ
+
τ

ρ
κ

]1/2

= UA cosα (5.1)

where in the last step the definition of the phase speed is used; α is the angle between
wavevector and windvector. Equation (5.1) is transcedental because the advection
speed depends on the wavenumber: it is the wind speed at a height κ−1 above the
undisturbed sea level. Figure 5.3 shows the graphical solution of equation (5.1) in
case that α = 0 (waves propagate in the direction of the wind).

gravity


regime

capillary


regime

Figure 5.3: Graphical solution of the transcedental equation (5.1).

The intersection of the two curves c(κ) andUa(κ) cosα yields two resonant wavenum-
bers, one in the gravity wave regime and one in the capillary wave regime. If angle
α is nonzero, then the resonant wavenumbers move closer to eachother. They even
disappear if α = αc, where

αc ' arccos

(
cmin

Ua

)
= arccos

([
4 g τ

ρU4
a

]1/4
)
. (5.2)

Using a statistical description of sea waves, Phillips [1977] also demonstrated that
the growth of energy of the wave field is linear in time: <E(t)>∼ t.

The strong points of the Phillips resonance mechanism are:
• it is based on fundamental physics (no empirical knowledge);
• waves can grow from an initially smooth surface (no a priori presence of

waves required);
• it predicts that no growth of waves occurs if Ua < cmin, in other words, a

minimum wind speed is required before waves grow, which is consistent with
observations. See e.g. Figure 1.14 in chapter 1;
• linear growth of wave energy is indeed observed during the first stage of wave

growth from a smooth sea surface, when amplitudes are still very small.

However, the Phillips mechanism also has an important drawback, viz. it ignores the
feedback of the waves to the windfield. This is the reason that the theory can only be
used at the earliest stage of wave growth and it is not much used anymore. A better
description of wave growth is obtained by using the shear instability mechanism,
that will be discussed in the next sections.
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5.2 Shear instability mechanism; basic equations
This theory is based on the hypothesis that sea waves arise as a free instability of
the coupled sea-atmosphere system. In fact, the waves grow by extracting energy
from the mean wind field, that is an exact solution of the system in case of a smooth
water surface. Miles originally developed his theory in 1957 for inviscid air and
water; here the more general case will be explored.

In Figure 5.4 a sketch is presented of the density distribution and mean velocity
profile near the sea surface.

Figure 5.4: Density distribution and velocity profiles near the sea
surface.

In principle, the densities ρa, ρw (of air and water, respectively) may depend on the
vertical coordinate z (see chapter II.2 in the book of Komen et al. [1994]). Here,
for simplicity, these densities are assumed to be constant. Consequently, thermo-
dynamic effects need not to be taken into account. The equations of motion then
become

ρ

{
∂~u

∂t
+ ~∇ · (~u~u)

}
= −~∇p − ρ~g + ρν∇2~u +

∂

∂z
~τ ,

(5.3)
~∇· ~u = 0 ,

with ~u the 3D-velocity field, ν the kinematic viscosity coefficient (= νa ∼ 1.5 ×
10−5 m2s−1 for air and νw ∼ 1 × 10−6 m2s−1 for water) and ~τ is a vector with
components (τxz, τyz, τzz) that are shear stresses. The latter describe the transport
of momentum in the vertical direction due to turbulent eddies. The sea is assumed
to be unbounded in the vertical (deep water limit) and Coriolis effects are neglected.

The boundary conditions become, in case of an inviscid fluid:

w → 0 for z → ±∞ ,
(5.4)

w =
dζ

dt
at z = ζ, lim

z↑ζ
p = lim

z↓ζ

(
p+ τ ~∇ · ~n

)
,

with τ the surface tension, see section 2.2. For a viscous fluid the pressure p must
be replaced by the normal component of the tension acting at the free surface and
besides, the tangential component of the tension must be continuous at z = ζ .

In the absence of variations of the free surface, system (5.3)-(5.4) has an equilibrium
solution which is uniform in the horizontal direction. In order to describe it, it is
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convenient to introduce the horizontal velocity field ~uh and a two-dimensional vec-
tor ~τh with components (τxz, τyz). Then, the equilibrium solution is characterised
by ~uh = ~U(z), w = 0, p = P (z), where

d

dz

[
ν
d~U

dz
+
~τh
ρ

]
= 0,

dP

dz
= −ρ g . (5.5)

with corresponding dynamic boundary conditions at the free surface. So, this flow
has a constant tangential shear stress and is in hydrostatic balance.

In inviscid theory (i.e., ν = 0, ~τ = 0) any velocity profile ~U is an equilibrium
solution. In viscous theory, the velocity is determined by the parameterization of
the turbulent shear stresses. In many cases the so-calledK-theory is used to express
the shear stresses in terms of the velocity field:

~τh = ρK(z)
∂

∂z
~uh , (5.6)

with K(z) a turbulent viscosity coefficient. In the atmospheric boundary layer the
latter is determined by two parameters: the shear stress |~τh|(z = 0) at the undis-
turbed free surface and the distance z to the undisturbed water surface. The only
combination that yields the correct dimension for the turbulent viscosity coefficient
is

Ka(z) = k u∗ z, ρa u
2
∗ = |~τh(z = 0)| , (5.7)

with k ∼ 0.41 being von Karman’s constant and u∗ the friction velocity.

Integration of the momentum equation in (5.5), and use of equations (5.6) and (5.7),
yields a logarithmic wind profile in the atmospheric boundary layer:

|~Ua| = |~U | (z = 0) +
u∗
k

ln

(
1 +

z

z0

)
, (5.8)

with z0 = νa/(ku∗) the so-called roughness length: z0 ∼ 10−5 m in case of a
smooth sea surface.

Miles assumed the velocity at the sea surface ~U(z = 0) = 0 to vanish; consequently,
there is no current in the sea. However, in case of a viscous fluid the shear stress
acting at the free surface generates currents in the water. The velocity profile in the
sea is often chosen such that current decrease exponentially with depth:

|~Uw| = |~U(z = 0)| eλz λ =
ρa u

2
∗

ρwνw|~U(z = 0)|
, (5.9)

where parameter λ is chosen such that the tangential shear stress is continuous at
the sea surface (λ−1 ∼ 10−2 m). Note that (5.9) is a solution of equations (5.5)
and (5.6) if (Kw + νw) = νwe

−λz, i.e., the turbulent viscosity coefficient increases
exponentially with depth.
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Figure 5.5: Velocity profile of the basic state in the Miles model.
In the atmospheric boundary layer the profile is logarithmic, in
the sea it is exponential.

The final velocity profile of the equilibrium state (also called: basic state) is sketched
in Figure 5.5.
This is an example of a shear current, which agrees well with observations. But
note that, in principle, the theory allows for any basic velocity profile as long as a
suitable corresponding turbulent viscosity coefficient is chosen.

The solution discussed above will change in case that waves are present at the sea
surface. To analyse this case, assume plane harmonic waves propagating in the x-
direction (hence, no wave-induced velocity in the y-direction). Also, assume the
direction of wave propagation to coincide with the wind direction. Next, write the
velocity, pressure and free surface as a superposition of their basic state values and
wave-induced fluctuations:

u = U(z, t) + u ′(x, z, t) , p = P (z, t) + p ′(x, z, t) ,
(5.10)

w = w ′(x, z, t) , ζ = ζ ′(x, t) .

Note that now the basic state variables are also assumed to be depend on time. The
reason is that, due to wave-current interactions, these variables will change in time.
These variations however are slow: they occur on a timescale that is large compared
to the period of the waves.

Substitution in the equations of motion (5.3) and subsequent linearisation of the
equations (this is allowed if the fluctuations have small amplitudes in the sense that
u
′ � U ) yields

∂U

∂t
+
∂u ′

∂t
+ U

∂u ′

∂x
+ w ′

∂U

∂z
= −1

ρ

∂p ′

∂x
+ ν

[
∂2u ′

∂x2
+
∂2u ′

∂z2

]
+

1

ρ

∂τxz
′

∂z
,

∂w ′

∂t
+ U

∂w ′

∂x
= −1

ρ

∂p ′

∂z
+ ν

[
∂2w ′

∂x2
+
∂2w ′

∂z2

]
, (5.11)

∂u ′

∂x
+
∂w ′

∂z
= 0 .

The conditions at the free surface z = ζ can be transformed to conditions at the
undisturbed surface z = 0 (with the use of Taylor expansions, see remarks at the
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end of chapter 4). Development yields

w ′ =
∂ζ ′

∂t
+ U

∂ζ ′

∂x
at z = 0 ,

w
′ → 0 for z → ±∞ ,

(5.12)

lim
z↑0

( p ′ − ρwgζ
′ ) = lim

z↓0

(
p ′ − ρagζ ′ − τ

∂2ζ ′

∂x2

)
,

lim
z↑0

(
ρν
∂u ′

∂z
+ τ

′

xz

)
= lim

z↓0

(
ρν
∂u ′

∂z
+ τxz

′
)
.

At this point the (fargoing!) assumption is made that τxz ′ = 0, i.e., the turbulent
structure of the wind field in the atmospheric boundary layer and current field in the
surface layer of the sea is not influenced by waves. At this moment, modification of
this assumption is an active topic of research, see also the final remarks at the end
of this chapter. From hereon, there are two possible ways to analyse system (5.11).
They are discussed in the subsequent two sections.

5.3 Stability theory: method of Miles
Miles analysed system (5.11) with τxz ′ = 0 on the short timescale of the waves.
This implies that the term (∂U/∂t) can be neglected and the focus is on the growth
of (the amplitude) of the waves. Now, the continuity equation allows the introduc-
tion of a stream function ψ ′, such that

u ′ =
∂ψ ′

∂z
, w ′ = −∂ψ

′

∂x
. (5.13)

An equation for ψ ′ is derived by elimination of the pressure from the momentum
equations. The result is the vorticity equation

∂

∂t
∇2ψ ′ + U

∂

∂x
∇2ψ ′ − ∂ψ ′

∂x

d2U

dz2
= ν∇4ψ ′ . (5.14)

Here,

∇2ψ ′ =
∂2ψ ′

∂x2
+
∂2ψ ′

∂z2
≡ ∂u ′

∂z
− ∂w ′

∂x

is the y-component of the vorticity vector. The second term in (5.14) describes
the advection of perturbed vorticity by the basic state current; the third term is the
advection of background vorticity by the wave-induced velocity field. Finally, the
term on the right-hand side describes dissipation of vorticity.

Equation (5.14) allows for solutions of the following form:

ψ
′
= <

[
ψ̂(z) eiκ(x−ct)

]
≡ <

[
ψ̂(z) eiκ(x−crt) eκcit

]
, (5.15)
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where < denotes the real part and it has been assumed that c = cr + ici. They
represent plane harmonic waves with wavenumber κ that propagate with velocity cr
along the x-axis with an as yet unknown vertical structure. Their amplitude behaves
exponentially in time, where κci is the growthrate, which is to be determined. Note
that the waves grow if ci > 0. Substitution of (5.15) in the vorticity equation (5.14)
yields

(U − c)
(
d2

dz2
− κ2

)
ψ̂ − d2U

dz2
ψ̂ = −iν

κ

(
d2

dz2
− κ2

)2

ψ̂ . (5.16)

This is the Orr-Sommerfeld equation, which is also obtained in case of many other
hydrodynamic stability models. Together with the boundary conditions, it defines
an eigenvalue problem where c are the (complex) eigenvalues. The problem is to
obtain solutions of (5.16), because in general U(z) is a complicated function of
vertical coordinate z. Often, they are obtained by numerical methods. In some
cases asymptotic and even exact solutions can be constructed, see remarks in e.g.
the book of Komen et al. [1994].

From hereon, a brief summary is given of the original work of Miles.

• He used inviscid theory, i.e. ν = 0.
Consequently, (5.16) reduces to the Rayleigh equation.
• He assumed that in equilibrium (no waves) there is no current below the sea

surface. This implies that solutions of the Rayleigh equation for z < 0 be-
come simple exponential functions.
• He assumed a logarithmic wind profile, given by (5.8), in the atmospheric

boundary layer.

Remark: Miles realised that both the shear and curvature of the wind profile were
important for excitation of wind waves. By that time it was known that in case
that Ua=constant the Rayleigh equation describes the Kelvin-Helmholtz instability
mechanism. This, however, does not give a satisfactory explanation for the genera-
tion of waves by wind, since it predicts that instabilities only occur if wavenumber
κ > gρw/(ρaU

2
a ). For realistic parameter values this means that only ultrashort

waves (wavelengths of the order of millimetres and smaller) can grow.

Miles used known, but rather advanced, mathematical methods to find approximate
solutions (for ε ≡ (ρa/ρw) � 1) of the Rayleigh equation and the corresponding
eigenvalues c. His classical expression for the growth rate γa ≡ κci reads

γa
εσ

= − π

2κ
|χc|2

(
∂2Ua
∂z2

)
z=zc(

∂Ua
∂z

)
z=zc

, (5.17)

where σ is the frequency of the wave and χc = ŵa/(σa) is the dimensional ampli-
tude of the wave-induced velocity field at the critical level z = zc, where the wind
speed Ua equals the phase speed c = σ/κ of the wave. In Figure 5.6 the growth rate
is plotted as a function of the ratio of friction velocity and phase velocity.

The result of Miles demonstrates that
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Figure 5.6: Dimensionless growth rate of wind waves as a function
of u∗/c, where u∗ and c are the friction velocity and phase speed,
respectively. The solid curve is the result by Miles, the symbols are
data. Adopted from Komen et al. [1994].

• wave-like perturbations at the sea surface grow and gain their energy from the
mean wind in the atmospheric boundary layer;

• effective coupling between waves and wind only occurs at the critical level
z = zc;

• both shear and curvature of the wind profile are necessary for growth of
waves.

Figure 5.6 shows that the computed growth rates agree rather well with observa-
tions. This is the reason that the result of Miles, albeit often in a modified form, is
still used in many wave prediction models.

Important limitations of the Miles model concern the facts that viscous effects are
neglected, the effect of waves on the turbulent structure of the atmospheric boundary
layer is ignored and nonlinear effects are not considered (hence the waves must have
small amplitudes). Besides, perturbations of the sea surface (albeit that their ampli-
tudes may be very small) must be present before the mechanism acts and also the
(thermodynamic) stability of the atmospheric boundary layer influences the growth
mechanism. Finally, note that (5.17) predicts growth of waves for all wavenumbers
and windspeeds, whereas observations indicate that there is a minimum wind speed
before growth of waves occurs. Some of these aspects will be revisited in the final
section of this chapter.
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5.4 Lighthill interpretation of the Miles mechanism
The way in which Miles derived his result was correct, but rather mathematical;
therefore, it was difficult to understand the underlying physical mechanism. In
1962, Lighthill presented a very elegant interpretation of the shear instability mech-
anism. His starting point were equations (5.3)-(5.4) and solutions of the form (5.10),
resulting in the full equations for the perturbations, i.e., the nonlinear version of sys-
tem (5.11). But, contrary to what Miles did, Lighthill considered the latter equations
on a long timescale (long compared to the typical wave period) and averaged the
equations over a wavelength. After averaging over the wavelength of the pertu-
bations (denoted by an overbar) he obtained the following horizontal momentum
balance:

∂Ua
∂t

+
∂

∂z
ua ′wa ′ = 0 . (5.18)

This equation shows that the change of the wind speed is due to the divergence of
the wave-induced shear stress −ua ′wa ′. It can also be recasted as

∂Ua
∂t

= −ωy ′wa ′ with ωy
′ =

∂ua
′

∂z
− ∂wa

′

∂x
, (5.19)

where use has been made of the continuity equation for the wave-induced fluctua-
tions and the definition of the averaging operator. Note that ωy ′ is the y-component
of the vorticity vector of the fluctuations. Thus, changes in the mean wind profile
are caused by vertical transport of this vorticity component by the waves.

This forcing term at the right-hand side of (5.19) can be fully expressed in terms
of the vertical velocity field. For this, consider an air parcel that, due to the wave-
induced vertical velocity, is displaced from vertical level za− ha ′ to level za. Since
the parcel takes its background vorticity ∂Ua/∂z with it, it induces at level za a
perturbation in the vorticity:

ωy
′ = − ∂Ua

∂z

∣∣∣∣
z=za

+
∂Ua
∂z

∣∣∣∣
z=za−ha ′

' −ha ′
∂2Ua
∂z2

∣∣∣∣
z=za

, (5.20)

where in the last step a Taylor approximation has been used. Finally, the displace-
ment ha ′ follows from integration of the vertical velocity field.

Thus, after substitution of (5.20) in momentum equation (5.19), the final results are

∂Ua
∂t

= ha ′wa ′
∂2Ua
∂z2

and ha
′ =

∫ t

0

wa
′dt ′ . (5.21)

The first equation is a diffusion equation with ha ′wa ′ a diffusion coefficient that
provides for the coupling between wave field and wind field. To find an explicit
expression for this diffusion coefficient the structure of the wave-induced vertical
velocity is analysed. It can be written as

wa
′ = ŵa(z) cos[κ(x− ct)] , (5.22)
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with ŵa(z) a height-dependent amplitude. For the computation of the vertical dis-
placement h ′aof an air parcel, it is important to realize that this parcel is also ad-
vected in the horizontal plane (by both the mean wind and the wave-induced hori-
zontal velocity). It is therefore convenient to apply the coordinate transformation

ξ = x − Ua(z) t

where ξ is a coordinate in a frame moving with the local mean wind speed. In
Figure 5.7 the situation in this co-moving frame is sketched. In this new coordinate

z=za-ha'

z=0

Ua

z=za

z=zc

water

air

Figure 5.7: Situation sketch in a frame that moves with the wind
speed at the critical level z = zc, which is equivalent to the phase
velocity of the wave.

system the vertical velocity reads

wa
′ = ŵa(z) cos[κξ + κ(Ua − c)t ] ' ŵa(z) cos[κ(Ua − c)t ] (5.23)

in case of small-amplitude waves (with corresponding small displacements).
Combination of (5.19) and (5.23) yields

ha
′wa

′ =
ŵa(z)2 sin[2σ̃(z)t ]

2 σ̃(z)
, σ̃(z) = κ(Ua − c) . (5.24)

To obtain an expression for the wave-induced dispersion coefficient, this result must
be averaged over the time that air parcels need to move one wavelength in the hor-
izontal plane. As long as the wind speed differs from the phase speed this time
T̃ = wπ/(σ̃(z)) is finite and it follows from (5.24) that

ha ′wa ′ = 0 if σ̃(z) 6= 0 .

However, at the critical level z = zc, where the wind speed equals the phase speed,
this time becomes infinite. From (5.24) it then follows

lim
t→∞

ha
′wa

′ = ŵa(z)2 lim
t→∞

sin[2σ̃(z)t]

2σ̃(z)
= π ŵa(z)2 δ [2σ̃(z)] ,

where a definition of the Dirac delta function δ has been applied. This result shows
that there is only coupling between wave field and wind field at the critical level.
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The final result for the wave dispersion coefficient can be written in a more conve-
nient form by application of the identity

δ [f(x)] = | df
dx
|−1 δ(x− x0) with f(x0) = 0 .

This yields

h ′awa
′ =

π ŵa(z) 2

2κ ∂Ua
∂z

δ(z − zc) . (5.25)

It is now possible to calculate the energy transferred from the mean wind field to the
wave field. The vertically integrated energy equation for the atmospheric boundary
layer is found by multiplication of (5.21) by ρaUa. Thus,

∂

∂t

∫ ∞
0

1

2
ρaU

2
adz = ρa

∫ ∞
0

Ua ha ′wa ′
∂2Ua
∂z2

dz

=
πρaŵa(zc)

2

2κ
Ua(zc)

∂2Ua
∂z2

∣∣∣
z=zc

∂Ua
∂z

∣∣
z=zc

< 0 .

The decrease in energy density of the wind field is transferred to that of the wave
field, hence

∂

∂t
<E>=

1

2
(ρg + τκ2)

∂

∂t
a2 = −πρaŵa(zc)

2

2κ
Ua(zc)

∂2Ua
∂z2

∣∣∣
z=zc

∂Ua
∂z

∣∣
z=zc

.

where the definition (4.20a) of the wave energy density has been used. Note at this
point the equivalence between this result of Lighthill and the result (5.17) of Miles.

The amplitude of the wave-induced vertical velocity at the critical level will be
proportional to wave amplitude a, hence it follows that

∂

∂t
a2 ∼ a2 ,

in other words, the energy density of the waves grows exponentially in time. In fact,
the constant of proportionality in the expression above is precisely 2γa, where the
growth rate γa is given in (5.17).

5.5 Final remarks
The results of the theories developed by Phillips and Miles can be summarised as
follows. Starting from a perfectly smooth surface the Phillips resonance mecha-
nism causes initial growth of waves. At this stage the energy density grows linearly
in time. Once the waves are present, feedbacks between the waves and the wind
become important. This is accounted for by the shear instability mechanism of
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Miles, with the result that the energy density grows exponentially in time. After a
certain time, waves have become so large that nonlinear interactions between dif-
ferent wave components become important. Waves ultimately break (whitecapping
at open sea, breaking by decrease in water depth near the shore), which cause dis-
sipation of wave energy. A typical development of energy density of a wave with a
fixed frequency is sketched in Figure 5.8 (see also figure 1.14 in chapter 1).

time

energy

Phillips

Miles

saturation

Figure 5.8: Typical evolution in time of the energy density of a
wave with a fixed frequency due to wind (solid curve) and non-
linear effects (dashed curve).

The inviscid theory of Miles yields a good description of the growth of waves with
relatively long wavelengths (such that u∗/c < 10), albeit that the actual growth rate
is often underestimated (by a factor of ∼ 2). On the other hand, observations are
difficult to analyse and interpret, see the discussion in the book of Komen et al.
[1994].

The major criticism to the Miles theory concerns the fact that, for maintaining the
logarithmic wind profile in the atmosphere, turbulent fluctuations are necessary
whereas their role in the actual growth process is neglected. This is active point
of research, e.g. at the KNMI in de Bilt (in relation to wave prediction models). A
few results:

• Accounting for molecular viscous terms and surface tension in the shear in-
stability model leads to growth of capillary gravity waves. The growth rate
is computed from the Orr-Sommerfeld equation (5.16), instead of from the
Rayleigh equation. Important contributions were given by (again!) Miles,
Valenzuela and K. van Gastel. Also, a minimum wind speed occurs (u∗,min ∼ 0.05 ms−1)
below which waves do not grow (see Figure 5.9).

• Modelling of coupling wavefield-turbulence: in the first instance with numer-
ical models (Chalikov & Makin, Gent & Taylor), using higher-order closure
schemes (hence no K-theory).

• First semi-analytical results by Duin & Janssen (1992). Satisfactory results
for short waves, but not for long waves (damping rather than growth).
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Figure 5.9: Growth rate of wind-generated capillary-gravity
waves versus wavenumber for different wind speeds. Results ob-
tained by K. van Gastel (1987). Full reference to this work is
given in Komen et al. [1994].

Probable reason: K-theory is not correct for long waves, because turbulence
has insufficient time to adapt to changing wave conditions. The condition
under which K-theory can be applied is

zc
u∗
� T or

c

u∗
≤ 20 .

The first expression states that the eddy turn-over time must be much smaller
than the wave period T . Theories for growth of low-frequency gravity waves,
including the coupling between waves and turbulent eddies, have been devel-
oped by Belcher & Hunt (J. Fluid Mech. 1993), Mastenbroek & Makin, etc.

• Another topic of research concerns the influence of the thermodynamic sta-
bility of the atmospheric boundary layer on the growth of waves.

• In recent studies also the role of slow variations in the wind speed (wave
gustiness) on the growth of waves is investigated.
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Chapter 6

Statistical description: wave spectra

6.1 Probability concepts
Up to now mainly simple waves have been analysed which are described by de-
terministic equations of motion. However, in nature the sea surface elevation is
composed of a large number of different wave components, each having a differ-
ent wavelength, frequency, amplitude and direction of propagation. The resulting
behaviour of the sea surface is very complex, because all wave components are ran-
domly forced (because the wind in the atmospheric boundary layer is turbulent) and
waves have mutual nonlinear interactions. Describing all details of the wavefield
is a formidable, if not impossible, task. Fortunately, for many practical purposes
it is sufficient to know the behaviour of mean quantities (e.g., mean and standard
deviation of sea surface elevations). This requires a statistical description of the
wavefield.

The first important concept in statistical theory is that of statistical variables. They
are quantities of which the detailed behaviour in space and time is not known; rather
that behaviour can only be described in terms of probability that variables attain a
certain value. The behaviour of a statistical variable is called a stochastic process.
In this chapter the statistical quantity that will be considered is the variation of the
sea surface.

The second concept is that of an ensemble. The latter is a collection of realiza-
tions of a statistical variable under identical macroscopic conditions, but different
microscopic conditions. To illustrate their meaning, imagine an experiment in a
laboratory which contains N identical wavetanks. Over each of them air is blown
with the same mean speed, but the turbulent structure of the windfield will differ
for each tank. In this example, macroscopic variables are e.g. the length of the
tank, the density of the water, the mean windspeed, etc.. The turbulent fluctuations
in the windfield are microscopic variables of which the detailed behaviour in space
and time is not known. However, it is assumed that they are characterized by sta-
tistical variables (such as intensity) that are macroscopic variables. In this way, an
N -partite wave ensemble is constructed.

From now on, the statistical variable that will be considered is the elevation of the
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sea surface, ζ(~x, t), with ~x a vector in the horizontal plane. In an N -partite wave
ensemble this quantify has the realizations{

ζ(n)(~x, t); n = 1, 2, . . . , N
}
, (6.1)

which can attain numerical values Z.

Next, the concept of ensemble average is introduced. For the moment, only func-
tions F [ζ(~x, t)] ≡ F (ζ) are considered. By definition the ensemble average of such
a function is

<F (ζ)>= lim
N→∞

1

N

N∑
n=1

F
[
ζ(n)(~x, t)

]
. (6.2)

In words: it is the mean of all possible wave realizations. Note that the average is a
function of space and time.

Now, an important choice for the function F is discussed. First, apply a partitioning
of the range of numerical values into intervals with width ∆Z, each bounded by the
values Zi and Zi+1 (i = 1, 2, . . .). Next, define the function

∆µ(ζ;Zi) =

{
1 if Zi ≤ ζ < Zi + ∆Z ,
0 in other cases . (6.3)

Then, according to (6.2), the ensemble average <∆µ(ζ, Zi)> is the fraction of all
realizations ζ(n)(~x, t) that attain numerical values in the interval [Zi, Zi+1). Hence,

<∆µ(ζ, Zi)>= P (Zi ≤ ζ < Zi + ∆Z) , (6.4)

where P (Zi ≤ ζ < Zi + ∆Z) is the probability that a measurement of the sea
level at location ~x and time t has a value in the interval [Zi, Zi+1). From probability
theory it follows that

lim
∆Z→0

P (Zi ≤ ζ < Zi + ∆Z) = p(Zi) dZ . (6.5)

Here, p(Z) is the probability density over all numerical values Z of the statistical
variable ζ(~x, t). This function has the properties

p(Z) ≥ 0 ,

∫ ∞
−∞

p (Z) dZ = 1 . (6.6)

With the use of (6.3)-(6.6) an alternative formulaton of the ensemble average, in
terms of the probability density, can be given. For this, it is used that, by definition,
in the limit ∆Z → 0

F (ζ(n)) =

∫ ∞
−∞

F (Z) dµ(ζ(n);Z) ,

so that

<F (ζ)>=

∫ ∞
−∞

F (Z) p (Z) dZ . (6.7)
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Figure 6.1: Sketch of the probability density function.

So the ensemble average also follows from an integration over all values of the
function F (Z), weighted by the probability density function p(Z). The character-
istic shape of p(Z) is sketched in Figure 6.1.
It closely resembles a Gaussian distribution, which is fully characterized by the
mean and the standard deviation. This result is not a coincidence: it is due to the
fact that the sea surface is comprised by a large number of different wave compo-
nents. Since nonlinear terms in the equations of motion are small (albeit significant)
with respect to linear terms, these wave components are to a good approximation
statistically independent. Then, the law of the large numbers, a well-known theorem
in statistical physics, implies that the resulting probability distribution is Gaussian.
This is explained in detail in e.g. Kinsman [1965].

Ensemble averages that are often used in practice are

<ζm> : the m’th-order moments , (6.8)

with in particular: m = 1: the mean sea level and m = 2: the intensity of the sea
surface elevations. Furthermore,

s2 =<ζ2> − <ζ>2 (6.9)

is the variance and s the standard deviation of ζ(~x, t). The variance is proportional
to the total energy density <E> of the wavefield. This can be understood from the
fact that in chapter 4 it was shown that, in case that the mean sea level < ζ >= 0,
the energy density is given by <E>= ρg <ζ2>, see expression (4.20a).

The concept of ensemble average can also be applied to functions which depend on
multiple (e.g., two) variables. Consider

F [ζ(~x1, t1), ζ(~x2, t2)] ≡ F (ζ1, ζ2) , (6.10)

where ζ(~x1, t1) and ζ(~x2, t2) are the sea surface elevation at two different locations
and two different times, respectively. In this case the ensemble average is

<F (ζ1, ζ2)> = lim
N→∞

1

N

N∑
n=1

F (ζ
(n)
1 , ζ

(n)
2 )

=

∫∫
F (Z1, Z2) p (Z1, Z2) dZ1dZ2 .

(6.11)

Here, p(Z1, Z2) dZ1dZ2 is the probability that the variable ζ(~x1, t1) attains a numer-
ical value in the interval [Z1, Z1 +∆Z), whilst ζ(~x2, t2) attains a numerical value in
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the interval [Z2, Z2 + ∆Z). The joint probability density function p(Z1, Z2) obeys

p (Z1, Z2) ≥ 0 ,

∫∫
p (Z1, Z2) dZ1dZ2 = 1 . (6.12)

Its characteristic shape is sketched in Figure 6.2.

Figure 6.2: Sketch of probability density function p (Z1, Z2).

Note that it closely resembles the product of two Gaussian functions. This is again
an indication that the sea surface is built up by wave components which are (almost)
statistically independent.

An important example of a two-point ensemble average is the covariance function

H(~x,~r; t, τ) =<[ζ(~x, t)− <ζ> (~x, t)] ×
[ζ(~x+ ~r, t+ τ)− <ζ> (~x+ ~r, t+ τ)]> .

(6.13)

It yields information about the statistical dependence between the sea level fluctua-
tions (with respect to the local mean sea level) at location ~x and time t and the sea
level fluctautions at a distance ~r from this location and with a timeshift τ . In par-
ticular, H(~x,~r; t, 0) is the correlation function, H(~x, 0; t, τ) is the autocorrelation
function and H(~x, 0; t, 0) is the variance s2 defined in (6.9).

The concepts introduced so far are too abstract for practical applications. The main
reason is that nature does not provide a wave ensemble: only one realization of
the sea surface is observed. And even if this problem could be overcome, a further
complication would be that ensemble averages generally depend on both space and
time. This implies that knowledge of macroscopic variables at a certain location
and time yields no information about these variables at other locations and times.
So computing ensemble averages would be an enormous task.

In order to overcome these problems two assumptions are made. The first is that
sea surface variations are either statistically stationary or statistically homogeneous.
This means that (ensemble) averages do not depend on either time or space. In case
of a statistically stationary wavefield it is useful to introduce the concept of time
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average, which is formally defined as

F [ζ] = lim
T→∞

1

2T

∫ t+T

t−T
F [ζ(t ′)] dt ′ . (6.14)

Because of statistical stationarity this quantity is independent of the choice of time
t. Likewise, in case of statistically homogeneous processes the concept of space
average is introduced.

It should be realised that in general the time average defined in (6.14) will differ
from the ensemble average (6.2). Thus, to avoid the use of ensemble averages a
second assumption must be made, i.e., that ζ(t) is an ergodic process. This is a
special statistically stationary (or homogeneous) stochastic process for which en-
semble averages are identical to time (or space) averages. Hence, in the example
given above

F (ζ) =<F (ζ)> . (6.15)

In geophysics, the ergodic hypothesis is often a priori adopted in order to avoid
the often unmanageable concept of ensemble average. For ergodic homogeneous
processes the left-hand side of (6.14) should be interpreted as a space average. The
development is slightly more elaborated because the average involves an integration
over two spatial coordinates, rather than one time coordinate.

6.2 Statistical quantities from wave records
In case of stationary ergodic processes quantities like the mean wave height can in
principle be computed from a given time series of sea surface elevations. Of course,
there are still problems to overcome, because time series are not infinitely long and
have a finite resolution. To retrieve meaningful information from such time series
is a topic on its own and a detailed discussion is beyond the scope of this chapter.
Here, only the following remarks are made. A typical wave record will show a
sequence of zero-down and zero-up crossings of the sea surface (see Figure 6.3).

Figure 6.3: Observed wave record.

From this, a mean wave period can be computed by dividing the record length by
the number of downcrossings (or upcrossings). Concerning the record length, this
quantity should not be too long, because the sea state will not be stationary on
the long term (due to changing wind and swell conditions, etc). Thus, sea surface
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variations are only approximately stationary: their averages are still slowly varying
functions of time (i.e., they vary on a timescale that is much longer than the mean
wave period). On the other hand the record length should not be too short, other-
wise no meaningsful averages can be computed. In practice, wave records having
roughly 200 down-crossings yield useful information. This means that most wave
records have a length of 15-30 minutes. Concerning the resolution of the records
(the time interval ∆t between successive data points), it should be realised that the
highest frequency that is identified in a record is the Nyquist frequency fN = 2∆t.
So if one wishes to be able to identify waves with periods that are 10 times smaller
than the mean wave period, each mean wave period should be sampled at least 20
times.

In this way it is also possible to compute the autocorrelation function; this will be
discussed later on. Other important quantities that are extracted from wave records
are:
• the average wave height;
• the probability distribution of the height of wave crests;
• the significant wave height Hs: the average height of the 1/3 highest waves;
• the significant wave period: the average period of the 1/3 highest waves.

The probability distribution p̃(H) of the height H of wave crests is relevant for
characterising the properties of the random wavefield. Thus p̃(H)∆H is the prob-
ability that the height of a wave crest (with respect to mean sea level) is in the
interval [H,H + ∆H). Note that here the concept of wave height (rather than wave
amplitude) is used. The significant wave height is defined as

Hs =

∫∞
r
H p̃ (H) dH∫∞

r
p̃ (H) dH

with
∫ ∞
r

p̃ (H) dH =
1

3
. (6.16)

Both observations and theoretical concepts (which were developed by Longuet Hig-
gins) indicate that often p̃(H) can be approximated by a Rayleigh distribution

p̃ (H) =
H

4s2
exp

(
−H2

8s2

)
, (6.17)

with s2 = H2
rms/8 the variance of the wavefield and Hrms the root-mean square

wave height. In that case the significant wave height can be computed analytically
from by combination of equations (6.16) and (6.17). It follows∫ ∞

r

p̃ (H) dH = exp

(
−r2

H2
rms

)
, yielding Hs = 4 s . (6.18)

Note that both the significant wave height and sigificant wave period can be (and of-
ten are) estimated by means of direct visual observations (no wave record needed).
Consequently, if the Rayleigh distribution is accepted, the expression above imme-
diately yields the variance of the wavefield.
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6.3 Wave spectra: basic aspects
In the remaining part of this chapter it is assumed that sea surface elevations are both
statistically stationary and homogeneous. To analyse such processes it is convenient
to use Fourier theory. In particular, it is interesting to investigate how different
Fourier wave components contribute to the variance (proportional to the energy
density) of the wavefield. The procedure is to substitute the Fourier-transformed
quantities

ζ(~x, t) =

∫∫∫
ζ̂(~κ

′′
, σ
′′
) e−i(~κ

′′ ·~x−σ ′′ t) d~κ
′′
dσ
′′
,

(6.19)
ζ(~x+ ~r, t+ τ) =

∫∫∫
ζ̂∗(~κ, σ) ei(~κ·~r−στ) ei(~κ·~x−σt) d~κ dσ ,

in expression (6.13) for the covariance function. Here, the asterix * denotes a com-
plex conjugation. After some algebra this yields

H(~x,~r; t, τ) =

∫∫∫
F (~κ, σ; ~x, t) ei(~κ·~r−στ) d~κ dσ . (6.20)

Thus, the covariance function is the Fourier transform of a function F (~κ, σ; ~x, t),
which is defined as

F (~κ, σ; ~x, t) =

∫∫∫
χ(~κ, σ;~κ ′, σ ′) <ei(~κ

′·~x−σ ′t)> d~κ ′ dσ ′ , (6.21a)

χ(~κ, σ;~κ ′, σ ′) = ζ̂∗(~κ, σ) ζ̂(~κ− ~κ ′, σ − σ ′) . (6.21b)

The function F (~κ, σ; ~x, t) is called the wave vector-frequency spectrum. Its physi-
cal interpretation follows from noting that

s2 = H(~r = 0, τ = 0) =

∫∫∫
F (~κ, σ) d~κ dσ (6.22)

so F (~κ, σ)∆~κ∆σ is the contribution to the total variance s2 of the wavefield of
Fourier components with wave vectors in the interval [~κ,~κ + ∆~κ) and wave fre-
quencies in the range [σ, σ+ ∆σ). In other words, F (~κ, σ) is the wave variance per
wave vector and per frequency (unit m4 s).

Expression (6.21) is quite complicated to evaluate, but an alternative expression
for the full spectrum is obtained by taking the inverse Fourier transform of (6.20),
yielding

F (~κ, σ; ~x, t) =
1

(2π)3

∫∫∫
H(~x,~r; t, τ) e−i(~κ·~r−στ) d~r dτ . (6.23)

In principle, the covariance function can be calculated from observed time series
of the sea surface at many different locations. If the process is both stationary and
homogeneous the mean sea level is set to <ζ>= 0. In that case the results are
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H(~r, τ) = <ζ(~x, t)ζ(~x+ ~r, t+ τ)> ,

H(~r, τ) =

∫∫∫
F (~κ, σ) ei(~κ·~r−στ) d~κ dσ , (6.24)

F (~κ, σ) =
1

(2π)3

∫∫∫
H(~r; τ) e−i(~κ·~r−στ) d~r dτ .

In this result the covariance function and the spectrum may be considered as slowly
varying functions of space and time (see the remarks in the previous section).

In many practical cases not sufficient data is available to compute the full wave
vector–frequency spectrum, but still reduced spectra can be calculated. In case that
data are available at a specific time in a spatial domain (e.g., from stereophotogra-
phy) it is possible to compute the wave vector spectrum, defined as

F (~κ) =

∫
F (~κ, σ) dσ . (6.25)

Here, the notation is adopted that the type of the spectrum is determined by the
dependent variables.
From equation (6.24) it follows

H(~r, 0) =

∫∫
F (~κ) ei~κ·~r d~κ , so F (~κ) =

1

(2π)2

∫∫
H(~r, 0) e−i~κ·~r d~r . (6.26)

This shows that the wave vector spectrum is the Fourier transform of the correlation
function. Likewise, in case that timeseries at a specific location are available, it is
possible to compute the frequency spectrum, defined as

F (σ) =

∫
F (~κ, σ) d~κ =

1

2π

∫ ∞
−∞

H(0, τ) eiστ dτ , (6.27)

where in the last step (6.24) has been used. The frequency spectrum (unit m2s) is
the Fourier transform of the autocorrelation function and it describes the variance
per frequency, such that the intergral of the spectrum yields the total variance. A
characteristic shape of the frequency spectrum of wind waves was already shown in
Figure 1.9(a) in the introductory chapter.

If the wavefield is considered as approximately linear, which is often a valid as-
sumption, then a relation can be derived between the frequency spectrum and the
wavenumber spectrum F (κ), where κ = |~κ|. This follows from application of the
linear dispersion relation. In that case the full wave vector-frequency spectrum
given in (6.27) reduces to

F (~κ, σ) = F (~κ) δ(σ − σ ′) with σ ′ = σ ′(κ) ,

i.e., it only is nonzero for frequencies that satisfy the dispersion relation. Next,
introduce polar coordinates κ and θ, it thus follows that

F (σ) =

∫ 2π

0

∫ ∞
0

κF (κ, θ) δ(σ − σ ′) dκ dθ .
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Finally, use that dσ ′ = cgdκ, with cg the group velocity, such that the integration
over κ is replaced by an integration over frequency σ ′ . The result is

F (σ) =
κ(σ)

cg(σ)

∫ 2π

0

F (κ, θ) dθ =
κ(σ)

cg(σ)
F (κ) . (6.28)

It should be realised that this result is not exact, because nonlinear interactions
between different wave component can only be ignored to first order in the wave
steepness.

6.4 Wave spectra; practical aspects
In section 6.3 it was already explained that frequency spectra can be computed as
a Fourier transformation of a measured autocorrelation function. A typical result
is shown in Figure 6.4. The autocorrelation function shows a damped oscillation,
where the e-folding time of the damping is a measure of the correlation time (or
memory timescale) of the wavefield. The period of the oscillation is a measure
of the dominant wave period and its inverse is in fact the peak frequency in the
spectrum (right subplot).

(a) (b)

Figure 6.4: Left: measured autocorrelation function from a wave
record. Right: corresponding frequency spectrum. From Phillips
[1977].

In practice, often an alternative method is used to compute the spectrum, which
uses (6.21). In case of a single wave record, only the frequency spectrum can be
computed. In that case the relevant expressions to be considered are

ζ̂(σ) =
1

2π

∫
ζ(t) e−iσt dt ,

as is obtained from inverting the reduced version of expression (6.19), and

F (σ) =

∫
ζ̂ ∗(σ) ζ̂(σ − σ ′) <e−iσ

′
t> dσ

′
.
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Note that ζ̂(σ) has the unit ms. Now, a wave record is a discrete time series having
a sampling time ∆t and a finite length N ∆t, where N is the number of points. By
discretization of the expressions given above it follows

am ≡ ζ̂(m∆σ) ∆σ =
N−1∑
n=0

ζ(n∆t) e−2πimn/N

and

F (m∆σ) =
|am| 2

∆σ
m = −N

2
, . . . , 0, . . . ,

N

2
.

In other words, apply a Fourier transformation to the time series, then the value of
F (σm) at the frequency σm = m∆σ is the squared absolute value of the complex
amplitude am, sampled at frequency σm, divided by the frequency band ∆σ =
2π/(N∆t).

In processing data of wind waves in deep water, measured frequency spectra are
often fitted to a function of the form

F (σ) = αF1 (σ) F2 (σ) F3 (σ) , (6.29a)

with

F1 = σ−m , F2 = exp

[
−m
n

(
σ

σp

)−n]
, F3 = γ

exp

[
−(σ−σp)2

2ŝ2σ2p

]
, (6.29b)

where

ŝ =

{
sA if σ ≤ σp
sB if σ > σp

. (6.29c)

The fitting parameters are α,m, n, σp, γ, sA and sB. The behaviour of the functions
F1, F2 and F3 is sketched in Figure 6.5. Since the spectrum attains a maximum at
frequency σp, the latter is called the peak frequency.

Figure 6.5: Behaviour of building blocks of a generic wave fre-
quency spectrum.

The figure shows that the function F1 (and thereby parameter m) governs the high-
frequency part of the spectrum, whilst function F2 governs the low-frequency part.
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Function F3 is called the peak enhancement function, which was introduced after
the JONSWAP measuring campaign in 1973, which was already discussed in chap-
ter 1. Before 1973 it was common to work with the Pierson-Moskowitz spectrum,
hereafter abbreviated as PM-spectrum, given by

FPM = αg2σ−5 exp

[
−5

4

(
σ

σp

)−4
]
, (6.30)

which implies that m = 5, n = 4 and γ = 1 (no peak enhancement). The fitting
parameters left are α and the peak frequency. For fully developed wind waves in
deep water α = 8.1× 10−3 and σp ∼ 0.77g/U , where U is the wind speed at 10 m
above the sea surface.

The results of the JONSWAP campaign clearly indicated that this spectrum underes-
timated the energy density contained in the frequencies close to the peak frequency.
This resulted in the introduction of the peak enhancement function. From that mo-
ment on it is common to work with the JONSWAP spectrum, defined as

FJ = FPM F3 (σ) . (6.31)

Based on the JONSWAP data the three shape parameters in the peak enhancement
function turned out to have the values γ ∼ 3.3, sA = 0.07 and sB = 0.09.

In shallower water, i.e. in the coastal area, wave data are often fitted to a spectrum
that is of the type

Fsw(σ) = FJ(σ)Fcorr(σ) ,

where Fcorr is a known subspectrum that corrects for the waves being in water of
intermediate to small depth. A well-known example of such a spectrum is the TMA-
spectrum, for details see Khandekar [1989]; Lavrenov [2003].

The algebraic shape of the high-frequency range of the deep-water wave spectrum
can be understood from the fact that most of the waves in this regime gain energy
from the wind but at the same time lose energy due to whitecapping. This is due to
the fact that vertical accelerations of water particles are larger than acceleration due
to gravity, g. Based on dimension analysis, it may be expected that in equilibrium
the spectrum in this regime will depend on two parameters: σ and g. Thus, the
general shape of the spectrum will be F (σ) ∼ gµσν , with parameters µ and ν to
be determined. Now, the dimension of the frequency spectrum is (length)2× time,
which implies that µ = 2 and ν = −5. This is precisely the form of the function F1

in (6.29b).

6.5 Wave prediction

6.5.1 Empirical methods
Prediction of wave characteristics, such as significant wave height, wave period and
dominant direction of propagation, is important for ship routing, offshore industry,
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etc.. The first method was developed by Sverdrup & Munk. Although published
in 1947, the method was actualy used during World War II for planning of the
landing operations of allied forces. They realised that the wave parameters at a
certain location depend on the duration of the wind, the fetch (distance over which
a wavefield can develop, e.g., the size of a depression or the distance to the coast,
measured in the direction where the wind comes from) and the local depth. They
excluded the latter by considering wave evolution in deep water. Based on the
energy balance of waves and using observational data, they were able to derive
equations for the significant wave height and significant wave period as a function of
time (in case of unlimited fetch) and as a function of the fetch (in case of unlimited
duration). Thus, for both parameters two values were obtained and the lowest ones
were used as predictors.

Later on, this method was modified by Bretschneider and others. These models are
based on relationships of the following form:

gHs

U2
= A1 tanh

[
B1

(
gF

U2

)m1
]
,

c

U
=

gTs
2πU

= A2 tanh

[
B2

(
gF

U2

)m2
]
,

where Hs is the significant wave height, Ts the significant wave period, F the fetch,
U the wind speed at 10 m above the sea surface and A1, A2, B1, B2,m1,m2 are
parameters determined from data. Bretschneider summarised his results in clear
nomograms, of which an example is shown in Figure 6.6.

Figure 6.6: Nomogram which allows to determine significant
wave height and period as a function of wind speed, duration and
fetch.
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To determine the significant wave height and period at a specific location for a given
wind speed, duration and fetch, start in Figure 6.6 at the given wind speed, then
move parallel to the ’fetch-axis’ until the given values of either duration or fetch is
reached and read the values of Hs and Ts at that point.

It turns out that a fully developed sea state in deep water (unlimited fetch) is char-
acterised by

gHs,∞

U2
' 0.243 ,

gTs,∞
U

' 8.134 ,

which shows that Hs,∞ ∼ T 2
s,∞. More general expressions, including corrections

for waves in finite depth, are given in Komen et al. [1994].

6.5.2 Spectral wave prediction models

Spectral wave prediction models are based on an equation describing the evolution
of the frequency spectrum. In case that effects of currents on wave propagation are
neglected, this equation reads

d

dt
F (σ; ~x, t) = S(σ; ~x, t) , (6.32a)

where S represents sources and sinks. Furthermore,

dF

dt
=

∂F

∂t
+ ~∇ · (~cg F ) , (6.32b)

which shows that the energy density of the wave field is advected with the group
velocity, as was already explained in chapter 4. The function S is split into three
parts:

S(σ; ~x, t) = Sin + Snl + Sds . (6.32c)

Here, Sin describes the local input of energy due to the wind, Snl is a term that
describes the redistribution of energy within the spectrum due to nonlinear wave-
wave interactions and Sds represents dissipation of energy, which in deep water is
mainly due to whitecapping.

In the literature (cf. Khandekar [1989]) three types of models are distinguished,
called first-, second- and third-generation models. Those of the first generation ig-
nore (or at most crudely parameterize) the nonlinear transfer function Snl. Although
used up to 1990, their drawback is that they can not describe the decrease in peak
frequency with increasing fetch or duration (see Figure 1.13) and the observed over-
shoot in the spectral density of a frequency band as it tends to its equilibrium value
on the long term (Figure 1.14).

Models of the second generation are based on evolution equations describing the
evolution of the parameters in the JONSWAP spectrum, i.e., α and σp (in some
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models also γ). These models account for nonlinear interactions in a parametric
way, but they only yield reliable results in case of growing waves under fairly uni-
form wind conditions. This motivated the development of third-generation models
which solve equation (6.32a) using expressions for the source/sink function which
are based on physical principles. A major problem concerned the specification of
the nonlinear transfer function Snl. Already in 1962, Hasselman had derived an ex-
act analytical expression for it, but when incorporating it in numerical models the
latter became extremly time-consuming. A major break-through was in 1985, when
Hasselman presented an efficient numerical algorithm that was able to compute the
transfer function with a good accuracy and within a reasonable amount of time. This
initiated the start of the WAM (WAve Modeller) group, lead by Hasselman, which
aimed at developing a generic third-generation model: the WAM model. Details
about the history and strcuture of this model are given in Komen et al. [1994]. The
model is used on a routine basis for prediction of ocean wind waves. The results
comprise wave spectra, but also secondary information such as significant wave
height, significant wave period, dominant direction, etc. This information is used
for ship routing and important for the offshore industry, etc..

Now, the different source/sink terms in the wave evolution equation (6.32a) are
discussed. The energy input term Sin consists of two parts:

Sin = c1(σ, U) + c2(σ)F (σ) . (6.33)

The first contribution on the right-hand side only depends on the frequency and
wind speed. According to (6.32a) this term describes linear growth of waves in
time, as is governed by the resonance mechanism of Phillips, which was mentioned
in chapter 5. The second term on the right-hand side of (6.33) describes exponen-
tial growth of the energy density per frequency component. The underlying physi-
cal mechanism responsible for this term is the shear instability mechanism of Miles
(see chapter 5). The final expressions given in secion 5.4 even reveal a full analy-
tical expression for coefficient c2(σ). In practical simulations often a correction is
applied to yield better forecasts.

The theory of nonlinear wave-wave interactions is quite extensive and complicated.
To derive the expression for the term Snl in (6.32a) it is necessary to analyse the
spectral form of the energy balance of a weakly nonlinear wavefield. Here, only a
few essences will be briefly sketched. Consider two waves with wave vectors ~κ1, ~κ2

and frequencies σ1, σ2. Assume that they are linear deep water gravity waves, hence
they obey the dispersion relation σ2

i = gκi. Now, quadratic nonlinear terms in the
equation of motion cause these two waves to interact and generate new wave com-
ponents that have a wave vector ~κ3 = ~κ1±~κ2 and frequency σ3 = σ1±σ2, as is illus-
trated in Figure 6.7. For this wave to be resonantly excited (and obtain an apprecia-
ble amplitude) it should be free wave. However, it can be proven that σ3 and κ3 can
not be chosen such that they obey the dispersion relation. In other words, quadratic
wave interactions are nonresonant. It turns out that resonant forcing are due to the
presence of cubic nonlinear terms in the equations of motion. They cause three free
waves to interact and generate new free waves. Thus, resonant wave quartets are
present, as sketched in Figure 6.8.
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Figure 6.7: A triad wave interaction.

Figure 6.8: A resonant wave quartet.

These wave quartets obey the resonance conditions

~κ4 = ~κ1 ± ~κ2 ± ~κ3 , σ4 = σ1 ± σ2 ± σ3 σ2
i = g κi . (6.34)

This description indicates that, for a specific frequency, part of the function Snl

describes the gain of energy density due to the transfer of energy to this wave by the
interaction of three other waves. Schematically, this contribution is written as

Snl,1(σ) =

∫∫∫
F (σ1)F (σ2)F (σ3) T1(σ1, σ2, σ3) dσ1 dσ2 dσ3 , (6.35a)

i.e., the product of three energy densities, multiplied by a coupling coefficient T1

and integrated over all possible wave interactions.

Any wave component that contains substantial energy density will also actively take
part in nonlinear interactions with other waves. In this way energy is transferred
from the wave to new waves. This is represented by a local energy loss term due to
wave interactions of the form

Snl,2(σ) = F (σ)

∫∫
F (σ1)F (σ2) T2(σ, σ1, σ2) dσ1 dσ2 . (6.35b)

The final result is that

Snl = Snl,1 + Snl,2 and
∫
Snl (σ) dσ = 0 , (6.35c)

where the last expression indicates that nonlinear wave-wave interactions only cause
internal redistribution of energy. The algorithm developed by Hasselman, which
was already mentioned, allows for an effective computation of these wave inter-
actions in a numerical models. Often, reductions in the number of interactions is
needed for reasons of efficiency, but still accurate results are obtained.
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Figure 6.9: Source/sink functions in the energy balance as a func-
tion of wave frequency.

The formulation of the dissipation function Sds is to a large extent based on empir-
ical knowledge. This is due to the fact that the loss of energy by wave breaking is
poorly understood. Since shorter waves are usually steeper than long waves, the first
are most susceptible to breaking. Therefore, dissipation will mainly take part in the
high-frequency regime of the spectrum. This can also be seen in Figure 6.9 which
shows the three function Sin, Snl and Sds as a function of frequency f = σ/(2π).
This figure also shows that nonlinear interactions cause a transfer of energy from
the short waves to longer waves and thereby explain the observed decrease in the
peak frequency with increasing fetch (or duration of the wind).

Third-generation models, like the WAM model, also yield information about the
directional spreading of waves. This is done by calculating a frequency-direction
spectrum of the form

F (σ, θ) = F (σ) I(θ) , (6.36a)

with I(θ) the directional spectrum. Typical formulations for I are

I(θ) =

[
Îp cosp(θ − θd) |θ − θd| < π

2

0 for other values of θ ,
(6.36b)

where Îp is such that
∫
I(θ) dθ = 1, p is a parameter and θd the dominant wave

direction. Often p = 2, yielding Îp = 2/π. A separate equation specifies the
evolution of the dominant wave direction as a function of the initial angle and of the
wind direction.
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Part B

Long waves and tides
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Chapter 7

Long waves: specific topics

In this chapter an overview of forthcoming topics is presented. First, consider Fig-
ure 7.1 that shows the registration of sea surface elevations at different locations in
the world.

Figure 7.1: Sea-level variations at selected ports, for March 1936.
From Defant [1961].

• How can the manifestation of tides be explained?

in particular the diurnal and semi-diurnal components, as well as the spring-
neap cycle. The dominant tidal constituent in the North Sea is the semi-
diurnal lunar (M2) tide with a period T = 12 h 25 m. Addressing this problem
requires a detailed analysis of tidal forces caused by the moon and sun.
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Next, consider Figure 7.2B, which shows the co-amplitude lines of the surface
tide in the North Sea.

Figure 7.2: Co-phase lines (A) and co-amplitude lines (B) of the
semi-diurnal tide in the North Sea. From Bowden [1983].

• Why are the largest tidal amplitudes observed near the coast and why are the local
variations in tidal amplitudes so large?

The tidal range in the Gulf of St Malo is more than 10 m. Here, a commercial
power station is in use. The largest tidal range occurs in the Bay of Fundy
(see Figure 7.3). Note also the strong variation of tidal characteristics in that
area.

• How to understand the presence of amphidromic points (no tidal variations and
why does the tide rotate cyclonically around such points?

This behaviour can be observed in both Figure 7.2A and in Figure 7.4.

The presence of amphidromic points is due to the fact that tidal forcing gener-
ates so-called Kelvin waves. The latter are gravity waves modified by Coriolis
effects. They propagate along the coast, which (on the northern hemisphere)
is to the right when looking in the direction of wave propagation. Their am-
plitudes decrease exponentially with increasing distance to the coast.
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Figure 7.3: Location of the Bay of Fundy (east Canadian coast). From
LeBlond and Mysak [1978]. The bold numbers indicate dominance of
different tidal constituents (1=semi-diurnal, 2=mixed, 3=mainly semi-
diurnal, 4=diurnal).

Figure 7.4: The M2 tide as computed from a numerical model. The
phase is shown by solid lines marked in Greenwich hours, and the range
is shown by dashed lines, in centimetres. From Gill [1982]. In the last
decade, numerical models have undergone major improvements because
data obtained from satellites allowed for extensive validation.



Chapter 8

Equations of motion and boundary
conditions

For studying the basic properties of long waves and tides it is possible to use sim-
plified versions of the full equations of motion for the ocean. The latter have been
derived in previous courses (Geophysical Fluid Dynamics), see also standard text
books such as Apel [1987]; Pedlosky [1987]; Cushman Roisin and Beckers [2011],
and are assumed to be known. Below, a brief summary of the major simplifications
is given.

For modelling surface waves it is sufficient to analyse a homogeneous fluid, i.e. its
density

ρ = constant. (8.1)

This implies that baroclinic features, such as internal waves, will be filtered. Note
that this is the same assumption as was used to describe short surface waves, see
equation (2.1) in chapter 2.
The dynamics of such a fluid is governed by the continuity equation (conservation of
mass) and the momentum equations (Newton’s second law); thermodynamic effects
do not play a role.

The resulting equations are further simplified by imposing the following assump-
tions:

I. The f -plane

The horizontal length scale (horizontal means: parallel to the earth’s surface)
of the phenomena under investigation are considered to be small with respect
to the radius of the earth. This implies that the dynamics are hardly influ-
enced by the curvature of the earth. It is then convenient to choose a local
Cartesian coordinate system near a central latitude ϕ = ϕ0. Here, x, y and
z are coordinates along axes which point in the west-east-, south-north and
vertical direction, respectively (see Figure 8.1). This is the so-called f -plane
assumption, with f = 2Ω sinϕ0 the constant Coriolis parameter.
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Figure 8.1: The f -plane on a rotating earth.

II. The shallow water limit

Since the horizontal length scales of the phenomena under investigation are
much larger than their vertical length scales the vertical momentum balance
reduces to hydrostatic equilibrium, i.e. a balance between pressure and grav-
ity force.

III. Ideal fluid

Effects of friction will be neglected. It should be realized that in practice long
waves are subject to friction, but in order to understand the basic properties
of these waves it suffices to ignore friction.

IV. Linear dynamics

Also, nonlinear terms in the equations of motion will be neglected. This can
be done if the typical velocity scale of water particles, U , is small compared
to the characteristic wave speed of a long wave, i.e.

√
gH , where g is the

acceleration due to gravity and H a characteristic depth. In other words, the
Froude number

Fr ≡
U√
gH
� 1 . (8.2)

Note that this condition is equivalent to that obtained in part A of these notes,
see equation (3.3) in chapter 3. In case that Fr is not small the profile of
the tidal wave will deform and ultimately breaking will occur (example: tidal
bores in estuaries).

V. Depth-averaged formulation

Observations reveal that the flow field of long waves and tides has a vertical
structure. Nevertheless, to understand the basic properties of long waves it
suffices to consider a model that only describes the depth-averaged motion.

VI. Constant depth

The bottom is assumed to be horizontal, such that the undisturbed water depth
is a constant.
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This results in the linear depth-averaged shallow water equations for a homogeneous
fluid on the f -plane:

∂ζ

∂t
+ H

[
∂u

∂x
+
∂v

∂y

]
= 0 , (8.3a)

∂u

∂t
− f v = −g ∂ζ

∂x
− ∂Φ

∂x
, (8.3b)

∂v

∂t
+ f u = −g∂ζ

∂y
− ∂Φ

∂y
. (8.3c)

Here, u, v are the depth-averaged velocity components in the x and y direction,
respectively and ζ is the elevation of the free surface. Furthermore, g is the acceler-
ation due to gravity, the terms −∂Φ/∂x,−∂Φ/∂y model as yet not specified forces
per volume unit (e.g. tidal forces) with Φ the corresponding potential. A situation
sketch (side-view) is shown in Figure 8.2.

z=ζ  (sea surface)

z=0

z=-H  (bottom)

air

water x

z

Figure 8.2: Situation sketch; side view.

Here, z = 0 is the location of the undisturbed water level, z = ζ is the interface
between water and air (free surface) and H is the constant depth. More general
formulations of this model (3D effects, friction, wind forcing, nonlinear effects,
variable bottom) are studied in the course ’Physics of coastal systems’.
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The depth averaged shallow water equations (also called 2DH equations) must be
solved in a given domain (e.g., the one given in Figure 8.3) with boundary condi-
tions.

Figure 8.3: Example of a domain with open and closed boundaries.

The conditions at closed boundaries (e.g. coastlines) read ~u ·~n = 0 (~n is the normal
vector at the boundary) and at open boundaries either the free surface or the normal
velocity is prescribed.

In the next chapter the forcing terms−∂Φ/∂x and−∂Φ/∂y in the momentum equa-
tions will be specified.
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Chapter 9

Theory of tides

9.1 Qualitative considerations
In this chapter, the forcing terms in the equations of motion that are related to
tidal forces are specified. These forces originate from gravitational forces that are
exerted by celestial bodies, in particular by the moon and the sun.

To define the tidal force, consider Figure 9.1, which shows the centre of mass M
of the earth (mass ma) and the centre of mass S of a celestial body (mass ms).
According to Newton’s gravitation law, at any given point X the celestial body exerts
a gravitational force that is directed from X to S, with a magnitude that is inversely
proportional to the squared distance between X and S. The gravitational force in M
thus causes the earth to accelerate towards S. The two bodies however do not collide,
since both of them have a velocity component in the direction perpendicular to the
line MS. The result is that earth and celestial body revolve as solid bodies about
their common centre of mass (point C in Figure 9.1). According to Kepler’s first
law these orbits are ellipses.

X 

M S 

r 
r
1 

r
0 

rrrr
0

rr

rrr
1

rr
rrrr

C C CCCCC

X 

M M

Figure 9.1: Situation sketch of two celestial bodies undergoing
a rotation about their common centre of mass C. Symbols are
explained in the text; θ is the zenith angle.

Note: for the moon (ms/ma) = 1/81.53, hence C is located close to M.
For the sun (ms/ma) = 333420, hence C is close to S.
The orbital periods follow from Kepler’s third law. They are 27.3 days (a sidereal
month) for the earth-moon and 1 year for the earth-sun.
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Consequently, in a frame co-moving with M, at any point X a resultant force exists,
being the difference between the local gravitational force and the gravitational force
in M. This resultant force is called the tidal force.

An expression for the tidal force is obtained as follows. First, define (see Figure 9.1)
the vectors ~r0 =

−−→
SM,~r1 =

−→
SX and ~r =

−−→
MX ,

so ~r1 = ~r0 + ~r and in all relevant cases r � r0.
Here e.g. r denotes the length of vector ~r.
The gravitational forces (per mass unit) at points X and M read

~Fg(X) =
−γms

r2
1

~r1

r1

, ~Fg(M) =
−γms

r2
0

~r0

r0

, (9.1)

with γ = 6.67×10−11 Nm2kg−2 the gravitation constant. Hence, the tidal force per
unit of mass at location X is

~K = ~Fg(X)− ~Fg(M) = −γms

(
~r1

r3
1

− ~r0

r3
0

)
. (9.2)

A qualitative impression of both the length and direction of these forces at various
locations at the surface of the earth is shown in Figure 9.2.

Figure 9.2: Gravitational force ~Fg(X), force −~Fg(M) and tidal force ~K at
different locations at the surface of the earth.

The largest tidal forces occur in the so-called zenith point and nadir point. For
r = R, with R ∼ 6.4× 106 m the radius of the earth, it follows∣∣∣ ~K∣∣∣

max
= γms

[
1

(r0 −R)2
− 1

r2
0

]
' 2γmsR

r3
0

, (9.3)

where in the last step it has been used that R� r0.
From this result it can be concluded that

• The ratio

Kmax,sun

Kmax,moon
=

msun

mmoon

(
r0,moon

r0,sun

)3

' 1.98× 1030

7.33× 1022

(
3.81× 108

1.49× 1011

)3

' 0.46 ,

so tidal forces due to the sun are less than half as strong as those caused by
the moon. This is a consequence of the ∼ r−3

0 dependence.
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• In the zenith and nadir point the tidal force is directed perpendicular to the
surface of the earth and it turns out that e.g.

Kmax,moon

g
' 1.15× 10−7 .

So the vertical momentum balance is hardly affected by the presence of tidal
forces. Only the horizontal component of the tidal force (called the traction)
is dynamically important. Figure 9.2 shows that the latter drive the water to-
wards the zenith and nadir point. This consideration leads to the manifestation
of the equilibrium tide, consisting of two high-water areas and two low-water
areas.

• In nature the equilibrium tide is not realised, because of

– the rotation of the earth about its axis, in combination with inertial
effects: the phase velocity of tidal waves in the ocean is smaller than
the speed by which zenith and nadir points move over the surface of the
earth;

– the presence of continents, which in most areas do not allow for a freely
propagating tidal wave around the earth (apart from the southern ocean);

Qualitatively, the following picture emerges. At first, assume that the celestial body
is in the equatorial plane of the earth (see Figure 9.3).

Figure 9.3: Equilibrium tide in case the celestial body is in the
equatorial plane of the earth. Here Ω is the angular velocity of the
earth about its axis.

Due to the rotation of the earth about its axis (with angular velocity Ω = 7.3 ×
10−5 s−1), the zenith and nadir points move over the earth’s surface. In case of
tidal forcing by the sun, at each fixed location on the earth two high-waters and
two low-waters pass each 24 hours. This causes the presence of the so-called
S2 tide, or semi-diurnal solar tide, with a period of TS2 = T�/2, with T�/2 a
solar day. Likewise, the forcing due to the moon results in the presence of the
semi-diurnal lunar tide, or M2 tide, with a period of TG/2=12 h 25 m and TG a lunar
day. This period is slightly longer than that of the S2 tide, because after one revo-
lution of the earth about its axis the orientation of the moon with respect to a fixed
point at the earth’s surface is different because the moon rotates about the earth.
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More details and further explanation are given in the appendix at the end of this
chapter.

The M2 tide and S2 tide are also the principal cause of the spring-neap tidal cycle
(see Figure 9.4).

Figure 9.4: Generation of spring tides and neap tides.

If the sun and moon are in line, i.e. at full moon (FM) and new moon (NM), the M2

tide and S2 tide reinforce eachother and result in spring tide. During the first and
last quarter (FQ, LQ) the tidal components are out of phase, resulting in neap tide.
The period between successive spring tides is 14 days, 18 h 22 m, i.e., half a lunar
period. Note that the lunar period is longer than the sidereal month of 27.3 days, as
it also involves the effect of the earth rotating about the sun, see the appendix at the
end of this chapter. In nature spring tide occurs some time (about 1 day) after full
moon and new moon which is due to inertial effects.

Besides the M2 and S2 tide there are many (hundreds of) other tidal consituents. A
number of them were already identified in 1778/79 by Laplace; in 1931 a further
refinement was given by Doodson. An overview of the history of tidal theory can
be found in Cartwright [1998]. Most of them are related to two important aspects,
which are discussed below.

I. The eclipse (the plane of the earth’s orbit around the sun) and the plane of the
moon’s orbit around the earth do not coincide with the equatorial plane. The
declination angle between the plane of the lunar orbit and equatorial plane is
28o and that of the eclipse and equatorial plane is 23.5o. This implies that, at a
fixed point on the earth’s surface, the highest position of the moon (sun) with
respect to the surface varies sinusoidally with a period of 27.3 days (1 year).
The consequence is that long-periodic tidal consituents are generated (with
periods of half a sidereal month and half a solar year), as well as diurnal
components. Figure 9.5 shows that in case the line between the earth’s centre
and the celestial body is not in the equatorial plane, a fixed point at earth
experiences an alternation of ’high’ high-water and ’low’ high-water. The
result is thus a daily inequality of the tide, of which the amplitude varies
periodically, because the angle δ in Figure 9.5 is time-dependent. Also other
declination tides are generated (for more details see the appendix).

II. The lunar orbit around the earth (and the earth’s orbit around the sun) are el-
lipses. Consequently, the distance between the earth’s centre and the celestial
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Figure 9.5: Diurnal inequality of tides due to declination effects.

bodies varies in time. Lunar tidal forces are about 20% larger than average
if the distance earth-moon is at its minimum (perigee). Likewise, when the
distance reaches its maximum (apogee) the lunar tidal force is reduced by
20%. For the sun this effect is quite weak: the variations are less than 1%.
This effect leads to the generation of elliptical tides, details are discussed in
the appendix.

9.2 Derivation of the tidal potential
The qualitative considerations of the previous section will now be quantified by
deriving a mathematical expression of the tidal potential, to be incorporated in the
equations of motion. The procedure closely follows that described in Platzman
[1982].

Since gravitational and centrifugal forces are both potential forces, it is clear that
the tidal force can be written as the gradient of a potential:

~K = −~∇Φ (9.4)

and with the use of equation (9.2) it follows

dΦ =
γms

r3
1

~r1 · d~r −
γms

r3
0

~r0 · d~r .

From Figure 9.1 it can be inferred that

Φ =

∫ r1

r0

γms

r′1
2 dr′1 +

∫ r

0

γms

r2
0

cos θ dr ,

where the integration limits have been chosen such that Φ(r = 0) = 0.
Development yields

Φ = −γms

[
1

r1

− 1

r0

− r cos θ

r2
0

]
. (9.5)
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The distance r1 can be expressed in the variables r0, r and θ: from the definition of
vector ~r1 and Figure 9.1 it follows

1

r1
=

1

r0

[
1 − 2

r

r0
cos θ +

(
r

r0

)2
]−1/2

(9.6)

Now, the ratio (r/r0) < 1, so the right-hand side can be expanded with the use of
the binomial formula. The result is[

1 − 2
r

r0
cos θ +

(
r

r0

)2
]−1/2

= 1 +
1

2
(2 cos θ − r

r0
)
r

r0
+ . . .

+
1 · 3 · 5 · . . . (2n− 1)

2n n!

(
r

r0

)n (
2 cos θ − r

r0

)n
+ . . .

After collection of terms with equal powers of (r/r0)n it appears that[
1 − 2

r

r0
cos θ +

(
r

r0

)2
]−1/2

=
∞∑
n=0

Pn(cos θ)

(
r

r0

)n
, (9.7)

where

Pn(x) =
1

2n

[n/2]∑
m=0

(−1)m
(
n
m

)(
2n− 2m

n

)
xn−2m

are Legendre polynomials of degree n and [n/2] denotes the nearest lowest integer
of n/2. So,

P0(cos θ) = 1 , P2(cos θ) = 1
2(3 cos2 θ − 1) ,

P1(cos θ) = cos θ , P3(cos θ) = 1
2(5 cos3 θ − 3 cos θ) ,

etc. Substitution of (9.6)-(9.7) in expression (9.5) yields

Φ(r, θ) = −γms

r0

∞∑
n=2

Pn(cos θ)

(
r

r0

)n
≡

∞∑
n=2

Φn(r, θ) . (9.8)

Note that the polynomials P0 and P1 do not appear in this result.

Now, realise that (r/r0)� 1 : in case of the moon and sun this ratio is ∼ 0.01 and
∼ 10−5, respectively. Hence, for practical applications the series expansion for the
tidal potential can be truncated after the first term. The final result is

Φ(r, θ) = Φ2(r, θ)

[
1 +O

(
r

r0

)]
,

(9.9)
Φ2(r, θ) = −γmsr

2

r3
0

3

4

[
cos 2θ +

1

3

]
.

The potential Φ2(r, θ) consists of two parts.
• A constant term (independent of zenith angle θ), which contributes to a per-

manent deformation of the geoid; this term is not relevant from a dynamical
point of view.
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Figure 9.6: Contour lines of the contribution to tidal potential Φ2(r, θ) that is
proportional to cos 2θ. Values are scaled by γms/r0 and the arrows indicate
the corresponding forces.

• A contribution that is proportional to cos 2θ.
In Figure 9.6 equipotential lines are sketched of this contribution (scaled by
γms/r0); the arrows indicate the corresponding forces.

Compare this result with that shown in Figure 9.2. Again, the presence of two high-
water and low-water areas can be seen.
Higher-order contributions in the tidal potential cause other contributions, e.g., Φ3

generates diurnal and three-day tides (with very small amplitudes).
For practical use, the tidal potential must be expressed in terms of coordinates de-
fined on a rotating earth, i.e., longitude λ and latitude ϕ. Consider to that end
Figure 9.7.

equatorial


plane
M

S : projection cele

δ : declination ang

θ : zenith angle

Figure 9.7: Situation sketch.

When projected onto the equatorial plane, the situation is as is sketched in Fig-
ure 9.8.

west east

Figure 9.8: Situation sketch in the equatorial plane.
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Here

S ′ : projection of S onto equatorial plane ,
X ′ : projection of X onto equatorial plane ,
MG′ : Greenwich meridian ,
T : hour angle (position celestial body)

(from east to west) .

So the longitude of point S is 2π−T and its latitude is δ. Due to the earth’s rotation
dT/dt = 2π/(solar day), which is 15o/(mean solar hour), plus the time change of
the mean longitude (increases by 2π/solar year).

The zenith angle can now be expressed in terms of λ, ϕ, δ and T by applying the
cosine-rule to the vectors

−−→
MX and

−−→
MS. The result is that

cos θ = sinϕ sin δ + cosϕ cos δ cos(T + λ) . (9.10)

Substitution of this result in (9.8) and finally setting r = R (mean earth radius)
yields

Φ2 = Φ
(0)
2 + Φ

(1)
2 + Φ

(2)
2 , (9.11a)

where

Φ
(0)
2 = −3

4

γmsR
2

r3
0

1

3

[(
1− 3 sin2 ϕ

) (
1− 3 sin2 δ

)]
, (9.11b)

Φ
(1)
2 = −3

4

γmsR
2

r3
0

sin 2ϕ sin 2δ cos(T + λ) , (9.11c)

Φ
(2)
2 = −3

4

γmsR
2

r3
0

cos2 ϕ cos2 δ cos[2(T + λ)] . (9.11d)

The dimensional prefactor in all expressions is known as the Doodson factor.

Note that Φ
(0)
2 is independent of longitude, Φ

(1)
2 is periodic in (T + λ) and Φ

(2)
2 is

periodic in 2(T +λ). They describe tides of the first, second and third kind, respec-
tively, a nomenclature that was introduced by Laplace (1799).

The potential Φ
(0)
2 describes long-periodic tides due to temporal variations in the

angle δ (declination effects) and variations in the distance r0 (elliptical effects). A
contour plot of Φ

(0)
2 on the earth’s surface (in case of δ = 0) is shown in Figure 9.9.

The values of the potential are negative for latitudes ϕ between±35.3o (dashed area
in Figure 9.9) and positive outside that area. This is a zonally harmonic function.
The corresponding forces are directed from poles to the equator.

The potential Φ
(1)
2 , which is periodic in the hour angle T , has quite a different struc-

ture. In case that the celestial body is the sun (moon) this potential is periodic
in time with a period of 24 h (24 h 25 m). The amplitudes of the corresponding
diurnal tides vary with the declination angle and vanish if δ = 0 (celestial body in
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Figure 9.9: Contour lines of the tidal potential Φ
(0)
2 , defined

in (9.11b), for δ = 0. Dashed areas indicate negative values of
the potential.

Figure 9.10: Contour lines of the tidal potential Φ
(1)
2 , defined in (9.11c), for

δ > 0. Dashed and white areas indicate negative and positive values of the
potential, respectively.

the equatorial plane).
The potential is a terresal function; a contour plot for T = 0 and fixed δ > 0 is
sketched in Figure 9.10.

Finally, the second-order potential Φ
(2)
2 describes the most important tidal compo-

nents on earth, i.e., the semi-diurnal tides. The corresponding tidal forces have their
largest amplitudes if δ = 0. A contour plot of Φ

(2)
2 is sketched in Figure 9.11.

Figure 9.11: Contour lines of the tidal potential Φ
(2)
2 , defined in (9.11d), for

δ > 0. Dashed and white areas indicate negative and positive values of the
potential, respectively.
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9.3 Tidal forces in the equations of motion; equilib-
rium tide

The information obtained in the previous section can now be used to introduce tidal
forces in the equations of motion of chapter 8. This force is given in (9.4), whilst
the tidal potential is defined in (9.8)-(9.11).

In practice the concept of equilibrium tide is used instead of the tidal potential. This
is the water level, measured with respect to an equipotential surface of the gravity
force, that would be attained if the earth was entirely covered by water and the ocean
would instantaneously respond to tidal forces. A relation between the equilibrium
tide and tidal potential is derived as follows.
Consider first the situation in the absence of tides. In that case the equipotential
surfaces of gravity are given by r = r∗(λ, ϕ), such that

Φg(r∗, λ, ϕ) = constant ,

with Φg the gravity potential.
Next, define r = r∗ + ζe as the imaginary water level that would result from the
presence of tidal forces. The corresponding surface is described by

Φg(r∗ + ζe, λ, ϕ) + Φ(r∗ + ζe, λ, ϕ) = constant .

The fact that ζe � r allows the first term to be expanded in a Taylor series. The
result is

ζe

(
∂Φg

∂r

)
r=r∗

+ Φ(r∗ + ζe, ϕ, λ) = constant , (9.12)

where the first term of the Taylor series is incorporated in (a new value of) the
constant. Since(

∂Φg

∂r

)
r=r∗

= g (9.13)

and the constant in (9.12) is chosen such that ζe = 0 if Φ = 0. This yields

ζe = −Φ

g
. (9.14)

If in this expression the tidal potentials of the moon and sun are substituted it turns
out that the amplitudes of the corresponding equilibrium tides are 36.4 cm (moon)
and 16.8 cm (sun).
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Appendix: celestial mechanics and tides
Some a priori definitions:

T� : solar day = 24 h, frequency ω� = 2π/T� ,
Td,s: sidereal day= 0.9973 solar day, frequency Ω = 2π/Td,s ,
T2 : solar year= 365.242 solar days, frequency ω2 = 2π/T2 ,
Tm : lunar period= 29.5306 solar days .

• After 1 solar day a fixed point at the earth’s surface has the same orientation
with respect to the sun.

• After 1 sidereal day a fixed point at the earth has the same orientation with
respect to a fixed star. So a sidereal day is T2/(1 + T2) solar days, because in
one year the earth makes a complete revolution about the sun.

• After 1 lunar period the earth-moon system has the same orientation with
respect to the sun.

First, the length Tm,s ≡ T1 of the sidereal month will be determined. This period of
the revolution of the earth-moon around their common centre of mass will be shorter
than the lunar period, since it does not involve the rotation of the earth-moon system
about the sun.
Figure 9.12 shows that after one lunar period Tm the moon has rotated over an angle
(2π+α) with angular velocity ω1 = 2π/T1 (additional 2π due to the rotation of the
moon about the earth).

So
moon

earth

sun
α

Figure 9.12: Sketch showing the ro-
tation of the moon and earth about
the sun.

2π + α = (2πTm)/T1 .

In the same period the earth has rotated over an
angle α with angular velocity ω2 = 2π/T2,
so

α = (2πTm)/T2 .

From these two relations it follows

1

Tm
+

1

T2

=
1

T1

⇒ T1 ≡ Tm,s = 27.3216 solar days .

Now, an expression can be derived for the ’lunar day’ TG. After a time TG a fixed
point at the earth has again the same orientation with respect to the moon (see
Figure 9.13).
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earth X

X’
β

moon

Figure 9.13: Sketch illustrating the movement of the moon for an observer at
the rotating earth.

After one lunar day a fixed point at the earth has rotated about the earth’s centre
over an angle (2π + β) with angular velocity Ω = 2π/Td,s (additional 2π because
of the rotation of the earth about its axis). So

2π + β =
2π

Td,s
TG .

In the same time the moon has rotated over an angle β with angular velocity ω1, so

β =
2π

T1

TG .

Combination of the last two expressions yields

TG =
Td,s

1− (Td,s/T1)
, or TG = 24h 50m 28s .

In this chapter it has been shown that the main lunar and solar tidal constituents are
the M2 tide (frequency 2ωG) and the S2 tide (frequency 2ω�, respectively. Below,
other tidal constituents are listed and their origin is briefly explained.

I. Declination effects cause

• long-periodic tides, viz. the

Mf tide (lunar): frequency 2ω1, period T/2 ' 13.6 days ,
Ssa tide (solar): frequency 2ω2, period T2/2 ' 182.6 days .

• diurnal tides. Locally, the diurnal forcing will show modulation be-
haviour because the declination angle varies with time. The diurnal tidal
force component caused by the moon is proportional to

cos(ωG t) cos(ω1 t) =
1

2
cos[(ωG − ω1)t] +

1

2
cos[(ωG + ω1)t] ,

which results in the manifestation of the

O1 tide (moon), frequency ωG − ω1, period 25.823 h ,
KM

1 tide (moon), frequency ωG + ω1 ≡ Ω, period 23.93 h ,
P1 tide (sun), frequency ω� − ω2, period 24.07 h ,
KS

1 tide (sun), frequency ω� + ω2 ≡ Ω, period 23.93 h .
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• additional semi-diurnal constituents:

KM
2 tide, frequency 2(ωG + ω1) = 2Ω, period 11.97 h ,

KS
2 tide, frequency 2(ω� + ω2) = 2Ω, period 11.97 h .

In practice, the KM
1 and KS

1 tide are indistinguishable and combined into one
K1 tide. Likewise, the KM

2 and KS
2 constituents are combined into one K2

tide.

II. Due to the ellipsoidal orbits of celestial bodies elliptic tides are generated.
Considering the orbit of the moon around the earth, it turns out that this ellipse
itself rotates about the earth in a period of 8.85 year (frequency ω3), as is
illustrated in Figure 9.14.

Figure 9.14: Sketch illustrating the orbit of the moon around the earth.
Here, the full apogee cycle is completed in 8 sidereal months, in reality
it takes about 118 sidereal months.

The frequency of the apogee cycle is (ω1 − ω3), the period is 27.56 days. In
case of the moon the additional tidal components are

Mm tide, frequency ω1 − ω3, period 27.56 days ,
N2 tide, frequency 2ωG − (ω1 − ω3), period 12.66 h ,
L2 tide, frequency 2ωG + (ω1 − ω3), period 12.19 h ,
QS

1 tide, frequency ωG − ω1 − (ω1 − ω3), period 26.87 h ,
2N2 tide, frequency 2ωG − ω1, period 12.90 h ,

and in case of the sun

Sa tide, frequency ω2, period 365.25 days ,
T2 tide, frequency 2ω� − ω2, period 12.01 h ,
π1 tide, frequency ωG − 2ω2, period 24.13 h .

III. There are many other tidal constituents, in particular

• The 18.6 nodal year cycle: in this period the intersection points of the
lunar orbital plane and the equatorial plane rotate about the earth’s cen-
tre. This cycle is recognizable in both sea level variations and in marine
deposits.
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• The following tidal constituents are also significant along the Dutch
coast:

µ2 tide, frequency 2ωG + (ω1 − ω2), period 12.87 hours ,
ν2 tide, frequency 2ωG + (ω1 − 2ω2 + ω3), period 12.62 hours .

The variational µ2 tide is caused by the fact that the angular velocity
of the moon about the earth is slightly larger during full and new moon
than during the first and last quarter.
The ν2 (evection) tide is excited because the sidereal month is not a
constant (about 27.3 days), but it shows minor variations due to the in-
fluence of the sun on the revolution of the earth-moon system about their
common centre of mass.

• Other important constituents are

M4 tide, frequency 2ωG, period 6h 13m ,
MS4 tide, frequency (ωG + ω�), period 6h 6m ,
M6 tide, frequency 3ωG, period 4h 8m .

The important difference with all previous constituents is that these
components are not excited by external tidal forces, but rather they are
forced internally in the sea by nonlinear terms in the equations of mo-
tion. For example, the M4 tide is due to self-interaction of the M2 tide,
the MS4 is due to nonlinear interaction between the M2 and S2 tide, etc.
The underlying mechanism is discussed in the course ’Physics of coastal
systems’.

Further details are given in ’Getijtafels Nederland’, http://www.getij.nl, LeBlond
and Mysak [1978] and Platzman [1982].
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Chapter 10

Free modi in a channel: Kelvin waves
and Poincaré waves

10.1 Model formulation and general solutions
In order to understand the response of the ocean to tidal forcing, it is important
to first identify and understand the free waves (i.e., no forcing and no dissipation)
of the system. The reason is that these waves provide for the adjustment to equi-
librium (see course Geophysical Fluid Dynamics) and also, when the forcing has
a component with the same length and timescale of a free modi, resonance may
occur. Here, the free modi of the linear 2DH shallow water equations will be inves-
tigated. The domain is an open channel with width B and a flat, horizontal bottom
(see Figure 10.1). This problem is also discussed in Gill [1982]; Pedlosky [1987].

x

y

Figure 10.1: Situation sketch.

The equations of motion follow from equation (8.3a) and read

∂u

∂t
− f v = −g ∂ζ

∂x
,

∂v

∂t
+ f u = −g ∂ζ

∂y
, (10.1)

∂ζ

∂t
+ H

[
∂u

∂x
+
∂v

∂y

]
= 0 . (10.2)

with boundary conditions

v = 0 at y = 0 , y = B . (10.3)
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From this, one equation can be derived for the free surface. The procedure is to start
from the momentum equations and derive two equations that describe the evolution
of the divergence ((∂u/∂x+ ∂v/∂y) and of the relative vorticity

ω =
∂v

∂x
− ∂u

∂y
. (10.4)

Substitution of the continuity equation in these expressions yields

∂2ζ

∂t2
+ fH ω − gH∇2ζ = 0 ,

∂ω

∂t
− f

H

∂ζ

∂t
= 0 . (10.5)

The solution of the vorticity equation is

ω =
f

H
ζ , (10.6)

where the integration constant has been chosen such that the relative vorticity van-
ishes in the absence of any motion. Note that if a fluid column is stretched (positive
elevation of the free surface) cyclonic vorticity is generated (i.e., fluid columns on
the northern hemisphere rotate anticlockwise) because of conservation of potential
vorticity.

Substitution of (10.6) in the first equation of (10.5) yields

∂2ζ

∂t2
− gH∇2ζ + f 2 ζ = 0 , (10.7)

which is known as the Klein-Gordon equation.

Next, the boundary conditions (10.3) will be expressed in terms of the free surface.
The procedure is to derive first the so-called polarisation equations for the velocity
field, which relate both u and v directly to ζ . They follow from taking linear combi-
nations of one momentum equation with the time derivative of the other momentum
equation. The results are

∂2u

∂t2
+ f 2 u = −g

{
∂2ζ

∂x∂t
+ f

∂ζ

∂y

}
,

(10.8)
∂2v

∂t2
+ f 2 v = −g

{
∂2ζ

∂y∂t
− f

∂ζ

∂x

}
and thus the boundary conditions (10.3) can be recast as

∂2ζ

∂y∂t
− f

∂ζ

∂x
= 0 at y = 0 , y = B . (10.9)

Before finding solutions of system (10.7)-(10.9) it is worthwhile to consider the
energy balance of the system. An energy equation is obtained from multiplying the
momentum equations (10.1) with ρHu and ρHv, respectively, adding the results
and finally substituting the continuity equation. This yields

∂E

∂t
+ ~∇ · ~F = 0 (10.10a)
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with

E = Ek + Ep ; ~F = ρgHζ~u , (10.10b)

Ek =
1

2
ρH(u2 + v2) ; Ep =

1

2
ρgζ2 . (10.10c)

This describes the energy balance of a column of sea water: the time evolution of
the energy density E (energy per surface area) is determined by the divergence of
the energy flux vector ~F . This flux is due to work done by pressure forces. Further-
more, the energy density consists of a kinetic part (Ek) and a potential part (Ep).
Equation (10.10) is a conservation law: in the absence of forcing and dissipation the
total energy in the domain is conserved. Note the equivalence between this result
and the energy balance (4.19a) for short waves, derived in chapter 4.

System (10.7)-(10.9) allows for solution of the form

ζ = <
{
ζ̂(y) ei(kx−σt)

}
,

(10.11)
u = <

{
û(y) ei(kx−σt)

}
, v = <

{
v̂(y) ei(kx−σt)

}
.

These are free waves, with frequency σ > 0 and wavenumber k (positive/negative
k represent waves travelling in the positive/negative x-direction) and an as yet arbi-
trary structure in the cross-channel direction. Substitution of these solutions in the
equations of motion results in the following equation for the amplitude of the free
surface:

d2ζ̂

dy2
+ α2 ζ̂ = 0 , α2 =

σ2 − f 2

gH
− k2 , (10.12a)

with boundary conditions

dζ̂

dy
+
kf

σ
ζ̂ = 0 at y = 0 , y = B (10.12b)

and

û =
g

σ2−f 2

(
kσζ̂ + f

dζ̂

dy

)
, v̂ =

−ig
σ2−f 2

(
kfζ̂ + σ

dζ̂

dy

)
. (10.13)

In fact, system (10.12) defines an eigenvalue problem. The general solution of the
differential equation is

ζ̂ = A cosαy + B̂ sinαy (10.14a)

and development of the boundary conditions then result in(
fk
σ

α
fk
σ

cosαB − α sinαB α cosαB + fk
σ

sinαB

)
·
(
A

B̂

)
= 0 . (10.14b)

This system has only non-trivial solutions if the determinant of the coefficient ma-
trix vanishes, compare with how the dispersion relation (3.6) for free short waves

91



was derived in chapter 3. In this case it follows, using the definition of parameter
α, that

(σ2 − f 2)

(
σ2

gH
− k2

)
sinαB = 0 . (10.15)

There are three roots of this equation, which will be systematically analysed in the
next sections.

10.2 Poincaré waves
Consider the root

sinαB = 0 , or αB = nπ , n = 1, 2, . . . (10.16)

of (10.15). Note that, according to (10.14a), the choice n = 0 (hence α = 0)
immediately results in ζ̂ = constant = 0, where in the last step boundary condi-
tion (10.12b) has been applied. Also, taking negative integer values for n yields
no new information: in that case the same solution is obtained if the integration
constant A→ −A.

Using definition (10.12a) of parameter α it follows

σ2 = f 2 + c2
0

(
k2 +

n2π2

B2

)
, c0 =

√
gH . (10.17)

This is the dispersion relation for discrete Poincaré waves; for fixed wavenumber k
there is a discrete set of frequencies σn. The solutions are shown in Figure 10.2.
In case that the channel width B → ∞ the variable nπ/B can be replaced by the
continuous wavenumber l; the solutions are known as Sverdrup waves.

Figure 10.2: Dispersion curves for discrete Poincaré modi.
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In Figure 10.2

a =

√
gH

f

(
=
c0

f

)
(10.18)

is the Rossby deformation radius. It is the length scale on which dynamic effects
of earth rotation are of the same order as those due to gravity. To understand this,
the general solutions (10.11) are expanded for the specific case of Poincaré waves.
With the use of equations (10.14a) and (10.17) it follows for the free surface

ζn = Zn

[
cos
(nπy
B

)
− fkB

nπσ
sin
(nπy
B

)]
cos(kx− σt− ϕn) (10.19a)

(Zn and ϕn being an arbitrary amplitude and phase, respectively) and for the veloc-
ity components

un =
Zn
H

[
gHk

σ
cos
(nπy
B

)
− fB

nπ
sin
(nπy
B

)]
cos(kx− σt− ϕn) , (10.19b)

vn =
Zn
H

[
B

nπσ

(
f2 +

gHn2π2

B2

)
sin
(nπy
B

)]
sin(kx− σt− ϕn) . (10.19c)

Figure 10.3 shows a sketch of the solution for n = 1 and specific choices for the
channel width and frequency.

Figure 10.3: Progressive Poincaré wave (n = 1 mode) in a channel of width
B = πa and frequency ω = 2kc0. Contours are of surface elevation and
arrows indicate currents. The signs are those for the northern hemisphere, so
the greatest elevations are found on the left side of the channel (facing in the
direction of propagation) where particles move anticyclonically. The nodal
line is about 65% of the way across the channel. From Gill [1982].

Note that for ka� 1 and (nπa/B)� 1 (i.e., wavelength and channel width much
larger than the Rossby deformation radius) the dispersion relation (10.17) can be
approximated by σ2 ' f 2. In this limit earth rotation effects clearly determine the
dynamics: the wave frequency equals the inertial frequency f . Such inertial waves
are commonly observed in the ocean, for example after a major change in weather
conditions.
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For ka � 1 and (nπa/B) � 1 (length scales are small compared to the Rossby
deformation radius) it follows σ2

n ' c2
0κ

2, with κ2 = k2 + (n2π2/B2) the squared
total wavenumber. In this limit the wave dynamics is fully controlled by gravity,
earth rotation does not play a role. In fact, the solutions become long gravity waves.

From dispersion relation (10.17) and Figure 10.2 it follows that Poincaré waves
have a minimum frequency which is given by

σP,min =

(
f 2 + c2

0

π2

B2

)1/2

. (10.20)

Since the major tidal frequencies have values close to the inertial frequency, it turns
out that progressive Poincaré waves can not exist in basins which are too narrow.
An example of such a basin is the North Sea (B ∼ 500 km, H ∼ 70 m, f ∼
10−4 s−1). Neverthless, Poincaré waves are important for tidal propagation in seas
and oceans having widths of the order of the Rossby deformation radius or larger,
see chapter 11.

The phase velocity and group velocity are, respectively, given by

c =
σ

k
→ c = c0

[
1 +

1

k2a2

(
1 +

n2π2a2

B2

)]1/2

,

(10.21)
cg =

∂σ

∂k
→ cg = c0

ka[
1 + k2a2 + n2π2

B2 a2
]1/2 .

In Figure 10.4 the variables c/c0 and cg/c0 are sketched as a function of ka for
nπa/B = 1.

Figure 10.4: Dependence of dimensionless phase velocity c/c0 and
dimensionless group velocity cg/c0 of Poincaré waves on ka.

Note that the group velocity is always smaller than the phase velocity. Hence the
wave envelope (and also the energy density) propagate slower than individual wave
crests. For ka � 1 (inertia-dominated waves) the phase velocity becomes infinite,
whilst the group velocity vanishes. In the gravity regime ka � 1 it turns out that
c ∼ cg ∼ c0.

Finally, the energy balance of Poincaré waves is considered. For this, the solu-
tions (10.19) are substituted in (10.10) and subsequently averaged over the width of
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the channel and over the wave phase. With < · > indicating the avarage operator,
the results are

<Ep> =
1

8
ρgZ2

n

[
1 +

c2
0k

2

σ2

B2

n2π2a2

]
,

<Ek> =
1

8
ρgZ2

n

[
1 +

B2

n2π2a2
+
f 2

σ2

(
1 +

B2

n2π2a2

)]
, (10.22)

<Fx> = <E> cg .

From this it follows:

• <Ek> larger than or equal to <Ep>: Poincaré waves generally have more
kinetic than potential energy;

• if ka� 1 the total energy almost only consists of kinetic energy;

• if ka� 1 there is equipartition of energy: <Ek>'<Ep>;

• the energy density flux is the product of the energy density and the group
velocity.

10.3 Kelvin waves
Next, the second root of equation (10.15) is analysed, i.e.

σ2 = gHk2 ( = c2
0 k

2) . (10.23)

This dispersion relation is identical to that of long gravity waves, but it comprises a
more general feature, viz. the Kelvin wave. The dispersion relation is indicated in
Figure 10.2 by the dotted lines.

For this root equation (10.12a) yields that parameter α2 = −f 2/(gH), or α =
i/a. Here, a is the Rossby deformation radius; the ’minus’ root needs not to be
considered for reasons similar as those given in the previous section. Development
of (10.11)-(10.12) then yields B̂ = ±iA, where the positive (negative) root applies
to σ/k > 0 (< 0), i.e., for waves travelling in the positive (negative) x-direction.
The solutions for the free surface then become

ζ = Zr e
−y/a cos(|k|x− σt+ ϕr) (σ/k > 0) , (10.24a)

or

ζ = Zl e
−(B−y)/a cos(|k|x+ σt+ ϕl) (σ/k < 0) , (10.24b)

withZr, Zl arbitrary constants and ϕr, ϕl arbitrary phases. So the waves have ampli-
tudes that decay exponentially with increasing distance to the coast. The e-folding
length scale is a, the Rossby deformation radius.
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The velocity components are

u = − g
f

∂ζ

∂y
, v = 0 . (10.24c)

Thus, there is no velocity in the cross-channel direction and the along-channel com-
ponent is determined by geostrophic balance. The behaviour of the two Kelvin
waves is sketched in Figure 10.5.

Figure 10.5: Northern hemisphere Kelvin waves on opposite side of a channel
that is wide compared with the Rossby deformation radius. In each vertical
plane parallel to the coast, the currents (shown by arrows) are entirely within
the plane and are exactly the same as those for a long gravity wave in a nonro-
tating channel. However, the surface elevation varies exponentially with dis-
tance from the coast in order to give a geostrophic balance. This means that
Kelvin waves move with the coast on their right in the northern hemisphere
and on their left in the southern hemisphere. Adopted from Gill [1982].

The dispersion relation (10.23) indicates that Kelvin waves can have any frequency.
In other words, they can be excited in a channel by tidal forcing. This fact explains
why many observed characteristics of tidal waves (e.g., largest tidal range at the
coast) can be understood from the dynamics of Kelvin waves.

If B � a (narrow channel), then e±B/a ∼ 1 and the Kelvin wave behaves as a
long gravity wave without any cross-channel structure. Such a situation applies for
example to estuaries and tidal channels. In case of the North Sea, B ∼ 500 km,
a ∼ 300 km, hence it can not be considered as a narrow channel.

From the dispersion relation (10.23) it immediately follows that

c = cg = ±c0 (=
√
gH) , (10.25)
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so the Kelvin wave is dispersionless. The kinetic energy, potential energy and en-
ergy flux are, respectively, given by

<Ep> = <Ek>=
1

4
ρgZ2

[
1 − e−2B/a

] a

2B
,

(10.26)
<Fx> = <E> cg .

10.4 The third root
Finally, a remark about the third root of (10.15). This yields

σ = f , (10.27)

which is the dispersion relation of an inertial wave. It turns out that the correspond-
ing solution is fully equivalent to a Kelvin wave having the inertial frequency. In
other words, the third root contains no new information and the spectrum of free
waves in a rotating channel consists of Poincaré modi and Kelvin waves.
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Chapter 11

Free modes in a semi-enclosed basin:
the Taylor problem

The theory developed in the two previous chapters can be used to study tidal prop-
agation in the southern ocean. However, many oceans and seas (Atlantic Ocean,
North Sea) are bounded at three sides by coasts. It is thus important to study the pos-
sible free waves in semi-enclosed basins. This issue is known as the Taylor problem,
after G.I. Taylor, who first presented solutions of this problem in 1920. Here, the
problem will be investigated for a rectangular basin with a constant depth (see Fig-
ure 11.1).

Figure 11.1: The semi-enclosed basin studied in this chapter.

The dynamics is still governed by eqs. (10.1)-(10.3), but with the additional bound-
ary conditions

u = 0 at x = 0 , at x = L : not yet specified . (11.1)

At this point it is important to realise that linear free waves in (semi-)enclosed basins
can be constructed from free waves that exist in an open channel. The reason is that
the latter comprise a complete set.

In this specific case the free waves are Kelvin waves and Poincaré waves. Now
assume that the frequency σ of the wave under consideration is smaller than the
minimum frequency σP,min of Poincaré waves, as given in (10.20). This situation is
representative for the North Sea. Other cases are discussed in LeBlond and Mysak
[1978]. If σ < σP,min then in most part of the basin the free wave will consist of
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a superposition of the incoming and reflected Kelvin wave. Thus, with the use of
eqs. (10.11) and (10.24):

ζ = <
{
Z e−y/a ei(kx−σt) + Z e−(B−y)/a e−i(kx+σt)

}
,

u = <
{
Z

H
c0 e

−y/a ei(kx−σt) − Z

H
c0e
−(B−y)/a e−i(kx+σt)

}
, (11.2)

v = 0 .

↑ ↑
reflected(to right) incoming (to left)

Note that the incoming and reflected wave have identical amplitudes and phases,
because full reflection takes place. These solutions can also be recast as

ζ = α(x, y) cos [σt− β(x, y)] , (11.3)

u = γ(x, y) cos [σt− δ(x, y)] , (11.4)

with α(x, y), γ(x, y) amplitudes and β(x, y), δ(x, y) phases. This follows by appli-
cation of standard goniometric relationships. In Figure 11.2 contour plots of the
amplitude α(x, y) (dashed lines) and phase β(x, y) (solid lines) are sketched. These
are qualitative results, the details depend on the ratio B/a.

Figure 11.2: Co-amplitude lines (dashed) and co-phase lines
(solid) of the free surface, resulting from the superposition of two
Kelvin waves with equal amplitudes and travelling in opposite
directions.

The conclusions are:

• The tidal wave rotates cyclonically (anticlockwise on the northern hemisphere)
around amphidromic points (nodal points), where α(x, y) = 0. The distance
between successive points is half the wavelength of a progressive Kelvin
waves.

• In the present case (full reflection, no friction) the amphidromic points are
located on the mid-axis of the channel.

• In between successive amphidromic points the so-called stagnation points are
located where u = v = 0. The co-amplitude and co-phase lines of the veloc-
ity field have similar shapes as those of the free surface.
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• There is no location x=constant where amplitude γ(x, y) = 0 for all values
of y. Hence, the solution (11.2) can not obey the boundary condition at the
coast where the Kelvin wave is reflected. In this area other waves must play
a role as well.

These new waves appear to be trapped Poincaré waves, which have an exponential
structure in x, rather than an oscillatory structure. These waves can now exist be-
cause of the presence of the closed coast at x = 0. Expressions of their free surface
and velocity field can be derived from eqs. (10.17), (10.19a) and (10.19b) by replac-
ing wavenumber k by isn. Here, sn is a real-valued quantity and σ is the imposed
frequency, which is identical to that of the Kelvin waves in (11.2). This yields

ζn = <
{
Zn

[
cos
(nπy
B

)
− iB

nπ

fsn
σ

sin
(nπy
B

)]
e−snx e−iσt

}
, (11.5a)

un = <
{
Zn
H

B

σnπ

[
igHsnnπ

B
cos
(nπy
B

)
− σf sin

(nπy
B

)]
e−snx e−iσt

}
,(11.5b)

vn = <
{
iZn
H

B

σnπ

(
f2 +

gHn2π2

B2

)
sin
(nπy
B

)
e−snx e−iσt

}
. (11.5c)

and the dispersion relation

σ2 = f 2 − gHs2
n + gH

n2π2

B2
. (11.6)

The latter determines the quantities sn which determine how fast the amplitudes of
the different modi decay with increasing distance x from the coast. Hence, s−1

n are
the efolding length scales of the modi. From (11.6) it follows s1 < s2 < . . .. This
implies that in this example s−1

1 is the spatial scale on which trapped Poincaré modi
emerge. For most basins it appears that this scale is much smaller than the length of
the basin, so trapped Poincaré modi will only be observed closed to the boundaries.
Here the situation near the coast x = 0 will be further investigated. This means that
the final solution in the region near the coast x = 0 is not affected by Poincaré modi
that are excited near x = L.

The qualitative picture is now that near the coast x = 0 the solution consists
of an incoming Kelvin wave, a partially reflected outgoing Kelvin wave (reflection
coefficient R) and trapped Poincaré waves. The reason to introduce a reflection
coefficient is that the properties of the reflected Kelvin wave will be influenced by
the excitation of Poincaré waves. The behaviour of the particle orbits in the basin
will thus be as sketched in Figure 11.3.
At distances x larger than s−1

1 the velocity field is determined by the two Kelvin
waves only; here the cross-channel velocity component is negligible. The pres-
ence of trapped Poincaré modi near the coast x = 0 causes the local velocity field
to become polarized, but at the coast the velocity field only has a cross-channel
component, such that the condition of no normal flow at the coast is obeyed. This
structure of the velocity field is indeed observed in basins like the North Sea.

To determine the final solution the boundary condition u = 0 at x = 0 must be
elaborated. It imposes that the x-component of the velocity of the incoming Kelvin
wave (uK,l), that of the partially reflected Kelvin wave (uK,r) and those of all the
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Figure 11.3: Sketch of the expected velocity field near the coast
x = 0.

trapped Poincaré waves (uP,n) must vanish at this location. After substitution of
expressions (11.2) and (11.5) and evaluation at x = 0 the final result is

−Z
[
e−(B−y)/a−Re−y/a

]
+
∞∑
n=1

Zn

[
ic0sn
σ

cos
(nπy
B

)
− fB

nπc0
sin
(nπy
B

)]
= 0.

In this expression the amplitude Z of the incoming Kelvin wave is chosen to be
real (this is always possible by a suitable phase shift) and R is the (complex)
reflection coefficient. The unknowns are Zn/Z and R.

The equation given above can be solved using a collocation technique. The as-
sumption is that the equation is obeyed at a finite number of collocation points
(y/B) = (j−1)/N(j = 1, 2, . . . , N + 1) . Development then yields (N + 1) linear
algebraic equations for (N + 1) unknowns, being R and Zn/Z(n = 1, 2, . . . , N).
Thus, only N trapped Poincaré waves are taken into account. In the limit N → ∞
convergence of the solution is guaranteed by the fact that the Kelvin waves and
Poincaré waves form a complete set.

In Figure 11.4 the original solution of Taylor is shown for a basin with dimensions
that resemble that of the North Sea. The agreement with Figure 7.2 is remarkable.
Other solutions (e.g. σ > σP,min, hence also progressive Poincaré waves, par-
tially absorbing coasts, influence of friction, two open boundaries) are discussed in
LeBlond and Mysak [1978]; Bowden [1983]; Parker [1991].
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Figure 11.4: The amphidromic pattern (a) and particle trajectories (b) near the
closed end of a channel for a reflected Kelvin wave. Curves of equal amplitude
are given by the broken lines; curves of constant phase by the solid lines.
(From Gill [1982], adopted from the original 1920 paper of G.I. Taylor.



Chapter 12

Co-oscillation and tidal resonance: a
simple model

The response of basins to direct tidal forcing is generally small, because their width
is small compared to the wavelength of the equilibrium tide (being half the local
earth circumference). Despite this fact, large differences between low and high
water occur in many seas and bays, e.g. in the North Sea. The explanation for this
behaviour is that the tidal wave that is generated in the ocean propagates into a shelf
sea. In this process the wave experiences a strong reduction in depth, hence mass
conservation causes a strong increase of its amplitude. Moreover, as is illustrated
in Figure 12.1, resonance can occur within the basin because the incoming wave
interacts with the wave that is excited by reflection at the coast.

x=0 x=L

bay

sea

incoming tide

reflected wave

ocean

continental

slope

Figure 12.1: The tidal basin studied in this chapter.

The latter mechanism can be studied by prescribing the water level at the boundary.
Hence, the forcing occurs through boundary conditions, rather than through forces
in the momentum equations. Consequently, tides in the basin co-oscillate with those
in the adjacent ocean, hence their name co-oscillating tides.

In this chapter only a simple, illustrative model will be discussed. Consider a semi-
enclosed basin with a constant width B, constant depth H and length L. The dy-
namics are assumed to be governed by the cross-sectionally averaged shallow water
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equations in which Coriolis and tidal forces are ignored. This boils down to equa-
tions (8.3) of chapter 8, in which v = 0, f = 0. The boundary conditions are that
at the closed coast (here at x = 0) the along-channel velocity component vanishes,
whilst at the open boundary the free surface is prescribed. The latter consists of one
tidal constituent with radian frequency σ and amplitude Ẑ. So the model is

∂u

∂t
= −g ∂ζ

∂x
,

∂ζ

∂t
+ H

∂u

∂x
= 0 ,

(12.1)
with u = 0 (x = 0) and ζ = Ẑ cos(σt) (x = L) .

From this a single equation for the free surface elevations can be derived, with
corresponding boundary conditions:

∂2ζ

∂t2
− gH

∂2ζ

∂x2
= 0 , c 2

0 = gH ,

(12.2)
∂ζ

∂x
= 0 (x = 0) , ζ = Ẑ cos(σt) (x = L) .

The nontransient solution is a forced wave:

ζ = Z(x) cos (σt) . (12.3)

Substitution in (12.2) yields

d2Z

dx2
+

σ2

gH
Z = 0 ,

(12.4)
dZ

dx
= 0 (x = 0) , Z = Ẑ (x = L) .

The general solution of the equation above is

Z = A cos (kx) + D sin (kx) , k =
2π

λ
=

σ

c0

.

Note that k is the wavenumber of the tide and λ is the corresponding wavelength.

The boundary conditions yield

D = 0 , A =
Ẑ

cos (kL)
,

so that the solution of the original system (12.1) reads

ζ =
Ẑ

cos (kL)
cos (kx) cos (σt) ,

(12.5)

u =
g

c0

Ẑ

cos (kL)
sin (kx) sin (σt) ,
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Figure 12.2: Amplitude of the vertical tide as a function of kx
for different values of parameter kL.

In Figure 12.2 the amplitude of the sea surface variations is sketched as a function
of the along-channel coordinate x for different values of kL. The latter parameter
is, apart from a factor of 2π, the ratio of the channel length and the wavelength of
the tide. The number of amphidromic points depends on this parameter, as can be
understood from the results of the previous chapter.
It is important to realise that parameter kL also determines the amplitude of the sea
surface variations. In fact, if cos (kL) = 0, in other words, if

σL√
gH

=

(
2n− 1

2

)
π , n = 1, 2, . . . , (12.6)

then resonance occurs. The physical interpretation is that in these cases the system
is forced at one of its eigenmodi.

Condition (12.6) can also be recast as

L

λ
=

2n− 1

4
, n = 1, 2, . . . .

This shows that resonance occurs in case the length of the basin L is a quarter (or
three-quarter, five-quarter, etc.) of the tidal wavelength.

Another alternative expression of condition (12.6) is

2L

c0

=

(
2n− 1

2

)
T , T =

2π

σ
.

This shows that resonance occurs if the time needed for the tidal wave to travel up
and down the basin equals (half + a multiple) of the tidal period. This means that
the incoming and outgoing wave are 180o out of phase at the open boundary, such
that local extinction occurs.

The most spectacular example of tidal resonance is observed in the Bay of Fundy
(NE Canada) (see also Figure 7.3). This bay has a length L = 350 km, a depth
H = 100 m and the tidal period T = 12 h 25 m. The wavelength of the tide is then
λ = 1413 km, so the bay is close to quarter-wave resonance.
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A second example is the North Sea: its characteristics are L = 900 km, H =
70 m, T = 12 h 25 m, so λ = 1200 km. This shows that the system is close to
three-quarter resonance. Of course, this conclusion is based on a simple model that
ignores Coriolis effects, which are known to modify the dynamics in this case (see
previous chapter). On the other hand, the tidal wavelength is that of the Kelvin
wave, which is not affected by Coriolis forces.

A few final remarks, related to limitations of the present model and which will be
discussed in more depth in the course ’Physics of coastal systems’:

• An additional eigenfrequency is obtained in case that the basin is connected
with the sea by means of a narrow strait. This geometry is illustrative for that
of e.g. Wadden Sea basins. The new eigenmode is called the Helmholtz mode.

• The model discussed so far ignores the influence of the tidal dynamics in-
side the basin on that in the adjacent sea, since the sea level variations at
the open boundary are fixed. In particular near resonance this assumption is
not valid, because the basin radiates energy into the sea. The mechanism of
radiation damping, discussed in e.g. Mei [1989], causes the amplitude of the
tidal wave to be finite, even in exact resonance.

• Another important mechanism that is ignored in the model discussed here is
dissipation due to bottom friction. This also causes the amplitude of the tidal
wave to be finite in all cases. For shallow basins, like those in the Wadden
Sea, friction plays a very important role. However, analysing a system with
friction is not trivial, because the bottom shear stress depends quadratically
(hence: nonlinearly) on the velocity field.

• Most basins have a width and depth that decrease in the landward direction.
Moreover, tidal flats are present that fall dry during low water. These so-
called hypsometric characteristics have a significant effect on the dynamics
of the tide.
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Introductory books:

• Groen and Dorrestein [1976]
• Van Dyke [1982]
• Open Univ. Course Team [2001]

General textbooks that discuss ocean waves:
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• Gill [1982]
• Pedlosky [1987]
• Pedlosky [2003]
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• Phillips [1977]
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• Mei [1989] or Mei et al. [2005a]
• Komen et al. [1994]

• Dingemans [1997]

• WMO [1998]
• Janssen [2005]

• Holthuijsen [2007]
• Massel [2013]
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Advanced books on water waves/wind waves:

• Ross [1996]

• Johnson [1997]

• Ochi [1998]

• Young [1999]

• Lavrenov [2003]

• Mei et al. [2005b]

• Levin and Nosov [2009]

• Osborne [2010]

• Babanin [2011]

Specific textbooks on long waves and tides:

• Dronkers [1964]

• Hendershott [1981]

• Boon [2004]

• McCully [2006]
• Pugh and Woodworth [2014]

Advanced textbooks on long waves and tides:

• Godin [1977]

• Marchuk and Kagan [1989]

• Gosh [1998]

• Parker [1991]

• Cartwright [1998]

• Charlier and Finkl [2009]

• Hardisty [2009]
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