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Abstract. This pearl introduces the Hoare state monad, a variant of
the state monad that facilitates the verification of stateful programs.

1 Introduction

Monads help structure functional programs. Yet proofs about monadic programs
often start by expanding the definition of return and bind. This seems rather
wasteful. If we exploit this structure when writing programs, why should we
discard it when we writing proofs? This pearl examines how to verify functional
programs inhabiting the state monad. It is our express aim to take advantage of
the monadic structure of our programs to guide the verification process.

This pearl is a literate Coq script [13]. Although most proofs have been
elided from the typeset version, the complete development is available from my
homepage.

2 The state monad

Let me begin by motivating the state monad.
Consider the following inductive data type for binary trees:

Inductive Tree (a : Set) : Set :=
| Leaf : a → Tree a
| Node : Tree a → Tree a → Tree a.

Now suppose we want to define a function that replaces every value stored in
a leaf of such a tree with a unique integer, i.e., no two leaves in the resulting
tree should share the same label. The obvious solution is to define the following
function:

Fixpoint relabel (a : Set) (t : Tree a) (s : nat) : Tree nat ∗ nat
:= match t with
| Leaf ⇒ (Leaf s, 1 + s)
| Node l r ⇒ let (l ′, s ′) := relabel a l s

in let (r ′, s ′′) := relabel a r s ′

in (Node l ′ r ′, s ′′) end.



This relabel function carries a natural number as it traverses the tree. It uses the
argument number as the new label for the leaves. To make sure that no two leaves
get assigned the same number, the number returned at a leaf is incremented. In
the Node case, the number is threaded through the recursive calls appropriately.

While this solution is correct, it can be improved. It is all too easy to pass
the wrong number to a recursive call, thereby forgetting to update the state. To
preclude such errors, we show how the state monad may be used to carry the
number implicitly as the tree is traversed.

For some fixed type of state s : Set, the state monad is:

Definition State (a : Set) : Type := s → a ∗ s.

A computation in the state monad State s a takes an initial state as its argument.
Using this initial state, it performs some computation yielding a pair consisting
of a value of type a and a final state.

The two monadic operations, return and bind, are defined as follows:

Definition return (a : Set) : a → State a := fun x s ⇒ (x , s).
Definition bind (a b : Set) : State a → (a → State b) → State b

:= fun c1 c2 s1 ⇒ let (x , s2) := c1 s1 in c2 x s2.

The return function lifts any pure value into the state monad, leaving the state
untouched. The bind composes two computations. It passes both the state and
the result arising from the first computation to the second computation.

In line with the notation used in Haskell [10], we introduce a pair of in-
fix operators to write monadic computations. Firstly, we will write the bind
as >>=, a right-associative infix operator. Secondly, we will write c1 >> c2 for
bind c1 (fun ⇒ c2). This operator binds two computations, discarding the
intermediate result.

Besides return and bind, there are two other operations in the state monad
that manipulate the state:

Definition get : State s := fun s ⇒ (s, s).
Definition put : s → State unit := fun s ⇒ (tt, s).

The get function returns the current state, whereas put overwrites the current
state with its argument.

We can now redefine our relabelling function to use the state monad:

Fixpoint relabel (a : Set) (t : Tree a) : State nat (Tree nat)
:= match t with
| Leaf ⇒ get >>= fun n ⇒

put (S n) >>
return (Leaf n)

| Node l r ⇒ relabel l >>= fun l ′ ⇒
relabel r >>= fun r ′ ⇒
return (Node l ′ r ′) end.



Note that we have chosen to instantiate the type variable s to nat – the state
carried around by the relabelling function is a natural number. By using the state
monad, we no longer need to pass around this number by hand. This definition is
much less error prone: all the ‘plumbing’ is handled by the monadic combinators.

3 The challenge

How can we prove that this relabelling function is correct?
Before we can talk about correctness, we need to establish the specification

that we expect the relabel function to satisfy. One way of formulating the desired
specification is by defining the following auxiliary function that flattens a tree
to a list of labels:

Fixpoint flatten (a : Set) (t : Tree a) : list a
:= match t with

| Leaf x ⇒ x :: nil
| Node l r ⇒ flatten l ++ flatten r end.

We will prove that for any tree t and number x , the list flatten (fst (relabel t x )
does not have any duplicates. This property does not completely characterise
relabelling – we should also check that the argument tree has the same shape
as the resulting tree. This is relatively easy to verify as the relabelling function
clearly maps leaves to leaves and nodes to nodes. Proving that the resulting tree
satisfies the proposed proposition, however, is not so easy.

4 Decorating the state monad

The relabel function in the previous section is simply typed. We can certainly use
proof assistants such as Coq to formalise equational proofs about such functions.
In this paper, however, we will take a slightly different approach.

We propose to use strong specifications, i.e., the type of our relabel function
should capture information about its behaviour. We simultaneously complete
the function definition and the proof that this definition satisfies its specifica-
tion. This correct-by-construction approach to verification can be traced back to
Martin-Löf [6].

To give a strong specification of our relabelling function, we will decorate
computations in the state monad with additional propositional information. Re-
call that we defined the state monad as follows:

Definition State (a : Set) : Type := s → a ∗ s.

We can refine this definition slightly: instead of accepting any initial state of type
s, it requires an initial state that satisfies a given precondition. Furthermore,
instead of returning any pair, it guarantees that the resulting pair satisfies a
postcondition relating the initial state, resulting value, and final state. Bearing



these two points in mind, we arrive at the following definition of the Hoare state
monad :

Definition Pre : Type := s → Prop.

Definition Post (a : Set) : Type := s → a → s → Prop.

Program Definition HoareState (pre : Pre) (a : Set) (post : Post a) : Set
:= forall i : {t : s | pre t }, {(x , f ) : a ∗ s | post i x f }.

We refer to this as the Hoare state monad as it enables Floyd-Hoare style pre- and
postcondition reasoning about computations in the state monad [2, 3]. Through-
out this paper, we will use Coq’s Program tactic to program with strong speci-
fications [12, 11].

We still need to define the return and bind functions for the Hoare state
monad. The return function does not place any restriction on the input state; it
simply returns its second argument, leaving the state intact:

Definition top : Pre := fun s ⇒ True.

Program Definition return (a : Set)
: forall x ,HoareState top a (fun i y f ⇒ i = f ∧ y = x )
:= fun x s ⇒ (x , s).

The definition of the return of the Hoare state monad is identical to the original
definition of the state monad: we have only made its behaviour evident from its
type. The Program tactic automatically discharges the trivial proofs necessary
to complete the definition.

The bind of the Hoare state monad is a bit more subtle. Recall that the bind
of the state monad has the following type:

State a → (a → State b) → State b

You might expect the definition of the bind of the Hoare state monad to have a
type of the form:

HoareState P1 a Q1 → (a → HoareState P2 b Q2) → HoareState ... b ...

Before we consider the precondition and postcondition of the resulting compu-
tation, note that we can generalise this slightly. In the above type signature, the
second argument of bind is not dependent. We can parametrise P2 and Q2 by
the result of the first computation:

HoareState P1 a Q1

→ (forall (x : a),HoareState (P2 x ) b (Q2 x ))
→ HoareState ... b ...

This allows the pre- and postconditions of the second computation to refer to
the results of the first computation.

Now we need to choose a suitable precondition and postcondition for the
composite computation returned by the bind function. To motivate our choice



of pre- and postcondition, recall that the bind of the state monad is defined as
follows:

Definition bind (a b : Set) : State a → (a → State b) → State b
:= fun c1 c2 s1 ⇒ let (x , s2) := c s1 in f x s2.

The bind function starts by running the first computation, and subsequently feeds
its result to the second computation. So clearly the precondition of the composite
computation should be imply the precondition of the first computation c1—
otherwise we could not justify running c1 with the initial state s1. Furthermore
the postcondition of the first computation should imply the precondition of the
second computation—if this wasn’t the case, we could not give grounds for the
call to c2. These considerations lead to the following choice of precondition for
the composite computation:

fun s1 ⇒ P1 s1 ∧ forall x s2, Q1 s1 x s2 → P2 x s2

What about the postcondition? Recall that a postcondition is a relation be-
tween the initial state, resulting value, and the final state. We would expect the
postcondition of both argument computations to hold after executing the com-
posite computation resulting from a call to bind. This composite computation,
however, cannot refer to the initial state passed to the second computation or
the results of the first computation: it can only refer to its own initial state
and results. To solve this we existentially quantify over the results of the first
computation, yielding the following postcondition for the bind operation:

fun s1 y s3 ⇒ exists x , exists s2, Q1 s1 x s2 ∧Q2 x s2 y s3

In words, the postcondition of the composite computation states that there is an
intermediate state s2 and a value x resulting from the first computation, such
that these satisfy the postcondition of the first computation Q1. Furthermore, the
postcondition of the second computation Q2 relates these intermediate results
to the final state s3 and the final value y .

Once we have chosen the desired precondition and postcondition of bind, its
definition is straightforward:

Program Definition bind : forall a b P1 P2 Q1 Q2,
(HoareState P1 a Q1) →
(forall (x : a),HoareState (P2 x ) b (Q2 x )) →
HoareState (fun s1 ⇒ P1 s1 ∧ forall x s2, Q1 s1 x s2 → P2 x s2)

b
(fun s1 y s3 ⇒ exists x , exists s2, Q1 s1 x s2 ∧Q2 x s2 y s3)

:= fun a b P1 P2 Q1 Q2 c1 c2 s1 ⇒
match c1 s1 with (x , s2) ⇒ c2 x s2 end.

This definition does give rise to two proof obligations: the intermediate state
s2 must satisfy the precondition of the second computation c2; the application



c2 x s2 must satisfy the postcondition of bind. Both these obligations are fairly
straightforward to prove.

Before we have another look at the relabel function, we define the two auxil-
iary functions get and put.

Program Definition get : HoareState top s (fun i x f ⇒ i = f ∧ x = i)
:= fun s ⇒ (s, s).

Program Definition put (x : s) : HoareState top unit (fun f ⇒ f = x )
:= fun ⇒ (tt, x ).

Both functions have the trivial precondition top. While the postcondition of the
get function guarantees that it will return the current state without modifying
it, the postcondition of the put function declares that the final state is equal to
put’s argument.

5 Relabelling revisited

Finally, we return to the original question: how can we prove that our relabel
function satisfies its specification?

Using the Hoare State monad, we now arrive at the following definition of
our relabelling function:

Fixpoint size (a : Set) (t : Tree a) : nat :=
match t with
| Leaf x ⇒ 1
| Node l r ⇒ size l + size r end.

Fixpoint seq (x n : nat) : list nat :=
match n with
| 0 ⇒ nil
| S k ⇒ x :: seq (S x ) k end.

Program Fixpoint relabel (a : Set) (t : Tree a) :
HoareState nat top

(Tree nat)
(fun i t f ⇒ f = i + size t ∧ flatten t = seq i (size t))

:= match t with
| Leaf x ⇒ get >>= fun n ⇒

put (n + 1) >>
return (Leaf n)

| Node l r ⇒ relabel l >>= fun l ′ ⇒
relabel r >>= fun r ′ ⇒
return (Node l ′ r ′) end.

The function definition of relabel is identical to the version using the state monad
in Section 3. The only novel aspect is our choice of pre- and postcondition.

As we do not need any assumptions about the initial state, we choose the
trivial precondition top. The postcondition uses two auxiliary functions, size and



1 subgoal

i : nat
t : Tree nat
n : nat
l : Tree nat
lState : nat
sizeL : lState = i + size l
flattenL : flatten l = seq i (size l)
r : Tree nat
rState : nat
sizeR : rState = lState + size r
flattenR : flatten r = seq lState (size r)
finalState : rState = n
finalRes : t = Node l r

============================
n = i + size t ∧ flatten t = seq i (size t)

Fig. 1: Proving the obligation of the relabelling function.

seq, and consists of two parts. First of all, the final state should be exactly size t
larger than the initial state, where t refers to the resulting tree. Furthermore,
when the relabelling function is given an initial state i , flattening t should yield
the sequence i , i + 1, ...i + size t .

This gives us one obligation that cannot be solved automatically. We need
to apply several tactics to trigger β-reduction and introduce our assumptions.
After giving the variables in the context more meaningful names, we arrive at
the proof state in Figure 1.

To complete the proof, we must prove that the postcondition holds for the
tree Node l r under the assumption that it holds for recursive calls to l and
r . The first part of the conjunction follows immediately from the assumptions
finalRes, sizeR, and sizeL and the associativity of addition. The second part of
the conjunction is a bit more interesting. After applying our induction hypothe-
ses, flattenL and flattenR, the remaining goal becomes:

=================================
seq i (size l) ++ seq lState (size r) = seq i (size l + size r)

To complete the proof we need to use the assumption sizeL. If we had chosen the
obvious postcondition flatten t = seq i (size t) we would not have been able to
complete this proof. Once we apply sizeL we can use one last lemma to complete
the proof:

Lemma SeqSplit : forall y x z , seq x (y + z ) = seq x y ++ seq (x + y) z .

This lemma is easy to prove by induction on y .



6 Wrapping it up

Now suppose we need to show that relabel satisfies a weaker postcondition. For
example, the NoDup predicate is defined in the Coq libraries as follows:

Inductive NoDup : list a → Prop :=
| NoDup nil : NoDup nil
| NoDup cons : forall x xs, x 6∈ xs → NoDup xs → NoDup (x :: xs).

How can we prove that the tree resulting from a call to our relabelling function
satisfies NoDup (flatten t)?

We cannot define a relabelling function that has this postcondition—the in-
duction hypotheses are insufficient to complete the required proofs in the Node
case. We can, however, weaken our postcondition and strengthen our precondi-
tion explicitly. In line with Hoare Type Theory [9, 8, 7], we call this operation
do:

Program Definition do (s a : Set) (P1 P2 : Pre s) (Q1 Q2 : Post s a) :
(forall i , P2 i → P1 i) → (forall i x f , Q1 i x f → Q2 i x f ) →
HoareState s P1 a Q1 → HoareState s P2 a Q2

:= fun str wkn c ⇒ c.

This function has no computational content. It merely changes the precondition
and postcondition associated with a computation in the Hoare state monad. We
can now define the final version of our relabelling function as follows:

Program Fixpoint final (a : Set) (t : Tree a) :
HoareState (top nat) (Tree nat) (fun i t f ⇒ NoDup (flatten t))

:= do (relabel a t).

The precondition is unchanged. As a result, the str argument is filled in au-
tomatically. To complete this definition, however, we need to prove that the
postcondition can be weakened appropriately. This boils down to showing that
the list seq i (size t) does not have any duplicates. Using one last lemma,
forall n x y , x < y → ¬In x (seq y n), we complete the proof.

7 Discussion

Related work

This pearl draws inspiration from many different sources. Most notably, it is
inspired by recent work on Hoare Type Theory [9, 8, 7]. Ynot, the implemen-
tation of Hoare Type Theory in Coq, postulates the existence of return, bind,
and do to use Hoare logic to reason about functions that use mutable references.
This paper shows how these functions may be defined in Coq, rather than pos-
tulated. Furthermore, we have generalised their presentation somewhat: where



Hoare Type Theory has specifically been designed to reason about mutable ref-
erences, this pearl shows that the HoareState type can be used to reason about
any computation in the state monad.

The relabelling problem is taken from Hutton and Fulger [4], who give an
equational proof. Their proof, however, revolves around defining an intermediate
function:

label ′ : forall a b,Tree a → State (list b) (Tree b)

The label ′ function carries around an (infinite) list of fresh labels that are used
to relabel the leaves of the argument tree. To prove that label meets the required
specification, Hutton and Fulger prove various lemmas relating label and label ′.
It is not clear how their proof techniques can be adapted to other functions in
the state monad.

Similar techniques have been used by Leroy [5] in the Compcert project. His
solution, however, revolves around defining an auxiliary data type:

Inductive Res (a : Set) (t : s) : Set :=
| Error : Res a t
| OK : a → forall (t ′ : s),R t t ′ → Res a t .

Where R is some relation between states. Unfortunately, the bind of this monad
yields less efficient extracted code, as it requires an additional pattern match
on the Res resulting from the first computation. Furthermore, the Hoare state
monad presented here is slightly more general as its postcondition may also refer
to the result of the computation.

Cock et al. have used a similar monad in the verification of the seL4 microker-
nel [1]. There are a few differences between their monad and the one presented
here. Firstly, we have chosen the postconditions to be ternary relations between
the initial state, result, and final state. As a result, we do not need to intro-
duce ‘ghost variables’ to relate intermediate results. Secondly, their rules are
presented as predicate transformers, using Isabelle/HOL’s verification condition
generator to infer the weakest precondition of a computation. This paper, on
the other hand, focuses on programming with strong specifications in type the-
ory, where the type of a computation fixes the desired pre- and postcondition.
Finally, their monad also handles non-determinism, a topic I have steered clear
of in this paper.

Further work

The Hoare state monad as presented here seems to work quite well in practice. I
have not, however, provided justification for the choice of pre- and postcondition
of bind and return. Other choices are certainly possible. For instance, we could
choose the following type for return:

forall x ,HoareState top a (fun i y f ⇒ True)



Clearly this is a bad choice—applying the return function will no longer yield
any information about the computation. It would be interesting to investigate if
the choices presented here are indeed the weakest precondition and the strongest
postcondition.
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