
Dependable software deployment

John DeTreville
Microsoft Research

john.detreville@microsoft.com

Daan Leijen
Microsoft Research

daan@microsoft.com

Wouter Swierstra
University of Nottingham
wss@cs.nott.ac.uk

Abstract

Large and complex software systems, like those common
on personal computers, often contain many components
that can be deployed separately—applications, libraries,
drivers, etc.—but that must then be bound together into
working configurations. Configuring software is difficult
and error-prone in practice, and it is not well understood
in theory. As a result, real software systems are often con-
figured in ways that are fragile and undependable. To ad-
dress these problems, we present a novel and precise model
for reasoning about software configurations, and the pro-
cesses by which they are constructed. We can compare our
framework to existing software deployment tools, such as
Windows Installer and the RPM Package Manager, and for-
malize desirable properties of software configurations.

1. Introduction

Configuring computer systems can be just as difficult as
programming them. A system administrator must choose
from among a large number of packaged software compo-
nents (e.g., applications) and bind them together—by copy-
ing files, setting component options, updating system op-
tions, etc.—to create a system that correctly provides some
desired functionality for an end user. When the components
do not fit perfectly together, or when additional customiza-
tions become necessary, system administrators may need to
fall back on the same sorts of problem-solving skills as pro-
grammers. It is therefore unfortunate that most end users
of personal computers must serve as their own system ad-
ministrators even though they lack the necessary skills and
training. As a result, a great many of the world’s personal
computers are misconfigured. They do not behave as ex-
pected; they are fragile; they are insecure; they are unde-
pendable.

We would like to lower the cost of configurability by
making configuration less error-prone. Some simple aspects
of system configuration are already automated via the use
of installers, package managers, dependency analyzers, etc.

It seems clear that further automating system configuration
can, in principle, broadly improve system dependability by
reducing misconfigurations, especially misconfigurations of
personal computers by end users. This paper provides sev-
eral novel contributions to that end.

We present a functional approach to system configu-
ration that we contrast with the traditional imperative ap-
proach (Section 2). The functional approach makes it easy
to reason about, and to enforce rules on, entire configura-
tions.

We further present a framework for reasoning about
software configurations (Section 3). We not only describe
the deployment of individual software components—e.g.,
the sequence of network fetches and disk writes going from
some “old” state to some “new” state—but also demonstrate
how to reason about the consistency of an entire software
system configuration at a given time. Our framework is but-
tressed by a mathematical model that lets us state formal,
verifiable properties of software configurations, and of the
software configuration process.

We illustrate the expressiveness of our framework us-
ing realistic examples. We present a precise model of con-
figurations (Section 3), and discuss potential implementa-
tions (Section 4). We extend the basic model with arbitrary
constraints on configurations (Section 5) and parameteris-
able components that form the basis of deployment (Sec-
tion 6). We make clear comparisons of our approach against
existing software deployment tools (Section 7). Finally, we
report our experience developing a small prototype imple-
mentation that serves to illustrate our approach (Section 8).

2. A functional approach to software configu-
ration

Personal computers traditionally take an imperative ap-
proach to system configuration. They allow a series of in-
cremental updates to the configuration state by installing
new software components, updating old components, unin-
stalling and perhaps reinstalling yet other components, and
so on. A system’s current “ground truth” configuration—its
current collection of files, directories, registry settings, etc.,



Figure 1. The imperative approach to soft-
ware configuration.

that belong to these components—is the result of all of these
imperative incremental updates that the system administra-
tor has performed so far, as depicted in Figure 1. It is not
uncommon for hundreds of updates to have been performed
on a system’s configuration to date, and it is not uncommon
for one update to create errors that are then propagated to
all future configuration states. It is little wonder that end
users so often choose to reconfigure their computers from
scratch.

In contrast, we take a functional approach to software
configuration, as depicted in Figure 2. We take the com-
plete set of desired components, and we bind them together,
based on a set of binding rules, to compute a complete
“ground truth” configuration. If we change the set of com-
ponents, or we change the rules on how they are to be bound
together, we can repeat this process to produce another
“ground truth” configuration, which we may then make cur-
rent. The current configuration is never an input to an “up-
date” step, so errors cannot propagate as in the imperative
approach, and adding components in a different order can-
not give a different result. In essence, all changes cause the
configuration to be recomputed from scratch, which more
readily allows us to ensure global consistency. The chal-
lenge is to do this easily and efficiently.

With the imperative approach, the system configura-
tion is mutable, and it is updated frequently. With the func-
tional approach, the system configuration is immutable, and
it can only be replaced atomically and in its entirety. (User
files remain mutable, of course.) We can always recompute
an earlier configuration if we retain access to the appro-
priate unbound components and to the appropriate binding
rules, and we can even compute configurations for distant
machines or devices without accessing their current config-
urations. Multiple configurations can exist side by side on
one personal computer, and we can switch between them
freely. If the multiple configurations are similar, they can
easily share disk storage since they are immutable.

Figure 2. A functional approach to software
configuration.

3. Software configuration management

Before we can talk more precisely about configuration man-
agement, we must first define what a configuration means.
Intuitively, a configuration is set of components that can re-
fer to each other, and consist of values like directories, li-
braries, or registry entries. In general though, the particular
values are arbitrarily diverse and we choose here to treat
many values abstractly as uninterpreted bits, as we are not
interested in the values per se.

In order to reason about values that introduce names-
paces, we assume that all values can define child values.
More precisely, we have a function children that returns the
children of a namespace value, where the children are de-
fined as a partial function from names to values. For exam-
ple, the children of a library value bind names to function
entries, while the children of a directory define the contents
of a directory.

We do treat not all values as completely abstract. At-
tributes have values of fixed type that we can interpret. At-
tribute names are underlined to distinguish them from nor-
mal names. For example, each value defines a child sort
that defines the type of a value, where typical examples are
dir or component. Other common attributes are version and
name.

Under the above model, a configuration is simply a
value with sort config that has as its children values of sort
component, that in turn define other values. Here is an ex-
ample of a configuration C consisting solely of a libc com-
ponent, which contains a single file named libc.a.

C = config
libc = component

name = "libc"
version = 5
libc.a = ...

We compose values by writing the sort in sans serif (config),
followed by the children defined by the value. Indentation

2



is used to scope the children and values. Since actual raw
values are not important, we do not denote them here. Of
course, attributes do have significant values and those are
denoted directly, as in name = "libc".

We distinguish between identifiers and component
names, just as programming languages distinguish between
identifiers and strings. Here, the identifier libc is our name
for this component, while the string "libc" is the compo-
nent’s own name for itself.

Since values can have children, we can specify more
detail. For example, We know that libc.a is a library that
defines function entries and we can name them explicitly:

libc = component
name = "libc"
version = 5
libc.a = library

exit = function
printf = function
...

Of course, each function entry can itself contain more infor-
mation, like the type or calling convention:

exit = function
ctype = "void (int)"

callconv = "ccall"

The framework gives a detailed declarative definition of
software components and configurations. These declara-
tions are extremely flexible and can capture precise infor-
mation about how components are made up. Most impor-
tantly, these declarations lend themselves well to analysis.
We can now state and check properties over a configuration
since all values are explicitly declared, and because they do
not depend on an unknown “current” configuration state.

3.1. Binding

The libc component has a single isolated file, but more in-
teresting issues arise when components refer to one another.
Here we define the larger ghc component, which contains a
directory bin containing the exported executables. (Com-
ments follow a -- on a line.)

ghc = component
name = "Glasgow Haskell Compiler"
version = 6.4.2
pred = libc · libc.a
bin = dir

ghc.exe = ... -- the compiler executable
ghci.exe = ... -- the interpreter executable

(The actual ghc component defines many more files
and other values, which we elide here.) For the ghc compo-
nent to function correctly, it must be bound to the files and

components it depends on. Here, we refer to a file within
another component using the path libc · libc.a. The attribute
pred declares a predicate that must hold for the component
to be valid. We return to predicates later in Section 5; for
now, it is enough to know that a plain path can be considered
an import statement used to express dependencies between
components.

Of course, child values can also refer to other compo-
nents. In particular, executables might require specific func-
tion entries in libraries. Beside (or instead of) the general
libc · libc.a library, the ghc executable could require specific
library functions to be defined:

ghc.exe = executable
pred = libc · libc.a · exit ∧ libc · libc.a · read

The bottom line is that ghc refers to the libc component that
it does not define itself. For such definitions to make sense,
we must resolve names unambiguously. The ghc compo-
nent is well defined only in combination with an indepen-
dent definition of libc · libc.a. If the ghc component requires
specific functions, such as libc · libc.a ·exit, these procedures
must be present. We cannot always consider unbound com-
ponents in isolation but must always reason about entire
software configurations.

To formalize the notion of binding, we first define
some helper functions that return the bound names and child
values of value:

values v = codom (children v)
names v = dom (children v)

Note that we write the application of a function f to an argu-
ment x as f x, which associates to the left and binds stronger
than any operator. We can also recursively enumerate all
values defined by a value using allc:

allc v = {v1 | v0 ∈ values v,v1 ∈ all v0}
all v = {v} ∪ allc v

A path is constructed using the (right-associative) · operator,
as in libc.a · read. The empty path is written as ε. Given a
value and a path, we can select a value at that path with the
selection operator @:

v@ε = v
v@(n ·p) = ((children v) n)@p
⊥@p =⊥

We assume that children is a partial function where
children v n = ⊥ if n /∈ dom (children v). When v@p = ⊥,
we say that the path is unbound.

Well-formed Using the above definitions, we can now
state useful properties over configurations. For example,
a configuration C contains only components as its children:

3



Figure 3. A deployment store.

∀(c ∈ values C). c · sort ≡ component

Another constraint is that components cannot be nested:

v · sort ≡ component
⇒∀(w ∈ allc v). w · sort 6= component

When the above two predicates hold, we say that a con-
figuration is well-formed. In general, there might be many
predicates that we expect to hold over particular structures,
for example, files cannot be nested. We return to this in Sec-
tion 5 that discusses how general predicates can be used to
constrain valid configurations.

Resolved The function free q returns the free paths in a
predicate q in the obvious way. We can extend this defini-
tion to values too:

free v = {p | p ∈ free (values v),v@p =⊥}

Note that paths are lexically scoped, and that all paths are
bound unambiguously since children is a function.

We say that a well-formed configuration C is resolved
when all paths are bound:

free C = ∅

A resolved configuration is a strong notion since all bind-
ings are unambiguously resolved. Binding is a crucial part
of system configuration. Unbound components may have
many dependencies, and a set of components might be as-
sembled in many different ways. Only when we bind com-
ponents together (e.g., when we bind ghc to a particular
libc · libc.a) do we create one particular bound configura-
tion, where every component has an unambiguous defini-
tion of the other components and contents that it depends
on.

4. The deployment store

How can we represent such bindings? Inspired by Nix [8],
we make a software deployment tool responsible for man-
aging the actual files. Bound components are installed in

Figure 4. A deployment store containing mul-
tiple versions.

a special deployment store; an example is depicted in Fig-
ure 3. Every component lives in a separate directory. Here,
we name these directories using the component’s name and
version. An alternative is to follow Nix’s lead and use a
cryptographic hash of the bound component to name the di-
rectory.

How can we manage bindings of the components in
the store? Most operating systems provide a form of scope
management by means of environment variables. In partic-
ular, by manipulating the search path we can affect which
files are found. Another (and better) mechanism would be
to change the linker to use the static information from the
configuration to directly link libraries without any search at
all.

The files and directories in the deployment store must
be immutable. The software deployment tool can insert new
bound components—including components whose bindings
are changed—and delete old ones, but other programs must
not. This allows us to reason about a bound configuration
statically, since later changes are disallowed.

Of course, one configuration can replace another. This
can be achieved by wholesale replacement of the bound
components in the deployment store, or by computing and
applying a minimum edit set between old old configuration
and the new one.

How should a program access files stored in the store?
Clearly, a principal point of automated software deployment
is to hide implementation details behind well-designed in-
terfaces. We propose that bound components can advertise
certain functionality that may be of interest to system ad-
ministrators or to end users. These can produce, for exam-
ple, shortcuts that do little more than set the environment
variables and run the desired application from the store.

4



Figure 5. A deployment store containing mul-
tiple configurations.

4.1. Multiple versions

A given bound configuration can contain multiple side-by-
side versions of libc, as shown in Figure 4. Some bound
components may then use the latest version, while others
rely on an older version. Both versions can coexist peace-
fully; the environment settings enforce components’ bind-
ings. This guarantees that every component is unambigu-
ously bound to the components and contents that it is in-
tended to depend on.

4.2. Multiple configurations

A deployment store can even contain multiple side-by-side
independent configurations, as shown in Figure 5. It can
contain all of the bound components in either configuration,
plus each configuration. Multiple configurations can exist
side by side, where each is unambiguously bound to the
correct components. Similar configurations will of course
have many files and directories in common, but these can
easily share storage on a disk. Additionally, a new config-
uration can be constructed atomically while an old one is
running. As with components, we can give these configura-
tions friendly names, or we can name them by their hashes.

All this is possible on today’s operating systems with
no extensions whatsoever. This is an important consider-

ation when designing a software deployment tool. In an
ideal world, we would have the freedom to design a fresh
operating system with much better support for ensuring im-
mutability and scoping names and hiding the deployment
store. The fact of the matter, though, is that managing soft-
ware configurations is a problem now and so it is useful to
come up with a solution that can work well with today’s
technology.

5. Predicates

A personal computer, when booted, will tend to run what-
ever software it finds on its disk, but most possible disk con-
tents are more or less meaningless. Similarly, just because
a component refers to a file called libc.a does not neces-
sarily mean that any file with that name will do. We allow
programmers to be much more specific about which com-
ponents are known to work together smoothly. A ghc pro-
grammer may require that the component libc has the name
"libc" and a sufficiently recent version. Such additional
requirements can be specified in a pred attribute. Here’s the
relevant fragment of the ghc component:

ghc = component
name = "Glasgow Haskell Compiler"
version = 6.4.2
pred = libc · version > 5 ∧ libc ·name ≡ "libc"

...

When these predicates are satisfied, we can avoid many
kinds of surprises when we use the identifier libc. Requiring
components with a certain name and version is a recurring
pattern in software deployment tools.

What kinds of expressions can we allow in the predi-
cate language? Many predicate languages are possible, but
here we assume predicates over first-order logic. The abil-
ity to quantify over components is particularly powerful, as
we will see below.

Valid We say that a resolved configuration C is valid if all
predicates hold:

∀(v ∈ all C). v ·pred

A valid configuration is a very strong notion. Since predi-
cates range over first-order logic, we can state many kinds
of requirements without special mechanisms. We have al-
ready seen how we express dependencies. Other common
features of package managers are conflicts and uniqueness.

Conflicts Some components may conflict with others.
Despite programmers’ best efforts to minimize potential in-
terference between components, there may still be compo-
nents that simply cannot coexist. Such relationships are,

5



in a sense, dual to the dependencies: where dependencies
specify that a component can only work in the presence
of a certain other component, conflicts state that it will
never work if a certain other component is present. For
instance, we may want to express that a component can
never function in the presence of any component called
"ASCII printer driver":

C = config
printer = component

pred = ∀(c ∈ values C).
c ·name 6= "ASCII printer driver"

...

Uniqueness In a similar vein, some components must be
unique: i.e., there is only one version of that component in-
stalled. This is similar to the conflict relation; in a sense,
such a component conflicts with any other version of itself,
e.g. a component mon called "Monitor driver" may de-
sire to be the only component with that name. We can ex-
press this as follows:

C = config
mon = component

pred = ∀(c ∈ values C).
c ·name ≡ "Monitor driver"⇒ c ≡ mon

These two example predicates can be expressed by some
existing tools. More often than not, however, such tools
cannot express more complicated examples; for instance,
you may want to define a color printer driver that works
with either a Unicode or an ASCII printer driver, but not
both simultaneously.

Having a general language for expressing predicates
is, we believe, vital. While some software deployment
tools advocate the importance of a flexible predicate lan-
guage [4], many others fix a subset of what we can express.
An insufficiently expressive predicate language can cause
a great deal of trouble when additional dependencies arise
between components. Having a general predicate language
will alleviate some of the pain involved with expressing
complicated component dependencies.

6. Abstraction and parameterization

Up to now, we have only considered static configurations
that could be well-formed, resolved, and valid. However,
we have not considered the definition of components in iso-
lation, and how we can bind such component descriptions
into a configuration. In particular, if we develop a compo-
nent, we generally need to refer to other components but we
do not know in which configuration our component will be
deployed.

For example, ghc refers to an unbound identifier libc,
which must be bound in a well-formed configuration. We
will treat libc as a parameter, so that ghc can be bound
to various values of libc in different configurations. Let’s
make the libc value a parameter libcArg of a new ghc com-
ponent function ghcF.

ghcF libcArg = component
name = "Glasgow Haskell Compiler"
version = 6.4.2
pred = libcArg · version > 5

∧ libcArg ·name ≡ "libc"
bin = dir

ghc.exe = ...
ghci.exe = ...

When specifying components, programmers must be
abstract about dependencies, and parameterization lets them
do so. Here, we allow any libc value to be passed as an ar-
gument. We use a predicate to specify additional constraints
on the value that may be passed as an argument to this func-
tion. Specifying and resolving such dependencies is an im-
portant part of this approach.

How can we deploy ghc using ghcF? In order to make
an actual component ghc that we can deploy, we must pass
ghcF a suitable argument. If we have a candidate compo-
nent libc installed, we could build the following component:

C = config
ghc = ghcF libc
libc = ...

It goes without saying that we could define components that
are parameterized with more than one argument; after all,
many components have more than one dependency. Cre-
ating a configuration is thus nothing more than instantiat-
ing component functions to the desired arguments, thereby
binding all identifiers. The goal is of course to create a valid
configuration that meets certain user requirements.

By passing different arguments, we could bind differ-
ent versions of libc to a ghc value. By passing in compo-
nents, we bind the arguments’ names and construct an ac-
tual component value. This is what software deployment is
really about: binding components’ abstract imports and ex-
ports over to actual components and actual contents on the
target system.

The arguments of a component function determine the
dependencies of a component. By adding a depends at-
tribute one can state predicates over the transitive closure
of dependents of a component. This is important when one
want to ensure for example that within one process, we
never load two different versions of the same component.
It is beyond the scope of this paper to discuss this ‘diamond
problem’ in detail, and we solve this particular problem in

6



practice by assuming an initial set of implicit global predi-
cates that hold for every configuration.

The deployment problem The user requirements are
simply a predicate that state the desired components that
need to be deployed. Such predicate is parameterized over
the target configuration C, and consists of a conjunction
of existential quantifications over components, as in ∃(c ∈
values C). c ·name ≡ "Word".

The deployment problem is to take the user require-
ments, and a collection of component functions and instan-
tiate those functions in such a way that the resulting con-
figuration is valid and satisfies the user requirements. If no
valid configuration can be found, the deployment fails. Of
course, in general no unique or best solution exists, but we
argue that in practice there is often a best possible configu-
ration under an appropiate policy.

Furthermore, instantiating parameters can be auto-
mated. Provided a software deployment tool knows which
components are available—perhaps because they are avail-
able for download, or on a compact disc, or already
installed—it easy to decide when a component is a valid
argument to a parameterized component. Clearly, the can-
didate argument must define all the imports of the parame-
terized component.

Deployment can be viewed as recursively selecting
needed components, instantiate arguments of component
functions, filter valid configurations, and use a policy to se-
lect a ‘best’ configuration.

6.1. Policies

What should an automatic tool do if it can find more than
one component that fits the bill? Perhaps some valid argu-
ments may, after all, be preferable to others. A policy fixes
when one component is better than another. Formally, a
policy defines a partial order on components: a binary re-
lation between components that is reflexive, transitive, and
anti-symmetric. Using this partial order, we can select a
maximally desirable component from amongst the set of all
possible valid component arguments. We can imagine pol-
icy servers that provide common policies that a user sub-
scribes to. The concept is best illustrated by some exam-
ples, defining when a component c1 is less desirable than
another component c2.

State of the art One obvious (but naı̈ve) policy might be to
always prefer the latest version of each software com-
ponent. To express this policy, we can simply define a
partial order on components using the name and ver-
sion attributes of individual components:

c1 ·name ≡ c2 ·name ⇒ c1 · version 6 c2 · version

Security For many people, security of software systems
would be more important. Many companies and agen-
cies assign security ratings to common software com-
ponents. Given a function rate that assigns a security
rating to components, we can express such an example
of such a policy.

rate c1 6 rate c2

Parsimony As a final example, many people want to min-
imize the time spent on software deployment. Others
may want to minimize the amount of disk space a con-
figuration requires. Once again, we define a policy that
abstracts over both the notion of size a user may have
and the current configuration, called system. We then
try to minimize the size of the components that remain
to be installed:

if c1 ∈ system then 0 else size c1
6 if c2 ∈ system then 0 else size c2

These examples are already quite complex. A serious
software deployment tool must have a customizable set of
policies. System administrators could then choose the pol-
icy that best suits their needs.

Policies do not guarantee that an automated deploy-
ment tool always makes the “best” choice. They specify a
partial order: there may be many elements that are maximal
yet incomparable. In that case, we choose from among the
maximal elements non-deterministically. We do not believe
that this will lead to unexpected behavior, since policies
only specify preference between valid candidate compo-
nents. Most existing software deployment tools have some
notion of policy built-in, but to our knowledge no such tool
can be parameterized over arbitrary policies.

In practice, we depend on the policies when generat-
ing bound configurations. Provided we generate potential
configurations in a decreasing order, the first valid configu-
ration found will be optimal. We discuss such implementa-
tion issues in greater detail in Section 8.

7. Related systems

This section compares our approach to system configura-
tion against similar systems. One comparison is valid for
all: we focus on the model of the final configuration, while
other approaches stress installation as an action. We gen-
erate an immutable ground truth configuration from scratch
each time. Since configurations have a well defined value,
we can state properties about the final configuration, and
check configurations for global consistency. Configurations
do not succumb to bit-rot after too many updates, and mul-
tiple configurations can readily exist side by side.

7



7.1. Windows Installer

Microsoft Windows Installer [1] is an installation and con-
figuration service for the Windows operating system; it re-
placed an earlier hodgepodge of custom-written installers.
Windows Installer packages contain definitions (held in ta-
bles in a small relational database) that describe a package’s
contents and how it is to be installed.

The description of a package’s contents is similar to
ours. A package consists of components. One table lists
the files every component contains. This makes it easy to
analyze which files a package imperatively installs. Similar
tables describe the registry settings, fonts, and icons that a
component contains.

Unfortunately, it is much less clear where files are in-
stalled. The contents of a package can be copied to a single
directory, but there are also many ways to copy subdirecto-
ries of a package to arbitrary locations on the target system.
This is understandable—some shared files must be readily
available to other components—but as we have argued ear-
lier, sharing files between components in this fashion can be
brittle and undependable.

To make matters worse, packages may use imperative
custom actions to run custom code as part of the installation
process. Such custom actions run executables or scripts; it
is not uncommon, for example, to use such custom actions
to determine where files must be installed. As a result, there
is no reliable way to analyze a package statically and deter-
mine where it will actually install its files.

Windows Installer works well when describing stand-
alone applications, but the predicates that capture depen-
dencies between separate packages can be awkward. For
instance, packages can check whether another component
has been installed, and perform special actions if it has or if
it has not. Such checks do not query any sort of global con-
figuration database, but simply check whether a certain file
associated with the desired component is present. Such de-
pendency checks can be rather undependable! There is also
no abstraction mechanism for queries about installed com-
ponents: the installer for Microsoft Works must separately
check for PowerPoint 9, PowerPoint 10, and PowerPoint
11. Without the appropriate abstractions, the opportunity
for error clearly increases.

Finally, there is no mechanism for specifying which
components may not work together, meaning that program-
mers must resort again to custom actions. MSN Messen-
ger’s installer has a special custom action to uninstall any
previous version of Messenger. We argue that the lack of
a expressive predicate language limits Windows Installer’s
suitability for managing many complex software configura-
tions.

7.2. RPM

The RPM Package Manager [10] is one of the most pop-
ular deployment tools on Linux. Packages specify a com-
ponent’s name, version, dependencies, and series of instruc-
tions to configure, build and install the package. RPM keeps
track of which packages have already been installed. This
makes it possible for a package to state dependencies on
other packages; the package manager ensures that any re-
quired packages are also installed.

Dependencies name other packages that must be
present, along with simple version requirements. The pred-
icate language is very restrictive; there is no way, for in-
stance, to say that a package will work with either gcc or
Microsoft Visual Studio’s C compiler.

RPM forbids multiple versions of the same compo-
nent. As packages install files in shared directories, this is
an understandable, yet severe, limitation. As a result, there
are many ways in which the order in which packages are
installed may affect the final outcome [11].

Even though RPM has a much richer language for
predicates and dependencies than Windows installer, it
lacks a declarative description of the content of a package
and scripts can create files or do other custom actions.

7.3. EDOS

Many of the problems with RPM are addressed in recent
work on the EDOS project [5, 14]. The EDOS system is
similar to RPM, but extends the predicate language to ex-
press disjunctive dependencies and conflicting components.
Rather than specify a flattened list of packages that must
be installed, EDOS allows packages to depend on either
component X or component Y. Furthermore, packages may
specify conflicts, thereby forbidding such components to
coexist. Like RPM, EDOS considers two components with
the same name but different versions to be a conflict.

Not only does EDOS propose to fix several problems
with RPM, the project also gives a formal specification of
the package deployment process. There are several desir-
able properties of configurations that can be formalized us-
ing this specification.

EDOS still has a limited predicate language. For in-
stance, EDOS assumes the conflict relation to be binary and
here is no way to specify that a component cannot be de-
ployed when both of a pair of other components are present,
yet it will work with either component in separately. There
is also no policy mechanism: every valid configuration is
considered equivalent (although such mechanism can be
added to EDOS).

Finally, it is still very much a package management
system; it cannot say anything about how packages interact
with the kernel, drivers, or existing system files.

8



7.4. Nix

Our work is strongly inspired by Eelco Dolstra’s work on
Nix [6, 8, 9], a purely functional software deployment tool.
Nix has a principled approach to policy-free software con-
figuration management and a mature implementation that
can handle non-trivial Linux package installations.

An important difference is our focus on the model of
the final configuration constrained under first-order logic
predicates, which makes it easy to reason about proper-
ties of a configuration. In constrast, Nix has a complex
language with a focus on specifying component functions.
Since the language is side effecting, and can for example ex-
ecute scripts at any point, it is much harder to reason about
its properties, or the final configuration.

8. Implementation

We have developed a prototype system illustrating our ap-
proach to software deployment. Our system uses the purely
functional language Haskell [16]. Besides implementing
the core resolution algorithm, we developed a simple GUI
for browsing and installing software components using wx-
Haskell [13].

The core resolution algorithm is surprisingly succinct.
Although the problem of finding a valid bound configura-
tion is NP-complete, we make great use of Haskell’s lazy
evaluation to simplify the resolution process. Instead of
generating all possible valid resolutions, we generate a list
of resolutions and pick the first valid choice. Rather than
compute the whole list, we use lazy evaluation to only com-
pute the list until the first valid configuration is found.

We must be careful when generating all possible bound
configurations. To profit the most from lazy evaluation, we
must not sort the list of all configurations: this would rely
on computing the entire list. As different policies affect the
order in which configurations are generated, we must gen-
erate the configurations in descending preference.

Besides lazy evaluation, we also use Haskell’s ability
to pass functions as arguments. The resolution algorithm
abstracts over the policy and predicates that are used. We
have implemented several simple policies, such as prefer-
ring newer versions over older ones. It would be interest-
ing to expose an API for writing policies: this would let
system administrators customize the deployment process to
suit their needs.

On top of the core resolution algorithm, we have im-
plemented a GUI to install components. Figure 6 has a
screenshot illustrating the installation process.

A user typically opens files containing a list of com-
ponents, which they are then free to browse. Once a user
initiates the installation process, they are asked to select
the names of the components they wish to install. Using

these names, we resolve all the dependencies and compute
a proposed resolution. This resolution is then presented to
the user, who has a final opportunity to add additional con-
straints. For instance, the user may choose to require a dif-
ferent version number for a certain component. Once the
user is satisfied, the installation begins: files are actually
written to disk and suitable environments are created.

We have tested the implementation using a selection
of representative DLLs from Microsoft Windows, includ-
ing substantial DLLs that define thousands of procedures,
and import hundreds of procedures from other components.
Our component browser is capable of handling such com-
plicated components.

The Achilles’ heel of our prototype implementation is
of course the resolution algorithm. While we have tried to
minimize the amount of unneccessary work, it is clear that
the search space could explode. We believe, however, that
most components have fairly straightforward requirements.
The potentially huge search spaces only occurs when a large
number of components have complex interactions, far more
involved than simple dependencies. End users who are in-
terested in simply installing stand-alone applications should
rarely experience performance issues, but this is an area of
future work.

9. Conclusions and further work

We have described a general model to reason about deploy-
ment in a purely declarative way. We presented a clear de-
scription of a configuration and can reason about its prop-
erties. A configuration can be composed from component
functions, where general predicates constrain valid config-
urations. Deployment is parameterised by policies, which
are partial orders on components, and used to select a best
configuration.

There are still many open questions that warrant fur-
ther research. In particular, we have assumed that the con-
tents of a component are fixed. Components may depend
on other components, but the content they deliver cannot.
Yet there are plenty of examples where a component is con-
figurable. Also, allowing general predicates and policies
is potentially very expensive, and the interaction between
predicates and policies is unclear. It would be very interest-
ing to find specific subsets of these where solutions can be
found more efficiently.

Acknowledgements

The authors would like to thank Andres Löh for his valuable
comments and Eelco Dolstra for his inspirational work on
Nix.

9



Figure 6. Specifying arbitrary predicates

References

[1] Windows Installer,
http://msdn.microsoft.com/library/.

[2] FreeBSD Ports Collection,
http://www.freebsd.org/ports.

[3] M. Burgess. Cfengine: a site configuration engine. In
USENIX Computing systems, volume 8, 1995.

[4] A. L. Couch and M. Gilfix. It’s Elementary, Dear Watson:
Applying Logic Programming To Convergent System Man-
agement Processes. In LISA ’99: Proceedings of the 13th
USENIX conference on System administration, pages 123–
138, Berkeley, CA, USA, 1999. USENIX Association.

[5] R. Di Cosmo, B. Durak, X. Leroy, F. Mancinelli, and
J. Vouillon. Maintaining large software distributions: New
challenges from the FOSS era. In Proceedings of the 1st In-
ternational EASST-EU Workshop on Future Research Chal-
lenges for Software and Services, 2006.

[6] E. Dolstra. Efficient upgrading in a purely functional com-
ponent deployment model. In CBSE, pages 219–234, 2005.

[7] E. Dolstra. The Purely Functional Software Deployment
Model. PhD thesis, Faculty of Science, Utrecht, The Nether-
lands, jan 2006.

[8] E. Dolstra, M. de Jonge, and E. Visser. Nix: A safe and
policy-free system for software deployment. In LISA ’04:
Proceedings of the 18th USENIX conference on System ad-
ministration, pages 79–92, 2004.

[9] E. Dolstra, E. Visser, and M. de Jonge. Imposing a memory
management discipline on software deployment. In ICSE,
pages 583–592, 2004.

[10] E. Foster-Johnson. Red Hat RPM Guide. Red Hat, 2003.
[11] J. Hart and J. D’Amelia. An Analysis of RPM Validation

Drift. In LISA ’02: Proceedings of the 16th USENIX con-
ference on System administration, pages 155–166, Berkeley,
CA, USA, 2002. USENIX Association.

[12] A. Heydon, R. Levin, T. Mann, and Y. Yu. Software Config-
uration Management Using Vesta. Springer, 2006.

[13] D. Leijen. wxHaskell – a portable and concise GUI library
for Haskell. In ACM SIGPLAN Haskell Workshop (HW’04).
ACM Press, Sept. 2004.

[14] F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon, B. Du-
rak, X. Leroy, and R. Treinen. Managing the complexity of
large free and open source package-based software distribu-
tions. In Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Ingineering (ASE’06),
Tokyo, Japan, Sept. 2006. IEEE Computer Society Press.
To appear.

[15] K. Manheimer, B. A. Warsaw, S. N. Clark, and W. Rowe.
The Depot: A Framework for Sharing Software Installa-
tion Across Organizational und UNIX Platform Boundaries.
In LISA ’90: Proceedings of the 6th System Administration
Conferencs, pages 37–46, 1990.

[16] S. Peyton Jones, editor. Haskell 98 Language and Libraries
– The Revised Report. Cambridge University Press, Cam-
bridge, England, 2003.

10


