
JFP 18 (4): 423–436, 2008. c© 2008 Cambridge University Press

doi:10.1017/S0956796808006758 First published online 18 March 2008 Printed in the United Kingdom

423

FUNCTIONAL PEARL

Data types à la carte

WOUTER SWIERSTRA

School of Computer Science, University of Nottingham, Jubilee Campus, Nottingham, NG8 1BB

(e-mail: wss@cs.nott.ac.uk)

Abstract

This paper describes a technique for assembling both data types and functions from isolated

individual components. We also explore how the same technology can be used to combine

free monads and, as a result, structure Haskell’s monolithic IO monad.

1 Introduction

Implementing an evaluator for simple arithmetic expressions in Haskell is entirely

straightforward.

data Expr = Val Int | Add Expr Expr

eval :: Expr → Int

eval (Val x) = x

eval (Add x y) = eval x + eval y

Once we have chosen our data type, we are free to define new functions over

expressions. For instance, we might want to render an expression as a string:

render :: Expr → String

render (Val x) = show x

render (Add x y) = "(" ++ render x ++ " + " ++ render y ++ ")"

If we want to add new operators to our expression language, such as multiplication,

we are on a bit of a sticky wicket. While we could extend our data type for

expressions, this will require additional cases for the functions we have defined so

far. Phil Wadler (1998) has dubbed this in the Expression Problem:

The goal is to define a data type by cases, where one can add new cases to the data type

and new functions over the data type, without recompiling existing code, and while retaining

static type safety.

As the above example illustrates, Haskell can cope quite nicely with new function

definitions; adding new constructors, however, forces us to modify existing code.

In this paper, we will examine one way to address the Expression Problem in

Haskell. Using the techniques we present, you can define data types, functions, and

even certain monads in a modular fashion.

424 W. Swierstra

2 Fixing the expression problem

What should the data type for expressions be? If we fix the constructors in advance,

we will run into the same problems as before. Rather than choose any particular

constructors, we parameterize the expression data type as follows:

data Expr f = In (f (Expr f))

You may want to think of the type parameter f as the signature of the constructors.

Intuitively, the type constructor f takes a type parameter corresponding to the

expressions that occur as the subtrees of constructors. The Expr data type then ties

the recursive knot, replacing the argument of f with Expr f .

The Expr data type is best understood by studying some examples. For instance,

if we wanted expressions that consisted of integers only, we could write:

data Val e = Val Int

type IntExpr = Expr Val

The only valid expressions would then have the form In (Val x) for some integer x .

The Val data type does not use its type parameter e, as the constructor does not

have any expressions as subtrees.

Similarly, we might be interested in expressions consisting only of addition:

data Add e = Add e e

type AddExpr = Expr Add

In contrast to the Val constructor, the Add constructor does use its type parameter.

Addition is a binary operation; correspondingly, the Add constructor takes two

arguments of type e.

Neither values nor addition are particularly interesting in isolation. The big

challenge, of course, is to combine the ValExpr and AddExpr types somehow.

The key idea is to combine expressions by taking the coproduct of their signatures.

The coproduct of two signatures is straightforward to define in Haskell. It is very

similar to the Either data type; the only difference is that it does not combine two

base types, but two type constructors.

data (f :+: g) e = Inl (f e) | Inr (g e)

An expression of type Expr (Val :+: Add) is either a value or the sum of two such

expressions; it is isomorphic to the original Expr data type in the introduction.

Combining data types using the coproduct of their signatures comes at a price.

It becomes much more cumbersome to write expressions. Even a simple addition of

two numbers becomes an unwholesome jumble of constructors:

addExample :: Expr (Val :+: Add)

addExample = In (Inr (Add (In (Inl (Val 118))) (In (Inl (Val 1219)))))

Obviously, writing such expressions by hand is simply not an option. Furthermore,

if we choose to extend our expression language even further by constructing larger

coproducts, we will need to update any values we have written: the injections Inl

Functional pearl 425

and Inr may no longer be the right injection into the coproduct. Before we deal with

these problems, however, we consider the more pressing issue of how to evaluate

such expressions.

3 Evaluation

The first observation we make, is that the types we defined to form the signatures

of an Expr are both functors.

instance Functor Val where

fmap f (Val x) = Val x

instance Functor Add where

fmap f (Add e1 e2) = Add (f e1) (f e2)

Furthermore, the coproduct of two functors, is itself a functor.

instance (Functor f ,Functor g)⇒ Functor (f :+: g) where

fmap f (Inl e1) = Inl (fmap f e1)

fmap f (Inr e2) = Inr (fmap f e2)

These are crucial observations. If f is a functor, we can fold over any value of type

Expr f as follows:

foldExpr :: Functor f ⇒ (f a → a)→ Expr f → a

foldExpr f (In t) = f (fmap (foldExpr f) t)

This fold generalizes the folds for lists that you may know already. The first argument

of the fold is called an algebra. An algebra of type f a → a determines how the

different constructors of a data type affect the final outcome: it specifies one step

of recursion, turning a value of type f a into the desired result a . The fold itself

uniformly applies these operations to an entire expression.

Using Haskell’s type class system, we can define and assemble algebras in a

modular fashion. We begin by introducing a separate class corresponding to the

algebra we aim to define.

class Functor f ⇒ Eval f where

evalAlgebra :: f Int → Int

The result of evaluation should be an integer; this is reflected in our choice of

algebra. As we want to evaluate expressions consisting of values and addition, we

need to define the following two instances:

instance Eval Val where

evalAlgebra (Val x) = x

instance Eval Add where

evalAlgebra (Add x y) = x + y

These instances correspond exactly to the cases from our original definition of

evaluation in the introduction. In the case for addition, the variables x and y are

not expressions, but the result of a recursive call.

426 W. Swierstra

Last of all, we also need to evaluate composite functors built from coproducts.

Defining an algebra for the coproduct f :+: g boils down to defining an algebra for

the individual functors f and g .

instance (Eval f ,Eval g)⇒ Eval (f :+: g) where

evalAlgebra (Inl x) = evalAlgebra x

evalAlgebra (Inr y) = evalAlgebra y

With all these ingredients in place, we can finally define evaluation by folding over

an expression with the algebra we have defined above.

eval :: Eval f ⇒ Expr f → Int

eval expr = foldExpr evalAlgebra expr

Using eval we can indeed evaluate simple expressions.

Main〉 eval addExample

1337

Although we can now define functions over expressions using folds, actually

writing expressions such as addExample, is still rather impractical to say the least.

Fortunately, we can automate most of the overhead introduced by coproducts.

4 Automating injections

The definition of addExample illustrates how messy expressions can easily become. In

this section, we remedy the situation by introducing smart constructors for addition

and values.

As a first attempt, we might try writing:

val :: Int → Expr Val

val x = In (Val x)

infixl 6⊕

(⊕) :: Expr Add → Expr Add → Expr Add

x ⊕ y = In (Add x y)

While this is certainly a step in the right direction, writing val 1⊕val 3 will result in a

type error. The smart constructor add expects two expressions that must themselves

solely consist of additions, rather than values.

We need our smart constructors to be more general. We will define smart

constructors with the following types:

(⊕) :: (Add :≺: f)⇒ Expr f → Expr f → Expr f

val :: (Val :≺: f)⇒ Int → Expr f

You may want to read the type constraint Add :≺: f as ‘any signature f that

supports addition.’

Functional pearl 427

The constraint sub :≺: sup should only be satisfied if there is some injection from

sub a to sup a . Rather than write the injections using Inr and Inl by hand, the

injections will be inferred using this type class.

class (Functor sub,Functor sup)⇒ sub :≺: sup where

inj :: sub a → sup a

The (:≺:) class only has three instances. These instances are not Haskell 98, as there

is some overlap between the second and third instance definition. Later on, we will

see why this should not result in any unexpected behavior.

instance Functor f ⇒ f :≺: f where

inj = id

instance (Functor f ,Functor g)⇒ f :≺: (f :+: g) where

inj = Inl

instance (Functor f ,Functor g ,Functor h , f :≺: g)⇒ f :≺: (h :+: g) where

inj = Inr ◦ inj

The first instance states that (:≺:) is reflexive. The second instance explains how to

inject any value of type f a to a value of type (f :+: g) a , regardless of g . The third

instance asserts that provided we can inject a value of type f a into one of type g a ,

we can also inject f a into a larger type (h :+: g) a by composing the first injection

with an additional Inr .

We use coproducts in a list-like fashion: the third instance only searches through

the right-hand side of coproduct. Although this simplifies the search—we never

perform any backtracking—it may fail to find an injection, even if one does exists.

For example, the following constraint will not be satisfied:

f :≺: ((f :+: g) :+: h)

Yet clearly Inl ◦ Inl would be a suitable candidate injection. Users should never

encounter these limitations, provided their coproducts are not explicitly nested. By

declaring the type constructor (:+:) to be right-associative, types such as f :+: g :+: h

are parsed in a suitable fashion.

Using this type class, we define our smart constructors as follows:

inject :: (g :≺: f)⇒ g (Expr f)→ Expr f

inject = In ◦ inj

val :: (Val :≺: f)⇒ Int → Expr f

val x = inject (Val x)

(⊕) :: (Add :≺: f)⇒ Expr f → Expr f → Expr f

x ⊕ y = inject (Add x y)

Now we can easily construct and evaluate expressions:

Main〉 let x :: Expr (Add :+: Val) = val 30000⊕ val 1330⊕ val 7

Main〉 eval x

31337

428 W. Swierstra

The type signature of x is very important! We exploit the type signature to figure

out the injection into a coproduct: if we fail to provide the type signature, a compiler

has no hope whatsoever of guessing the right injection.

As we mentioned previously, there is some overlap between the instances of the

(:≺:) class. Consider the following example:

inVal :: Int → Expr (Val :+: Val)

inVal i = inject (Val i)

Which injection should be inferred, Inl or Inr? There is no reason to prefer one over

the other—both choices are justified by the above instance definitions. The functions

we present here, however, do not inspect where something occurs in a coproduct.

Indeed, we can readily check that eval (In (Inl (Val x))) and eval (In (Inr (Val x)))

are equal for all integers x as the instance of the Eval class for coproducts does

not distinguish between Inl and Inr . In other words, the result of eval will never

depend on the choice of injection. Although we need to allow overlapping instances

to compile this class, it should only result in unpredictable behavior if you abuse

the information you have about the order of the constructors of an expression.

5 Examples

So far we have done quite some work to write code equivalent to the evaluation

function defined in introduction. It is now time to reap the rewards of our investment.

How much effort is it to add multiplication to our little expression language? We

begin by defining a new type and its corresponding functor instance.

data Mul x = Mul x x

instance Functor Mul where

fmap f (Mul x y) = Mul (f x) (f y)

Next, we define how to evaluate multiplication and add a smart constructor.

instance Eval Mul where

evalAlgebra (Mul x y) = x ∗ y

infixl 7⊗
(⊗) :: (Mul :≺: f)⇒ Expr f → Expr f → Expr f

x ⊗ y = inject (Mul x y)

With these pieces in place, we can evaluate expressions with multiplication:

Main〉 let x :: Expr (Val :+: Add :+: Mul) = val 80⊗ val 5⊕ val 4

Main〉 eval x

404

Main〉 let y :: Expr (Val :+: Mul) = val 6⊗ val 7

Main〉 eval y

42

As the second example illustrates, we can also write and evaluate expressions of

type Expr (Val :+: Mul), thereby leaving out addition. In fact, once we have a menu

Functional pearl 429

of expression building blocks, we can assemble our own data types à la carte. This

is not even possible with proposed language extensions for open data types (Löh &

Hinze, 2006).

Adding new functions is not very difficult. As a second example, we show how

to render an expression as a string. Instead of writing this as a fold, we give an

example of how to write open-ended functions using recursion directly.

We begin by introducing a class, corresponding to the function we want to write.

An obvious candidate for this class is:

class Render f where

render :: f (Expr f)→ String

The type of render , however, is not general enough. To see this, consider the

instance definition for Add . We would like to make recursive calls to the subtrees,

which themselves might be values, for instance. The above type for render , however,

requires that all subtrees of Add are themselves additions. Clearly this is undesirable.

A better choice for the type of render is:

class Render f where

render :: Render g ⇒ f (Expr g)→ String

This more general type allows us to make recursive calls to any subexpressions of

an addition, even if these subexpressions are not additions themselves.

Assuming we have defined instances of the Render class, we can write a function

that calls render to pretty print an expression.

pretty :: Render f ⇒ Expr f → String

pretty (In t) = render t

All that remains, is to define the desired instances of the Render class. These

instances closely resemble the original render function defined in the introduction;

there should be no surprises here.

instance Render Val where

render (Val i) = show i

instance Render Add where

render (Add x y) = "(" ++ pretty x ++ " + " ++ pretty y ++ ")"

instance Render Mul where

render (Mul x y) = "(" ++ pretty x ++ " * " ++ pretty y ++ ")"

instance (Render f ,Render g)⇒ Render (f :+: g) where

render (Inl x) = render x

render (Inr y) = render y

Sure enough, we can now pretty-print our expressions:

Main〉 let x :: Expr (Val :+: Add :+: Mul) = val 80⊗ val 5⊕ val 4

Main〉 pretty x

"((80 * 5) + 4)"

430 W. Swierstra

Finally, it is interesting to note that the inj function of the (:≺:) class has a partial

inverse. We could have defined the (:≺:) class as follows:

class (Functor sub,Functor sup)⇒ sub :≺: sup where

inj :: sub a → sup a

prj :: sup a → Maybe (sub a)

The prj function is straightforward to define for the three instances of the (:≺:)

class defined above. When writing complex pattern matches on expressions, the prj

function is particularly useful. For example, we may want to rewrite expressions,

distributing multiplication over addition. To do so, we would need to know if one

of the children of a Mul constructor is an Add . Using the Maybe monad and prj

function, we can try to apply the distributive law on the outermost constructors of

an expression as follows:

match :: (g :≺: f)⇒ Expr f → Maybe (g (Expr f))

match (In t) = prj t

distr :: (Add :≺: f ,Mul :≺: f)⇒ Expr f → Maybe (Expr f)

distr t = do

Mul a b ← match t

Add c d ← match b

return (a ⊗ c ⊕ a ⊗ d)

Using the distr function, one can define an algebra to fold over an expression,

applying distributivity uniformly wherever possible, rather than just inspecting the

outermost constructor.

These examples illustrate how we can add both new functions and new con-

structors to our types, without having to modify existing code. Interestingly, this

approach is not limited to data types: we can also use the same techniques to

combine a certain class of monads.

6 Monads for free

Most modern calculators are capable of much more than evaluating simple arith-

metic expressions. Besides various other numeric and trigonometric operations,

calculators typically have a memory cell storing a single number. Pure functional

programming languages, such as Haskell, encapsulate such mutable state using

monads. Despite all their virtues, however, monads are notoriously difficult to

combine. Can we extend our approach to combine monads using coproducts?

In general, the coproduct of two monads is fairly complicated (Lüth & Ghani,

2002). We choose to restrict ourself to monads of the following form:

data Term f a =

Pure a

| Impure (f (Term f a))

Functional pearl 431

These monads consist of either pure values or an impure effect, constructed using

f . When f is a functor, Term f is a monad. This is illustrated by the following two

instance definitions.

instance Functor f ⇒ Functor (Term f) where

fmap f (Pure x) = Pure (f x)

fmap f (Impure t) = Impure (fmap (fmap f) t)

instance Functor f ⇒ Monad (Term f) where

return x = Pure x

(Pure x) >>= f = f x

(Impure t) >>= f = Impure (fmap (>>=f) t)

These monads are known as free monads (Awodey, 2006).

Several monads you may already be familiar with are free monads. Consider the

following types:

data Zero a

data One a = One

data Const e a = Const e

Now Term Zero is the identity monad; Term One corresponds to the Maybe monad;

and Term (Const e) is the error monad. Most monads, however, are not free monads.

Notable examples of monads that are not free include the list monad and the state

monad.

In general, a structure is called free when it is left-adjoint to a forgetful functor.

In this specific instance, the Term data type is a higher-order functor that maps

a functor f to the monad Term f ; this is illustrated by the above two instance

definitions. This Term functor is left-adjoint to the forgetful functor from monads

to their underlying functors.

All left-adjoint functors preserve coproducts. In particular, computing the co-

product of two free monads reduces to computing the coproduct of their underlying

functors, which is exactly what we achieved in Section 2. Throughout this section,

we will exploit this property to define monads modularly.

Although the state monad is not a free monad, we can use the Term data type to

represent a language of stateful computations. We can incrementally construct these

terms and interpret them as computations in the state monad.

We will consider simple calculators that are equipped with three buttons for

modifying the memory:

Recall The memory can be accessed using the recall button. Pressing the recall

button returns the current number stored in memory.

Increment You can add an integer to the number currently stored in memory using

the M+ button. To avoid confusion with the coproduct, we will refer to this

button as Incr .

Clear Finally, the memory can be reset to zero using a Clear button.

We will implement the first two operations, leaving Clear as an exercise.

432 W. Swierstra

Once again, we define types Incr and Recall corresponding to the operations we

wish to introduce. The Incr constructor takes two arguments: the integer with which

to increment the memory, and the rest of the computation. The Recall constructor

takes a single, functional argument that expects to receive the contents of the

memory cell. Given the contents, it will continue with the rest of the computation.

Both these types are obviously functors.

data Incr t = Incr Int t

data Recall t = Recall (Int → t)

To facilitate writing such terms, we introduce another series of smart constructors,

analogous to the smart constructors we have seen for expressions.

inject :: (g :≺: f)⇒ g (Term f a)→ Term f a

inject = Impure ◦ inj

incr :: (Incr :≺: f)⇒ Int → Term f ()

incr i = inject (Incr i (Pure ()))

recall :: (Recall :≺: f)⇒ Term f Int

recall = inject (Recall Pure)

Using Haskell’s do-notation, we can construct complex terms quite succinctly. For

instance, the tick term below increments the number stored in memory and returns

its previous value.

tick :: Term (Recall :+: Incr) Int

tick = do y ← recall

incr 1

return y

Note that we could equally well have given tick the following, more general type:

(Recall :≺: f , Incr :≺: f)⇒ Term f Int

There is a clear choice here. We could choose to let tick work in any Term that

supports these two operations; or we could want to explicitly state that tick should

only work in the Term (Recall :+: Incr) monad.

In order to write functions over terms, we define the following fold:

foldTerm :: Functor f ⇒ (a → b)→ (f b → b)→ Term f a → b

foldTerm pure imp (Pure x) = pure x

foldTerm pure imp (Impure t) = imp (fmap (foldTerm pure imp) t)

The first argument, pure, is applied to pure values; the case for impure terms closely

resembles the fold over expressions.

To execute our terms, we must still define a suitable algebra to pass to the

foldTerm function. It is not immediately obvious what the type of our algebra

should be. Clearly, we will need to keep track of the state of our memory cell. To

avoid any confusion with other integer values, we introduce a separate data type

Functional pearl 433

that represents the contents of the memory cell:

newtype Mem = Mem Int

To interpret our terms in the state monad, we aim to define a run function with the

following type:

run :: ...⇒ Term f a → Mem → (a ,Mem)

The run function should take a term and initial state of the memory, and execute

the term, returning a result value of type a and the final state of the memory cell.

As we wish to define run as a fold, this determines the type of our algebra and

motivates the following class definition:

class Functor f ⇒ Run f where

runAlgebra :: f (Mem → (a ,Mem))→ (Mem → (a ,Mem))

We can now write suitable instances for Incr , Recall , and coproducts.

instance Run Incr where

runAlgebra (Incr k r) (Mem i) = r (Mem (i + k))

instance Run Recall where

runAlgebra (Recall r) (Mem i) = r i (Mem i)

instance (Run f ,Run g)⇒ Run (f :+: g) where

runAlgebra (Inl r) = runAlgebra r

runAlgebra (Inr r) = runAlgebra r

In the case for Incr we increment the memory cell and continue recursively; for

Recall we lookup the value stored in memory, but leave the state of the memory

unchanged; the instance definition for coproducts should be familiar.

Using the fold over terms and the above algebra, we define the run function. In

the base case, we simply tuple the memory and value being returned—in a similar

fashion to the return of the state monad. For the Impure case, we use the runAlgebra

we have defined above.

run :: Run f ⇒ Term f a → Mem → (a ,Mem)

run = foldTerm (,) runAlgebra

Using run we can execute our tick function as follows:

Main〉 run tick (Mem 4)

(4,Mem 5)

We could have written out functions incr and recall directly in the state monad

Mem → (a ,Mem). What have we gained by the extra indirection introduced by the

Term data type? Looking at the type of our terms, we can now say something about

their behavior. For example, any term of type Term Recall Int will never modify

the state of the memory cell; dually, any term of type Term Incr a will produce the

same result, regardless of the initial state of the memory cell. If we had just written

functions in the state monad directly, we could not have distinguish these special

kinds of computations.

434 W. Swierstra

As was the case for expressions, we can extend our terms with new operations,

allowing us to assemble monads modularly. It is important to emphasize that this

technique for combining monads does not generalize all Haskell’s monads—free

monads are a special case that we can deal with quite nicely.

7 Applications

For all its beauty, Haskell does have its less appealing aspects. In particular, the IO

monad has evolved into a ‘sin bin’ that encapsulates every kind of side effect from

addFinalizer to zeroMemory . With the technology presented in the previous sections,

we can be much more specific about what kind of effects certain expressions may

have.

Consider the following two data types, describing two classes of IO operation

from the Haskell prelude:

data Teletype a =

GetChar (Char → a)

| PutChar Char a

data FileSystem a =

ReadFile FilePath (String → a)

|WriteFile FilePath String a

We can execute terms constructed using these types by calling the corresponding

primitive functions from the Haskell Prelude. To do so, we define a function exec

that takes pure terms to their corresponding impure programs.

exec :: Exec f ⇒ Term f a → IO a

exec = foldTerm return execAlgebra

The execAlgebra merely gives the correspondence between our constructors and the

Prelude. Note that we qualify the IO functions imported from the Prelude to avoid

name clashes.

class Functor f ⇒ Exec f where

execAlgebra :: f (IO a)→ IO a

instance Exec Teletype where

execAlgebra (GetChar f) = Prelude.getChar >>= f

execAlgebra (PutChar c io) = Prelude.putChar c >> io

The instance definitions for FileSystem and coproducts have been omitted; they

are entirely unremarkable. Provided we define smart constructors as before, we can

write pseudo-IO programs without any syntactic overhead beyond the obligatory

type signature:

cat :: FilePath → Term (Teletype :+: FileSystem) ()

cat fp = do

contents ← readFile fp

mapM putChar contents

return ()

Functional pearl 435

Now the type of cat tells us exactly what kind of effects it uses: a much healthier

situation than a single monolithic IO monad. For example, our types guarantee

that executing a term in the Term Teletype monad will not overwrite any files on

our hard disk. The types of our terms actually have something to say about their

behavior! An additional advantage of this two-step approach is that the terms we

write are pure Haskell values—information we can exploit if we are interested in

debugging or reasoning about effectful functions (Swierstra & Altenkirch, 2007).

8 Discussion

There are many interesting topics that I have not covered. While we have encountered

the fold over a data type, I have not mentioned the unfold . Furthermore, we have

not dealt with polymorphic data types, such as lists or trees. Such data types can

also be written using the techniques described above. Rather unsurprisingly, this

requires a shift from functors to bifunctors.

This approach does have its limitations. Although GADTs and nested data types

can also be expressed as initial algebras (Johann & Ghani, 2007; Johann & Ghani,

2008), doing so requires a higher-order representation of data types that can be a bit

cumbersome to program with in Haskell. Furthermore, modular functions that take

different types of modular arguments and return modular data types will require

multi-parameter type classes and several other extensions to Haskell 98. It would be

interesting to explore the limits of this approach further.

Much of the code presented here is part of the functional programming folklore.

The fixed-points of functors and their corresponding folds have been introduced to

the functional programming community more than fifteen years ago (Meijer et al.,

1991). More recently, Tim Sheard (2001) has proposed using fixed-points of functors

to write modular code. Free monads are well understood in category theory, but are

much less widespread in the functional programming community. The (:≺:) class is

an obvious generalization of existing work on modular interpreters (Liang et al.,

1995). Yet, amazingly, no one has ever put all these pieces together.

I am sure there are many, many other ways to achieve results very similar to

ones presented here. Haskell’s type class system, along with its various dubious

extensions, is open to all kinds of abuse. I doubt, however, there is a simpler, more

tasteful solution.

Acknowledgments

Most of this work is the result of many entertaining and educational discussions with

my colleagues at the University of Nottingham, for which I would like to express

my sincere gratitude. Mauro Jaskelioff, Conor McBride, and Nicolas Oury deserve a

particular mention for their ideas and encouragement. Thorsten Altenkirch, George

Giorgidze, and Andres Löh all provided valuable feedback on a draft version of

this paper. Last but not least, I would like to thank an anonymous reviewer for the

helpful comments I received.

436 W. Swierstra

References

Awodey, S. (2006) Category Theory. Oxford Logic Guides, vol. 49. Oxford: Oxford University

Press.

Johann, P. & Ghani, N. (2007) Initial algebra semantics is enough! Typed Lambda Calculi

and Applications. Lecture Notes in Computer Science, vol. 4583. Springer.

Johann, P. & Ghani, N. (2008) Foundations for structured programming with GADTs. In

Conference record of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages. San Francisco, California, pp. 297–308.

Liang, S., Hudak, P. & Jones, M. (1995) Monad transformers and modular interpreters. In

Conference record of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages. San Francisco, California, pp. 333–343.

Löh, A. & Hinze, R. (2006) Open data types and open functions. Princ. Prac. Declarative

Program. Proceedings of the 8th ACM SIGPLAN Symposium on Principles and Practice of

Declarative Programming. Venice, Italy, pp. 133–144.

Lüth, C. & Ghani, N. (2002) Composing monads using coproducts. In Proceedings of

the ACM SIGPLAN International Conference on Functional Programming. Pittsburgh, PA,

pp. 133–144.

Meijer, E., Fokkinga, M. & Paterson, R. (1991) Functional programming with bananas, lenses,

envelopes and barbed wire. In Proceedings ACM Conference on Functional Programming

Languages and Computer Architecture.

Sheard, T. (2001) Generic unification via two-level types and parameterized modules. In

Proceedings of the ACM SIGPLAN International Conference on Functional Programming.

Florence, Italy, pp. 86–97.

Swierstra, W. & Altenkirch, T. (2007) Beauty in the beast: A functional semantics of

the awkward squad. In Proceedings of the ACM SIGPLAN Haskell Workshop. Freiburg,

Germany, pp. 25–36.

Wadler, P. (1998). The Expression Problem. Accessed at http://homepages.inf.ed.ac.uk/

wadler/papers/expression/expression.txt

