Embedding Polymorphic Dynamic Typing

Thomas van Noort

Wouter Swierstra

Peter Achten Rinus Plasmeijer

Institute for Computing and Information Sciences, Radboud University Nijmegen
P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands

{thomas, w.swierstra, p.achten, rinus}@cs.ru.nl

Abstract

Dynamic typing in a statically typed functional language allows
us to defer type unification until run time. This is typically useful
when interacting with the ‘outside’ world where the type of values
involved may not be known statically. Haskell has minimal sup-
port for dynamic typing, it only supports monomorphism. Clean,
on the other hand, has a more rich and mature dynamic typing sys-
tem where polymorphism is supported as well. An interesting dif-
ference is that Haskell offers monomorphic dynamic typing via a
library, while Clean offers polymorphic dynamic typing via built-
in language support. In the Clean approach there is a great deal
of freedom in the implementation in the compiler since the dy-
namic typing system is defined on abstract syntax trees, whereas
the Haskell approach does not need to extend the core language
and hence reduces the complexity of the language and compiler.
In this paper we investigate what it takes for a functional language
to embed polymorphic dynamic typing. We explore an embedding
in Haskell using generalised algebraic datatypes and argue that a
universe for the representation of types needs to separated from its
interpretation as a type. We motivate the need for a dependently-
typed functional language like Agda and perform the embedding
using structural equality on type representations. Finally, we extend
this approach with an instance-of algorithm and define a framework
for the corresponding cast function.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages

Keywords dependently-typed programming, dynamic typing,
generalised algebraic datatypes, instantiation, polymorphism, uni-
fication, universe construction

1. Introduction

Dynamic typing in a statically typed functional language such as
Clean and Haskell allows us to defer type unification until run time.
This is typically useful when interacting with the ‘outside’ world:
when values are exchanged between applications by deserialisation
from disk, input is provided by a user, or when values are obtained
via a network connection. In such situations, the types of the val-
ues at hand may not be known until run time and type checking

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WGP’11, September 18, 2011, Tokyo, Japan.

Copyright © 2011 ACM 978-1-4503-0861-8/11/09. .. $10.00

is deferred. Values and functions are wrapped together with a rep-
resentation of their type in a uniform black box, as their type is
statically not known. Such a value is unwrapped by pattern match-
ing and casting to a specific type. Although type unification can
fail at run time when a dynamic value presents an unexpected type,
the static type system guarantees that when pattern matching suc-
ceeds, the unwrapped value can be used safely. Hence, the advan-
tages of a static typing system are not compromised when crossing
the boundary to a dynamically typed world.

Haskell has minimal support for dynamic typing, it only sup-
ports monomorphism (Baars and Swierstra, 2002; Cheney and
Hinze, 2002). The de facto Haskell compiler GHC includes a li-
brary function toDyn to wrap any monomorphic value, such as an
increment function on integers', in a dynamic:

incDyn :: Dynamic
incDyn = toDyn (A\z — = + 1)

Then, a value is unwrapped using the library function fromDyn
which performs a cast, where the required type is specified by the
context in which it is unwrapped:

inc :: Maybe (Int — Int)
inc = fromDyn incDyn

Clean, on the other hand, has a more rich and mature dynamic
typing system that is built in; it adopted ML’s support for monomor-
phism (Abadi et al., 1991; Pil, 1997) and polymorphism (Abadi
et al., 1994; Leroy and Mauny, 1993). Having such an extensive
dynamic typing system does not only improve orthogonality with
the static typing system (Van Noort et al., 2010), but also has impor-
tant applications (Plasmeijer and Van Weelden, 2005; Plasmeijer et
al., 2011). In Clean, we wrap a value, for example the polymor-
phic identity function, in a dynamic by using the corresponding
keyword:

idDyn :: Dynamic
1dDyn = dynamic (Az — z)

Then, we unwrap such a value by pattern matching and provid-
ing a required type using the :: annotation:

id :: Maybe (A.a:a — a)
id =
case idDyn of
(f::Aa:a— a) — Just f
_ — Nothing

It is important to observe that the required type does not need to
be structurally equal to the type found in the dynamic; it is allowed
to be more specific than the type given. Thus, we can instantiate the

"'We ignore that in Haskell the (+) operator has an ad-hoc polymorphic
type and assume it to have the monomorphic type Int — Int — Int.

type that is contained with the value in the dynamic. For example,
assume we require the result to be a function of type Int — Int:

idInt :: Maybe (Int — Int)
idInt =
case idDyn of
(f - Int — Int) — Just f
_ — Nothing

Here, the required type is unified with the type of the value in
the dynamic and when this succeeds, the value is implicitly coerced
to the required type and returned.

An interesting difference between the approaches in the two
languages is that Haskell offers monomorphic dynamic typing via
a library, while Clean offers a more expressive system with support
for polymorphism via built-in language support. The advantage of
the Clean approach is that there is a great deal of freedom in the
implementation in the compiler since the dynamic typing system
is defined on abstract syntax trees of expressions and types. On
the other hand, the Haskell approach does not need to extend the
core language and hence reduces the complexity of the language
and compiler. Embedding it as a library also serves as a nice
demonstration of the expressivity of a language.

In this paper we investigate what it takes for a functional lan-
guage to embed polymorphic dynamic typing. We limit our scope
to a system with predicative polymorphism. That is, bound vari-
ables can only be instantiated by base types without variables. Con-
cretely, our contributions are the following:

e We show how to embed monomorphic dynamic typing in
Haskell using generalised algebraic datatypes. We explore a
straightforward extension of this approach to polymorphic dy-
namic typing and identify the difficulties with doing so, limiting
ourselves to structural equality of type representations instead
of their unification (Section 2).

We motivate the need for a dependently-typed functional lan-
guage like Agda and define the embedding of polymorphic
dynamic typing using structural equality on type representa-
tions (Section 3).

We extend this approach with an instance-of algorithm on type
representations (Section 4), based on earlier work on first-order
unification by McBride (2003).

We construct a framework for the cast function that performs
the unwrapping (Section 5), which turns out be surprisingly in-
tricate. Although our implementation is not yet complete since
we require two postulated lemmas, we have exactly identified
the steps to embed polymorphic dynamic typing in Agda.

Finally, we discuss related work (Section 6) and conclude with
a brief discussion and future work (Section 7).

2. Embedding in a functional language

Before we jump into the deep end, we first consider the embed-
ding of monomorphic dynamic typing in Haskell using generalised
algebraic datatypes (Section 2.1). Then, we explore a straightfor-
ward extension of this approach to polymorphic dynamic typing
with structural equality of type representations (Section 2.2) and
identify the difficulties with doing so (Section 2.3).

2.1 Monomorphic dynamic typing

As alluded to in the introduction, a dynamic value constitutes a
value and a representation of its type. Hence, for us to describe
a dynamic value, we first need a datatype that describes types. A
naive approach is to define a universe for the representation of types
as a vanilla datatype:

data U = INT
| PAIRU U
| U=:U
The universe describes integer, pair, and function types respec-
tively. Then, a dynamic value is defined as follows:

data Dyn = forall a . Dyn U a

A dynamic value is a black box, hence, the type of the value
contained is existentially quantified’. The main problem with this
approach already becomes apparent. How is it reflected that the
value of type U represents the type a? This becomes even more
clear when we write down the type of the function that casts a
dynamic to a required type:

cast :: U — Dyn — Maybe a

Again, the relation between the resulting value of this cast
function and the required type is missing.

In Haskell, generalised algebraic datatypes (Peyton Jones et al.,
2006) provide a solution. We define U again, but now include a
type parameter that reflects the type that the universe represents:

data U :: * — x where
INT :: U Int
PAIR::U a— Ub— U (a,b)
(=) 2 Ua—Ub—U/(a—b)

A value of type U a reflects the type a that it represents. Hence,
when we define Dyn again, the type of the value is visible in the
representation that is contained in the dynamic value:

data Dyn = forall a . Dyn (U a) a

To be able to unwrap the existentially quantified value from the
dynamic, we need to compare the contained representation with a
representation and then prove that these reflect the same type. This
proof of equality is defined by a generalised algebraic datatype,
stating that both type parameters are equal:

data (:=:) :: * — * — * where
Refl::a :=:a
The function that decides if two representations reflect equal

types uses structural recursion on the arguments in parallel, col-
lecting proofs along the way:

decU :: U a — U b — Maybe (a:=:b)
decU INT INT = Just Refl
decU (PAIR ul ul') (PAIR u2 u2') =
case (decU ul u2,decU ul’ u2') of
(Just Refl, Just Refl) — Just Refl
_ — Nothing
decU (ul =:ul’) (u2:=:u2') =
case (decU ul u2,decU ul’ u2') of
(Just Refl, Just Refl) — Just Refl
— Nothing
= Nothing

Note that we need to explicitly pattern match on the Refl con-
structor obtained from recursion to actually deploy the proof.

Using this function, we are able to define the cast function
which performs the unwrapping:

decU _ _

cast :: U a — Dyn — Maybe a
cast ul (Dyn u2 x) =
case decU ul u2 of
Just Refl — Just x
Nothing — Nothing

2 Ironically, this is denoted in Haskell using the forall keyword.

When the required representation reflects the same type as the
representation in the dynamic value, the proof Refl tells us that we
can safely return the value that is contained in the dynamic.

2.2 Polymorphic dynamic typing

Generalised algebraic datatypes allow us to attach an actual type to
a representation of a monomorphic type. But can we also use this
approach to represent polymorphic types? This requires a way to
bind and reference variables. Typically, this is achieved either by
using De Bruijn indices (De Bruijn, 1972) or through higher-order
abstract syntax (Pfenning and Elliot, 1988).

2.2.1 De Bruijn indices

Before we can reference variables in the representation of a type,
we first need a way to bind variables. We introduce another gener-
alised algebraic datatype that allows us to introduce quantifiers to
bind variables:

data V :: x — x — *x where
BASE U aenv— V aenw
FORALL::V a (U b (),env) - V a env

A universe must reflect the type that it represents. Since we need
occurrences of the same variable to reflect the same type, we have
to carry around additional administration. We use an environment
to keep track of which indices map to which variables. The con-
structor FORALL that introduces a variable extends this environ-
ment. Since we are talking about quantification over representa-
tions of types, the environment is not extended with a type b but
with a representation U b (). We enforce predicativity of the em-
bedding by using U instead of V' and requiring this representation
to be closed and not use any variables by passing the unit type for
the environment. A base universe, similar to the one defined in Sec-
tion 2.1, that includes references to variables in an environment is
defined as follows:

data U :: « — * — * where
INT :: U Int env
PAIR:: U a env — U b env — U (a,b) env
(=) 2 Uaenv— Ubenv— U (a—D)env
VAR :: Ref (U a()) env — U a env

Here, we see that the type that a variable occurrence represents
is obtained from the environment that is passed along. We use De
Bruijn indices to reference variables in a typed environment in the
style of Pasali¢ and Linger (2004):

data Ref :: x — * — x where
Rz :: Ref a (a, env)
Rs :: Ref a env — Ref a (b, env)

A value of type Ref a env references a value of type a in the
environment env. The Rz constructor references the top variable
in the environment, the Rs constructor states that the variable is
found in the tail of the environment. Using these definitions of
the universes U and V/, for instance, the type foralla . a — a
of the polymorphic identity function is represented by the value
FORALL (BASE (VAR Rz :=: VAR Rz)).

Then, a dynamic no longer carries a representation U, but a
closed representation V':

data Dyn = forall a . Dyn (V a ()) a

Again, to be able to unwrap the value of the dynamic, we need a
function that decides if two representations reflect equal types. But
now the representations can include references to variables in an
environment:

decV :: V a env = V b env’ — Maybe (a :=: b)
decV (BASE ul) (BASE u2) =
case decU ul u2 of
Just Refl — Just Refl
Nothing — Nothing
decV (FORALL v1) (FORALL v2) =
case decV vl v2 of
Just Refl — Just Refl
Nothing — Nothing

decV _ _ = Nothing

While the representation contained in a dynamic value uses a
closed environment, recall that in the definition of the FORALL
constructor, the extension of the environment is existentially quan-
tified. Hence, to be able to recurse, the type of decV is required to
work on environments of a different type. Consequently, the decid-
able equality function on the base universe also mentions different
environments:

decU :: U a env — U b env’ — Maybe (a :=: b)
decU INT INT = Just Refl
decU (PAIR ul ul1') (PAIR u2 u2') =
case (decU ul u2,decU ul’ u2') of
(Just Refl, Just Refl) — Just Refl
_ — Nothing
decU (ul =:ul') (u2:=:u2") =
case (decU ul u2,decU ul’ u2') of
(Just Refl, Just Refl) — Just Refl
_ — Nothing
decU (VAR 1) (VAR j) =
case decRef i j of
Just Refl — Just Refl
Nothing — Nothing

decU _ _ = Nothing

In comparison to the function decU from Section 2.1, only its
type is changed and the branch for variables is added. It uses an
additional function to decide when two references are equal:

decRef :: Ref a env — Ref b env’ — Maybe (a :=: b)
decRef Rz Rz =..
decRef (Rsi) (Rsj) =
case decRef i j of
Just Refl — Just Refl
Nothing — Nothing
decRef _ — = Nothing

While the inductive case for Rs structurally recurses, the base
case for Rz cannot be defined. Since the environments to which we
refer are different, as argued before, so are the references to the top
variable.

We cannot alleviate this problem since this would require the
decidable equality functions to work on environments of the same
type. As mentioned earlier, the FORALL constructor extends the
environment via existential quantification. Consequently, we can-
not compare such representations since the references to variables
in the environment are not known to reflect the same type.

2.2.2 Higher-order abstract syntax

Instead of adding a construct to reference variables in our universe,
the second approach piggybacks on the use of variables in the host
language; a technique that is called higher-order abstract syntax.
Hence, we can reuse the definition of U from Section 2.1 and
do not need to extend it with a constructor for variables. We give
another definition of the universe V' to introduce quantifiers and
bind variables:

data V :: x — * where
BASE = Ua— Va
FORALL:(Ua— Vb)) — Vb

Now, binding a variable involves taking a function that given
a representation, returns a representation that possibly binds more
variables. Again, we impose predicativity by defining the domain of
the function to be of the universe U instead of V. Closing the term
is enforced by the use of the binding structure of the host language.
In this approach, the type of the polymorphic identity function is
represented as FORALL (Aa — BASE (a = a)).

A dynamic value is defined in a straightforward fashion:

data Dyn = forall a . Dyn (V a) a

We continue by defining the decidable equality function on the
new definition of V:

decV :: Va— V b— Maybe (a :=:b
decV (BASE ul) (BASE u2) =
case decU ul u2 of
Just Refl — Just Refl
Nothing — Nothing
decV (FORALL v1) (FORALL v2) = ...
decV _ _ = Nothing

The branch for the base universe proceeds with the monomor-
phic decidable equality function as defined earlier in Section 2.1.
Unfortunately, the constructor that binds variables cannot proceed
in the usual fashion since the representations are functions, and
their domain is not finite. Hence, we cannot compare these func-
tions using existential equality. Another approach would be to sat-
urate the functions with dummy values such as De Bruijn indices,
and compare the resulting representations (Atkey et al., 2009). But
to be able to distinguish the different dummy values, we need an
environment and we have already shown this path to be a dead end.

~

2.3 Difficulties

Using generalised algebraic datatypes we are able to attach the type
that a constructor reflects to its representation. This has proven to
be essential to enforce the relation between values and the repre-
sentations of their types. Unfortunately, this property prevents the
definition of polymorphic dynamic typing. Since we need the same
variables to reflect the same type, the universes for the represen-
tation of polymorphic types have to carry around an environment.
However, the extension of the environment is existentially quanti-
fied, obstructing comparison of references to such environments.

The only way to circumvent these troubles is to postpone the
use of an environment and hence the attachment of types to rep-
resentations. This demands a separation between a universe for the
representation of types and its interpretation as a type. The intuition
is that the separation allows us to first perform the desired opera-
tions on representations, after which we perform the interpretation
at the latest moment. This allows us, for instance, to compare rep-
resentations without having any attached interpretation in the way.

Ideally, we would like to define a function that interprets a repre-
sentation and returns the type that it must reflect. Haskell provides
some way to do type-level computations via generalised algebraic
datatypes and type families (Schrijvers et al., 2008). While it is pos-
sible to embed polymorphic dynamic typing in Haskell by making
heavy use of these tools, we believe that a dependently-typed lan-
guage provides a more natural approach.

3. Embedding in a dependently-typed language

In this section we use Agda (Norell, 2007 & 2008) and discuss
how monomorphic dynamic typing can be embedded in this lan-
guage (Section 3.1). Then, we show how to elegantly embed poly-

morphic dynamic typing, for now limiting ourselves to using struc-
tural equality of representations (Section 3.2).

3.1 Monomorphic dynamic typing
We begin by defining a universe to represent monomorphic types:

data U : Set where
NAT : U
PAIR : U —- U — U
=:U—>U->U

The difference with the representation from Section 2.1 is that
the interpretation of the representation (i.e., the type that a repre-
sentation reflects) is detached. The corresponding type is obtained
by the function el that computes the type that a value of this uni-
verse represents:

elU: U — Set

elU NAT = Nat

elU (PAIR uu’) = Pair (elU u) (elU u’)
elU(u=u) =-elUu — elUd

This function returns a type when given a value. The base case
returns the monomorphic type Nat whereas the other branches for
pairs and functions recurse while constructing a pair or function
type. Then, a dynamic value constitutes a representation with a
value of the interpreted type:

Set where
U) — elUu — Dyn

data Dyn :
dyn : (u :

A cast function needs a proof that a provided representation is
equal to the representation that is contained in the dynamic, before
unwrapping its value:

data _=_{a : Set} (x : a) :

Refl : x = x

a — Set where

This datatype is similar to the Haskell datatype (:=:) from Sec-
tion 2.1, although there is one important difference: this equality
states that two values are equal while the Haskell datatype states
that two types are equal. Here, we only need a proof on the value
level since a representation U does not reflect the type it represents.
The function that decides if two representations are equal is defined
as follows:

decU : forall {n} — (ulu2 : Un) —
Maybe (ul = u2)

decU NAT NAT = Just Refl
decU (PAIR ul ul’) (PAIR u2 u2’)

with decU ul u2 | decU ul’ u2’
decU (PAIR ul ul’) (PAIR .ul .ul")

| Just Refl | Just Refl = Just Refl
SV | — = Nothing
decU (ul = ul’) (u2 = u2)

with decU ul u2 | decU ul’ u2’
decU (ul = ul’) (.l = .ul’)

| Just Refl | Just Refl = Just Refl
UV | — = Nothing
decU _ — = Nothing

Coming up with a proof in the case of integer representations is
easy. In the branches for pairs and functions we pair-wise recurse
using the with keyword and pattern match on the results. Note
that when pattern matching on a proof Refl, we have to restate
the branch and use the dot-notation to explicitly state that the two
compared elements are equal. Otherwise, we use the shorthand
notation ... to restate the original branch before we come to pattern
matching the results of recursion.

Next, we define the cast function:

cast : (ul : U) — Dyn — Maybe (elU ul)
cast ul (dyn u2 x) with decU ul u2

cast ul (dyn .ul x) | Just Refl = Just x

| Nothing = Nothing

When the function decU gives the proof Refl that both repre-
sentations are equal, we can return the value that is contained in the
dynamic. Note that although the proof only states the equality of
the representation values, the type checker also learns that elU ul
equals elU u2.

3.2 Polymorphic dynamic typing

The above definitions are straightforwardly defined in Agda and
resemble the approach explained in Section 2.1. Next, we will
extend the Agda approach to polymorphic types.

First, we need a way to introduce quantifiers and bind variables.
To be able to close a representation, we include a type parameter
that indicates the number of variables that a representation can use:

dataV (n : Nat) : Set where
BASE :Un — Vn
FORALL : V (Succn) — Vn

The FORALL constructor permits the use of an additional vari-
able, which are referenced in the datatype U:

data U (n : Nat) : Set where
NAT : Un
PAIR : Un - Un — Un
=:Un > Un — Un
VAR : Finn — Un

The number of variables in a representation is carried along
the way. The datatype Fin n describes the finite number of values
between Zero and n:

data Fin : Nat — Set where
Fz : forall {n} — Fin (Succn)
Fs : forall {n} — Finn — Fin (Succn)

Note that its definition bears a resemblance to the definition of
the datatype Ref from Section 2.2.

Using the universes U and V, the type of the polymorphic
identity function is represented as FORALL (BASE (VAR Fz =
VAR Fz)). To obtain the actual types that representations reflect,
we need interpretation functions. As before in Section 2.2, we use
De Bruijn indices in an environment to keep track of the types
associated with variables and to guarantee that occurrences of the
same variables reflect the same type:

data Env : (n : Nat) — Set where

Nil : Env Zero
Cons : forall {n} — U Zero —
Envn — Env (Succn)

Looking up an entry in an environment is straightforward:

lookup : forall {n} — Finn — Envn — U Zero
lookup Fz (Consu_) = u
lookup (Fs i) (Cons _env) = lookup i env

Note that we do not need to provide a branch for the empty
environment since the constructors of the Fin type do not permit
a reference to an empty environment. In the base case for Fz we
take the head entry, and otherwise we recurse with the tail of the
environment.

The interpretation function of the universe V takes such an
environment:

elV : forall {n} — Vn — Envn — Set
elV (BASEu) env = elluenv
elV (FORALL v) env = forall {u} — elV v (Cons u env)

The FORALL constructor quantifies over a representation that
uses no variables, again to enforce predicativity, and adds it to the
provided environment before recursing. This resembles the type of
the equally named constructor as given in Section 2.2. The base
case recurses in the interpretation of the universe U:

elU : forall {n} — Un — Envn — Set

elU NAT — = Nat
elU (PAIR u u") env = Pair (elU u env) (elU u’ env)
elU(u = u) env = elUuenv — elUu env

elU (VAR) env = elUO (lookup i env)

The representations of integers, pairs, and functions map to their
respective types. In the case of a variable we use the environment
that is passed along to obtain the type that this variable reflects.
Because we quantify over representations, we have to interpret its
result again using elUO, which we will define next.

Since we are typically dealing with closed representations in
dynamic values, we define an interpretation function of such repre-
sentations separately:

elVO : V Zero — Set
elVO (BASE u) = elUOu
elVO (FORALL v) = elV (FORALL v) Nil

Again, the FORALL constructor quantifies over a variable, but
recurses in the earlier defined elV function with the untouched rep-
resentations and the empty environment Nil. The base case simply
recurses in the interpretation of the universe U that does not contain
any variable references:

elU0 : UZero — Set

elU0 NAT = Nat

elU0 (PAIR u ') = Pair (elU0 u) (elU0 u’)
elU0 (u = u’) = elU0u — elUO U
elU0 (VAR ()

The function elUO recurses the structure of the argument rep-
resentation and produces types along the way. Since we know that
such a representation cannot contain any variables (i.e., the type
Fin Zero is uninhabited), we have to define the final branch for
VAR as an impossible pattern.

Given the universes and their interpretation, we define a dy-
namic value as follows:

data Dyn : Set where
dyn : (v : V Zero) — elVOv — Dyn

Since a representation no longer directly reflects its correspond-
ing type, as in Section 3.1, we use the interpretation function to
compute the desired type for the value in the dynamic.

We continue by defining decidable equality on our representa-
tions, such that we are later able to unwrap the value that is con-
tained in the dynamic:

decV : forall {n} — (viv2 : Vn) —
Maybe (v1 = v2)
decV (BASE ul) (BASE u2)
with decU ul u2

decV (BASE ul) (BASE .ul)
| Just Refl = Just Refl
... | Nothing = Nothing

decV (FORALL v1) (FORALL v2)
with decV vl v2
decV (FORALL v1) (FORALL .v1)

| Just Refl = Just Refl
... | Nothing = Nothing
decV _ _ = Nothing

Representations that introduce quantifiers and bind variables are
considered equal if their body is equal. In the base case we recurse
in the function for decidable equality of the universe U:

decU : forall {n} — (ulu2: Un) —
Maybe (ul = u2)

decU NAT NAT = Just Refl
decU (PAIR ul ul’) (PAIR u2 u2’)

with decU ul u2 | decU ul’ u2’
decU (PAIR ul ul’) (PAIR .ul .ul’)

| Just Refl | Just Refl = Just Refl
PV — = Nothing
decU (ul = ul") (u2 = u2')

with decU ul u2 | decU ul’ u2’
decU (ul = ul) (wl = .ul’)

| Just Refl | Just Refl = Just Refl

SV — = Nothing
decU (VARi) (VAR)
with decFin i j
decU (VARi) (VAR .i)
| Just Refl = Just Refl
SV = Nothing
decU _ — = Nothing

This definition greatly resembles the definition of decU in Sec-
tion 3.1. We recurse over the structure in parallel and collect proofs
as we go, but we add the branch for variables where we use the
function decFin:

decFin : forall {n} — (ij : Finn) — Maybe (i = j)
decFinFz Fz = Just Refl

decFin (Fs i) (Fsj) with decFinij

decFin (Fsi) (Fs.i) | Just Refl = Just Refl

| Nothing = Nothing

decFin _ _ = Nothing

Since the references in this approach no longer have a type
attached to it, this function merely amounts to verifying that the
indices are the same.

Then, we are finally able to define the cast function on the
universe that represents polymorphic types:

cast : (vl : V Zero) — Dyn — Maybe (elVO v1)
cast vl (dyn v2 x) with decV v1 v2

cast vl (dyn .vl x) | Just Refl = Just x

.. | Nothing = Nothing

This definition is much like the definition of cast in Section 3.1:
we compare the given representation with the representation con-
tained in the dynamic and return the value if the proof tells us that
the representations are the same.

4. Unification of type representations

The previous section shows how to embed polymorphic dynamic
typing in Agda. However, we used structural equality on represen-
tations to define the cast function. Typically, you would want to
unify the required representation with the one that is found in the
dynamic value. Caution is advised since the required representa-
tion is not allowed to represent a more general type than that of the
representation in the dynamic. In other words, we are only allowed

to unwrap a value from a dynamic when the required type is an in-
stance of the type at hand. Hence, we have to perform unification
of representations, just like in the Clean system, to determine if one
is an instance of the other.

Recalling the example from the introduction, consider the iden-
tity function wrapped in a dynamic using our Agda universe for the
representation of polymorphic types:

idType : V Zero

idType = FORALL (BASE (VAR Fz = VAR Fz))
idDyn : Dyn

idDyn = dynidType (Ax — x)

Then, the following expression must yield an identity on inte-
gers since the required representation is an instance of the one in
the dynamic:

cast (BASE (NAT = NAT)) idDyn

The other way around, consider a dynamic value that contains
the increment function on integers:

incDyn : Dyn
incDyn = dyn (BASE (NAT = NAT)) (Ax — x+1)

When we try to unwrap the function from the dynamic, we are
not allowed it to cast it to the more general type of the polymorphic
identity function. For example, the following expression must fail
and return Nothing:

cast idType incDyn

The definition of unification of representations in Agda is subtle
and requires great care. Agda requires a function to be structurally
recursive to ensure its termination. However, most unification al-
gorithms do not exhibit this property since substitutions obtained
from one branch are applied to other branches before proceeding
in recursion. We base our instance-of algorithm on earlier work
by McBride (2003) in Epigram where the algorithm is made struc-
turally recursive by guaranteeing that the entries of substitution
each remove a variable. We reuse the parts we need in Agda and
adapt the main algorithm to perform an instance-of check rather
than unification. For the full details of the original approach we
refer the reader to McBride’s paper.

In this section, we first discuss the core of unification, namely
substitution (Section 4.1). We continue by showing how to perform
unification and adapt it to an instance-of algorithm (Section 4.2).
Later in Section 5, we will see how the cast function strips off
quantifiers and uses the instance-of algorithm on representations
in the base universe U. Therefore, this section is only concerned
with such representations.

4.1 Substitution

The core of the unification algorithm lies in substitution. This is
modelled as an associative list that maps variables to representa-
tions that may contain other variables:

data AList : Nat — Nat — Set where
Nil : forall {n} — AListnn
Cons : forall {nm} — Fin (Succn) — Un —
AList n m — AList (Succ n) m

Note that we can use the same constructor names as in the
datatype Env from Section 3.2 since Agda supports constructor
overloading. The intuition of this datatype is that a substitution
of type AList n m maps values of type U n to U m. The empty
substitution Nil is the identity substitution, taking a U nto U n. An
entry in the substitution takes a U (Succ n) to U m by replacing a
variable Fin (Succ n) with a representation U n, given that we have
a substitution that takes such U n representations to U m. Hence,

each step of the substitution guarantees that it removes a variable.
This fact is later used in the unification algorithm to guarantee
structural recursion and its termination.

A substitution is defined as a dependent pair, or X-type:

data Exists (a : Set) (b : a — Set) : Set where
Witness : (x : a) — bx — Existsab

fsts : forall {ab} — Existsab — a
fsts (Witness x _) = x

Then, a substitution only exposes the type of the representation
it operates on:

Subst : Nat — Set
Subst n = Exists Nat (A m — AList n m)

The witness describes the number of variables to which the
substitution maps. Using this approach, we are allowed to choose
this number whenever we construct a substitution. As mentioned
earlier, this is used to guarantee that each entry in the substitution
reduces the number of variables.

Such a substitution is applied to a representation using the
following function:

apply : forall {n} — (subst :
Un — U (fsts subst)

Subst n) —

apply — NAT = NAT
apply subst (PAIRuu") =

PAIR (apply subst u) (apply subst u’)
apply subst (u=u) =

apply subst u = apply subst u’
apply (Witness _ xs) (VAR i) = subxsi

The type of this function states that the number of variables
left in the result of the application is dictated by the substitution.
The function recurses over the structure of representation until it
encounters a variable. Here, it uses a function that applies the actual
associated list to the variable at hand:

sub : forall {mn} — AListmn — Finm — Un
sub Nil i = VAR
sub (Consitxs)j = mapVar (sub xs) ((t fori) j)

If the substitution is empty, we reconstruct the variable. Other-
wise, we replace the variable that is contained in the substitution
with its associated representation. We continue by applying the tail
of the substitution to this result since this possibly contains new
variables that need to be substituted. The function mapVar recurses
over a representation and applies a function to each variable:

mapVar : forall {mn} — (Finm — Un) —
Um — Un
mapVar _ NAT = NAT

mapVar f (PAIRuu’) =
PAIR (mapVar f u) (mapVar f u')
mapVar f (u = u') =
mapVar fu = mapVar fu’
mapVar f (VAR) = fi

The following function performs the actual substitution:

for : forall {n} — Un — Fin (Succn) —
Fin (Succn) — Un

(t for i) j with thick i j

.. | Justj = VARj’

. | Nothing = t

First, it verifies that the variable to be replaced is equal to the
variable under substitution. If this is not the case, we obtain a
‘smaller’ Fin value and return it. Otherwise, the variables are equal

and we return the representation for which we must substitute. The
function thick performs the comparison:

thick : forall {n} — Fin (Succn) —
Fin (Succ n) — Maybe (Fin n)

thick {Zero} Fz Fz = Nothing

thick {Zero} _ (Fs ()

thick {Zero} (Fs()) —

thick {Succ n} Fz Fz = Nothing

thick {Succ n} Fz (Fsj) = Justj

thick {Succn} (Fs_) Fz = JustFz

thick {Succ n} (Fsi) (Fsj) with thick i j

o | Just]’ = Just (Fsj")
. | Nothing = Nothing

The function thick i maps a value of type Fin (Succ n) to
Maybe (Fin n). If the two arguments of thick are equal, it will
return Nothing. If the second argument j is larger than i, the call
to thick i j decrements j to produce a value of type Fin n; if j is
less than i, the call to thick i j leaves j untouched, but only changes
its type. The function thick is defined by induction on n. When n
is Zero, there is only one possible inhabitant of Fin (Succ Zero)
and hence we return Nothing. For larger n, we compare i and j and
return Nothing when they are equal.

4.2 Instance-of algorithm

Now that we have defined the type of substitutions and their appli-
cation, we continue by defining the functions that construct substi-
tutions. As we will see later, the unification algorithm traverses the
structure of representations. There, it will unify variables with vari-
ables, as well as variables with arbitrary representations. We define
two functions to deal with these cases, flexFlex and flexRigid.

The first function is defined as follows:

flexFlex : forall {n} — Finn — Finn — Substn
flexFlex {Zero} () ()

flexFlex {Succ n} i j with thick i

. | Justj’ = Witness n (Consi (VAR ") Nil)

... | Nothing = Witness (Succ n) Nil

We already know that Fin Zero has no inhabitants, hence, we
define this as an impossible pattern. In the other case, we verify if
both variables happen to be the same using the function thick from
Section 4.1. If not, we construct a singleton substitution that maps
the first argument of flexFlex to the result of thick. Otherwise, the
variables were equal and we return the empty substitution. Here we
use the witness to choose and specify the number of variables to
which the resulting substitution maps. Since the singleton substi-
tution will remove a variable from a representation, its witness is
n while in the other case the number of variables is left untouched
and hence is Succ n.

The second function is different in the sense that it works on
variable and non-variable representations:

flexRigid : forall {n} — Finn — Un —
Maybe (Subst n)

flexRigid {Zero} () —

flexRigid {Succ n} i u with check iu

. | Justu” = Just (Witness n (Cons i u’ Nil))

... | Nothing = Nothing

Again, the base case is an impossible pattern. The inductive case
proceeds with the occur-check. If the variable does not occur in
the representation, we obtain a representation with fewer variables,
similar to the function thick. Otherwise, the variable does occur in
the representation and the unification as a whole must fail, hence
we return Nothing. The function check performs the occur-check:

check : forall {n} — Fin (Succn) — U (Succn) —
Maybe (U n)

check _ NAT = Just NAT

checki (PAIR u u’) with check iu | checkiu’

. | Justcu | Justcu’ = Just (PAIR cu cu’)

SV | — = Nothing
checki (u = u') with checkiu | checkiu’
.. | Justcu | Justcu’ = Just (cu = cu')
SV | — = Nothing
checki (VAR]) with thick i j
oo | Justj’ = Just (VAR]')

| Nothing = Nothing

It traverses the representation, reconstructing the results ob-
tained from recursion in the branches for pairs and functions. In
the branch for a variable it uses the function thick to test if the two
variables are equal.

Now, we come to the actual unification algorithm. Remember
that in contrast to the original algorithm, we want to define a
function that determines if the first argument is an instance of the
second argument and returns the witnessing substitution. It uses an
accumulating parameter for the substitutions constructed thus far:

iofAcc : forall {n} — Un — Un — Substn —
Maybe (Subst n)

Although the two arguments are required to use the same num-
ber of variables, in practice this is not always the case. In Sec-
tion 5.4 we will consider that we first align representations by
weakening so that they have the same number of variables.

The definition of the function proceeds first by structural recur-
sion on representations that do not contain variables. First, the base
case for integers returns the accumulated substitution:

iofAcc NAT NAT subst = Just subst

Then, the cases for pairs and functions simply recurse over their
branches:

iofAcc (PAIR ul ul’) (PAIR u2 u2') subst
with iofAcc ul u2 subst
... | Just subst’ = iofAcc ul’ u2’ subst’
| Nothing = Nothing
iofAcc (ul = ul’) (u2 = u2') subst
with iofAcc ul u2 subst
... | Just subst’ = iofAcc ul’ u2’ subst’
| Nothing = Nothing

It is important that we do not immediately apply the substitution
obtained from recursion in the left elements to the right elements,
since this would not be structurally recursive. Instead, we simply
pass on the obtained substitution and postpone its application.

The branches for variables use the previously defined functions
for the construction of substitutions:

iofAcc (VAR i) (VAR j) (Witness _ Nil) = Just (flexFlex j i)
iofAcc v (VAR j) (Witness _ Nil) = flexRigid j v

This is the point where we adapt McBride’s algorithm. In the
case of two variables, we swap the arguments to flexFlex such that a
resulting substitution maps j to i. We also remove the branch where
the first argument is a variable and only allow the second argument
to be a variable. These two modifications enforce the fact that the
first must be an instance of the second.

The previous cases never apply the constructed substitutions.
Instead, this is postponed until none of the above cases hold:

iofAcc _ _ (Witness _ Nil) = Nothing

iofAcc ul u2 (Witness n (Cons i t xs))
with iofAcc (mapVar (t for i) ul) (mapVar (t for i) u2)
(Witness n xs)
... | Just (Witness n" xs") = Just (Witness n’ (Cons it xs'))
| Nothing = Nothing

When there is no substitution left to apply, the function fails
with Nothing. Otherwise, we take the head of the substitution and
try to substitute each variable in both representations. We recurse
with the tail of the substitution and reconstruct the result.

Then, all that is left to do is to start the accumulating function:

iof : forall {n} — Un — Un — Maybe (Subst n)
iof {n} ul u2 = iofAcc ul u2 (Witness n Nil)

We provide the empty substitution to the accumulating function,
which concludes the definition of the instance-of algorithm.

5. Cast

In Section 3, we defined a straightforward cast function in Agda
that uses structural equality on representations. In the previous
section we have stated our desire to verify if one representation
is an instance of the other using unification. If this is the case,
we know that it is safe to unwrap the corresponding value from
a dynamic, but we must also convince Agda of this fact. It turns
out that the definition of the cast function that uses the instance-of
algorithm is more intricate than we anticipated at first.

In this section we show how to define such a cast function®.
Recall the type of the cast function:

cast : (vl : V Zero) — Dyn — Maybe (elVO v1)

The representation that is contained in the dynamic, say v2, is
different from the argument representation. To be able to unwrap
its corresponding value, we have to transform a value of type
elVO v2 to elVO v1. The trick is to take advantage of the form
of the interpretation functions from Section 3.2. These functions
receive an environment that is used to assign the same type to the
same occurrences of a variable. Hence, this is our entrypoint to
instantiate variables using the substitution gained from performing
the instance-of algorithm! But before we get to that point, we have
to transform the value that is contained in the dynamic to a form
where we can provide it an environment of our choosing. Then, we
transform it back to be a value of the type that we are returning.
The framework is defined by the following steps:

1. The type elVO v2 of the value in the dynamic is unpacked such
that it is in a form where it takes an environment, being the
empty environment at first.

2. The quantifiers of v2 are stripped, thereby requiring an entry in
the environment for each variable.

3. The variables in this environment are merged with the substitu-
tion obtained from the instance-of algorithm.

4. The value is coerced using a correctness proof of the instance-of
algorithm such that its type includes the argument representa-
tion v1 and not v2.

5. The variables that are not instantiated are quantified by dressing
with the quantifiers of v1, thereby emptying the environment of
any variables.

6. The remaining empty environment is packed back into place to
obtain the type elVO v1.

3 Since we are juggling with variables, many steps in this section require
proofs such as n + Zero = n,n + Succ m = Succ (n + m), and
n 4+ m = m + n. We leave out such coercions since these are irrelevant
and merely clutter the presentation of the code.

The most interesting part of this framework lies in the middle
two steps; this is where we instantiate the variables and perform the
coercion from one representation to the other. We discuss each of
these steps separately (Sections 5.1 to 5.6). Finally, these steps are
combined with the instance-of algorithm from the previous section
into a single cast function (Section 5.7).

5.1 Unpack the empty environment

The representation that is included with the value in a dynamic is
closed. To be able to later instantiate the variables in this represen-
tation via the environment, we first have to gain access to an envi-
ronment. Therefore, we start by unpacking the empty environment
in the interpretation function:

unpackEnvV : (v : V Zero) — elVOv —

((env : Env Zero) — elV venv)
unpackEnvV (BASE u) x Nil = unpackEnvU u x
unpackEnvV (FORALL _) x Nil = x

A value belonging to a FORALL constructor does not require
any further work since its interpretation in elVO is defined as the
interpretation using elV and the empty environment, as given in
Section 3.2. In the base case we recurse by unpacking the represen-
tation of type U:

unpackEnvU : (u : U Zero) — elUOu — elU u Nil
unpackEnvU NAT X = X
unpackEnvU (PAIR u u’) (x, x') =

(unpackEnvU u x , unpackEnvU u’ x’)
unpackEnvU (u = u’) f =

A x — unpackEnvU u' (f (packEnvU u x))
unpackEnvU (VAR ()) _

The function recurses over the structure of the representation,
excluding the branch for variables using an impossible pattern.
Due to co- and contravariance in the case of functions, unpacking
the representations involved requires a counterpart definition and
mutual recursion:

packEnvU : (u : U Zero) — elUuNil — elUOu
packEnvU NAT X = X
packEnvU (PAIRuu’) (x, x') =

(packEnvU u x , packEnvU u’ x')
packEnvU (u = u') f =

A x — packEnvU u’ (f (unpackEnvU u x))
packEnvU (VAR ()) _

Again, we recurse the structure of the representations and ex-
clude the branch for variables. In the branch for functions we re-
curse back into unpackEnvU.

5.2 Strip the quantifiers

Now that we have gained access to an environment, we need to
strip the quantifiers from the representation in the dynamic and
extend the environment for each variable. This is achieved using
the following function:

toEIU : forall {n} — (v : Vn) —
((env : Envn) — elVvenv) —
((env : Env (varsv 4+ n)) — elU (strip v) env)
toEIU (BASE) f = f
toEIU (FORALL v) f =
toEIU v (A env’ — f (tlenv') {hdenv'})

The type of toEIU expresses that if we strip the quantifiers from
a representation, we can transform a value living in elV to elU, but
only if we add an entry to the environment for each bound variable
in the representation.

The functions vars and strip are defined as follows:

vars : forall {n} — Vn — Nat
vars (BASE _) = Zero
vars (FORALL v) = Succ (vars v)

strip : forall {n} — (v : Vn) — U (varsv +n)
strip (BASEu) = u
strip (FORALL v) = strip v

In the base case of toEIU there are no quantifiers to strip, hence
we can simply return f. In the case of a quantifier, we recurse in
the inner representation. The value that we provide in recursion
receives an environment with one more entry than the original value
requires. Hence, we unfold this environment and feed it only the
tail. This leaves us with the head entry, which we provide as an
implicit argument as described by the interpretation function. The
helper functions on environments are easily defined:

hd : forall {n} — Env (Succn) — U Zero
hd (Consu _) = u

tl : forall {n} — Env (Succn) — Envn
tl (Cons _env) = env

Since we know that the environment contains at least one entry,
we do not need to pattern match on the empty environment Nil.

5.3 Instantiate the environment

The previous steps have prepared us for the point where we can
use the environment as the entrypoint to instantiate variables in the
interpretation function. As we have not yet finished the implemen-
tation of our framework, we leave the function that captures this
behaviour as a postulated lemma:

instEnv :
forall {n} — (u: Un) — (subst : Substn) —
((env : Envn) — elU u (replaceEnv subst env)) —
((env : Env (fsts subst)) — elU (apply subst u) env)

The function replaceEnv replaces those entries in an environ-
ment for which there is a substitution available:

replaceEnv :
forall {n} — (subst : Substn) — Envn — Envn

The lemma instEnv captures the relation between substitutions
and environments. Namely, they behave the same: it does not mat-
ter whether you instantiate the types to which variables refer in an
environment using a substitution, or instantiate variables by apply-
ing that substitution to a representation.

5.4 Coerce the value

Next, we have to coerce the value such that its type is represented
by the resulting representation, and not by the representation that is
contained in the dynamic value. To achieve this, we need a correct-
ness proof of the instance-of algorithm. Again, as our implementa-
tion is not yet finished, we leave this as a postulated lemma:

iofCorrect :
forall {nk} — (ul : Un) - (u2: U((k+n)) —
Maybe (Exists (AList (k + n) n)
(Axs — apply (Witness n xs) u2
= ul))

Other than the function iof from Section 4.2, this lemma op-
erates on representations that possibly have a different number of
variables. We assume that a representation quantifies no more vari-
ables than it needs; FORALL (BASE NAT) is a perfectly valid
representation but does not fulfill this assumption. Then, it is safe

to say beforehand that one representation can only be an instance
of the other when it does not use more variables. In fact, the type
of this lemma states that first argument uses k less variables than
the second argument. Then, given such representations, we know
that there exists a substitution from a representation with k + n
variables to a representation with n variables, which applied to u2
gives us ul.

We are not completely in the dark about the definition of this
lemma. Namely, it weakens the first representation with k variables
and then uses the iof function to obtain the substitution. Only the
proof on the resulting type of the substitution and its correctness
is missing. However, a very similar proof has already been given
by McBride on his unification algorithm. Namely, the unification
property that applying the resulting substitution to both represen-
tations gives the same result. We conjecture that our modifications
of the unification algorithm imply that the stated property of our
instance-of algorithm holds as well.

Given the correctness proof of the instance-of algorithm, we
perform the actual coercion of a value using the following function:

forall {nulu2} — (ul = uv2) —
((env : Envn) — elUulenv) —
((env : Envn) — elU u2env)
coerce Refl f = f

coerce

The representations to which the coercion applies are provided
as implicit arguments. We deploy the argument proof of their equal-
ity by pattern matching on Refl, which performs the coercion and
allows us to return f.

5.5 Dress with quantifiers

Having performed the middle of the transformation, we follow the
same path backwards. We dress the representation with quanti-
fiers and empty the environment accordingly, obtaining the dual
of toEIU:

toEIV :
forall {n} — (v :Vn) —
((env : Env (varsv +n)) — elU (strip v) env) —
((env : Envn) — elVvenv)
toEIV (BASE _) f = f
toEIV (FORALL v) f =
Aenv {u} — toEIV v f(Consuenv)

The transformation function receives the original representation
that dictates the quantified variables that need to be introduced. The
base case is straightforward since there are no quantifiers to intro-
duce. In the inductive case we have an environment and a quanti-
fied implicit variable where we recurse in toEIV by appending the
variable to the environment. Note the analogy with the elV inter-
pretation function where we introduce an actual quantifier on the
type level and also add it to the environment before recursing.

5.6 Pack the empty environment

Finally, we are left with one simple task, that is to pack the empty
environment back into the interpretation function. We define the
dual of unpackEnvV:

packEnvV : (v : V Zero) —
((env : Env Zero) — elVvenv) —
elVO v
packEnvV (BASE u) f = packEnvU u (f Nil)
packEnvV (FORALL _) f = fNil

In the base case we recurse in the function for packing the
universe U from Section 5.1, whereas the inductive case simply
provides the empty environment to saturate the argument function.

5.7 The cast function

Now that we have described the individual steps of the framework,
we almost come to the point where we combine these steps into the
actual cast function.

As mentioned earlier in Section 5.4, our correctness proof of the
instance-of algorithm demands that the representation presented to
the cast function does not use more variables than the representa-
tion contained in the dynamic. Therefore, we first define a function
to perform this check:

minus : (mn : Nat) —
Maybe (Exists Nat (A k — k+n = m))
minus Zero (Succ _) = Nothing
minus m Zero = Just (Witness m Refl)
minus (Succ m) (Succ n) with minus m n
minus (Succ .(k + n)) (Succ n)
| Just (Witness k Refl) = Just (Witness k Refl)
.| Nothing Nothing

If the check succeeds, the function gives us the actual difference
between the two arguments and a proof® that states this fact.

Given this helper function, the instance-of algorithm, and the
framework described earlier, the cast function is defined as follows:

cast : (vl : V Zero) — Dyn — Maybe (elVO v1)
cast v1 (dyn v2 x) with minus (vars v2) (vars v1)

... | Nothing = Nothing
... | Just (Witness k p) with iofCorrect (strip v1) (strip v2)
... | Nothing = Nothing
... | Just (Witness xs iofLemma) = Just step6
where
subst : Subst (vars v2)
subst = Witness (vars v1) xs
stepl : (env : Env Zero) — elV v2env

stepl = unpackEnvV v2 x

step2 : (env : Env (varsv2)) — elU (strip v2) env
step2 = toEIU v2 stepl

step3 : (env : Env (varsvl)) —
elU (apply subst (strip v2)) env
step3 = instEnv (strip v2) subst
(Aenv' — step2 (replaceEnv subst env’))

step4 : (env : Env (varsvl)) — elU (strip vl) env
step4 = coerce iofLemma step3
step5 : (env : Env Zero) — elV vlenv

stepb = toElV vl step4

step6 : elVO vl
step6 = packEnvV vl stepb

We verify that the first argument does not use more variables
than the second argument®. Then, we obtain an associated list
(which we turn into a substitution using a local definition) and the
correctness proof via iofCorrect, before we follow the six steps of
the framework as enumerated in the beginning of this section. Com-
paring this definition to the earlier definition of the cast function
that uses structural equality, we clearly see that using the instance-
of algorithm requires a lot more work and careful steps.

4 The actual implementation of the framework uses the difference k between
vars vl and vars v2, and the proof k + vars v2 = vars vl to perform
uninteresting but obligatory coercions on representations. We omit these
here for the sake of presentation.

6. Related work

Dynamic typing in Haskell has been studied by both Baars and
Swierstra (2002) and Cheney and Hinze (2002) around the same
time. Both approaches only considered monomorphic dynamic typ-
ing. Respectively, they state: “Whether our approach can easily
be extended with dynamic polymorphism is as yet unknown and
a subject of further research.” and “We believe our Dynamic also
can support making values of closed polymorphic types dynamic,
although we have yet to experiment with unifying and pattern-
matching polymorphic type representations.”. A similar but weaker
research question has been formulated by Sheard et al. (2005) and
said to be difficult (Sheard and Pasali¢, 2008): “Is it possible to
build [..] singleton types to represent polymorphic types? While we
have tried many approaches we are not yet satisfied with the gen-
erality of any of them.”. Unfortunately, there has not been any fol-
low up on this work and these research questions have neither been
proven nor disproven by the authors. In this paper we show how
to define a representation of polymorphic types using generalised
algebraic datatypes in Haskell. We also argue that a universe for the
representation of types and its interpretation need to be separated
to embed polymorphic dynamic typing in a functional language.

A workaround in Haskell to support dynamic typing with poly-
morphism has been suggested by Pang et al. (2004). The idea is that
any polymorphic value can be made monomorphic by wrapping it
in a vanilla datatype. While this allows us to move around such dy-
namic values, we are not able to unwrap it with a less general type
by instantiation, like we describe in this paper.

There has also been some work on extending the Haskell library
for monomorphic dynamic typing with polymorphism (Stewart,
2010). There it is argued, as we do in this paper, that polymorphism
in representations requires their unification. Instead of supporting
this via a library, or by extending the language itself, a hook to the
compiler is provided to invoke the regular unification mechanism at
run time. In our approach we do not follow this path but investigate
the embedding in a language itself, thereby also experimenting with
and learning about the expressivity of the language and its features.

The combination of dynamic typing and dependently-typed pro-
gramming is not entirely new. Ou et al. (2004) argue that a pro-
grammer needs fine-grained control over the number of type anno-
tations and the level of compile-time safety. A new system is de-
scribed where pieces of the program are either marked dependent
or simple, where the latter case is verified at run time. However, our
goal is different in that we consider the embedding of dynamic typ-
ing in a dependently-typed functional language via a universe and
its interpretation, instead of completely merging the two idioms by
extending the system itself.

We use a dependently-typed functional language mostly for its
ability to separate a universe from its interpretation, such that we
can compare representations. Crary and Weirich (1999) use the
same approach and define interpretation functions on a universe
for the representation of polymorphic types, very much like our in-
terpretations. However, their work concerns a system named LX
that is completely dedicated to the analysis of types within a pro-
gramming language, whereas we consider the embedding of such
analyses in an already existing language.

A universe of representations and their interpretation functions
has been shown to be an effective approach in generic program-
ming in a dependently-typed setting (Altenkirch and McBride,
2003; Oury and Swierstra, 2008). Also, the duality relation between
generic programming and dynamic typing has been described ear-
lier (Cheney and Hinze, 2002). Hence, it comes as no surprise that
we can use universe construction for dynamic typing as well. How-
ever, to our knowledge we are the first to investigate this relation in
the context of the embedding of polymorphic dynamic typing.

7. Conclusion

We have explored the embedding of polymorphic dynamic typing
in different settings. We argued that an approach in a functional
language like Haskell requires generalised algebraic datatypes to
relate values to the representation of their types, but in doing so
we closed the door on comparing representations that involve the
binding of variables. This is because an environment is required to
make sure that the occurrences of the same variable reflect the same
type. However, we can no longer compare such representations
since these environments are existentially quantified.

In essence, we have shown that a universe for the representa-
tion of types needs to be separated from its interpretation as a type.
While it is possible to perform this separation in Haskell by making
heavy use of generalised algebraic datatypes and type families, we
believe that a more natural approach is offered by a dependently-
typed language such as Agda. There, we are able to elegantly post-
pone attaching meaning to a representation until after performing
any comparison. We first defined a framework for polymorphic dy-
namic typing in Agda with structural equality of representations.
Then, we extended this approach to use an instance-of algorithm
based on unification and defined a cast function that required sur-
prisingly intricate steps to coerce values.

We did not describe a complete framework but have two postu-
lated lemmas: one involves transferring information between sub-
stitutions and environments, and the other the correctness of the
instance-of algorithm. We believe that both can be defined and in-
tend to do so in future work.

Acknowledgments

The authors would like to thank the anonymous reviewers for their
helpful comments and suggestions. The authors are indebted to
James McKinna for invaluable discussions on the subject and point-
ing out the advantages of using environments over substitutions in
the interpretation functions, and to Stefan Holdermans and Sjoerd
Visscher for showing us how to use type families to embed poly-
morphic dynamic typing in Haskell. This work has been funded by
the Technology Foundation STW through its project on “Demand
Driven Workflow Systems” (07729).

References

Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dy-
namic typing in a statically typed language. ACM Transactions on Pro-
gramming Languages and Systems, 13(2):237-268, 1991.

Martin Abadi, Luca Cardelli, Benjamin Pierce, Didier Rémy, and Robert
Taylor. Dynamic typing in polymorphic languages. Journal of Func-
tional Programming, 5(1):81-110, 1994.

Thorsten Altenkirch and Conor McBride. Generic programming within de-
pendently typed programming. In Jeremy Gibbons and Johan Jeuring,
editors, Proceedings of the IFIP TC2 Working Conference on Generic
Programming, Dagstuhl, Germany, pages 1-20. Kluwer Academic Pub-
lishers, 2003.

Robert Atkey, Sam Lindley, and Jeremy Yallop. Unembedding domain-
specific languages. In Stephanie Weirich, editor, Proceedings of the
Haskell Symposium, Haskell *09, Edinburgh, UK, pages 37-48. ACM
Press, 2009.

Arthur Baars and Doaitse Swierstra. Typing dynamic typing. In Simon
Peyton Jones, editor, Proceedings of the International Conference on
Functional Programming, ICFP ’02, Pittsburgh, PA, USA, pages 157—
166. ACM Press, 2002.

Nicolaas de Bruijn. Lambda calculus notation with nameless dummies: A
tool for automatic formula manipulation, with application to the Church-
Rosser theorem. Indagaciones Mathematische, 34:381-392, 1972.

James Cheney and Ralf Hinze. A lightweight implementation of gener-
ics and dynamics. In Manuel Chakravarty, editor, Proceedings of the

Haskell Workshop, Haskell '02, Pittsburgh, PA, USA, pages 90-104.
ACM Press, 2002.

Karl Crary and Stephanie Weirich. Flexible type analysis. In Didier Remy,
editor, Proceedings of the International Conference on Functional Pro-
gramming, ICFP ’99, Paris, France, pages 233-248. ACM Press, 1999.

Xavier Leroy and Michel Mauny. Dynamics in ML. Journal of Functional
Programming, 3(4):431-463, 1993.

Conor McBride. First-order unification by structural recursion. Journal of
Functional Programming, 13(6):1061-1075, 2003.

Thomas van Noort, Peter Achten, and Rinus Plasmeijer. Ad-hoc polymor-
phism and dynamic typing in a statically typed functional language. In
Bruno Oliveira and Marcin Zalewski, editors, Proceedings of the Work-
shop on Generic Programming, WGP ’10, Baltimore, MD, USA, pages
73-84. ACM Press, 2010.

Ulf Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Chalmers University of Technology, 2007.

Ulf Norell. Dependently typed programming in Agda. In Pieter Koopman,
Rinus Plasmeijer, and Doaitse Swierstra, editors, Revised Lectures of the
International Summer School on Advanced Functional Programming,
AFP 08, Heijen, The Netherlands, volume 5832 of Lecture Notes in
Computer Science, pages 230-266. Springer-Verlag, 2008.

Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic
typing with dependent types. In Jean-Jacques Lévy, Ernst Mayr, and
John Mitchell, editors, Proceedings of the International Conference on
Theoretical Computer Science, TCS 04, Toulouse, France, pages 437—
450. Kluwer Academic Publishers, 2004.

Nicolas Oury and Wouter Swierstra. The power of Pi. In James Hook and
Peter Thiemann, editors, Proceedings of the International Conference
on Functional Programming, ICFP ’08, Victoria, BC, Canada, pages
39-50. ACM Press, 2008.

André Pang, Don Stewart, Sean Seefried, and Manuel Chakravarty. Plug-
ging Haskell in. In Henrik Nilsson, editor, Proceedings of the Haskell
Workshop, Haskell 04, Snowbird, UT, USA, pages 10-21. ACM Press,
2004.

Emir Pasili¢ and Nathan Linger. Meta-programming with typed object-
language representations. In Gdbor Karsai and Eelco Visser, editors,
Proceedings of the International Conference on Generative Program-
ming and Component Engineering, GPCE 04, Vancouver, BC, Canada,
volume 3286 of Lecture Notes in Computer Science, pages 136—167.
Springer-Verlag, 2004.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. Simple unification-based type inference for GADTs. In
Julia Lawall, editor, Proceedings of the International Conference on
Functional Programming, ICFP ’06, Portland, OR, USA, pages 50-61.
ACM Press, 2006.

Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Pro-
ceedings of the Conference on Programming Language Design and Im-
plementation, PLDI ’88, Atlanta, GA, USA, pages 199-208. ACM Press,
1988.

Marco Pil. First class file /0. In Chris Clack, Kevin Hammond, and
Antony Davie, editors, Selected Papers of the International Workshop
on Implementation of Functional Languages, IFL "97, St. Andrews, UK,
volume 1467 of Lecture Notes in Computer Science, pages 233-246.
Springer-Verlag, 1997.

Rinus Plasmeijer and Arjen van Weelden. A functional shell that oper-
ates on typed and compiled applications. In Varmo Vene and Tarmo
Uustalu, editors, Proceedings of the 5th International Summer School
on Advanced Functional Programming, AFP *04, Tartu, Estonia, volume
3622 of Lecture Notes in Computer Science, pages 245-272. Springer-
Verlag, 2005.

Rinus Plasmeijer, Peter Achten, Pieter Koopman, Bas Lijnse, Thomas van
Noort, and John van Groningen. iTasks for a change - Type-safe run-time
change in dynamically evolving workflows. In Siau-Cheng Khoo and
Jeremy Siek, editors, Proceedings of the Workshop on Partial Evaluation
and Program Manipulation, PEPM 11, Austin, TX, USA, pages 151—
160. ACM Press, 2011.

Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin
Sulzmann. Type checking with open type functions. In Peter Thiemann
and James Hook, editors, Proceedings of the International Conference
on Functional Programming, ICFP ’08, Victoria, BC, Canada, pages
51-62. ACM Press, 2008.

Tim Sheard and Emir Paséli¢. Meta-programming with built-in type equal-
ity. Electronic Notes in Theoretical Computer Science, 199:49-65, 2008.

Tim Sheard, James Hook, and Nathan Linger. GADTSs + extensible kinds
= dependent programming. Technical report, Portland State University,
2005.

Don Stewart. Dynamic extension of typed functional languages. PhD thesis,
University of New South Wales, 2010.

