
Pure and Lazy Lambda Mining
An Experience Report

Nicolas Wu1, José Pedro Magalhães1, Jeroen Bransen2, and Wouter Swierstra2

1 {nicolas.wu,jose.pedro.magalhaes}@cs.ox.ac.uk
Department of Computer Science, University of Oxford?

2 {j.bransen,w.s.swierstra}@uu.nl
Department of Computer Science, Utrecht University

Abstract. This paper discusses our entry to the 2012 ICFP Programming Con-
test, written entirely in Haskell. Our solution uses many features of Haskell: pure
immutable data structures, laziness, higher-order functions, concurrency, and ex-
ception handling. Each of these features plays an essential part in our overall
solution, and we demonstrate how these key elements can be composed together.
In this exposition, we stress the importance of how the code was structured in
such a way that made safely refactoring and extending the model a relatively
easy task, and how Haskell’s strong type system made it possible for our team to
remain agile under changing specifications.

1 Introduction

In the classic paper Why Functional Programming Matters, Hughes (1989) argues
that functional programming in Miranda provides two kinds of glue that enable the
modular construction of programs: lazy evaluation and higher order functions. To drive
this point home, Hughes presents several small and elegant example programs that rely
on precisely these features. But how useful are laziness and higher order functions in
larger developments?

This paper investigates this question and aims to provide further evidence support-
ing Hughes’s claim. We describe a solution to the 2012 ICFP programming contest.3

This programming contest allows participants to write solutions in any language, or
combination of languages, in a time frame of 72 hours. Our solution was entirely imple-
mented in Haskell (Peyton Jones, 2003). We describe our solution as it was developed
in the 72 hours of the contest, plus some later refactoring for readability and bug fixing.
Crucially, the solution we present uses many different Haskell features: pure immutable
data structures, laziness, higher-order functions, concurrency, and exception handling.

? The first two authors have been funded by EPSRC grant number EP/J010995/1.
3 The official task description is available at http://icfpcontest2012.wordpress.com/

task/. A video presenting the task and announcing the winners can be seen at https://
www.youtube.com/watch?v=5TCqUU3-GT0.

http://icfpcontest2012.wordpress.com/task/
http://icfpcontest2012.wordpress.com/task/
https://www.youtube.com/watch?v=5TCqUU3-GT0
https://www.youtube.com/watch?v=5TCqUU3-GT0

Robot

Earth

Wall

Rock

Exit

Lambda

Higher-order rock

Fig. 1. Graphical representation of a mine

1.1 Problem description

The ICFP programming contest has been run every year since 1998. This year, partici-
pants were invited to program a virtual mining robot to collect resources called ‘lamb-
das’ while avoiding falling rocks, getting trapped, or drowning. The overall score of a
route was determined by the number of lambdas collected and the number of moves
required to collect those lambdas. Figure 1 shows a graphical depiction of a game in
progress. The goal is to compute a sequence of moves for the robot to collect as many
lambdas as possible, without being crushed by falling rocks. If all the lambdas are col-
lected, reaching the exit gives an extra score bonus.

The problem specification was extended four times over the course of the compe-
tition, demanding efficient and correct code to be produced under tight deadlines. This
provided an excellent means of substantiating the claim that functional programming
languages help to produce code that is both modular and reusable. In the remainder of
this paper, we describe our solution and how it relies on several key Haskell features.
The precise description of the problem will become clear from the presentation of our
solution.

We begin by describing pure models of both the mine (Section 2) and the search
space (Section 3). Our solution uses a combination of search strategies (Section 4),
that traverse the shared search space. The main program then applies these strategies in
parallel (Section 5), returning the best result. Section 6 describes the changes necessary
to adapt our solution to each of the problem specification extensions. We conclude in
Section 7 with a summary of our experience, including a number of practical guidelines
for code development in a situation similar to ours.

2 Pure modelling

In this section we describe how we model and simulate the problem in Haskell.

2.1 Model

The model represents the entire state of a mine at any given time, and forms an impor-
tant interface for the rest of the system: the simulator (Section 2.2) takes one state of the

model to the next, the parser must produce a value of this type, the visualiser outputs
a visual rendering of the model (Section 2.3), and various strategies can be employed
based on the state held within the model (Section 4).

The basic building block of a mine is a Tile, which holds information about what
exists at a particular coordinate:

data Tile = Robot |Wall | Rock Bool | Lambda | Earth | Empty | Exit

Note that rocks are parameterised by a Boolean which indicates whether or not a rock
is falling: when the robot is directly beneath a falling rock, it is crushed.

Each tile in the mine is given a specific coordinate, which is simply a pair of Int
values named Coord. Putting these elements together, we are interested in an array that
is indexed by Coords and contains Tiles. This describes the layout of the mine:

type Layout = Array Coord Tile

Using an array for this representation is appropriate, since we need to perform lookups
of elements at coordinates very often, and arrays have constant time lookup.

It is useful to define a function that checks the value of a tile in the layout at a
particular coordinate, by dereferencing the appropriate location in the array:

isTile :: Layout→ Coord→ Tile→ Bool
isTile l xy t = l ! xy≡ t

There is an important caveat to using this function and others like it which make use
of (!), the unsafe indexing operator. This operator is efficient, but makes no effort to
ensure that the coordinates being sought are within the bounds of the array, and this is
a danger which could easily result in an exception being thrown at runtime.

Another utility function finds the coordinates of all the tiles which satisfy a given
predicate:

findTiles :: (Tile→ Bool)→ Layout→ [Coord]
findTiles p = map fst ◦filter (p◦ snd)◦assocs

This works by getting a list of all the associations in the array and representing these
as a value of type [(Coord,Tile)]. This list is then filtered by the predicate, before the
coordinates are extracted.

While the Layout structure holds much of the information required during the game,
some essential features are lacking, such as the number of moves that have passed since
the beginning of the game. The whole state is saved in a structure named Mine, which
contains all the information required for assessing the current score:

data Mine = Mine {layout :: Layout
, robot :: Coord
, lambdas :: Int
, moves :: Int}

In particular, Mine stores the current position of the robot along with the number of
remaining lambdas and the number of moves it has taken to reach this point, since this
is an important part of calculating the score.

When the robot has finished collecting all the lambdas, the exit opens and the robot
is allowed to leave the mine. Our representation indicates that the robot has exited when
the robot’s coordinates correspond with the Exit tile in the layout:

isDone :: Mine→ Bool
isDone mine = isTile (layout mine) (robot mine) Exit

The task of ensuring that the robot can only enter an exit when all lambdas have been
collected is left to the simulator, which we explain in the next section.

2.2 Simulation

The simulation code determines how the system responds to the robot’s actions: each
time the robot makes a move the world is updated and a new Mine value is calculated.

The robot can perform several moves: moving up, down, left, right, waiting, or
aborting the mission. For brevity, the data constructors that represent these moves con-
tain only the initial letter of each action:

data Move = L | R | D | U |W | A
We often calculate coordinates based on a sequence of moves; the following function
returns a coordinate that has been shifted by some movement value:

() :: Coord→Move→ Coord
(x,y) L = (x−1,y)
(x,y) R = (x+1,y)
(x,y) D = (x ,y−1)
(x,y) U = (x ,y+1)
(x,y) = (x ,y)

For example, this operator is used to verify whether the robot has been crushed by a
rock, which happens whenever the tile directly above the robot is a falling rock:

isDead :: Mine→ Bool
isDead mine = isRockFalling (layout mine ! (robot mine U))

The function isRockFalling distinguishes rocks that are falling.
The score is calculated by multiplying a constant factor per collected lambda minus

the number of moves the robot made. The constant depends on how the game ended,
and is 75 when all lambdas were collected, 25 when the robot dies, and 50 if the robot
aborted (which is the default action when no more moves are made).

The central function used to simulate the robot’s progression through a mine is step,
which takes a current mine, a move, and steps the simulator through that move:

step :: Mine→Move→Mine
step mine A = mine
step mine move = mine′ where
(layout′,robot′) = stepRobot mine move
layout′′ = array ((bounds◦ layout) mine)$

concat [updRocks (mine {layout = layout′}) (x,y) (layout′ ! (x,y))
| y← [1 . .h],x← [1 . .w]]

moves′ = 1+moves mine
lambdas′ | isTile (layout mine) robot′ Lambda = lambdas mine−1

| otherwise = lambdas mine
(w,h) = (snd ◦bounds◦ layout) mine
mine′ = mine {layout = layout′′ ,robot = robot′

, lambdas = lambdas′,moves = moves′}
When a move other than A is requested, the simulator returns the result of the updated
record mine′. The layout field is updated in two stages. First the value of the layout is
calculated after the robot has made its step and stored in layout′, and then this value
is used in creating a new array, layout′′, that contains the state of the mine after all the
falling of rocks has been calculated. This follows the problem specification.

Updating the robot is left to the stepRobot function, which returns the layout after
the robot has moved, and gives the new coordinate of the robot:

stepRobot :: Mine→Move→ (Layout,Coord)
stepRobot mine move =

case l ! xy′ of
Earth → (l // [(xy′,Robot),(xy,Empty)],xy′)
Empty → (l // [(xy′,Robot),(xy,Empty)],xy′)
Lambda → (l // [(xy′,Robot),(xy,Empty)],xy′)
Exit | lambdas mine≡ 0

→ (l // [(xy′,Robot),(xy,Empty)],xy′)
Rock | (move≡ L ∨ move≡ R) ∧ isTile l (xy′ move) Empty

→ (l // [(xy′,Robot),(xy,Empty),(xy′ move,Rock False)],xy′)
→ (l // [(xy,Robot)],xy)

where l = layout mine
xy = robot mine
xy′ = xy move

Moving towards earth, an empty tile, or a lambda simply updates the robot position,
leaving an empty space behind. Moving towards the exit is only allowed if all the lamb-
das have been collected. Moving towards a rock is possible if the movement is sideways,
and there is empty space next to the rock being pushed. All other movements are invalid,
and the robot remains in the same position.

Another crucial function is updRocks, which is responsible for updating the position
of rocks after the robot has moved:

updRocks :: Mine→ Coord→ Tile→ [(Coord,Tile)]
updRocks mine xy (Rock)
| isFallDown l xy = [(xy,Empty),(xy D ,Rock True)]
| isFallRight l xy = [(xy,Empty),(xy D R,Rock True)]
| isFallLeft l xy = [(xy,Empty),(xy D L,Rock True)]
| isFallLambda l xy = [(xy,Empty),(xy D R,Rock True)]
| otherwise = [(xy,Rock False)]
where l = layout mine

updRocks xy tile = [(xy, tile)]

The functions isFallDown, isFallRight, isFallLeft, and isFallLambda determine whether
the rock will fall in a particular direction. These are all predicates that take a Layout and
a Coord, and simply output the appropriate Bool.

Keeping the entire state of a mine as a single value of type Mine enables the defi-
nition of step to remain relatively simple, since all of the required data for an update is
held in a single structure. This complete encapsulation of state means that there are no
implicit outside dependencies to handle when trying to evaluate a particular mine.

2.3 Input and Output

The input maps are supplied in text format. To read these into our model, we wrote a
text parser using Attoparsec,4 working on ByteStrings for efficiency reasons. The input
format is simple, so the parser is unsurprising and therefore omitted in this presentation.

Visualising the maps in a user-friendly way was not a requirement of the contest.
However during development it was helpful to visualise maps and generated solutions,
and to be able to manually play each mine. Due to time considerations we developed
only a simple ANSI text-based visualiser, which was enough for our testing purposes.

3 The game trie

One of the key benefits of Haskell is its purity, allowing game states to be shared across
different solvers. Our strategy for exploiting this was to spawn a number of different
agents that explore a shared data structure that holds paths to different game states
together with their scores.

3.1 Tries

The structure we use to encode paths through the mine is a non-empty trie (Hinze,
2000):

data Trie k v = Trie {root :: v,branches :: Map k (Trie k v)}
An important aspect of a value of type Trie k v is that it can behave like a map of type
Map [k] v, and this forms the basis of an intuitive interface with a number of well-
understood standard functions. These standard functions on Trie will prove useful in
the strategy code (Section 4), since the entire search space of a game can be encoded as
a trie, mapping sequences of moves to a game state:

type GameTrie = Trie Move GameState
data GameState = GameState {gameStateMine :: Mine

, gameStateScore :: Score}
For instance, we can lookup the GameState associated with a certain path by using the
familiar lookup function:

4 http://hackage.haskell.org/package/attoparsec

http://hackage.haskell.org/package/attoparsec

lookup :: (Eq k,Ord k)⇒ [k]→ Trie k v→Maybe v
lookup [] (Trie v) = Just v
lookup (k : ks) (Trie kvs) = Map.lookup k kvs>>= lookup ks

A Path is represented by a list of moves:

type Path = [Move]

The type GameTrie operates much like the type of Map Path GameState, but its encod-
ing is very efficient; each branch of the tree encodes one possible move, as illustrated
in the following figure:

GS0
U

R W
A

GS1 GS2
U

D
A

GS3
L A

GS4

GS5 GS6 GS7 GS8 GS9

In this example, starting from some initial game state GS0, the robot can move up and
die, resulting in game state GS1, with no further paths. Alternatively, the robot can go
right, and then proceed either up, down, or abort. A GameTrie is computed by starting
with an initial state (of score zero), and considering only valid moves from the current
position:

mkTrie :: (Eq k,Ord k)⇒ v→ (v→ [k])→ (v→ k→ v)→ Trie k v
mkTrie v f next = Trie v (Map.fromList [(k,mkTrie (next v k) f next) | k← f v])
gameTree :: Mine→ GameTrie
gameTree mine0 = mkTrie (GameState mine0 0 (hash mine0))

(goodMoves◦gameStateMine)
(mkGameState mine0 ◦gameStateMine)

We omit the function mkGameState, which simply computes the current GameState,
and function goodMoves, which returns the valid moves for the robot. One of the key
features of our solution is that the GameTrie represents all the paths in the mine, and
this trie is shared over the different robot strategy algorithms. This means that states
are never computed twice; if strategy one already went down a particular path, the next
strategy can immediately get the corresponding game state for that path, without hav-
ing to step through each move. In addition, equivalent states that are reachable through
different paths are not recomputed, and this is achieved through the use of hashes, de-
scribed in more detail in Section 3.3.

Another useful property of values of type Trie k v is that they behave like trees of
type Tree ([k],v), which brings another family of standard functions that are well un-
derstood. In particular, a tree can be traversed in breadth-first order in order to compute
all possible paths in increasing length:

flatten :: Trie k v→ [([k],v)]
flatten = concat ◦ levels

levels :: Trie k v→ [[([k],v)]]
levels tree = (map extract ◦ iterate expand) [([], tree)]

where
expand :: [([k],Trie k v)]→ [([k],Trie k v)]
expand = concatMap (λ (sk,Trie kts)→ map (first (:sk)) (Map.toList kts))
extract :: [([k],Trie k v)]→ [([k],v)]
extract = map (λ (sk,Trie v′)→ (reverse sk,v′))

In Section 3.2 we will use variations of these functions to build efficient pathfinding
algorithms that are used to search for solutions within the GameTrie.

3.2 Pathfinding
The key to our strategy is to navigate the Trie structure, and identify a path that leads to
a high score. The following function, for example, finds the paths to the exit:

solve :: Mine→ [(Path,GameState)]
solve mine = (filter (isDone◦gameStateMine◦ snd)◦flatten◦gameTree) mine

Since flatten produces a breadth first traversal of the tree, we know that the result at the
head of the list will have the shortest path. Furthermore, since the predicate applied is
isDone, we know that the solution found is for a completed mine. Therefore, the head
of this list will contain a solution with the maximal score for a completed mine!

However, while this strategy would eventually find such a solution for completable
mines, it is prohibitively inefficient. In addition, since the tree is potentially very large,
and not all mines are necessarily completable, an exhaustive search will generally not
be possible. In order to solve this, we break the problem down into finding paths to a
number of intermediate states given by some predicate: the basis for the searches will
still be variations on breadth first search, but the goal is different. Rather than finding
paths to different values of type GameState, we will seek values of type GameTrie,
so that we can search for new paths based on the returned tree, thus giving us more
sophisticated searching strategies, where intermediate goals are reached and further
analysis is performed on the trees that follow on from the paths to those goals.

A useful utility function along these lines is findPaths, which looks for paths to a
particular coordinate:

findPaths :: GameTrie→ Coord→ [(Path,GameTrie)]
findPaths tree dest = bfs ((≡) dest ◦ robot ◦gameStateMine) tree

This can be used, for example, to find a path to the Exit once the task of collecting all
the lambdas is complete:

findExits :: GameTrie→ [(Path,GameTrie)]
findExits tree = findTiles (≡ Exit) (layout (getMine tree))>>=findPaths tree

This works by first finding the appropriate tile, and, if such a coordinate is found, then
it is used by findPath to calculate a path.

At the heart of findExits is an efficient breadth first search algorithm, with a more
general interface than that of solve. A naive breadth first search that operates on the Trie
structure can be described as follows:

type KTrie k v = ([k],Trie k v)
bfsNaive :: (v→ Bool)→ Trie k v→ [KTrie k v]
bfsNaive p tree = (filter (p◦ root ◦ snd)◦ stems) [([], tree)]

This makes use of the function stems, which is similar to flatten, but returns a list of
paths with corresponding subtrees:

stems :: [KTrie k v]→ [KTrie k v]
stems [] = []
stems ((sk, t@(Trie kts)) : skts) = (reverse sk, t) : stems skts′

where skts′ = skts++[(k′ : sk, t′) | (k′, t′)←Map.toList kts]

The stems function produces a breadth-first traversal of the tree, but is certainly not
optimal: this function makes no effort to ensure that some common state has not been
investigated several times: certain paths lead to exactly the same state, and we have no
reason to assume that there will be any implicit sharing of these states.

3.3 Hashing

During the lazy construction of the tree structure, sharing is not exploited between nodes
that are equal. As a result, a search of the tree will likely result in repeated inspections
of equal nodes and their children: this happens whenever there is more than one path
to a particular state. To avoid this expensive recomputation, the breadth first search
algorithm is modified to contain an accumulator that keeps track of the nodes visited so
far, and will not queue nodes whose values have already been visited elsewhere.

Rather than have the accumulator store the entire state of each visited mine, and
have to perform an expensive equality operation, a hash of the mine is stored instead.
We therefore extend the type of a GameState so that it contains a Hash:

type Hash = Int
data GameState = GameState { . . .

, gameStateHash :: Hash}
An instance of Hashable is provided, giving us a means of obtaining the hash of a Mine:

instance Hashable Mine where
hash mine = hash ((hash◦assocs◦ layout) mine

,(hash◦ robot) mine
,(hash◦moves) mine)

An accumulator, which is a set of hashes, is then added to the machinery of stems that
allows states which have already been visited to be pruned:

stemsPrune :: Hashable v⇒ Set Hash→ [KTrie k v]→ [KTrie k v]
stemsPrune [] = []
stemsPrune visited ((sk, t@(Trie v kts)) : skts) = case insertM (hash v) visited of

Nothing → stemsPrune visited skts
Just visited′→ (reverse sk, t) : stemsPrune visited′ skts′

where skts′ = skts++[(k′ : sk, t′) | (k′, t′)← Map.toList kts]

insertM :: Ord a⇒ a→ Set a→Maybe (Set a)
insertM x xs | Set.member x xs = Nothing

| otherwise = Just (Set.insert x xs)

The idea is to keep an accumulator that checks if the value of the tree being examined
has been visited before. If it has been visited, then this value is rejected by the function
insertM, and the next candidate for traversal is considered. If the value has not yet been
visited, then the tree that contains it is added to the output of the search, its content is
added to the set of visited values, and children are scheduled for traversal.

This lets us define a breadth first search that does not visit the same subtree twice:

bfsPrune :: Hashable v⇒ (v→ Bool)→ Trie k v→ [KTrie k v]
bfsPrune p t = filter (p◦ root ◦ snd)◦ stemsPrune Set.empty $ [([], t)]

The beauty of this solution is that it requires only the values v of the Trie k v structure
to be Hashable. However, this does not come without its cost: the hashing itself is not
perfect, and so it is possible that two different states hash to the same value. If this were
to happen, then not all unexplored states will be visited, since we would incorrectly
discard states that collide with already visited states that a hash. In practice, this does
not turn out to pose a problem, since the hash space is large enough.

Another performance issue is that stems uses a list to hold the queue of subtrees left
to visit: the performance of appending to the end of a list is poor, and this can be easily
improved by using a queue structure instead, and replacing the call to stemsPrune with
an adequately instantiated call to stemsPruneQ.

stemsPruneQ :: Hashable v⇒ Set Hash→ Seq (KTrie k v)→ [KTrie k v]
stemsPruneQ visited q = case Seq.viewl q of

Seq.EmptyL → []
(sk, t@(Trie v kts)) :<q′→ case insertM (hash v) visited of

Nothing → stemsPruneQ visited q
Just visited′→ (reverse sk, t) : stemsPruneQ visited′

(foldr (flip (|>)) q′ [(k′ : sk, t′) | (k′, t′)←Map.toList kts])
bfsPruneQ :: Hashable v⇒ (v→ Bool)→ Trie k v→ [KTrie k v]
bfsPruneQ p t = (filter (p◦ root ◦ snd)◦ stemsPruneQ Set.empty◦ return) ([], t)

This is a relatively straight-forward transliteration of the list based version into one that
uses a Seq datastructure instead.

On a final note about pathfinding, the findPaths function takes a destination coordi-
nate as an argument, and filters out the results of a breadth-first traversal until a state
is found where the robot is at the coordinate. A heuristic for possibly improving the
search is by using a distance metric which determines how close a given point is to the
destination, and using this information to give priority to certain elements within the
queue. This is the basis of the well known A* algorithm (Hart et al., 1968), which is
widely used in path finding and graph traversal.

To implement this algorithm, much of the structure present in bfsPruneQ can be
reused, where Seq is replaced by a MinQueue structure which orders the elements ac-
cording to some comparison function. For brevity, these details are omitted, but the
development revolves around choosing an appropriate comparison function: a valid op-

tion would be to use the well-known Manhattan distance between two points, although
there are other possible options. This function is then used to form the priorities of ele-
ments within the MinQueue, which arranges its elements so that those which are closest
to the destination are favoured when considering the next value to explore in the search.

4 Robot strategy

Our solution relies on using a portfolio of simple strategy algorithms competing for
finding the best solution. A strategy takes a GameTrie and computes possible paths
through the mine, together with their score:

type Strategy = GameTrie→ [(Path,Score)]

We can now write a variation of the solve function (from Section 3) that produces a
Strategy using bfsPruneQ:

solveS :: Strategy
solveS = map (second getScore)◦bfsPruneQ (const True)

This encodes the strategy of trying all possible paths, in a breadth-first manner. Natu-
rally, this strategy is not very efficient, and will only work on very small maps. We also
have a variant strategy that looks ahead only a number steps, and then takes one step
along the best path found so far. This strategy finds locally optimal solutions.

An alternative strategy orders the remaining lambdas, tries to reach each one of
them, and then walks towards the exit:

cmpS :: Comparison→ Strategy
cmpS cmp tree
| lambdas (getMine tree)≡ 0 = case listToMaybe $ findExits tree of

Just (p, tree′)→ [(p ,getScore tree′)]
Nothing → [([A],getScore tree)]

| otherwise = case pathToLambda cmp tree of
[] → [([A],getScore tree)]
((p, tree′): _)→ (p,getScore tree′) : map (first (p++)) (cmpS cmp tree′)

We omit functions getMine and getScore, which are simple accessors of the GameTrie
data structure. Function pathToLambda takes a ranking function for lambdas and returns
a list of paths:

pathToLambda :: Comparison→ GameTrie→ [(Path,GameTrie)]
pathToLambda cmp tree = concatMap snd (sortBy cmp dests)

where dests = map (λcoord→ (coord,findPaths tree coord))
(findTiles (≡ Lambda) ((layout ◦getMine) tree))

We can now define multiple strategies simply by instantiating the comparison func-
tion of cmpS:

eqCmpS, lowCmpS,highCmpS :: Strategy
eqCmpS = cmpS (λ → EQ)

lowCmpS = cmpS (cmpCoords (λ (,y) (,y′)→ compare y y′))
highCmpS = cmpS (cmpCoords (λ (,y) (,y′)→ compare y′ y))

Strategy eqCmpS treats all lambdas equally, while lowCmpS prefers lambdas located
the lowest in the mine. This strategy might make sense when the lower parts of the
mine become harder to access as time goes by (see Section 6.1).

We also have more complicated strategies involving cmpS, such as preferring lamb-
das that are part of large clusters.

5 Concurrency and exception handling

Strategies turn the representation of a game tree into a list of paths with their corre-
sponding score. By sharing the game tree structure, a number of concurrent worker
threads using different strategies can compete with one another to find an optimal so-
lution. The communication between these threads occurs through the use of Haskell’s
MVar values: these are mutable variables which can be shared and synchronised be-
tween threads. Initially, a trivial solution is put in mvBest. The task of each worker is
to improve this solution with whatever they might encounter in their list of candidate
answers.

improve :: (Ord s,NFData s,NFData a)⇒MVar (a,s)→ [(a,s)]→ IO ()
improve mvBest = mapM_ (λx→ x ‘deepseq‘ modifyMVar_ mvBest (cmpBest x))

where cmpBest x best = return (if snd x> snd best then x else best)

Here, each solution x is a tuple of type (s,a), where s is a score that will be maximised,
and a the answer itself. We require s and a to have an NFData instance to be able to
force evaluation using deepseq, since the entire computation of the value of x should
occur before blocking on the mvBest variable. The MVar is a reference to the best so-
lution found so far; improve updates this MVar whenever a better solution is found.
As this worker might be interrupted before the list is fully evaluated, it is important
that modifyMVar_ is an atomic operation: if the worker raises an exception while it is
modifying mvBest, then the value is restored to its original state.

The workers are spawned by spawnWorkers, which creates a new asynchronous
thread for each of the answers returned by the strategies, and then waits for all the
threads to finish.

spawnWorkers :: (Ord s,NFData s,NFData a)⇒MVar (a,s)→ [[(a,s)]]→ IO ()
spawnWorkers mvBest xss = do workers← mapM (async◦ improve mvBest) xss

mapM_ waitCatch workers

An important feature of this function is that the failure of one worker does not affect
the others, since waitCatch will silently ignore any worker which has thrown an excep-
tion. While deceptively succinct, these two functions provide a powerful mechanism by
which multiple concurrent workers can be spawned to improve the value of a solution,
all the while dealing with exceptions in a safe way by allowing the best known solution
to prevail in the case of failure.

Since we can rely on the fact that the best solution will not be lost when the workers
fail, we can make use of this mechanism to allow the system to demand an immediate

answer at any point during the computation. This fits nicely into the framework of the
contest, where programs are given a set amount of time within which to find a solution,
and then given a signal which raises an exception when time is up and an answer is
required. To exploit this, the function run is used, which spawns the workers to perform
the task of finding the best solution, and provides a callback that should be executed
whether the computation terminates naturally, or an exception is thrown.

run :: (Ord s,NFData s,NFData a)⇒
(a,s)→ [[(a,s)]]→ ((a,s)→ IO ())→ IO ()

run best xss callback = catchUserInterrupt $
bracket (newMVar best)

(λmvBest→ takeMVar mvBest>>= callback)
(λmvBest→ spawnWorkers mvBest xss)

The function bracket :: IO a→ (a→ IO b)→ (a→ IO c)→ IO c takes three arguments:
the initial computation, which initialises the best result found so far, the final compu-
tation, which reads the best result found and calls the callback, and the intermediate
computation, which spawns the workers and waits for all threads for finish. The final
computation of a bracket is performed even if an exception is raised, which is precisely
the behaviour required here when the callback is an action which outputs the best known
solution.

One problem remains: if an exception is raised within a bracket, then after the final
computation has been executed the exception will be re-raised so that it can be handled
elsewhere in the system. If left unhandled, the program would exit and indicate that
there was an error. The catchUserInterrupt function is a helper which allows the pro-
gram to gracefully exit when the interrupt signal which is expected from the judging
environment is received.

catchUserInterrupt :: IO ()→ IO ()
catchUserInterrupt = handle (λe→ case e of UserInterrupt→ return ()

→ throwIO e)

Note that if the exception received is not one that is expected, then the exception is
thrown again and allowed to propagate further.

For testing purposes it is convenient to be able to kill worker threads after a partic-
ular amount of time, in order to simulate the judging environment. This is implemented
using the timeout function which runs an IO computation within a thread and kills the
thread if no result is returned within a given time limit.

runWithTimeout :: (Ord s,NFData s,NFData a)
⇒ Int→ (a,s)→ [[(a,s)]]→ ((a,s)→ IO ())→ IO ()

runWithTimeout t best xss callback = timeout t (run best xss callback)>> return ()

This works as expected since exceptions are used to kill a thread that has expired.

6 Changing specifications

One of the challenges was to deal with changing specifications. This was very easy
to cope with in our model, and only minor extensions were required, mostly confined

to the Mine and Tile datatypes, and the stepRobot and updRocks functions. On average,
about 20 lines of code were added for each extension. The construction of the GameTrie
structure relies on the step function to generate its branches, and so the changes in the
specification are automatically reflected in the tree. As a result, all the strategies are
also updated to reflect the change in specifications, since strategies use the GameTrie to
explore possible moves.

6.1 Flooding

The first extension was to add flooding to the mines. In certain maps, there is a ris-
ing level of water. The robot operates normally underwater, but it gets destroyed if it
spends too many turns underwater. Modelling flooding requires changing the Mine data
structure, extending it to contain additional information:

data Mine = Mine { . . .
, flood :: Int
, waterproof :: Int
, water :: Int}

These fields store the rate of flooding, how long the robot can last underwater, and the
current level of water.

6.2 Trampolines

The second extension introduces trampolines, which act like teleporters. Once entering
a trampoline, the robot gets instantly moved to a fixed destination location, and the
trampoline disappears.

Similarly to flooding, trampolines requiring adding extra information to the Mine
data structure:

data Mine = Mine { . . .
, trampolines :: Set Coord
, targets :: Set Coord}

These fields store the current position of trampolines and their associated targets. Ad-
ditionally, the stepRobot function has to consider the case of moving into a trampoline,
and we need two new tile types: trampolines and targets.

6.3 Beards and razors

The third extension introduces beards. Beards are a new type of tile, that expand into the
surrounding empty spaces in a fixed number of turns. The robot cannot traverse beards,
but can collect and apply razors, which eliminate all beards surrounding the robot.

Again, the Mine structure has to be extended, this time with a growth factor and the
number of available razors:

data Mine = Mine { . . .
, growth :: Int
, razors :: Int}

Two new tile types are added (beard and razor). A new robot “movement” is to apply
a razor, and the updRocks function now needs to update the tiles adjacent to beards as
well.

6.4 Higher order rocks

The last extension introduces higher order rocks, which are rocks that upon impact
(from falling) transform into a lambda. Each higher order rock counts as a lambda for
the purpose of determining whether all lambdas have been collected.

We add a second Boolean to the Rock constructor to distinguish higher order rocks
from normal rocks:

data Tile = . . . | Rock Bool Bool

The updRocks function now treats higher order rocks just like ordinary rocks, apart
from a small special case to check if a higher order rock should be transformed into a
lambda. Additionally, the calculation of the number of lambdas after a step (lambdas′ in
Section 2.2) becomes more complicated. Two falling rocks can fall into the same spot,
with one disappearing. If the rock that disappears is a higher order rock, then there is
one fewer lambda in the mine. For simplicity, we calculate the number of remaining
lambdas by traversing the entire layout:

lambdas′ = length $ findTiles (λ t→ t ≡ Lambda ∨ isRockLambda t) layout′′

7 Conclusion

We have described our solution to the 2012 ICFP programming contest, and seen how
Haskell’s features are useful during fast paced prototyping. Both low-level features
(such as concurrency and exception handling) and high-level features (such as purity
and laziness) are key ingredients in our solution. Haskell is a mature language, with
both a stable compiler and high-quality libraries. We now give some general advice for
code development in similar situations, based on our experience, and reflect briefly on
possible improvements to our solution.

7.1 Practical guidelines

Testing Even though Haskell’s strong type system caught many common programming
errors, we still had several bugs in our code. In particular, our submitted version
often returns rather poor solutions because of bugs in the simulator. We focused
our development in supporting the extensions and improving the strategies, but it
would have been more effective to find and eliminate bugs.

Communication Our team was split into two groups in different locations. We found
that frequent short meetings were helpful to keep the team up-to-date with the
whole development, while allowing individual team members to work on separate
parts of the program. Video communication, and screen/application sharing is use-
ful for distance communication, but whiteboard brainstorming is invaluable, and
hard to mimic in a distance communication.

Model first We started developing our solution by writing the model (Section 2.1).
With this in place, different team members could develop the surrounding infras-
tructure more or less independently. Changes to the model were discussed with
everyone before being implemented, and applied as soon as possible. This helped
to minimise the mismatch between different components, and to allow development
in parallel effortlessly.

Pair programming We have alternated our development between whole team discus-
sion, individual coding sessions, and pair programming. We found pair program-
ming to be an effective way of coding the more challenging parts of our solution,
with the advantage that both team members become familiar with the code.

With regard to possible improvements to our solution, while the pathfinding algo-
rithms take care to avoid going back to the same state several times, it would be nice to
have this built into the tree structure itself. However, this would mean not using a tree
structure, but rather some kind of directed graph. The lazy construction of such a graph
requires the use of an appropriate constructor function to be called when elements are
missing in a node lookup. The details of such an implementation are beyond the scope
of this paper.

We have no regrets about our choice of programming language: we found Haskell to
be suitable for developing a solution to this programming contest. We had no need for
features or libraries that were not available, and our solution really played to Haskell’s
strengths. Haskell’s type system helped catch bugs early on, but we failed to test our
solution against a number of simple scenarios. These bugs (all minor and easy to fix, but
nonetheless present), cost us a lot of points on a number of maps, and we failed to enter
the last round of the competition. In that sense, dozens of submissions outperformed
ours, but our development tried to find an elegant, functional solution to the problem
that was easy to adapt to changing requirements. We feel that we achieved this goal,
and despite our poor final results, the sheer fun of competing in such a contest using
Haskell is hard to beat.

Bibliography

Hart, P., Nilsson, N., and Raphael, B. (1968). A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
4(2):100–107.

Hinze, R. (2000). Generalizing generalized tries. Journal of Functional Programming,
10(4):327–351.

Hughes, J. (1989). Why functional programming matters. The computer journal,
32(2):98–107.

Peyton Jones, S., editor (2003). Haskell 98, Language and Libraries. The Revised
Report. Cambridge University Press. Journal of Functional Programming Special
Issue 13(1).

	Pure and Lazy Lambda Mining

