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Abstract. As software becomes increasingly complex, software configuration
management is becoming ever more important. This paper shows how logics for
reasoning about mutable state, such as separation logic, can also be used to give
semantics for version control systems. By applying these ideas from the pro-
gramming language research community, developers may reason formally about
the broader software development process.

1 Introduction

Version control is hard. Today’s version control systems are expected to manage huge
source trees with multiple branches, shared by hundreds of developers spread all over
the world. In his overview of article in the Communications of the ACM [1], Bryan
O’Sullivan wrote:

Much work could be done on [version control systems’] formal foundations,
which could lead to more powerful and safer ways for developers to work to-
gether.

This paper addresses this challenge. More concretely, there is one key point that this
paper makes:

Version control systems manage the access to (shared) mutable state. Therefore
they should be designed using a logic for reasoning about such state.

After all, version control systems maintain a history of changes that lead to the cur-
rent state of the files on disk. You can think of this sequence of changes as an imperative
program that ‘computes’ the current state of the files under version control. Reasoning
about the behaviour of version control systems is closely related to reasoning about im-
perative programs, for which a great many program logics have been developed. This
paper explores this correspondence, making the following novel contributions:

– After giving a bit of background on the history of version control (Section 2), we
need to fix certain terminology (Section 3).

– To illustrate the version control problem, we give a mathematical description of a
trivial version control system and define the behaviour of this system using Hoare
logic [2, 3] (Section 4). This trivial version control system can only manage a single
binary file. While impractical, studying this example enables us to define abstract
notions such as conflicts precisely and unambiguously.



– To describe how version control systems manage multiple binary files (Section 5),
text files (Section 6), and directories (Section 7), we need to use a richer separation
logic [4, 5]. We demonstrate how the frame rule from separation logic is the key
ingredient to reasoning about the interaction between different patches.

– Finally, we show how we can describe different branches in a version control sys-
tem using the same logic to reason about statements affecting a program’s control
flow (Section 8). We provide a generic condition that is sufficient to guarantee the
absence of merge conflicts between branches.

In each of these sections we will use established technology from the program-
ming language community. The most important contribution this paper makes is im-
plicit throughout: ideas from the programming language community may also have
important applications in other areas such as software engineering and version control.

2 Background

One of the earliest version control systems is the Source Code Control System (SCCS)
developed at Bell Labs in the early 1970s [6]. At the time, SCCS was considered ‘a
radical departure from conventional methods for controlling source code.’ SCCS main-
tains a series of deltas, the line-based changes associated with a particular file. The files
under version control are stored on a central mainframe, which each developer accesses
from a workstation. When a developer needs to change a file, that file is locked until the
developer is finished. The theory behind SCCS was published in a research paper [6],
carefully documenting how deltas are created, chained together, and applied.

In the early 1980s, the Revision Control System (RCS), based on the popular Unix
diff utility, gained more traction. Later the Concurrent Versions System (CVS) used
RCS to manage a repository, recording the history of several files [7–9]. Until the turn
of the century, CVS was the most popular version control system. Using CVS develop-
ers ‘check out’ the current state of a repository, stored on some central server, copying
the repository to their machine. This local copy of the repository is sometimes called
the working copy. After locally making modifications to the source files in the work-
ing copy, developers can ‘check in’ their changes, sending them back to the central
server, thereby sharing their changes with other developers. This was a major advance
compared to SCCS. Different developers can work on the local copy of the same file,
instead of having to acquire a global lock as is the case in SCCS. Nowadays CVS has
been outdated by several more modern revision control systems. Notably, the Subver-
sion version control system [10–12] has been specifically developed to replace CVS.

More recently, distributed revision control systems are becoming increasingly pop-
ular. In contrast to CVS and Subversion, distributed revision control systems treat every
working copy as a repository in its own right. Instead of communicating through a sin-
gle, centralized server, each repository may share changes with any other repository.
Around 2005 several distributed revision control systems saw the light of day, includ-
ing GNU arch, darcs [13], mercurial [14] and Git [15]. Of these systems, mercurial and
Git have developed into two of the most widely used revision control systems in the
open source community as witnessed by the popularity of websites such as GitHub and
Bitbucket.



3 Terminology

In the remainder of this paper, we will show how to develop a formal semantics for a
series of increasingly complex version control systems. Before we do so, however, we
need to fix some terminology and make several deliberate simplifications.

A repository manages (some collection of) data stored on disk, varying from a single
file to a complete source tree. This data exists on two levels: the raw data, consisting
of files and directories on your hard drive, and the internal model of this information
that the version control system maintains. For example, many version control systems
model text files as a sequence of lines and binary files as a blob of bits. Similarly, most
version control systems do record changes to file permissions, but ignore modification
timestamps.

There is a close relationship between the raw data and the version control system’s
internal model. When a user changes the raw data, that change must somehow percolate
into the model—a process we shall refer to as observation. Typically a user will modify
the files stored in a repository, before recording these changes in (the internal model of)
the version control system. We will refer to such a change to the model as a patch. The
history maintained by a version control system consists of the sequence of patches that
led to the current state of the internal model.

Patches can be moved between repositories. Applying a patch to a repository con-
sists of extending the history, updating the internal model of the repository, and inter-
preting the patch as a change to the raw data. Adding a patch may lead to a conflict,
when there is some inconsistency between the internal model of the repository and the
model that is assumed by the patch. For example, the patch may try to remove a file
that does not exist. Usually there is some form of user interaction necessary to resolve
a conflict and return the repository to a consistent state.

In this paper, we will not discuss the raw data stored in a repository, observation, or
interpretation. Instead, we focus on internal models and patches—that is where the key
design of a version control system is expressed.

Many other notions usually found in version control systems are not part of our core
model. We do not distinguish between centralized and distributed version control sys-
tems. In principle, any patch may be moved freely between any two repositories; heed-
lessly doing so will often result in conflicts. Centralized version control systems may
be modeled as a special case where all repositories communicate via a single central-
ized server. Some version control systems may maintain additional information, such
as the permissions of users or a certain relation between repositories. Such policies are
specific to a version control system’s implementation and we will not consider them
further.

4 Managing a single file

In this section, we will describe the model associated with a very simple version control
system and the operations it supports. Let us start by considering a version control sys-
tem only capable of managing a single binary file. In later sections, we will extend this
incrementally into a full-fledged system handling text files, directory structure and file



renames. It is important to emphasize that we are not advocating any particular version
control system, but rather exploring suitable formalisms for defining the semantics of
version control systems.

Internal model We assume there is a set F of all valid file names. For this very first
example, the internal model of a repository is either empty or a pair of the name and
binary contents of the file under version control:

M ::= ε | (F,Bits)
Bits ::=(0 | 1)∗

Next we introduce two predicates on these models. If M is the repository (f ,c), the
predicate M � f 7→ c holds, that is, the contents of the file f in the repository consists of
the sequence of bits c. Similarly, the predicate M � ∅ holds if and only if the repository
M is the empty repository ε .

Note that we write the type of the internal model of our repository in a sans-serif
font, M, while inhabitants of this type are written in italics M. We will adhere to this
convention throughout this paper.

Operations Now we can begin to define operations on repositories. In particular, we
consider the following three operations on repositories:

– creating a new repository storing an empty file,
– removing an empty file from the repository,
– and updating the contents of a file in the repository.

We will define how these operations affect the model of the repository by giving
their semantics as Hoare triples. We can choose the following pre- and postconditions
for these three operations:

{∅} add f {f 7→ ε }
{f 7→ ε } remove f {∅}
{f 7→ c} replace f c d {f 7→ d}

When the file f does not exist, the command add f creates f in the repository with
an initially empty contents. Dually, remove f removes f from the repository, provided
that the empty file f exists in the repository. Finally, the command replace f c d changes
the contents of a file from c to d.

Usually, the pre- and postconditions in such Hoare triples are predicates on (a math-
ematical model of) the computer’s memory. The pre- and postconditions we have given
here are predicates on the internal model of a repository.

History The history stored by a version control system is a sequence of patches. We can
assign semantics to the complete history using the usual law for sequential composition
in Hoare logic:

{P} c0 {Q} {Q} c1 {R}
{P} c0;c1 {R}



One important invariant we will enforce is that the history of a repository can always
be assigned a sensible semantics. This is not the case for all sequences of patches. For
example, the sequence of patches replace f 0 1; replace f 0 1 is not a valid history, given
the rules we have seen so far.

Repository We have still not given a formal definition for a repository. For the pur-
pose of this paper, it suffices to identify a repository with its history, i.e., the sequence
of patches that have been applied so far. In addition to the history, it may be useful to
cache the current state of the internal model of a repository. Although this can always be
recomputed from its history, caching the current state has obvious performance benefits.
Realistic systems may want to track other information, for instance regarding permis-
sions or preferences of users, but we will not try to model such information in this
paper.

Discussion The following sequence of patches creates a repository storing the file f ,
and sets its contents to the bit sequence 010:

add f ; replace f ε 010;

It is easy to check that the semantics of this sequence is given by the following Hoare
triple:

{∅} add f ; replace f ε 010 {f 7→ 010}

If we choose to apply the patch replace f 010 ε; remove f , the repository now consists
of the following history:

{∅} add f ; replace f ε 010; replace f 010 ε; remove f {∅}

Although the internal model of the repository is empty both before and after executing
this sequence of patches, it is important that the repository stores the entire history to
allow users to rollback to previous states. If a user decides that the latest patch was
undesirable, it can be removed from the history, resulting in a repository satisfying
f 7→ 010.

Although we only allow the creation and deletion of empty files, there is no funda-
mental reason to do so. We could just as well have permitted alternative operations:

{∅} add f c {f 7→ c}
{f 7→ c} remove f c {∅}
{f 7→ c} replace f c d {f 7→ d}

In the version control system presented previously, we favour the simplicity of primitive
patches over their expressivity. Many alternative choices certainly exist. This paper,
however, focuses on the semantic framework for creating and comparing such designs,
rather than the individual merits of a particular version control system.



Conflicts Using this abstract model, we can also reason about conflicts that may arise
from users editing the same file. For instance, suppose we consider a repository storing
the sequence 00 shared by two users Alice and Bob. Suppose Alice commits a patch
corresponding to the operation replace README.md 00 10. What will happen if Bob
tries to submit a patch to the same repository flipping the other bit, that is, corresponding
to the operation replace README.md 00 01? In the system described here, this is not
allowed. The precondition of Bob’s operation is not satisfied—and hence it cannot be
added to the repository’s history. There is a conflict. There are several ways to resolve
this conflict:

– Bob could discard his change, rolling back to the previous state of his repository
after Alice’s patch;

– Bob could decide that he wants to override Alice’s change. In that case, he would
change his patch to correspond to the operation replace README.md 10 01.

– Bob could remove Alice’s patch from the shared repository and push his own patch;
– Bob could resolve the conflict manually, by changing his patch. For example, the

patch replace README.md 10 11 incorporates both changes to the individual bits.

Each of these solutions has its own advantages and disadvantages. The point we
wish to make here, however, is that we can the following semantic characterization of
what a conflict is:

Definition 1. When applying a patch {P} c {Q} to a repository M, for which M 6� P,
we say that c causes a conflict in the repository M.

Note that we can give this definition independently of how the repositories involved
communicate, the merging algorithm used, or even the raw data stored in the repository.

Furthermore, we have not said anything about how patches are constructed from the
changes to the raw data stored in a repository. Nor have we discussed how these patches
are communicated between repositories. We have also not discussed whether the version
control system is distributed or centralized. This is a good thing! The semantics we
present is completely independent of these design decisions, as it should be.

This version control system is far too simple to be of any practical use. Yet even in
this simple scenario, there are plenty of design choices. Should the patches be invert-
ible? Are there any other operations necessary? Is there really a conflict if two separate
bits are modified? We will revisit many of these questions in the coming section.

This example does illustrate the central idea of this paper that program logics may
be used to reason about version control systems. To be of any real use, a version control
system must store multiple files. To do so, we need to use a richer logic.

5 Separation logic

The previous version control system is extremely limited. Suppose we would like to
extend this initial system to handle multiple files. Recall that the pre- and postconditions
are predicates on (some internal model of) a repository. To create a new patch, you need
to refer to the full state of the repository—even if this patch only changes a single file.



This limits how repositories can share information: in order to validate that a patch
can be incorporated in a repository, the patch must start from precisely the same initial
repository.

This may sound like a familiar problem: separation logic was introduced to address
precisely this shortcoming in traditional Hoare logic. In this section, we will develop a
marginally more realistic system, capable of storing multiple binary files.

Internal model Let us revise the simple repository model we defined previously. Our
new internal model of a repository consists of a (finite) partial map from filenames to
their contents:

M ::=F ⇀ Bits

Just as before, we will define a pair of predicates on repositories. We write M � p
when some internal model of a repository M satisfies the predicate p:

M � f 7→ c iff M(f ) = c ∧ dom(M) = {f }
M � ∅ iff dom(M) = /0

Intuitively, the predicate f 7→ c holds of the repository modeled by M when the
repository only tracks the file f with contents c. Similarly, the predicate ∅ holds of
the repository modeled by M when the repository M is empty. In addition to these
atomic predicates, we define a compound predicate P ∗ Q, inspired by the separating
conjunction from separation logic:

M � P ∗ Q iff ∃M0,M1. M = M0 # M1 ∧M0 � P ∧M1 � Q

Here we write M0 # M1 for the union of two disjoint finite maps. Put in words, the
predicate P ∗ Q holds on the repository M precisely when we can split M into two
disjoint maps M0 and M1 such that M0 satisfies P and M1 satisfies Q. Note that the
separating conjunction operator is commutative and associative.

Operations Just as before, we define three operations on repositories:

{∅} add f {f 7→ ε }
{f 7→ ε } remove f {∅}
{f 7→ c} replace f c d {f 7→ d}

The operation add f adds the file to the repository, provided it does not exist. The remove
operation removes a file from the repository. Finally, the replace operation modifies the
contents of a file in the repository. Once again, we would like to stress that different
choices for these operations exist. For instance, the add operation could be allowed to
overwrite the file if it exists already. We do not claim that this is the best way to manage
a single repository containing binary files, but rather aim to illustrate that this is a good
way to define such a version control system’s semantics.

Separation logic extends Hoare logic with the frame rule:

{P} c {Q}
mod(c)∩addr(R) = /0

{P ∗ R} c {Q ∗ R}



Here addr(R) denotes the files mentioned by the predicate R and the mod function
computes the set of modified files associated with every command. As we are only
interested in the files being modified, we define the addr function as follows:

addr (∅) = /0
addr (f 7→ c) = {f }
addr (P ∗ Q) = addr (P)∪addr (Q)

Traditionally, the side condition of the frame rule refers to the free variables of the
predicate, but this name is a bit misleading in this context. Version control systems, in
contrast to programming languages, typically do not have a notion of ‘variable.’ Instead,
they refer to files by their name. An analogy might be to refer to program variables by
their memory address. For that reason, we use the addr function computing the set of
‘addresses’ mentioned by a predicate, rather than the traditional fv function computing
the free variables. In this example, these addresses correspond to file names. In later
examples, they may also refer to the individual lines of a file, for instance.

The mod function computes the set of file names modified by a series of operations
and is defined as follows:

mod (add f ) = {f }
mod (remove f ) = {f }
mod (replace f c d) = {f }
mod (c0;c1) = mod (c0)∪mod (c1)

The frame rule is the central rule of separation logic: it ‘codifies a notion of local be-
haviour’ [5], which allows us to reason about the effects of a single patch on different
repositories.

We still need to show that the frame rule, as formulated above, is sound. By mod-
ifying a standard denotational model of mutable state in type theory [16, 17], we have
developed a denotational model for these semantics in the Coq proof assistant [18]. We
have shown that our semantics and the frame rule are sound with respect to this model:

Proposition 1. For all patches {P} c {Q} and any internal model of a repository
M, if M � P then JMK � Q. Furthermore, for any predicate R if M � (P ∗ R) then
JMK � (Q ∗ R), provided R satisfies the condition mod (c)∩addr (R) = /0, associated
with the frame rule.

Discussion To illustrate how you may reason with these rules, we will cover a few
examples in some more detail. Firstly, it may seem from the rules we have given above
that you may only ever add files to the empty repository. Using the frame rule, however,
we can provide the following derivation:

{∅} add f {f 7→ ε }
f 6∈ addr(R)

{∅ ∗ R} add f {f 7→ ε ∗ R}

We may always add a file f to any repository that does not yet contain f .
Let us consider at another example. Suppose the repository R holds a single file f

with contents 1. Once again Alice and Bob apply patches to this repository. First, Alice



applies the patch add g. Suppose Bob would like to apply the patch replace f 1 0. Is
there now a conflict? Using the frame rule we can derive:

{f 7→ 1} replace f 1 0 {f 7→ 0}
{f 7→ 1 ∗ g 7→ ε } replace f 1 0 {f 7→ 0 ∗ g 7→ ε }

Hence applying Bob’s patch will not yield a conflict, but results in a repository satisfy-
ing the predicate f 7→ 0 ∗ g 7→ ε .

The patches that Alice and Bob wrote also commute: they can be applied in either
order to produce the same repository. This is not always the case of course, for exam-
ple, if they both tried to modify the same file their patches would not commute. More
generally, we call such patches independent.

Definition 2. We call two patches {P1} c1 {Q1} and {P2} c2 {Q2} independent iff

mod(c1)∩addr(P2 ∧ Q2) = /0 and mod(c2)∩addr(P1 ∧ Q1) = /0

Using the frame rule, we can prove that for all pairs of independent patches c1 and
c2, the composite patches c1;c2 and c2;c1 exist and commute. We give one half of the
derivation below:

{P1} c1 {Q1}
{P1 ∗ P2} c1 {Q1 ∗ P2}

{P2} c2 {Q2}
{Q1 ∗ P2} c2 {Q1 ∗ Q2}

{P1 ∗ P2} c1;c2 {Q1 ∗ Q2}

Having a formal semantics makes it possible to prove such properties. We will return to
this point in Section 8 where we consider branching and merging more generally.

With this basic system in place, it is easy to define new operations on repositories.
For example, you may want to facilitate the renaming of files. To do so, we can define
a new operation rename with the following semantics:

{f 7→ c ∗ g 67→} rename f g c {f 67→ ∗ g 7→ c}

Of course, we need to extend the definition of the mod function accordingly.
This version control system is still very much a toy example. In the next sections,

we will show how to extend these ideas further to a more realistic system.

6 Beyond binary files

Most version control systems record line-based changes on text files, in addition to the
monolithic changes to binary files we have seen so far. In this section, we will show how
to model another simple version control system that stores (the lines of text of) a single
file. For the moment, we leave the name of the file unspecified and focus exclusively on
handling the lines of text. It is important to stress that there is no fundamental limitation
that prevents us from handling multiple files, or even multiple directories as we will see
shortly. We will consider only a single file for the sake of presentation.



Internal model We begin by describing the internal model of this system. Once again,
there are many different design choices possible. We will represent the file under version
control as a singly linked list of lines. Other alternatives exist, but we defer further
discussion to the end of this section.

Let I be some set of labels, that we use to identify uniquely the lines in our file. We
will assume the existence of two distinguished elements of I, init and eof, corresponding
to the first and last line of the file under version control. From the set of line labels I, we
construct the set I × {0,1}, which we use as our address space A. We now define the
internal model of our repository M as follows:

M ::=A ⇀ (ASCII+ I)
A ::= I × {0,1}
ASCII ::=(’a’ | ’b’ | ...)∗

The internal model consists of a map describing the contents of the file, that maps
addresses in A to either the subsequent label or the line contents, represented by the sum
type ASCII+ I. Just as other models of linked lists [4], we will maintain the invariant
that for every i ∈ I, M (i,0) maps to the text on the line i and M (i,1) maps to the
address of the next line. Using a pair of finite maps or dependent types [19], we could
enforce this invariant, but we refrain from doing so here for the sake of simplicity. We
will sometimes write contents(i) and next(i) rather than (i,0) and (i,1) respectively.

Using this internal model we now define the following two predicates:

M � a 7→ c iff M(a) = c ∧ dom(M) = {a}
M � ∅ iff dom(M) = /0

We will sometimes write:

M � l→ l′ iff M � next (l) 7→ l′

M � l 7→ c iff M � contents (l) 7→ c

Here we overload the notation x 7→ c, where x may be either in I or A. It will always
be possible to infer the necessary definition from the context. Furthermore, we will
sometimes use the shorthand l0→ l1→ l2 for the predicate (l0→ l1) ∗ (l1→ l2).

An initial repository storing an empty file satisfies the predicate init→ eof, but leaves
the contents of both init and eof empty. This does not require that all files necessarily
contain an empty line. It is up to the version control systems’ interpretation function to
map between text files and this representation. If the intepretation function traverses the
linked list and concatenate all the strings stored therein, the empty repository is mapped
to an empty file. If it explicitly inserts newline characters between the elements of the
list, the empty repository is mapped to a file with a single empty line.

Operations We now introduce three operations for inserting new lines, modifying ex-
isting lines, and deleting empty lines.

{lb→ la} insertLine lb l la {(lb→ l→ la) ∗ (l 7→ ε)}
{l 7→ c} modifyLine l c d {l 7→ d}

{(lb→ l→ la) ∗ (l 7→ ε)} deleteLine lb l la {lb→ la}



Where lb, l, and la are distinct labels. Each of these operations has the obvious interpre-
tation: the operation insertLine lb l la inserts a new empty line between the subsequent
lines lb and la; modifyLine l c d modifies the contents of the line labeled l from c to d;
deleteLine lb l la deletes the empty line labeled l, situated between lines lb and la.

To complete the definition of our version control system, we still need to define
three new clauses for the mod function:

mod (insertLine lb l la) = {next(lb),next(l),contents(l)}
mod (modifyLine l c d) = {contents(l)}
mod (deleteLine lb l la) = {next(lb),next(l),contents(l)}

The definition of the addr function is unchanged. Once again, we have developed a
denotational model in Coq and proven soundness of our semantics and the frame rule.

Discussion The entire text of the original file can be recovered by concatenating all the
strings in the list, starting from the location init until we hit eof. Note that the mathemat-
ical model does not mention lines of text anywhere—it could model words, sentences,
or paragraphs equally well.

There is a great deal of freedom in the design of the primitive operations. We have
tried to follow the operations that current diff -based version control systems support
closely. In principle, however, we can allow other operations, such as swapping the
contents of two lines. One possible definition of such an operator could be:

{l0 7→ c0 ∗ l1 7→ c1} swap l0 l1 c0 c1 {l0 7→ c1 ∗ l1 7→ c0}

This operator modifies the contents of both lines. This patch records the contents
of both of lines. If another user has changed the contents of the lines involved, this
patch will cause a conflict. On the other hand, it only mentions the lines l0 and l1. It is
completely independent of the surrounding lines.

Alternatively, we could also choose the following pre- and postconditions:

{l0→ l1→ l2 ∗ k0→ k1→ k2} swap l0 l1 l2 k0 k1 k2 {l0→ k1→ l2 ∗ k0→ l1→ k2}

This second choice is interesting: it works regardless of the contents of the lines. If
other patches change the contents of the lines, there will not be a conflict. The drawback
of this choice, however, is that it mentions the surrounding lines. If these surrounding
lines are themselves swapped or deleted, the precondition of this swap operation may
fail to hold, causing a conflict.

Once again, having a formal semantics makes it possible to compare the tradeoffs
between these two design choices. Without a precise semantics, it is hard to even talk
about such issues. The purpose of this paper is not to claim that either of these two
alternatives is superior, but rather demonstrating that there is an important design choice
to be made here. Version control systems could even offer both alternatives, leaving it
to users to specify which operation they wish to apply.

There are, of course, alternative ways to model lines of text. One obvious choice
would be to model the lines of text as an array. This choice has several serious draw-
backs. Most text based version control systems record line insertions and deletions,



using tools such as Unix’s diff. Naively implementing such insertions and deletions on
arrays typically requires the copying of data to free a new location upon insertion or the
overwrite an empty location upon deletion. Moving around large portions of the file in
this manner greatly increases the set of modified addresses associated with each oper-
ation, which in turn, makes it harder to apply the frame rule and increases the chance
of conflicts. For that reason, we have chosen to represent the lines as a linked list rather
than an array. There may be situations however where a model using arrays may be
preferable, for example, if it is important to track absolute line numbers.

7 Directories

Any model of a realistic version control system should be able to handle multiple files
and directories. Here we outline how to model such a system, once again, by defining
the internal model of the repository, predicates over this model, and primitive operations
as Hoare triples. Although we choose to model binary files only, it is certainly feasible
to extend this model to include text files as described in the previous section.

Repository Once again, we will assume a set of names F that is used for the names of
both files and directories. We model a repository as a finite map from the names of files
and directories to their contents, C. The contents of a directory is a new partial map
from filenames to their contents. The contents of a binary file is simply the raw bits that
it stores.

M ::=F ⇀ C
C ::=Bits+M

Next, we define several useful predicates on repositories. As the model of our repos-
itory is richer, the predicates become a bit more complex. It is tempting to reuse the
previous definition of f 7→ c, that we have seen in Section 5:

M � f 7→ c iff M(f ) = c ∧ dom(M) = {f }

This definition is suitable for top-level files, but cannot be used to refer to files stored in
nested directories. To do so, we introduce the notion of path as follows:

Path ::=F ∗ × F

A path consists of a possibly empty list of directory names and a file name. In accor-
dance with most operating systems, we will write paths as a file name, such as f above,
or d/p, where d is the outermost directory and p is the remainder of the path. When we
wish to extend a path with a new file or directory, we will write (p, f ) or (p,d).

While the above definition handles the case that the list of directories is empty, we
still need to define the non-empty case. We complete the definition of the predicate with
the following clause:

M � (d /p) 7→ c iff M(d) = M′ ∧ dom(M) = {d} ∧M′ � p 7→ c



Besides the p 7→ c predicate, we also need a predicate that asserts the directory referred
to by a list of filenames is empty. Once again, we define this predicate recursively over
the list of directory names.

M � isEmpty (ε) iff dom(M) = /0
M � isEmpty (d /p) iff M(d) � isEmpty(p) ∧ dom(M) = {d}

We leave the assumption implicit that M(d) maps to a directory, rather than a file.

Operations Now we can define operations to manipulate such repositories:

{isEmpty(p)} addDir p d {isEmpty(p,d)}
{isEmpty(p)} addFile p f {(p, f ) 7→ ε }
{(p, f ) 7→ c} modifyFile p f c c′ {(p, f ) 7→ c′}
{(p, f ) 7→ ε } deleteFile p f {isEmpty(p)}

{isEmpty(p,d)} deleteDir p d {isEmpty(p)}

The first two operations, addDir and addFile, create files and directories respectively.
The precondition of both these operations does require the enclosing directory to exist,
even if it is empty. The operation modifyFile updates the contents of a file in the repos-
itory. Finally, the deleteFile and deleteDir operations remove an empty file and empty
directory from the repository respectively.

In the above, we have developed a richer internal model for repositories than the
usual ‘flat’ heaps described using separation logic. In particular, the model of our repos-
itory may contain nested heaps, used to model directories. To complete the definition
of our version control system, we define the mod and addr functions as in the obvious
fashion. Note that both these function compute a set of paths:

mod (addDir p d) = {(p,d)} addr (isEmpty(d)) = /0
mod (addFile p f ) = {(p, f )} addr (p 7→ c) = {p}
mod (modifyFile p f c c′) = {(p, f )} addr (P ∗ Q) = addr P∪addr Q
mod (deleteFile p f ) = {(p, f )}
mod (deleteDir d) = {(p,d)}

The nested directory structure introduces very little complexity. Why not? We have
judiciously chosen ‘address space’ to reflect the structure of our heaps: both the internal
model of a repository and paths are defined recursively. Furthermore, the primitive op-
erations we have defined have as tight a footprint as possible. If we had tried to define
an operation that deletes non-empty directories, computing the set of modified vari-
ables would be much more complex. In practice, a version control system may choose
to expose such a command to its users, even if it is implemented using the primitive
operations we have described here.

Although we have not given a complete specification of a realistic version control
system, we have seen many crucial ingredients: binary files, text files, and directories.
There are several features we have not yet covered, such as symbolic links or file permis-
sions. For the sake of exposition, we have not tried to define a single system combining
all these features in this paper. Doing so will involve serious technical overhead, but
seems to be within grasp.



8 Branching and merging

The operations we have seen so far capture the changes a user makes to the raw data
that is stored in the repository. These changes are represented as patches; the history of
the repository consists of the sequence of patches that lead to the current state. These
are not the only kind of commands that a version control system must process.

Version control systems also support commands to manipulate a repository’s his-
tory, such as pulling patches from or pushing patches to another repository. Things
become more interesting, however, when we admit operations that introduce branching
structure to the repository’s history.

Many version control systems support some notion of branches within a repository.
Each branch is a repository in its own right. Changes made in one branch of the repos-
itory are typically kept separate from all other branches. Many modern version control
systems allow new branches to be created cheaply, without copying files on disk. Users
can easily switch between different branches, making it possible to maintain different
versions of the repository at the same time.

There are many practical scenarios where branching can be useful [20]. Consider a
developer working on a new feature, when she is notified of a critical bug she needs to
fix right away. Without branching, she has a few options:

– She could check out a fresh copy of the repository in which to fix the bug. For
large repositories with long histories, this can be an expensive operation. In par-
ticular when the build and deployment process is complex, duplicating the entire
repository may be undesirable;

– She could discard the work on the new feature she has done so far. Although rolling
back to a previous state of the repository is usually an inexpensive operation, dis-
carding code is clearly undesirable.

– She could develop the bugfix in her repository and push both the fix and the un-
finished new feature. Once again, this is a bad choice as it publishes untested or
incomplete code in the main repository.

By introducing a new branch for the bugfix, developers can work on different projects
within the same repository, without having to store more than one copy of the repository
on disk.

The question remains how we can model branches in framework for version control
systems we have seen so far. We will illustrate the general principle using an example
and notation drawn from the Git literature [15].Typically, branching is illustrated using
acyclic directed graphs to model the changes made to a repository over time. The nodes
of the graph correspond to the states of the repository; the edges correspond to the
patches. For example, a repository’s history consisting of the patches c1;c2; could be
described graphically as follows:

s1 s2 s3
c1 c2

Version control systems sometimes allow users to label certain states. For example,
in Git the main branch is usually labeled the master. We will draw such labels using
rectangles.



s1 s2 s3
c1 c2

master

Creating a new branch does not change the state of the current repository. For example,
to creating a new branch called issue53 to resolve a bug report yields the following
situation:

s1 s2 s3
c1 c2

master

issue53

Things become more interesting once these two branches diverge. Suppose a de-
veloper commits a bugfix, c3, to the issue53 branch. We can model this graphically as
follows:

s1 s2 s3
c1 c2

master

s4
c3

issue53

How do these branches affect the ‘program’ stored in the repository’s history? Mod-
eling choice involves introducing conditional statements:

c1;c2; if issue53 then c3 else skip;

If development on the master branch continues, the development branches fork further:

s1 s2 s3

s4

s5
c1 c2

c3

c4 master

issue53

Unsurprisingly, this corresponds to the program:

c1;c2; if issue53 then c3 else c4;

Things become more interesting once branches merge. When merging the issue53 and
master branches, the version control system must compute patches m1 and m2 that can
be applied to both s5 and s6 to yield some new common state s6.

s1 s2 s3

s4

s5

s6
c1 c2

c3

c4

m1

m2

issue53

master



The resulting history of the repository then becomes:

c1;c2; if issue53 then {c3;m1} else {c4;m2};

Note that this does not specify how to compute m1 and m2. Typically, this is done using
a three-way merge algorithm between the states s3, s4, and s5. Computing the patches
m1 and m2 may not always be possible. If both branches modify the same lines of the
same file in a different fashion, for example, most version control systems have no way
of guessing which modification to prefer. This situation is sometimes referred to as a
merge conflict.

Predicting when merge conflicts occur is not easy. This depends heavily on the
exact merge algorithm used. Using the framework we have developed so far, however,
we can give a sufficient condition for the absence of merge conflicts. Consider the
definition of independent patches from Section 5. A crucial property of two independent
patches is that they commute. Hence if the patches c1 and c2 in two separate branches are
independent, there is an obvious choice for the merging patches: c2 and c1 respectively.

Typically when the version control cannot find merging patches, i.e., when the
patches in both branches are not independent, the user is required to resolve the con-
flict manually. To do so, the user applies patches to either (or both) branches until the
changes can be reconciled.

The independence condition is not necessary for merging patches to exist. For ex-
ample, suppose c1 changes the contents of a binary file f and then later reverts this
change to f . According to the above characterization of independence, c1 is not inde-
pendent of a patch c2, which also modifies the file f . Yet it may still be possible to find
merging patches. In this example, removing the patches from c1 that modify f produces
a new patch with a smaller footprint that will compose with c2.

The problem lies in our definition of mod function: it computes the set of modified
variables regardless of which addresses actually change. For example, a command such
as replace f c d from Section 5 is said to modify f , even if c and d are equal. A more ex-
tensional view of modification would be to compute those addresses that have changed
in the repository after applying a series of patches.

There are advantages and disadvantages of such a more extensional viewpoint. On
the one hand, it becomes easier to commute patches as the set of modified addresses
may be more precise. The drawback, however, is that the set of modified variables
is harder to compute and may be dependent on the context: setting the contents of a
file f to c may or may not modify f , depending on the current contents of f and its
complete content history. This makes it harder to reason about patches independent of
the repository to which they are applied. Both choices are sound, but further practical
experience is necessary to decide which is preferable.

In this section, we have limited the discussion to simple branching and merging. In
principle, we can also describe more complex merging operations, such as the behaviour
of the Git rebase operation. We have restricted our example to the single operation
of introducing a binary branching operator, corresponding to the familiar if-then-else
construct. Many git repositories use a variety of branches to track different versions of
the same repository. We postulate that simple branching control flow should be enough
to model such more complex branching behaviour also.



9 Discussion

Why bother writing semantics for version control systems? After all, there are plenty of
widely used version control systems without a solid mathematical foundation. There are
also plenty of widely used programming languages without a clearly defined semantics,
yet this does not stop us from continuing to research programming language semantics.

There are several ways we envision a clearly defined semantics for version control
systems, based on logic for mutable state, can make a difference. First and foremost,
such semantics can help designers of version control systems make difficult design deci-
sions. Mailing lists and internet fora are full of questions about version control systems
asking whether some unexpected behaviour is a bug. Such threads can spark all kinds
of debate, even amongst the system’s developers, about what the correct behaviour is. A
good example is the recent work by Lourenço et al. [21] that models (a fragment of) Git
in Alloy [22]. Their work uncovered corner cases where developers could not initially
agree if it was a bug or not. Such discussions are much harder to conduct without a clear
specification.

Not only the developers of version control systems could profit from a clearly de-
fined semantics. The users of version control systems also have much to gain. A clear
semantics gives more understanding of how a version control system is expected to op-
erate. This makes it easier to predict what the outcome of a complex operation, such
as merging two branches, will be without having to execute this command. When col-
laborating across different developers, it is common to distribute programming tasks to
minimize the chance of having conflicts, e.g., if one programmer only modifies file X
and the other modifies file Y , they should be able to merge their work later. With a pre-
cise mathematical semantics it becomes possible to reason more abstractly about this
process: what invariants do we need to incorporate in our development process to guar-
antee the absence of merge conflicts? Answering this kind of question is only possible
with an unambiguous semantics.

Related work There are several other proposals for the semantics of version control
systems. The early work on the semantics of SCCS [6] and CVS [7] is obviously closely
related, as are other early models of version control [23, 24]. More recently, there have
been several proposals for a semantics for version control, for example, using acyclic
directed graphs [25], calculus [26] or category theory [27]. No existing work makes the
connection between the semantics of imperative programs and version control systems
as we do in this paper.

The darcs version control system is one of the few systems that strives to have a
formally defined semantics. The theory of patches [28–31] tries to give an algebraic
characterization of version control. The darcs model differs in several crucial aspects to
the semantics we have presented here.

Firstly, darcs maintains an (unordered) set of patches, stored in no particular order;
we have chosen for an ordered sequence of patches. Working with sets increases the
algorithmic complexity of some of the algorithms that darcs uses to add or remove
patches, as these operations are allowed to make fewer assumptions about the order in
which patches are applied.



Furthermore, darcs has a special mechanism for commuting patches. Where we
have identified conditions under which two patches can commute, darcs allows all
patches to commute in principle. When darcs commutes two patches c1;c2, it com-
putes two new patches d2;d1, where d1 and d2 ‘do the same as’ c1 and c2 respectively.
Associating a precise meaning to this specification is one of the hardest problems in
darcs’s theory of patches.

Finally, all patches are invertible by design in darcs. We have chosen to enforce this
in the version control systems presented in this paper, even if it is not strictly necessary.

The existing research on operational transformations and bidirectional transforma-
tions is a bit further afield. Operational transformations [32] focus on simultaneous edits
on a single text document. Revision control, on the other hand, never needs to deal with
simultaneous changes to the same repository. Bidirectional transformations [33] focus
on the view-update problem: how can we reconcile changes on a view on a piece of data
with the original data. Bidirectional transformations are not concerned with versioning
or being able to roll back to previous states. Furthermore, bidirectional transforma-
tions attempt to consolidate changes between different data structures. The work we
present here is concerned with consolidating different changes on a single data struc-
ture, namely the internal model of the repository.

Future work The semantics presented in this paper do not model a realistic version con-
trol system, but focus on the many pieces of the puzzle. Clearly, it would be worthwhile
to write a realistic model of an actual version control system in this style. While there
are no obvious technical obstacles to such a model, it would provide further evidence
of the applicability of these ideas.

In this paper we have shown how to model both binary files and text files. In prin-
ciple, however, the same ideas can be used to model structured data. A good example
would be files containing comma-separated values. Although these may be represented
as monolithic binary files or lines of text, there is two dimensional structure worth ex-
ploiting. If you do represent such files as lines, adding a new column will conflict with
every other change to the same file—even if there is no modification to the same cell by
these two patches. Applying techniques from data type generic programming [34, 35],
we hope to develop a general theory of version control of structured data.

The focus of this paper has been on the design of internal models and the oper-
ations that manipulate them. Although we have briefly touched upon branching and
merging (Section 8), there are many other operations on the repositories history worth
supporting. Users may want to reorder patches, add new patches at specific locations in
the linear history, or delete patches besides the most recent one. All of these are easy
to support in principle, but finding an expressive, minimal set of commands may be
difficult in practice.

Closure In his textbook on the semantics of programming languages [36], John Reynolds
wrote:

As the fruits of programming-language research become more widely under-
stood, programming is going to become a much more mathematical craft.



With the research presented in this paper, we hope that the same will become true not
only of programming, but of the broader software development process.
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