
The Utrecht Agda Compiler
Submitted to TFP 2015

Philipp Hausmann, Atze Dijkstra, and Wouter Swierstra

Universiteit Utrecht, Netherlands
http://www.uu.nl

Abstract. This paper describes our experience implementing the Utrecht Agda
Compiler, a new Agda compiler targeting the Utrecht Haskell Compiler’s core
language. Besides presenting the translation scheme, this paper describes the key
issues in the compiler’s development. The Utrecht Agda Compiler not only ad-
dresses several limitations and shortcomings of the existing backends, but pro-
vides a platform for further research in the compilation of dependently typed pro-
gramming languages.

Keywords: dependently-typed programming, Agda, UHC, code generation

1 Introduction

There are many different dependently typed programming languages and proof assis-
tants, including Coq [22], Agda [16], Cayenne [4], Twelf [19] and Idris [7]. Yet most of
these systems focus on theorem proving rather than efficient execution; very few have
a mature compiler. As a result, there are very few examples of large systems developed
using programming languages with dependent types.

In this paper we report our initial steps in developing a compiler for Agda. Leverag-
ing parts of the existing Utrecht Haskell Compiler [10,3] (UHC), allowed us to develop
a rapid prototype at relatively low cost. This paper reports our progress so far:

– We survey the existing Agda backends and the design criteria we set ourselves for
our compiler (Section 2).

– We will describe our experience implementing a new compiler backend for Agda.
This paper not only focuses on the difficulties we encountered, but also gives some
advice for future backend developers. The principal algorithms implemented are
not novel and many elements have been described before, but we do provide a more
detailed formal semantics of the translation from Agda to UHC’s Core language
(Section 3) and the problems we have encountered (Section 4).

– We have updated and significantly extended the collection of executable Agda pro-
grams (Section 4.2). These examples provide a regression test suite for our own
compiler, but may be valuable to other backend developers too. We hope that this
collection and our new compiler will eventually inspire more Agda developers to
write executable programs, instead of libraries that are never run.

http://www.uu.nl

2 Philipp Hausmann, Atze Dijkstra, and Wouter Swierstra

– We have started exploring how this new backend can be used to interface between
Agda and Haskell. Having a shared intermediate language for both the Utrecht Agda
Compiler and the Utrecht Haskell Compiler makes it possible to share a common
binary format and exchange data between the two languages freely (Section 5).

2 Background

2.1 Existing Backends

The most notable compiler for Agda is MAlonzo [14]. Its target language is Haskell,
using the Glasgow Haskell Compiler (GHC) to produce executables from the generated
Haskell code. While a large part of the Agda language can easily be translated into valid
Haskell code, this does not hold for the entire language; after all, Haskell is not depen-
dently typed. The MAlonzo compiler works around this problem by inserting (unsafe)
type coercions. This coercions increase the code size significantly, as can be seen in the
Hello World example in Figure 1.

This behavior, together with the lack of optimizations in MAlonzo, can lead to a
blowup in the size of the generated Haskell code [1]. The inserted type-coercions also
prevent GHC from applying certain type-directed optimization, which is unfortunate as
MAlonzo relies solely on GHC for optimizing the generated code. Although these coer-
cions can have a performance impact, they do not affect the correctness of the program,
as the source code has already been type checked by Agda.

MAlonzo also provides a Foreign Function Interface (FFI) to Haskell. Using this
FFI, programmers can call Haskell functions fromAgda, export Agda functions toHaskell
and reuse Haskell data types in Agda. Only the common subset of both programming
languages can be used in the FFI. Dependently typed functions, for example, are not
supported. The current FFI relies on the programmer to specify the exact mapping be-
tween Agda and Haskell using pragmas; Figure 2 contains a small example illustrating
all these features.

Besides the MAlonzo compiler, there are several more experimental Agda backends
targeting JavaScript [11] and the Epic language [17,6]. The Epic language itself is a
simple untyped lambda calculus, extended with pattern matching and data types.

2.2 What should be the target language?

While targeting Haskell directly is certainly a viable approach, the numerous coercions
inserted by MAlonzo push GHC to its limits. There are examples of modest Agda files
generating huge Haskell files, that require unacceptable compilation time. We felt that
it might be worthwhile to explore alternative approaches.

We explicitly wanted to avoid creating a full compiler from scratch; instead, we
wanted to reuse existing infrastructure to deal with the low-level aspects of compilation.
Foremost, reusing an existing language as our target language saves a lot of work and
allows us to leverage all existing tooling and infrastructure. Secondly, we hope to exper-
iment further with a Foreign Function Interface between two high-level languages such
as Agda and Haskell. Having a common target language is almost a necessity for such
experiments.

The Utrecht Agda Compiler 3

𝗆𝖺𝗂𝗇 = 𝗋𝗎𝗇 (𝗉𝗎𝗍𝖲𝗍𝗋𝖫𝗇 (𝗌𝗁𝗈𝗐 (𝟣𝟢 + 𝟣𝟢)))

(a) A small Agda program.

main = d1
name1 = "HelloWorld.main"
d1

= MAlonzo.RTE.mazCoerce
(MAlonzo.Code.IO.d21

(MAlonzo.RTE.mazCoerce MAlonzo.Code.Agda.Primitive.d3)
(MAlonzo.RTE.mazCoerce MAlonzo.Code.Data.Unit.Base.d3)
(MAlonzo.RTE.mazCoerce

(MAlonzo.Code.IO.d75
(MAlonzo.RTE.mazCoerce

(MAlonzo.Code.Data.Nat.Show.d11
(MAlonzo.RTE.mazCoerce

(MAlonzo.Code.Data.Nat.Base.d14
(MAlonzo.RTE.mazCoerce

(MAlonzo.Code.Data.Nat.Base.↩
↪ mazIntegerToNat (10 :: ↩
↪ Integer)))

(MAlonzo.RTE.mazCoerce
(MAlonzo.Code.Data.Nat.Base.↩

↪ mazIntegerToNat
(10 :: Integer))))))))))

(b) The generated Haskell code for the above Agda program. The mazCoerce expressions are type
coercions.

Fig. 1: A example Agda program and it’s translation to Haskell.

4 Philipp Hausmann, Atze Dijkstra, and Wouter Swierstra

𝖽𝖺𝗍𝖺 𝖫𝗂𝗌𝗍 (𝐴 ∶ 𝖲𝖾𝗍) ∶ 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
[] ∶ 𝖫𝗂𝗌𝗍 𝐴
∷ ∶ 𝐴 → 𝖫𝗂𝗌𝗍 𝐴 → 𝖫𝗂𝗌𝗍 𝐴

-- Bind the Agda List data type to the Haskell List data type
{−# 𝖢𝖮𝖬𝖯𝖨𝖫𝖤𝖣_𝖣𝖠𝖳𝖠 𝖫𝗂𝗌𝗍 Data.List.List [] (:) #−}

𝗉𝗈𝗌𝗍𝗎𝗅𝖺𝗍𝖾
++ ∶ ∀ {𝐴} → 𝖫𝗂𝗌𝗍 𝐴 → 𝖫𝗂𝗌𝗍 𝐴 → 𝖫𝗂𝗌𝗍 𝐴

-- Bind the Agda ++ operator to Haskell's ++
{−# 𝖢𝖮𝖬𝖯𝖨𝖫𝖤𝖣 _++_ (_ -> (Data.List.++)) #−}

𝗋𝖾𝗏𝖾𝗋𝗌𝖾 ∶ ∀ {𝐴} → 𝖫𝗂𝗌𝗍 𝐴 → 𝖫𝗂𝗌𝗍 𝐴
𝗋𝖾𝗏𝖾𝗋𝗌𝖾 [] = []
𝗋𝖾𝗏𝖾𝗋𝗌𝖾 (𝑥 ∷ 𝑥𝑠) = 𝗋𝖾𝗏𝖾𝗋𝗌𝖾 𝑥𝑠 ++ (𝑥 ∷ [])
-- Export the Agda reverse function, callable from Haskell
{−# 𝖢𝖮𝖬𝖯𝖨𝖫𝖤𝖣_𝖤𝖷𝖯𝖮𝖱𝖳 𝗋𝖾𝗏𝖾𝗋𝗌𝖾 reverse #−}

Fig. 2: An Agda example using the Foreign Function Interface (FFI).

Adapting the existing Epic backend would have been a possibility. Epic compiles
directly to C, and does not target any other high-level language. As a result, it would
have severely limited the possibility of supporting the existing FFI with Haskell: any
call to Haskell code would always have to go through Haskell’s FFI with C.

The other obvious candidate for an intermediate language would have been GHC
Core [18]. GHC Core, however, is a typed intermediate language, based on System
FC [21]. While all Haskell’s high-level language features, including type families [8]
and GADTs [20], can be translated to System FC, it is not dependently typed. As a
result, translating Agda to System FC is not a trivial exercise.

This mismatch in type systems is the same problem the MAlonzo backend exhibits.
We could solve the problem in the same way: inserting numerous type coercions. These
coercions, however, will also cause the same problems already present in the current
MAlonzo backend. We could, perhaps, do a slightly better job by only inserting those
type coercions that are strictly necessary, as opposed to naively inserting them every-
wherewhere theymight be required. Coq’s extractionmechanism takes this approach [12].
By replicating an ML type checker inside the Coq compiler, the extraction mechanism
only inserts coercions at places where the generated ML code would not type check
otherwise. Nonetheless, following the same approach would have required a relatively
large effort and would have seriously limited our freedom to experiment and modify the
target language to suit our needs.

Although there have been proposals for a dependently-typed core language [2], there
is no mature implementation that we could use off the shelf. Instead, we chose to resolve
this mismatch between type systems by targeting an untyped core language.

The Utrecht Haskell Compiler (UHC), developed by Dijkstra et al. [10], has a Core
language similar to Epic. The main difference is that UHC Core is non-strict. UHC is
also used to a large degree for experimenting with new ideas and backward compati-

The Utrecht Agda Compiler 5

bility is not as important as for example for GHC. As its name suggests, the Utrecht
Haskell Compiler also compiles Haskell to executables via UHC Core. Hence, an Agda
backend targeting UHC Core is a suitable vehicle for exploring the possibility of mixed
Agda-Haskell developments.

3 Translating between Agda and UHC

Both Agda and UHC consist of a series of transformations between intermediate lan-
guages; starting from the high-level Agda or Haskell input and going towards more
simplistic core languages. Our compiler links Agda’s Internal Syntax language with the
UHC Core language; reusing Agda’s type checker and UHC’s code generation.

While UHC’s code generation already existed, its compilation pipeline required sig-
nificant changes to support our use case. We will describe these changes in more detail
in Section 4.

Reusing Agda’s type checker by itself is easy; the hard part has been translating
Agda’s Internal Syntax language to the UHC Core language. We were able to reuse
some code from the existing Agda Epic backend, but differences in the target language
and new Agda features posed new challenges. For example, the support for varying arity
functions described later in this section is new compared to the Epic backend.

In the remainder of this section we will give a formal description of the translation
from Agda’s Internal Syntax to UHC Core.

3.1 UHC Core

UHC Core is one of the intermediate languages used by UHC, and forms the target
language of our compiler. We use a slightly simplified version of UHC Core for describ-
ing the translation from Agda’s Internal Syntax to UHC Core, which we will call UHC
SCore. The grammar of UHC SCore is given in Figure 3. All the UHC SCore terms in
the rest of this paper will be written in red to distinguish them from terms in Agda’s
Internal Syntax.

Unlike UHC Core, in UHC SCore we treat all let bindings as possibly recursive. We
also assume that case terms drive the evaluation, whereas inUHCCore a special let-strict
term is used for this purpose. Finally, constructors are named, rather than numbered, and
may be partially applied.

Converting UHC SCore expressions to UHC Core is straightforward; e.g. all UHC
SCore case expressions simply have to be wrapped in a let-strict term.

3.2 Translating Agda’s Internal Syntax to UHC SCore

The input for our Compiler is Agda’s Internal Syntax (AIS), which is produced by the
existing Agda frontend and presented in Figure 4. To help distinguish AIS from UHC
SCore, we will use the color blue for AIS expressions in the rest of this paper.

We will now explain the compilation from AIS to UHC SCore. Figure 5 contains the
complete formal translation semantics. In the following subsections, we will go through
all constructs of AIS and explain the translation in detail. The translation from the AIS
term A to the UHC SCore term B is written as A ▷ B.

6 Philipp Hausmann, Atze Dijkstra, and Wouter Swierstra

Terms 𝑡 ∶∶= 𝑥 Variable
| 𝑡 𝑡⃗ Application
| 𝜆𝑥⃗ → 𝑡 Lambda Abstraction
| Con 𝑛 𝑡⃗ Constructor Application
| case 𝑡 else 𝑎𝑙𝑡 or 𝑡 Case with default
| let 𝑥 = 𝑡 in 𝑡 Let
| ⊤ Unit
| ⊥ Failure

Alternatives 𝑎𝑙𝑡 ::= Con 𝑛 𝑥⃗ → 𝑡 Constructors

Fig. 3: The abstract syntax of UHC SCore, a simplified version of UHC Core. The no-
tation 𝑡⃗, 𝑎𝑙𝑡, and 𝑣 refers to a list of terms, alternatives, and variables respectively.

Agda Internal Syntax
Program p ∶∶= [(𝑛, 𝑑𝑒𝑓)] Program
Name n

Definition 𝑑𝑒𝑓 ∶∶= Data Data type
| Fun 𝑐 Function
| Axiom Axiom

CaseTree 𝑐 ∶∶= Case 𝛼 𝑏⃗ Inspect
| Done 𝛽 𝑡 Finished
| Fail Absurd case

Branch 𝑏 ∶∶= Con 𝑛 𝜓 𝑐 Constructor
| CatchAll 𝑐 Default

Term 𝑡 ∶∶= Var 𝛼 𝑡⃗ Variable / Application
| Def 𝑛 𝑡⃗ Application / Projection
| 𝜆 → 𝑡 Abstraction
| Con 𝑛 𝑡⃗ Constructor Application
| Π 𝑡 𝑡 (Dependent) Function Type
| Set 𝑡 Set
| Level 𝑙 Level

Level 𝑙 ∶∶= Z Zero
| S 𝑙 Successor
| 𝑙 ⊔ 𝑙 Join

Fig. 4: The abstract syntax of Agda. Irrelevant parts of the syntax have been omitted for
brevity.

The Utrecht Agda Compiler 7

E-Def-Axiom
Axiom ▷ ⊥

E-Def-Data
Data ▷ ⊤

[]; ⊥; 𝑐 ▷ 𝑐′

E-Def-Fun
Fun 𝑐 ▷ 𝑐′

|Γ| ≥ 𝛼 Γ; 𝜙; 𝑏⃗ ▷ 𝜙′ Γ; 𝜙′; 𝛼; 𝑏⃗ ▷ 𝑏⃗′

E-Case1
Γ[𝑥0..𝑥𝛼..𝑥𝑛]; 𝜙;Case 𝛼 𝑏⃗ ▷ case 𝑥𝛼 of 𝑏⃗′ else 𝜙′

|Γ| < 𝛼 let 𝑥 be fresh Γ ++ [𝑥]; (𝜙 𝑥);Case 𝛼 𝑏⃗ ▷ 𝑡′

E-Case2
Γ; 𝜙;Case 𝛼 𝑏⃗ ▷ 𝜆𝑥 → 𝑡′

Γ; 𝜙; 𝑐 ▷ 𝑐′

E-CatchAll
Γ; 𝜙; [𝑏0, 𝑏1, ..(CatchAll 𝑐).., 𝑏𝑛] ▷ 𝑐′

𝑏⃗ contains no CatchAll
E-NoCatchAll

Γ; 𝜙; 𝑏⃗ ▷ 𝜙

[𝑥0..𝑥𝛼−1] ++ [𝑦0..𝑦𝜓] ++ [𝑥𝛼+1..𝑥𝑛]; 𝜙; 𝑐 ▷ 𝑐′ let 𝑦0..𝑦𝜓 be fresh
E-Branch-Con

[𝑥0..𝑥𝛼..𝑥𝑛]; 𝜙; 𝛼;Con 𝑛 𝜓 𝑐 ▷ [Con 𝑛 𝑦0..𝑦𝜓 𝑐′]

E-Branch-CatchAll
Γ; 𝜙; 𝛼 CatchAll c ▷ []

E-Fail
Γ; 𝜙;Fail ▷ ⊥

|Γ| ≥ 𝛽 (𝑟𝑒𝑣𝑒𝑟𝑠𝑒 Γ); 𝑡 ▷ 𝑡′

E-Done1
Γ; 𝜙;Done 𝛽 𝑡 ▷ 𝑡′

|Γ| < 𝛽 let 𝑥 be fresh Γ ++ [𝑥]; 𝜙;Done 𝛽 𝑡 ▷ 𝑑′

E-Done2
Γ; 𝜙;Done 𝛽 𝑡 ▷ 𝜆𝑥 → 𝑑′

Γ; 𝑡⃗ ▷ 𝑡′
E-VarApp

Γ[𝑥0..𝑥𝛼..𝑥𝑛];Var 𝛼 𝑡⃗ ▷ 𝑥𝛼 𝑡′

Γ ++ [𝑥]; 𝑡 ▷ 𝑡′ let 𝑥 be fresh
E-Abs

Γ; 𝜆 → 𝑡 ▷ 𝜆𝑥 → 𝑡′

Γ; 𝑡⃗ ▷ 𝑡′
E-DefApp

Γ Def 𝑛 𝑡⃗ ▷ 𝑛 𝑡′

Γ; 𝑥⃗ ▷ 𝑥⃗′

E-Con
Γ;Con 𝑛 𝑥 ▷ Con 𝑛 𝑥⃗′

E-Pi
Γ; Π 𝑡1 𝑡2 ▷ ⊤

E-Set
Γ;Set 𝑙 ▷ ⊤

𝑙 ▷ 𝑙′

E-Level
Γ;Set 𝑙 ▷ 𝑙′

E-Level-Z
Z ▷ ⊤

E-Level-S
S 𝑙 ▷ ⊤

E-Level-Join
𝑙1 ⊔ 𝑙2 ▷ ⊤

Fig. 5: The formal description of the translation from Agda’s internal Syntax to UHC
SCore.

8 Philipp Hausmann, Atze Dijkstra, and Wouter Swierstra

Axioms Axioms are one of the simplest definitions to translate. They arise from postu-
lates, for example:

𝗉𝗈𝗌𝗍𝗎𝗅𝖺𝗍𝖾 𝖺𝗑𝗂𝗈𝗆−𝟢≡𝟣 ∶ 𝟢 ≡ 𝟣
Postulates can be used to introduce new assumptions by declaring their type, without
providing the associated definition. Such postulates are only interesting during proofs;
if such an axiom needs to be evaluated at runtime, the program will crash. We hence
translate it to the crashingUHCSCore expression⊥, as can be seen in rule E-Def-Axiom.

Functions and case splitting trees The AIS Fun construct introduces a new function.
Most such functions are defined using pattern matching, just as in other functional lan-
guages like Haskell or OCaml. During type checking this patterns are converted to case
splitting trees, as first described by Augustsson [5]. The AIS case tree generated by
Agda’s type checker is the input to our compiler.

Nameless references AIS uses a locally nameless representation for variable references
[15,13,9]. UHC SCore on the other hand relies on named references; thus we need to
convert de Bruijn levels and de Bruijn indices to names in our translation. The usage
of both, de Bruijn levels and indices is not an accident. It is motivated by the varying
arity feature of Agda explained later in this section. The conversion from de Bruijn
levels and indices to names is achieved by passing down an environment Γ, containing
the mapping from levels/indices to names. Later, we will use this environment to look
up the corresponding name of a nameless reference. Initially, we set Γ to the empty
environment in rule E-Def-Fun, as the function has not yet received any arguments or
defined any local variables.

Case splitting trees Unlike UHC SCore case expressions, which scrutinize exactly one
variable at a time, a case tree can inspect any number of variables. The case splitting
tree translation of an example Agda function can be seen in Figure 6.

A case tree consists of a non-terminal Case node that scrutinizes one variable at a
time; and Done and Fail terminal nodes representing the result of the given branch.

Case non-terminals Case 𝜓 𝑏⃗ non-terminals use the argument at the de Bruijn level 𝜓 to
branch on. De Bruijn levels count arguments from the outermost towards the innermost
binder; as the environment Γ grows to the right, the name has to be looked up at position
𝜓 from the left.

In the example case tree in Figure 6, the root non-terminal branches on the first
argument of the function 𝖿 . If the first variable has the value Con S, another Case non-
terminal is encountered and the second argument of the function is examined. A case
tree may contain any number of such Case non-terminals.

Each Case 𝜓 𝑏⃗ non-terminal is translated to one case expression. Given a way to
translate the branches 𝑏⃗ to UHC SCore alternatives and assuming that the environment
Γ already contains the variable matched on and ignoring non-exhaustive cases, the trans-
lation is defined as follows:

Γ; 𝑏⃗ ▷ 𝑏⃗′

E-Case1’
Γ[𝑥0..𝑥𝛼..𝑥𝑛];Case 𝛼 𝑏⃗ ▷ case 𝑥𝛼 of 𝑏⃗′

The Utrecht Agda Compiler 9

𝖿 ∶ ℕ → ℕ → ℕ
𝖿 𝖹 = 𝜆 𝑦 → 𝑦
𝖿 (𝖲 𝑥) (𝖲 𝑦) = 𝖲 𝑥
𝖿 𝑥 𝑦 = (𝖲 𝑦)

(a) Example Agda function.

Case 0

Done 2 (Con S [Var 0 []])Case 1

Done 2 (Con S [Var 1 [])]

Con S

Done 1 (𝜆 → (Var 0 []))

Con Z
Con S

CatchAll

(b) Case-tree translation of the above Agda function. The branches 𝑏⃗ of a Case non-terminal are
drawn as edges, and case trees as nodes.

Fig. 6: A simple example of the case splitting tree translation.

10 Philipp Hausmann, Atze Dijkstra, and Wouter Swierstra

Varying arity One peculiarity of Agda complicating the translation to UHC SCore is
that, in contrast to Haskell, Agda doesn’t require all functions clauses to take the same
number of arguments. Agda function clauses may accept a varying number of argu-
ments; for instance, when assigning a dependent type to functions such as printf, the
value of one argument may determine the number of subsequent arguments.

This behavior makes the conventional way of compiling functions by putting as
many lambda abstractions as there are function arguments around the whole function
body impossible. Instead, we need to check at all Case non-terminals if enough lambda-
abstractions are already present; if not, an additional lambda abstraction needs to be
inserted. To this purpose, we insert the rule E-Case2”, which insert lambda-abstractions
until the environment Γ has the required size. Rule E-Case1” needs the additional con-
straint |Γ| ≥ 𝛼.

|Γ| ≥ 𝛼 Γ; 𝑏⃗ ▷ 𝑏⃗′

E-Case1”
Γ[𝑥0..𝑥𝛼..𝑥𝑛];Case 𝛼 𝑏⃗ ▷ case 𝑥𝛼 of 𝑏⃗′

|Γ| < 𝛼 let 𝑥 be fresh Γ ++ [𝑥];Case 𝛼 𝑏⃗ ▷ 𝑡′

E-Case2”
Γ;Case 𝛼 𝑏⃗ ▷ 𝜆𝑥 → 𝑡′

The varying arity feature motivates using de Bruijn levels in the case splitting trees;
with de Bruijn indices it would be impossible to tell when additional lambdas need to
be inserted.

Constructor branches Previously, we assumed that branches could be translated to UHC
SCore alternatives, but have not gone into any details. A Con 𝜓 𝑐 branch translates di-
rectly to an UHC SCore alternative. The number 𝜓 records the number of arguments
the constructor takes; for each argument, we generate a fresh name. The current case
scrutinee inside the environment Γ is replaced by the list of fresh names. This makes
the pattern matched variables available to be used in the child case splitting tree stored
inside the current Con non-terminal. The body of the generated UHC SCore alternative
is the sub tree 𝑐, translated to UHC SCore.

[𝑥0..𝑥𝛼−1] ++ [𝑦0..𝑦𝜓] ++ [𝑥𝛼+1..𝑥𝑛]; 𝜙; 𝑐 ▷ 𝑐′ let 𝑦0..𝑦𝜓 be fresh
E-Branch-Con

[𝑥0..𝑥𝛼..𝑥𝑛]; 𝜙; 𝛼;Con 𝑛 𝜓 𝑐 ▷ [Con 𝑛 𝑦0..𝑦𝜓 𝑐′]

Note that this replacement inside the environment can change the size and indexes
of variables inside Γ. This is already taken into account when the case splitting tress are
generated and therefore requires no further work.

CatchAll branches So far we have ignored the CatchAll 𝑐 branches. These come into
play when none of the other branches match, and provide a default return value. This
default 𝑐 in itself is another case splitting tree.

CatchAll branches apply to a whole sub tree. To come back to the example in Figure
6, the CatchAll branch at the root node also applies to the Case 1 non-terminal. This
can be useful when a CatchAll applies to many Case non-terminals. For example, when
compiling the following Agda functions, a failing pattern match on the first or second
argument will yield the same result:

The Utrecht Agda Compiler 11

𝖿 ∶ ℕ → ℕ → ℕ
𝖿 𝗓𝖾𝗋𝗈 𝗓𝖾𝗋𝗈 = 𝗓𝖾𝗋𝗈
𝖿 𝑥 𝑦 = 𝑥

Our earlier rules E-Case1” and E-Case2” plainly ignore CatchAll branches. To fix
this, we need to pass around the default value to use when generating UHC SCore case
expressions in E-Case1”. To this end, we pass down the value 𝜙, which contains the
UHC SCore term to use as default value. Initially, we set 𝜙 to ⊥, as evaluating it at
runtime corresponds to a pattern match failure.

In E-Case1”, we may need to update the default value 𝜙. If the current non-terminal
contains a CatchAll branch, rule E-CatchAll triggers and returns the new default value.
If there is no CatchAll branch, rule E-NoCatchAll fires and the current default value is
used unchanged. The updated rule E-Case1 is as follows:

|Γ| ≥ 𝛼 Γ; 𝜙; 𝑏⃗ ▷ 𝜙′ Γ; 𝜙′; 𝛼; 𝑏⃗ ▷ 𝑏⃗′

E-Case1
Γ[𝑥0..𝑥𝛼..𝑥𝑛]; 𝜙;Case 𝛼 𝑏⃗ ▷ case 𝑥𝛼 of 𝑏⃗′ else 𝜙′

The rule E-Case2” also needs to be updated to pass the default value 𝜙. Doing this
correctly requires careful attention, though. The rule E-Case2” introduces a new lambda,
which the UHC SCore expression in 𝜙 does not expect. The expression 𝜙 has been com-
piled in the environment Γ, where the corresponding CatchAll branch has been defined,
rather than the extended environment Γ ++ [𝑥]. To remedy this, the 𝜙 needs to ignore the
newly-introduced lambda. This is achieved by applying the default value immediately
to the newly introduced lambda argument before passing it on in the term (𝜙 𝑥). The
changed rule E-Case2 looks like this:

|Γ| < 𝛼 let 𝑥 be fresh Γ ++ [𝑥]; (𝜙 𝑥);Case 𝛼 𝑏⃗ ▷ 𝑡′

E-Case2
Γ; 𝜙;Case 𝛼 𝑏⃗ ▷ 𝜆𝑥 → 𝑡′

Terminal nodes So far we have discussed how to translate the non-terminals of case
splitting trees, but not the terminal nodes. First, there is the Fail non-terminal. It is in-
serted whenever the Agda type checker believes that this node should never be reached.
These nodes correspond to absurd patterns in Agda. As Fail terminal nodes should never
be reached at runtime, we translate them to the UHC SCore term ⊥:

E-Fail
Γ; 𝜙;Fail ▷ ⊥

Second, a Done 𝛽 𝑡 non-terminal represents a successful pattern match, containing
the body of the function for this terminal node. As a result of the problem with varying
arities discussed earlier, we need the value 𝛽 to know how many arguments the function
body expects to have already been abstracted. Similar to how we adapted the rules E-
Case1 and E-Case2, we need to insert additional lambdas if necessary using the helper
rule E-Done2:

|Γ| < 𝛽 let 𝑥 be fresh Γ ++ [𝑥]; 𝜙;Done 𝛽 𝑡 ▷ 𝑑′

E-Done2
Γ; 𝜙;Done 𝛽 𝑡 ▷ 𝜆𝑥 → 𝑑′

12 Philipp Hausmann, Atze Dijkstra, and Wouter Swierstra

While the above rule ensures that the environment is complete, it is not the correct
environment yet to use for translating the function body. The case splitting trees may
have to use de Bruijn levels to support the varying arity feature; for the function body
itself using de Bruijn indices is more convenient.

The two different counting schemes are exact opposites in a way. De Bruijn indices
count from the innermost towards the outermost binder; de Bruijn levels count from
the outermost towards the innermost binder. Taking advantage of this relationship, the
correct environment for the function body can be easily computed by reversing the ac-
cumulated environment Γ.

|Γ| ≥ 𝛽 (𝑟𝑒𝑣𝑒𝑟𝑠𝑒 Γ); 𝑡 ▷ 𝑡′

E-Done1
Γ; 𝜙;Done 𝛽 𝑡 ▷ 𝑡′

Term translation Now that we have translated the case splitting trees, we can finally do
the same for the actual function bodies. First, let us discuss the terms actually influencing
runtime behavior as opposed to terms only relevant for type checking.

AIS uses de Bruin indices to refer to local variables and arguments, and names for
module-level definitions. As both de Bruijn indices and names are used to represent
variables, there are two different versions of variable access: Var to refer to locally bound
variables by index, andDef to refer to global definitions accessed by name. Both versions
also double as application and take a list of arguments. If the list of arguments is empty,
these two constructs are simply variables without further arguments. Both versions can
easily be translated to the UHC SCore variable access and application terms; using the
environment Γ in the Var case to map the indices to the corresponding generated names.

Lambda abstractions and constructor application are the remaining two terms con-
tributing to the runtime semantics. They have a direct counterpart in UHC SCore and
thus can be translated easily.

Type translation The remaining terms Π, Set and Level are significant for type check-
ing only. In Agda, a value of type Set or Level cannot be inspected or pattern matched.
As Agda enforces that it is impossible to observe any value of these types, they can-
not affect the runtime semantics. For executing a program, it is thus safe to replace all
occurrences of such values by the unit value ⊤.

One could also be tempted to completely remove any values of these kind. This
could potentially alter the semantics of the translated program. Agda does not evaluate
expressions under lambdas; dropping lambda abstractions taking type expressions could
remove evaluation-blocking lambdas. A partial erasure of types is possible in a sound
way. Saturated function applications for example can always be optimized in this way.
A more detailed description of when such types may be soundly erased can be found in
previous work by Letouzey [12].

3.3 Example

The translation of the Agda example from Figure 6 is shown in Figure 7.
One side-effect of the inherited default values can be seen in the repetition of the term

(𝜆𝑓 → Con S 𝑓) on line 6 and 8. The higher the sub tree in question and the larger the

The Utrecht Agda Compiler 13

default expression, the more significant this duplication becomes. To avoid this problem,
our compiler shares the default expression between all occurrences using a let expres-
sion.

1 𝑓 = 𝜆𝑎 → case 𝑎 of
2 Con Z → (𝜆𝑏 → 𝑏)
3 Con S 𝑐 → (𝜆𝑑 →
4 case 𝑑 of
5 Con S 𝑒 → Con S 𝑐
6 else ((𝜆𝑓 → Con S 𝑓) 𝑑)
7)
8 else (𝜆𝑓 → Con S 𝑓)

Fig. 7: Translation to UHC SCore of the example Agda function from Figure 6.

4 Lessons learned

4.1 Adapting UHC to our needs
Build System At the start of this project, UHC was a standalone Haskell compiler. It
had not been used before as component of another compiler. Using UHC as part of our
Agda compiler required using the build system in an unsupported way and was fairly
fragile. The long dependency lists of both Agda and UHC, combined with the custom
configuration and build system of UHC made versioning conflicts in the Cabal Package
Database a recurring problem.

The proper solution would be to port UHC to a cabal-based build system, but this
would requiremajor effort. Instead, we opted to build a subset of UHC into a proper cabal
library, which can be distributed on Hackage easily. We can then use this fragment of
UHC to compile Agda code.

UHC Core In contrast to the build system, exposing the UHC Core language as a public
API not only required technical changes, but also posed challenges in understanding the
behavior of the generated code. Due to its origin as an internal intermediate language,
there is no formal specification of UHC Core. While most of the syntactic constructs are
self-explanatory, code generated fromAgda could sometimes exhibit unexpected behav-
ior. To diagnose errors, we sometimes resorted to inspecting the output generated from
Haskell programs to see how this differed from the code our Agda compiler generated.
For example, UHC Core requires case alternatives to be in lexicographical order. This
is not immediately obvious from generated code. Specific compiler invariants such as
this one are typically poorly documented and are easy to break.

4.2 Testing our Compiler
As with all sufficiently complex software, verifying the correctness of our Agda com-
piler is non-trivial. We have not tried to formally prove the correctness of our compiler.
Instead, we rely on a test suite to validate the correctness of our compiler.

14 Philipp Hausmann, Atze Dijkstra, and Wouter Swierstra

To this end, we have created a test suite consisting of 30 example Agda programs in
total. Each of these programs can be run, and the output can be compared to a golden
standard. Many of the example programs were not written from scratch, but instead
adapted for our purpose or ported from Haskell.

This collection, very roughly, consists of two kinds of programs. The first kind are
small Agda programs, each testing a single Agda feature. These programs also serve as
regression tests to avoid re-introducing fixed bugs.

The second kind of test programs are more complicated programs, which involve
more computations. The intent here is to stress test all parts of the compiler and runtime
system. For example, we have a port of the interactive Eliza1 program fromGHC’s nofib
benchmark suite.

These test cases target both our compiler and the existing MAlonzo compiler. This
allows us to compare the output and use the MAlonzo backend as baseline for develop-
ment.

4.3 Searching the needle in the haystack - how to locate bugs

While the test set can guide us where to look for bugs, it often does not provide suffi-
cient information to pinpoint a bug exactly. The problem is exacerbated by the call-by-
need semantics of UHC Core, which makes it much harder to diagnose why generated
code crashes. Fortunately, UHC already incorporates a tracing mechanism reporting the
progress of evaluation. This proved helpful in some situations, but only to a limited de-
gree. Due to it’s low-level nature, it tends to be very verbose. For example, the simple
program in Figure 8a generates 250, 000 lines of tracing output.

To improve matters, we implemented a simple tracing facility in our compiler, that
inserts debugging information into the generated code. If tracing is disabled, the gener-
ated code is not modified and no performance penalty is incurred.

The current implementation traces evaluation of function bodies and arguments. An
excerpt from a trace of the same Agda program can be seen in Figure 8b. The Eval fun
lines indicate that the body of the named function is evaluated, whereas Eval arg lines
indicate which argument is currently being evaluated.

This tracing facility proved essential in finding the exact causes of multiple bugs,
where we had failed previously to find the offending code due to the size of the test cases
involved. Especially when implementing advanced compiler features, tracing becomes
necessary to analyze bugs triggered in corner cases effectively.

5 FFI

Our new Agda compiler features a basic Foreign Function Interface (FFI) to Haskell,
similar to the FFI of the MAlonzo compiler explained in Section 2.1.

The primitives work by using pragmas to instruct the compiler to use a specific UHC
Core representation for Agda data types or postulates.

Crucially, all pragmas work on the UHC Core level and not on the Haskell repre-
sentation. But because Haskell data types and functions are translated in a stable and
1 https://github.com/ghc/nofib/tree/master/spectral/eliza

https://github.com/ghc/nofib/tree/master/spectral/eliza

The Utrecht Agda Compiler 15

𝗆𝖺𝗂𝗇 = 𝗋𝗎𝗇 (𝗉𝗎𝗍𝖲𝗍𝗋𝖫𝗇 (𝗌𝗁𝗈𝗐 (𝟣𝟢 + 𝟤𝟢)))

(a) An Agda program printing the number 30.

Eva l fun : Agda . P r i n tN a t main . . .
Eva l fun : Agda . IO run . . .
Eva l a rg : Agda . IO run . . . : : 2
Eva l fun : Agda . IO p u t S t rLn . . .
Eva l fun : Agda . IO p u t S t rLn . . .
Eva l fun : Agda . IO IO__ > >. . .
. . .
Eva l a rg : Agda . IO IO__ > >. . . : : 2
Eva l fun : Agda . IO o − 1 6 . . .
Eva l fun : Agda . Co i nduc t i o n o . . .
Eva l a rg : Agda . Co i nduc t i o n o . . . : : 0
Eva l fun : Agda . IO IO_ r e t u r n . . .
30

(b) Excerpt from the trace of the above program. The numbers trailing the Eval arg lines indicate
the position of the argument being evaluated.

Fig. 8: Demonstration of the Agda UHC Compiler tracing facility for a minimal Agda
program.

16 Philipp Hausmann, Atze Dijkstra, and Wouter Swierstra

deterministic way to UHC Core, the UHC Core level FFI can be leveraged to interact
with Haskell code.

An example of the data type bindings is given in Figure 9. The code in this figure
binds the AgdaList data type to the UHC Core data type HsList. This binding, although
expressed on the UHC Core level, effectively also acts as a binding to the Haskell HsList
data type.

Functions, on the other hand, pose a slightly more complicated problem. Agda ex-
plicitly passes around of types; for example, the argument {𝐴 ∶ 𝖲𝖾𝗍} is used to pass the
type of list elements around in the append function _++_ . Haskell instead uses an im-
plicit encoding of types, which are not explicitly passed around in either Haskell itself
or UHC Core. To bridge the gap between these two approaches, all arguments of type
Set have to be discarded when calling Haskell functions from Agda. This is done by
wrapping the UHC representation of Haskell functions inside a lambda and discarding
all unnecessary arguments before calling the actual function.

data HsL i s t a = HsNil | HsCons a (HsL i s t a)

hsAppend : : HsL i s t a −> HsL i s t a −> HsL i s t a
hsAppend HsNil ys = ys
hsAppend (HsCons x xs) ys = HsCons x (hsAppend xs ys)

(a) A simple Haskell data type and function.

𝖽𝖺𝗍𝖺 𝖠𝗀𝖽𝖺𝖫𝗂𝗌𝗍 (𝐴 ∶ 𝖲𝖾𝗍) ∶ 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
[] ∶ 𝖠𝗀𝖽𝖺𝖫𝗂𝗌𝗍 𝐴
∷ ∶ 𝐴 → 𝖠𝗀𝖽𝖺𝖫𝗂𝗌𝗍 𝐴 → 𝖠𝗀𝖽𝖺𝖫𝗂𝗌𝗍 𝐴

-- Bind the Agda List data type to a Haskell List data type
{−# 𝖢𝖮𝖬𝖯𝖨𝖫𝖤𝖣_𝖢𝖮𝖱𝖤_𝖣𝖠𝖳𝖠 𝖠𝗀𝖽𝖺𝖫𝗂𝗌𝗍 HsList HsNil HsCons #−}

𝗉𝗈𝗌𝗍𝗎𝗅𝖺𝗍𝖾
++ ∶ {𝐴 ∶ 𝖲𝖾𝗍} → 𝖠𝗀𝖽𝖺𝖫𝗂𝗌𝗍 𝐴 → 𝖠𝗀𝖽𝖺𝖫𝗂𝗌𝗍 𝐴 → 𝖠𝗀𝖽𝖺𝖫𝗂𝗌𝗍 𝐴

-- Bind the Agda ++ operator to the Haskell hsAppend
{−# 𝖢𝖮𝖬𝖯𝖨𝖫𝖤𝖣_𝖢𝖮𝖱𝖤 _++_ (_ -> (hsAppend)) #−}

(b) An Agda FFI binding to the above Haskell definitions.

Fig. 9: The FFI interface from Agda to UHC Core and Haskell.

6 Related work

A lot of work has been done on compiling dependently typed languages in the last few
years, without which this project would not have been feasible.

The Utrecht Agda Compiler 17

Other Agda Compilers The existing Epic backend [17] was very important in the de-
velopment of our compiler. We managed to reuse some parts of it directly; on other
occasions, we could follow a very similar design. It is the most ambitious existing Agda
compiler in terms of optimizations, and clearly shows the viability of compiling Agda
to an untyped core language. Sadly, it has not been actively maintained and does not
support all current Agda features. Furthermore, as we remarked previously, it is hard to
support the existing FFI to Haskell using the Epic backend.

The MAlonzo backend, written by Benke [14], on the other other hand can interface
freely with Haskell libraries. Compared to the Epic backend, MAlonzo is better main-
tained and somewhat more reliable; it does not support many of the optimizations that
the Epic backend does implement.

Last but not least, there is also a JavaScript backend [11]. It supports some of the
optimizations of the Epic backend and has amature FFI to JavaScript. Themotivation for
targeting JavaScript was to use Agda for developing web applications. Using JavaScript
as a target language for running code locally, however, may not be the best choice.

Coq Leaving the world of Agda, Coq supports the extraction of OCaml, Haskell and
Scheme from Gallina. It suffers from similar problems as compiling Agda to Haskell as
discussed in Section 2.1.

Idris Idris, created by Brady [7], is the dependently typed language aimed specifically
at writing real-world runnable programs. To this end, it currently features a compiler
targeting the LLVM intermediate language. This is a different design compared to the
extractions to high-level languages used by Agda and Coq, as it targets a low-level lan-
guage.While this approachmay yield favorable performance, it severely limits the possi-
bility of interacting with other high-level languages – an important constraint to support
the existing FFI between Agda and Haskell.

7 Discussion

We have developed a working compiler for Agda, targeting UHC Core. We are able to
compile the whole Agda standard library, together with a test suite of executable Agda
programs. Our compiler has been integrated into the development version of Agda and
is now a part of Agda.

In the future, we would like to investigate further optimizations inspired by the Epic
backend. Initial performance benchmarks indicate that our compiler does not outperform
the other backends. This is partially due to the lack of optimizations done by UHC itself,
especially compared to more mature compilers like GHC.

Nonetheless, we have a new Agda backend which is suitable for further exploration.
It already serves as the foundation for our currently ongoing research into creating a
more sophisticated Agda FFI.

This paper shows how to tackle some of the challenges inherent in writing a compiler
for Agda, piggybacking on the existing technology provided by UHC.We hope that pro-
viding a more robust backend for Agda, with excellent interoperability with an existing
Haskell compiler, will provide the technology for more ‘real world’ dependently typed
programs.

18 Philipp Hausmann, Atze Dijkstra, and Wouter Swierstra

References

1. [agda] size limit on generated code?, https://lists.chalmers.se/pipermail/agda/
2014/006990.html

2. Altenkirch, T., Danielsson, N.A., Löh, A., Oury, N.: ΠΣ: Dependent Types without the Sugar,
pp. 40–55. No. 6009 in Lecture Notes in Computer Science, Springer Berlin Heidelberg,
http://link.springer.com/chapter/10.1007/978-3-642-12251-4_5

3. Atze Dijkstra: Stepping through haskell, http://foswiki.cs.uu.nl/foswiki/pub/
Ehc/SteppingThroughHaskell/20051006-2023-phd.pdf

4. Augustsson, L.: Cayenne — A Language with Dependent Types, pp. 240–267. No. 1608 in
Lecture Notes in Computer Science, Springer Berlin Heidelberg, http://link.springer.
com/chapter/10.1007/10704973_6

5. Augustsson, L.: A compiler for lazy ML. In: Proceedings of the 1984 ACM Symposium on
LISP and Functional Programming. pp. 218–227. LFP ’84, ACM, http://doi.acm.org/
10.1145/800055.802038

6. Brady, E.: Epic—A Library for Generating Compilers, pp. 33–48. No. 7193 in Lecture
Notes in Computer Science, Springer Berlin Heidelberg, http://link.springer.com/
chapter/10.1007/978-3-642-32037-8_3

7. Brady, E.: Idris, a general-purpose dependently typed programming language: Design
and implementation 23(05), 552–593, http://journals.cambridge.org/article_
S095679681300018X

8. Chakravarty, M.M.T., Keller, G., Jones, S.P., Marlow, S.: Associated types with class. In:
Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. pp. 1–13. POPL ’05, ACM, http://doi.acm.org/10.1145/1040305.
1040306

9. Charguéraud, A.: The locally nameless representation 49(3), 363–408, http://link.
springer.com/article/10.1007/s10817-011-9225-2

10. Dijkstra, A., Fokker, J., Swierstra, S.D.: The architecture of the utrecht haskell compiler. In:
Proceedings of the 2Nd ACM SIGPLAN Symposium on Haskell. pp. 93–104. Haskell ’09,
ACM, http://doi.acm.org/10.1145/1596638.1596650

11. Jeffrey, A.: Dependently Typed Web Client Applications, pp. 228–243. No. 7752 in Lecture
Notes in Computer Science, Springer Berlin Heidelberg, http://link.springer.com/
chapter/10.1007/978-3-642-45284-0_16

12. Letouzey, P.: ANewExtraction for Coq, pp. 200–219. No. 2646 in Lecture Notes in Computer
Science, Springer Berlin Heidelberg, http://link.springer.com/chapter/10.1007/
3-540-39185-1_12

13. Löh, A., McBride, C., Swierstra, W.: A tutorial implementation of a dependently typed
lambda calculus 102(2), 177–207, http://dx.doi.org/10.3233/FI-2010-304

14. Marcin Benke: Alonzo - a compiler for agda, http://www.mimuw.edu.pl/~ben/Papers/
TYPES07-alonzo.pdf

15. McBride, C., McKinna, J.: Functional pearl: I am not a number–i am a free variable. In:
Proceedings of the 2004 ACM SIGPLANWorkshop on Haskell. pp. 1–9. Haskell ’04, ACM,
http://doi.acm.org/10.1145/1017472.1017477

16. Norell, U.: Towards a practical programming language based on dependent type theory
17. Olle Fredriksson, Daniel Gustafsson: A totally epic backend for agda, http://

publications.lib.chalmers.se/records/fulltext/146807.pdf
18. Peyton Jones, S., Marlow, S.: Secrets of the glasgow haskell compiler inliner 12(5), 393–434,

http://dx.doi.org/10.1017/S0956796802004331
19. Pfenning, F., Schürmann, C.: System Description: Twelf — A Meta-Logical Framework for

Deductive Systems, pp. 202–206. No. 1632 in Lecture Notes in Computer Science, Springer

https://lists.chalmers.se/pipermail/agda/2014/006990.html
https://lists.chalmers.se/pipermail/agda/2014/006990.html
http://link.springer.com/chapter/10.1007/978-3-642-12251-4_5
http://foswiki.cs.uu.nl/foswiki/pub/Ehc/SteppingThroughHaskell/20051006-2023-phd.pdf
http://foswiki.cs.uu.nl/foswiki/pub/Ehc/SteppingThroughHaskell/20051006-2023-phd.pdf
http://link.springer.com/chapter/10.1007/10704973_6
http://link.springer.com/chapter/10.1007/10704973_6
http://doi.acm.org/10.1145/800055.802038
http://doi.acm.org/10.1145/800055.802038
http://link.springer.com/chapter/10.1007/978-3-642-32037-8_3
http://link.springer.com/chapter/10.1007/978-3-642-32037-8_3
http://journals.cambridge.org/article_S095679681300018X
http://journals.cambridge.org/article_S095679681300018X
http://doi.acm.org/10.1145/1040305.1040306
http://doi.acm.org/10.1145/1040305.1040306
http://link.springer.com/article/10.1007/s10817-011-9225-2
http://link.springer.com/article/10.1007/s10817-011-9225-2
http://doi.acm.org/10.1145/1596638.1596650
http://link.springer.com/chapter/10.1007/978-3-642-45284-0_16
http://link.springer.com/chapter/10.1007/978-3-642-45284-0_16
http://link.springer.com/chapter/10.1007/3-540-39185-1_12
http://link.springer.com/chapter/10.1007/3-540-39185-1_12
http://dx.doi.org/10.3233/FI-2010-304
http://www.mimuw.edu.pl/~ben/Papers/TYPES07-alonzo.pdf
http://www.mimuw.edu.pl/~ben/Papers/TYPES07-alonzo.pdf
http://doi.acm.org/10.1145/1017472.1017477
http://publications.lib.chalmers.se/records/fulltext/146807.pdf
http://publications.lib.chalmers.se/records/fulltext/146807.pdf
http://dx.doi.org/10.1017/S0956796802004331

The Utrecht Agda Compiler 19

Berlin Heidelberg, http://link.springer.com/chapter/10.1007/3-540-48660-7_
14

20. Schrijvers, T., Peyton Jones, S., Sulzmann, M., Vytiniotis, D.: Complete and decidable type
inference for GADTs. In: Proceedings of the 14th ACM SIGPLAN International Conference
on Functional Programming. pp. 341–352. ICFP ’09, ACM, http://doi.acm.org/10.
1145/1596550.1596599

21. Sulzmann, M., Chakravarty, M.M.T., Jones, S.P., Donnelly, K.: System f with type equality
coercions. In: Proceedings of the 2007 ACM SIGPLAN International Workshop on Types
in Languages Design and Implementation. pp. 53–66. TLDI ’07, ACM, http://doi.acm.
org/10.1145/1190315.1190324

22. The Coq development team: The coq proof assistant reference manual, http://coq.inria.
fr, version 8.0

http://link.springer.com/chapter/10.1007/3-540-48660-7_14
http://link.springer.com/chapter/10.1007/3-540-48660-7_14
http://doi.acm.org/10.1145/1596550.1596599
http://doi.acm.org/10.1145/1596550.1596599
http://doi.acm.org/10.1145/1190315.1190324
http://doi.acm.org/10.1145/1190315.1190324
http://coq.inria.fr
http://coq.inria.fr

	Lecture Notes in Computer Science
	Introduction
	Background
	Existing Backends
	What should be the target language?

	Translating between Agda and UHC
	UHC Core
	Translating Agda's Internal Syntax to UHC SCore
	Axioms
	Functions and case splitting trees
	Term translation
	Type translation

	Example

	Lessons learned
	Adapting UHC to our needs
	Testing our Compiler
	Searching the needle in the haystack - how to locate bugs

	FFI
	Related work
	Discussion

