
From proposition to program

Embedding the refinement calculus in Coq

Wouter Swierstra1 and Joao Alpuim2

1 Universiteit Utrecht
w.s.swierstra@uu.nl

2 RiskCo
joao.alpuim@riskco.nl

Abstract. The refinement calculus and type theory are both frameworks
that support the specification and verification of programs. This paper
presents an embedding of the refinement calculus in the interactive the-
orem prover Coq, clarifying the relation between the two. As a result,
refinement calculations can be performed in Coq, enabling the semi-
automatic calculation of formally verified programs from their specifica-
tion.

1 Introduction

The idea of deriving a program from its specification can be traced back to
Dijkstra [1976], Floyd [1967] and Hoare [1969]. The refinement calculus [Back,
1978, Morgan, 1990, Back and Wright, 1998] defines a formal methodology that
can be used to construct a derivation of a program from its specification step by
step. Crucially, the refinement calculus presents single language for describing
both programs and specifications.

Deriving complex programs using the refinement calculus is no easy task. The
proofs and obligations can quickly become too complex to manage by hand. Once
you have completed a derivation, the derived program must still be transcribed
to a programming language in order to execute it – a process which can be rather
error-prone [Morgan, 1990, Chapter 19].

To address both these issues, we show how the refinement calculus can be
embedded in Coq, an interactive proof assistant based on dependent types.
Although others have proposed similar formalizations of the refinement cal-
culus [Back and von Wright, 1990, Hancock and Hyvernat, 2006], this paper
presents the following novel contributions:

– After giving a brief overview of the refinement calculus (Section 2), we begin
by developing a library of predicate transformers in Coq, based on indexed
containers [Altenkirch and Morris, 2009, Hancock and Hyvernat, 2006], mak-
ing extensive use of dependent types (Section 3). We will define a refinement
relation, corresponding to a morphism between indexed containers, enabling
us to prove several simple refinement laws in Coq.

– This library of predicate transformers can be customized to cope with differ-
ent programming languages and programming constructs. We show how to
define a refinement relation between programs in the While language [Niel-
son et al., 1999] (Section 4).

– These definitions give us the basic building blocks for formalizing derivations
in the refinement calculus. They do, however, require that the derived pro-
gram is know a priori. We address this and other usability issues (Section 5).

– Finally, we validate our results by proving a soundness result and performing
a small case study (Section 6). This soundness result relates our definitions
to the usual weakest precondition semantics for imperative languages. The
case study, taken from Morgan’s textbook on the refinement calculus [Mor-
gan, 1990], derives a binary search algorithm for the square root of a positive
integer. Such a program has many properties that make it difficult to formal-
ize directly in Gallina, the fragment of Coq that is used for programming,
such as non-structural recursion and mutable references.

2 Refinement calculus

The refinement calculus, as presented by Morgan [1990], extends Dijkstra’s
Guarded Command language with a new language construct for specifications.
The specification [pre, post] is satisfied by a program that, when supplied an
initial state satisfying the precondition pre, can be executed to produce a final
state satisfying the postcondition post . Crucially, this language construct may
be mixed freely with (executable) code constructs.

Besides these specifications, the refinement calculus defines a refinement re-
lation between programs, denoted by p1 v p2. This relation holds when
forall P ,wp (p1,P) ⇒ wp (p2,P), where wp denotes the usual weakest pre-
condition semantics of a program and its desired postcondition. Intuitively, you
may want to read p1 v p2 as stating that p2 is ‘more specific’ than p1.

A program is said to be executable when it is free of specifications and only
consists of executable statements. Morgan [1990] refers to such executable pro-
grams as code. To calculate an executable program C from its specification S ,
you must find a series of refinement steps, S v M0 v M1 v ... v C .
Typically, the intermediate programs, such as M0 and M1, mix executable code
fragments and specifications.

To find such derivations, Morgan [1990] presents a catalogue of lemmas that
can be used to refine a specification to an executable program. Some of these
lemmas define when it is possible to refine a specification to code constructs.
These lemmas effectively describe the semantics of such constructs. For example,
the following law may be associated with the skip command:

Lemma 1 (skip). If pre ⇒ post, then [pre, post] v skip.

Besides such primitive laws, there are many recurring patterns that pop up
during refinement calculations. For example, combining the rules for sequential
composition and assignment, the following assignment lemma holds:

[x = X ∧ y = Y , x = Y ∧ y = X]

v { by the following assignment law }
[x = X ∧ y = Y , t = Y ∧ y = X]; x := t

v { by the following assignment law }
[x = X ∧ y = Y , t = Y ∧ x = X]; y := x ; x := t

v { by the following assignment law }
[x = X ∧ y = Y , y = Y ∧ x = X]; t := y ; y := x ; x := t

v { by the law for skip }
skip; t := y ; y := x ; x := t

Fig. 1. Derivation of the swap program

Lemma 2 (following assignment). For any term E,

[pre, post] v [pre, post [w\E]]; w := E

We will illustrate how these rules may be used to calculate the definition of
a program from its specification. Suppose we would like to swap the values of
two variables, x and y . We may begin by formulating the specification of our
problem as:

[x = X ∧ y = Y , x = Y ∧ y = X]

Using the two lemmas we saw above, we can refine this specification to an
executable program. The corresponding calculation is given in Figure 1. Note
that we have chosen to give a simple derivation that contains some redundancy,
such as the final skip statement, but uses a modest number of auxiliary lemmas
and definitions.

For such small programs, these derivations are manageable by hand. For
larger or more complex derivations, it can be useful to employ a computer to
verify the correctness of the derivation and even assist in its construction. In the
coming sections we will develop a Coq library for precisely that.

3 Predicate transformers

In this section, we will assume there is some type S , representing the state that
our programs manipulate. In Section 4 we will show how this can be instantiated
with a (model of a) heap. For now, however, the definitions of specifications,
refinement, and predicate transformers will be made independently of the choice
of state.

We begin by defining a few basic constructions in Coq:

Definition Pred (A : Type) : Type := A→ Prop.

This defines the type Pred A of predicates over some type A. Using this definition
we can define a subset relation between predicates as follows:

Definition subset (A : Type) (P1 P2 : Pred A) : Prop := forall x , P1 x → P2 x .

A predicate P1 is a subset of the predicate P2, if any state satisfying P1 also
satisfies P2. In the remainder of this paper, we will write P1 ⊆ P2 when the
property subset P1 P2 holds.

Next we can define the PT data type, consisting of a precondition and post-
condition:

Record PT : Type :=
MkPT {pre : Pred S ;

post : forall s : S , pre s → Pred S }.

The postcondition is a ternary relation between the input state, a proof that
this input state satisfies the precondition, and the output state. Such a ternary
relation is typical when modeling post-conditions in type theory to avoid the
need for ‘ghost variables’, relating the input and output states [Nanevski et al.,
2008, Swierstra, 2009a,b]. We will sometimes use the notation [P ,Q] rather than
the more verbose MkPT P Q .

As its name suggests, the PT type has an obvious interpretation as a predicate
transformer, i.e., a function from Pred S to Pred S :

Definition semantics (pt : PT) : Pred S → Pred S :=
fun P s ⇒ {p : pre pt s & post pt s p ⊆ P }.

The semantics function computes the condition necessary to guarantee that the
desired postcondition P holds after executing a program satisfying the given
specification pt . Intuitively, the precondition of the specification must hold and
the postcondition must imply P . We will sometimes write JptK rather than
semantics pt for the sake of brevity.

Next, we characterize the refinement relation between two values of type PT
as follows:

Inductive Refines (pt1 pt2 : PT) : Type :=
Refinement : forall (d : pre pt1 ⊆ pre pt2),

(forall (s : S) (x : pre pt1 s), post pt2 s (d s x) ⊆ post pt1 s x)→
Refines pt1 pt2.

We consider pt2 to be a refinement of pt1 when the precondition of pt1 implies
the precondition of pt2 and the postcondition of pt2 implies the postcondition
of pt1. As our postconditions are ternary relations, we need to do some work to
describe the latter condition. In particular, we need to transform the assumption

that the initial state holds for the precondition of pt1 to produce a proof that
the precondition of pt2 also holds for the same initial state. To do so, we use the
first condition, d , that the precondition of pt1 implies the precondition of pt2.
We will use the notation, pt1 v pt2, for the proposition Refines pt1 pt2.

To validate the correctness of this definition, we will show that it satisfies the
characterization of refinement in terms of weakest precondition semantics given
in Section 2. To do so, we have proven the following soundness result:

Theorem soundness : forall pt1 pt2,
pt1 v pt2 ↔ forall P , Jpt1K P ⊆ Jpt2K P .

In other words, the Refines relation adheres to the characterization of the re-
finement relation in terms of predicate transformer semantics.

Even if we have not yet fixed the state space S , we can already prove that
the structural laws of the refinement calculus, such as strengthening of postcon-
ditions, hold:

Lemma strengthenPost (P : Pred S) (Q1 Q2 : forall s,P s → Pred S) :
(forall (s : S) (p : P s), Q1 s p ⊆ Q2 s p)→
[P , Q2] v [P , Q1].

To prove this lemma, we need to show that P ⊆ P and that the postcondition
Q1 implies Q2. The first proof is trivial; the second follows immediately from our
hypothesis. Similarly, we can show that the refinement relation is both transitive
and reflexive.

These definitions by themselves are not very useful. Before we can perform
any program derivation, we first need to fix our programming language.

4 The While language

In this paper, we will focus on deriving programs in the While programming
language [Nielson et al., 1999]. The abstract syntax of While statements may
be defined as follows:

S ::= skip | S1;S2 | x := a | if e then S1 else S2 | whilee do S

Like Dijkstra’s Guarded Command Language [1976], the While language has
the most common constructs from any imperative language: assignment, branch-
ing, and iteration. Although it lacks many features, such as memory manage-
ment, methods, classes, or user-defined types, the While language is a suitable
minimal language for the purpose of our study.

Before defining our syntax any further, we emphasize that this development
is parametrized over some fixed type of identifiers, Identifier . Next, we fix our
choice state S to be a finite map from identifiers to natural numbers, representing
the values of variables stored on the heap. This choice is somewhat limited, but
there are numerous alternative definitions using a universe construction and

indexed data types to store heterogeneous data on the heap [Nanevski et al.,
2008, Swierstra, 2009b].

It is straightforward to model the syntax of the While language as an in-
ductive data type in Coq:

Inductive Statement : Type :=
| Skip : Statement
| Seq : Statement → Statement → Statement
| Assign : Identifier → Expr → Statement
| If : BoolExpr → Statement → Statement → Statement
|While : Pred heap → BoolExpr → Statement → Statement
| Spec : PT → Statement .

Our development is parametrized over some (ordered) type representing iden-
tifiers. We have omitted the definition of expressions, consisting of integer and
boolean constants, variables, and several numeric and boolean operators. Note
that every While statement must also include a loop invariant of type Pred heap.

In addition to the constructs given by the EBNF grammar above, this data
type includes a constructor Spec, containing the specification of an unfinished
program fragment. The refinement laws we will define shortly determine how
such specifications may be refined to executable code.

Semantics

Before discussing the refinement calculation further, we need to fix the semantics
of our language. We shall do so by associating a predicate transformer, i.e., a
value of type PT , with every constructor of the Statement data type.

Each rule in in Figure 2 associates pre- and postconditions, i.e., a value
of type PT , with a syntactic constructs of the While language. We use the
somewhat suggestive notation, {P } c {Q } to associate with the statement c
the conditions [P ,Q]. These rules are not added as axioms to Coq; nor are they
the constructors of an inductive data type. Rather, we can assign semantics to
our Statement data type directly, as recursive function:

Fixpoint semantics (c : Statement) : PT

In addition to the rules from Figure 2, this function simply maps specifications,
represented by the Spec constructor, to their associated predicate transformer.

Let us examine the rules in Figure 2 a bit more closely. Each precondition
may refer to an initial state s; each postcondition is formulated as a binary
relation between an initial state s and a final state s ′, ignoring the (proof of the)
precondition on s for the moment. For example, the postcondition of the Skip
rule states that the initial state s is equal to the final state s ′. Similarly, the rule
assignment states that the postcondition is equal to the precondition, where the
value associated with the identifier x has been updated the result of evaluating
the right-hand side of the assignment statement, JeK.

Skip{True } skip{s = s ′}

Assign{True } x := e {s ′ = s [x 7→ JeK]

{P1} c1 {Q1} {P2} c2 {Q2}
Seq

{p : P1 s ∧ forall t , Q1 s t → P2 t } c1; c2 {exists (t : S), Q1 s t ∧Q2 t s ′}

{P1} t {Q1} {P2} e {Q2}
If{ JbK→ P1 s ∧ }

if b then t else e
{ JbK→ Q1 s s ′ ∧ }

¬ JbK→ P2 s ¬ JbK→ Q2 s s ′

{P } c {Q }
While{ I s ∧ (forall t , JbK ∧ I t → P t) ∧ }

whileb do c
{
¬ JbK ∧ I s ′}

}
forall t t ′, JbK ∧ I t ∧Q t t ′ → I t ′

Fig. 2. Semantics of While

The rules for compound statements are slightly more complicated. To se-
quence two commands c1 and c2, the rule Seq requires the precondition of c1
should hold and its postcondition should imply the postcondition of c2. The
postcondition of the composition states that there is an intermediate state t ,
that relates the postconditions of both statements.

The rule for conditionals, If, is reasonably straightforward: when the boolean
condition b holds, the precondition of the then-branch must be satisfied and its
postcondition is the postcondition of the entire statement. When the boolean
condition is not satisfied, a similar statement holds for the else-branch.

Finally, the While rule is the most complex. The precondition consists of
three conjuncts:

– the invariant I must hold initially;
– the boolean guard b holds and the invariant must together imply the pre-

condition of the loop body;
– the loop body must preserve the invariant.

The postcondition merely states that the boolean guard no longer holds, but
the invariant has been maintained. Note that this formulation captures partial
correctness; there is no variant ensuring that the loop must terminate eventually.

Using these semantics, we now define a refinement relation between state-
ments in the While language:

Definition RefinedBy c1 c2 := Refines (semantics c1) (semantics c2).

Once again, we will use the notation c1 v c2 when RefinedBy c1 c2 holds.

Example: swap

With these definitions in place, we can now formalize the proof in Figure 1. To
do so, we need to find a proof of the swapCorrect lemma, formulated as follows:

Definition swapSpec :=
[In X s ∧ In Y s, find s ′ X = find s Y ∧ find s ′ Y = find s X].

Definition swap : Statement := Skip;
T ::= Ref Y ;
Y ::= Ref X ;
X ::= Ref T .

Lemma swapCorrect : swapSpec v swap.

The proof is reasonably straightforward: we repeatedly apply the transitivity
of the refinement relation, explicitly passing the mediating Statement that we
read off from Figure 1. The only non-trivial proof obligations that arise concern
reading from and writing to our heap.

Unfortunately, this form of post-hoc verification is very different from the
program calculation that we would like to perform. The proof requires repeatedly
stating the ‘next step’ in the refinement proof explicitly, every time we apply
transitivity of the refinement relation. As a result, the straightforward proof
script is lengthy and error-prone. In the next section we will develop machinery to
enable the interactive discovery of programs, rather than the mere transcription
of an existing proof.

5 Interactive refinement

Although we can now take any pen-and-paper proof of refinement and verify
this in Coq, we are not yet playing to the strengths of the interactive theorem
prover that we have at hand. In this section, we will show how to develop lemmas
and definitions on top of those we have seen so far that facilitate the interactive
calculation of a program from its specification.

We start by defining a function that determines when a statement is exe-
cutable, i.e., when there are no occurrences of the Spec constructor:

Fixpoint isExecutable (c : Statement) : Prop

Rather than fixing the exact program upfront, we can now reformulate the
correctness lemma of swap as follows:

Lemma swapCalc : {c : Statement | SwapSpec v c ∧ isExecutable c}.

To prove this lemma we need to provide an executable c : Statement and
a proof that SwapSpec v c. This is a superficial change – we could now
complete the proof by providing our swap program as the witness c and reuse our
previous correctness lemma. Instead of doing this, however, we wish to explore

how to reformulate typical refinement calculus laws to enable the interactive
construction of a suitable program.

Consider the following assignment rule, given in Lemma 2. We can formulate
and prove the lemma in Coq as follows:

Lemma followAssign1

(x : Identifier) (e : Expr)
(P : Pred S) (Q : forall (s : S),P s → Pred S) :
let Q ′ := fun s pres s ′ ⇒ Q s pres (s ′[x 7→ JeK]) in
[P ,Q] v [P ,Q ′]; x ::= e.

Here we use the notation s ′ [x 7→ JeK] to indicate that the value asso-
ciated with the identifier x in s ′ has been updated to JeK. The proof of this
lemma is reasonably straightforward. After applying the Refinement construc-
tor, the remaining proof obligations are trivial to discharge. Having proven this
lemma, however, we cannot immediately use it to prove a goal of the shape
{c : Statement | spec v c ∧ isExecutable c}. To do so, we need to define an
additional wrapper.

Lemma followAssign2 {P : Pred S } {Q }
(x : Identifier) (e : Expr) :
let spec1 := Spec ([P ,Q]) in
let spec2 := Spec ([P , fun s pres s ′ ⇒ Q s pres (s ′[x 7→ JeK])]) in
{c : Statement | (spec2 v c) ∧ isExecutable c} →
{c : Statement | (spec1 v c) ∧ isExecutable c}.

We can now use this lemma to finish our derivation, swapCalc. Every application
of the followAssign2 lemma changes the postcondition; once we have completed
our three assignments, we will need to show that our postcondition is a direct
consequence of our precondition. This last step is the most important and is the
only step that requires any verification effort.

Looking at the formulation of the followAssign2 lemma more closely, however,
we see that we can always apply this rule, regardless of the pre- and postcon-
ditions of our specification. By heedlessly applying this lemma, we can paint
ourselves into a corner, leaving an unprovable goal later on in the refinement
derivation. Put differently, applying this rule defers all the verification work,
whereas we would like to derive the overall correctness of a program from the
correctness of a sequence of refinement steps.

To address this, we have define the following final version of the following
assignment rule:

Lemma followAssign {P : Pred S } {Q }
(x : Identifier) (e : Expr) (Q ′ : forall (s : S),P s → Pred S) :
let spec1 := Spec ([P ,Q]) in
let spec2 := Spec ([P ,Q ′]) in
(forall s pres s ′,Q ′ s pres s ′ → Q s pres (s ′[x 7→ JeK]))→
{c : Statement | (spec2 v c) ∧ isExecutable c} →
{c : Statement | (spec1 v c) ∧ isExecutable c}.

Applying this rule yields two subgoals: the explicit proof relating the two
postconditions and the remainder of the refinement calculation. Furthermore,
when applying this rule the user must explicitly pass the ‘new’ postcondition
Q ′. This formulation of the following assignment rule, however, has one signif-
icant advantage: it encourages users to perform a small amount of verification,
corresponding to the proof of first subgoal, every time it is applied. Where the
previous formulations made it possible to rack up arbitrary ‘verification debt’,
this last version enables the incremental development of the correctness proof.

This section has focused on a single lemma, followAssign. This lemma is
representative for the design choices that we have made in the implementation
of several related refinement laws. We have tried to capture our methodology
in a handful of following design principles, that we applied when formulating
further refinement laws:

– Any refinement law should prove a statement of the form {c : Statement |
spec v c∧isExecutable c}. Users are expected to formulate their derivations
in this fashion. Fixing this form enables us to assume the open (sub)goals
have a certain shape, which we can exploit during the program calculation
and proof automation.

– There is at least one lemma corresponding to each of the refinement rules
shown in Figure 2. Often we provide several composite definitions, that refine
specific parts of a composite command, such as the body of a loop.

– The order of hypotheses in lemmas matters. Subgoals that are most likely to
be problematic should come first. For example, a poor choice of postcondition
Q ′ in the final version of the followAssign lemma could yield unprovable
subgoals. Requiring that problematic subgoals are completed first, minimizes
the chance of a complete refinement calculation getting stuck on an unproven
subgoal arising from an earlier step.

– We never assume anything about the shape of the pre- or postcondition of the
specifications involved. For example, consider the usual rule for sequential
composition from Hoare logic:

{P } c1 {Q } {Q } c2 {R}
Sequence

{P } c1; c2 {R}

To apply this rule, we require the precondition of c1 and postcondition of
c2 to be identical. This is not necessarily the case in the middle of a refine-
ment calculation. Instead of requiring users to weaken postconditions and
strengthen preconditions explicitly, it can be useful to provide an equiva-
lent, yet more readily applicable, alternative definition:

{P } c1 {Q2} {Q1} c2 {R} Q2 → Q1
Sequence

{P } c1; c2 {R}

Here we have turned the explicit relation between the postcondition of c1
and the precondition of c2 into an additional subgoal. As a result, the rule
can always be applied, but it now carries an additional proof obligation.

wp(Skip,R) = R

wp(x := e,R) = R [x 7→ J·K (e)]

wp(c1; c2,R) = wp(c1,wp(c2,R))

wp(if c then t else e,R) = JcK→ wp(t ,R)
∧ ¬ JcK→ wp(e,R)

wp(whilec do b,R) = Inv ∧ JcK→ wp(b, I)
∧ ¬ JcK→ R

Fig. 3. Weakest precondition semantics of While

6 Validation

This section presents two separate results, validating our work. We will show
how our choice of pre- and postconditions associated with the While are sound
and complete with respect to the usual weakest precondition semantics. Later,
we will use our definitions to formalize a derivation by Morgan [1990].

Soundness

In Figure 2, we are free to associate any choice of pre- and postconditions with
the syntax of the While language – how can we validate that our choice of pre-
and postconditions are correct? Or what does ‘correctness’ even mean in this
context? In this section, we will show how our definitions relate to those found
in the literature.

Typically, weakest precondition semantics are specified by associating predi-
cate transformers with the constructs from a programming language. For exam-
ple, the rules typically associated with the While language are give in Figure 3.

On the surface, the pre- and postconditions we have chosen in Figure 2 are
not at all similar. Yet we can relate these two semantics precisely. The semantics
given in Figure 3 define a function wpwith the following type:

Fixpoint wp(c : Statement) (R : Pred S) : Pred S

Recall from Section 3 that we can assign semantics to any value of PT ,
interpreting it as a predicate transformer of type Pred S → Pred S . Using this
semantics, we can now relate our definitions with the traditional semantics in
terms of weakest preconditions:

Theorem soundness (c : Statement) (P : Pred S) :
forall s,wpc P s ↔ JcK P s.

This result is important: our choice of semantics in Figure 2 is sound and
complete with respect to the usual axiomatic semantics in terms of predicate
transformers.

[true, r2 6 s < (r + 1)2]

v { choosing I to be r2 6 s < q2 (Step 1) }
[true, I ∧ r + 1 ≡ q]

v { sequence (Step 2) }
[true, I]; [I , I ∧ r + 1 = q]

v { assignment and sequential composition (Step 3) }
q := s + 1; r := 0; [I , I ∧ r + 1 = q]

E { while (Step 4) }
while r + 1 6≡ q do [r + 1 6≡ q ∧ I , I]

E { sequence (Step 5) }
[r + 1 < q ∧ I , r < p < q ∧ I]; [r < p < q ∧ I , I]

v { assignment (Step 6) }
p := (q + r) ÷ 2; [r < p < q ∧ I , I]

E { conditional introduction (Step 7) }
if s < p2 then [s < p2 ∧ p < q ∧ I , I] else [s > p2 ∧ r < p ∧ I , I]

v { assignment (Step 8) }
if s < p2 then q := p else r := p

Fig. 4. Calculating the integer square root program

Case study: square root

Now that we have covered the basic design principles and semantics of our em-
bedding of the refinement calculus, we aim to validate our results through a case
study. In this section, we will repeat the calculation of a program to performs a
binary search to find the integer square root of its input integer. This example
is taken from Morgan’s textbook on refinement calculus [Morgan, 1990, Chap-
ter 9]. The complete calculation can be found in Figure 4. Note that we have
numbered every refinement step explicitly.

Given the desired postcondition, r = b
√

s c, we apply several refinement
laws until we are left with an executable program. To avoid repetition, we use
the notation P E Q when the term P contains a single specification that can
be refined by Q . In particular, any executable code fragments in P will not be
repeated in Q (or the remainder of the derivation). This is a slight variation on
the notation that Morgan uses, that more closely follows the intuition of ‘open
subgoal’ with which users of interactive theorem provers will already be familiar.

The first step strengthens the postcondition, requiring that the additional
condition I must also be satisfied. In later steps, this will become our loop
invariant, stating that our current approximation lies between the upper bound
q and lower bound r . The proof continues by splitting off a series of assignments
that ensure I holds initially (Step 2).

Once we have established that the loop invariant holds initially (Step 3),
we introduce a while statement (Step 4). The loop will continue until the lower
bound, r , can no longer be increased without overlapping with the upper bound
q . Although we could refine the body of the while with the skip command, this
would cause our program to diverge. Instead, we begin by assigning to the vari-
able p the ‘halfway point’ between our bounds q and r (Step 6). Finally, we
check whether p is too large or too small to be the integer square root (Step 7).
Both branches of the conditional update our bounds accordingly, after which the
loop body is finished (Step 8).

How difficult is it to perform such a refinement proof in Coq? Most individual
refinement steps correspond to a single call to an appropriate lemma. Discharg-
ing the subgoals arising from the application of each lemma typically requires a
handful of tactics, many of which we believe could be automated further. The
only non-obvious steps arise from having to apply several custom lemmas about
division by two. The entire proof script weighs in at just under 200 lines, ex-
cluding general purpose lemmas defined elsewhere; as our some lemmas require
explicit pre- and postconditions, the proof scripts can become rather verbose.
We believe that it should be able to halve the length of the proof by tidying up
the proof and investing in better automation.

Interactive verification in this style has several important advantages. Firstly,
it is impossible to fudge your ‘proofs.’ On paper, it can be easy to gloss over
certain verification conditions that you believe to hold. The proof assistant keeps
you honest. Furthermore, the interactive derivation in this style produces an
abstract syntax tree of the executable code. This can be easily traversed to
generate imperative (pseudo)code. Some of the errors that Morgan describes
arise from the fact that, even after the pen and paper proof has been completed,
the resulting code still needs to be transcribed to a programming language. This
need not be a concern in this setting.

7 Discussion

The choice of our PT types and definition of refinement relation are not novel.
Similar definitions of indexed containers [Altenkirch and Morris, 2009] and in-
teraction structures [Hancock and Setzer, 2000a,b] can already be found in the
literature. Indeed, part of this work was triggered by Peter Hancock’s remark
that these structures are closely related to predicate transformers and the re-
finement relation between them, as we have made explicit in this paper.

We are certainly not the first to explore the possibility of embedding a re-
finement calculus in a proof assistant. One of the first attempts to do so, to
the best of our knowledge, was by Back and Von Wright [Back and von Wright,
1989]. They describe a formalization of several notions, such as weakest precon-
dition semantics and the refinement relation, in the interactive theorem prover
HOL. This was later extended to the Refinement Calculator [Butler et al., 1997],
that built a new GUI on top of HOL using Tcl/Tk. More recently, Dongol et
al. have extended these ideas even further in HOL, adding a separation logic and

its associated algebraic structure [Dongol et al., 2015]. There are far fewer such
implementations in Coq, Boulmé [2007] being one of the few exceptions. In con-
trast to the approach taken here, Boulmé explores the possibility of a monadic,
shallow embedding, by defining the Dijkstra Specification Monad.

There is a great deal of work marrying effects and dependent types. Swier-
stra’s thesis explores one potential avenue: defining a functional semantics for
effects [Swierstra, 2009b, Swierstra and Altenkirch, 2007]. For some effects,
such as non-termination, defining such a functional semantics in a total lan-
guage is highly non-trivial. Therefore, systems such as Ynot take a different
approach [Nanevski et al., 2008]. Ynot extends Coq with several axioms, cor-
responding to the different operations various effects support, such as reading
from and writing to mutable state. The type of these axioms captures all the
information that a programmer may use to reason about such effects.

In the future, we hope to investigate how these various approaches to ver-
ification may be combined. One obvious next step would be to re-use the sep-
aration logic and associated proof automation defined by later installments of
Ynot [Chlipala et al., 2009] as the model of the heap in our refinement calculus.
Furthermore, we have (for now) chosen to ignore the variants associated with
loops. As a result, the programs calculated may diverge. Embellishing our defi-
nitions with loop variants is straightforward, but will make our definitions even
more cumbersome to use.

Type theory and the refinement calculus are both frameworks that combine
specification and calculation. By embedding the refinement calculus in type the-
ory, we study their relation further. The interactive structure of many proof
assistants seems to fit well with the idea of calculating a program from its speci-
fication step-by-step. How well this approach scales, however, remains to be seen.
For now, the embedding presented in this paper identifies an alternative point
in the spectrum of available proof techniques for the construction of verified
programs.

Todo: Thank Hank

Bibliography

Thorsten Altenkirch and Peter Morris. Indexed containers. In Logic In Computer
Science, 2009. LICS’09. 24th Annual IEEE Symposium on, 2009.

R. J. R. Back and J. von Wright. Refinement concepts formalized in higher order
logic. Formal Aspects of Computing, 2, 1989.

Ralph-Johan Back and J Von Wright. Refinement Calculus: A Systematic In-
troduction. Springer-Verlag New York, Inc., 1998.

Ralph-Johan R Back and Joakim von Wright. Refinement concepts formalised
in Higher Order Logic. Formal Aspects of Computing, 2(1):247–272, 1990.

R.J.R. Back. On the Correctness of Refinement in Program Development. PhD
thesis, University of Helsinki, 1978.

Sylvain Boulmé. Intuitionistic refinement calculus. In Typed Lambda Calculi and
Applications, pages 54–69. Springer, 2007.

M.J. Butler, J. Grundy, T. L̊angbacka, R. Ruksenas, and J. von Wright. The
refinement calculator. In Formal Methods Pacific, 1997.

Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan
Wisnesky. Effective interactive proofs for higher-order imperative programs.
In International Conference on Functional Programming, ICFP ’09, 2009.

Edsger W. Dijkstra. A discipline of programming. Prentice-Hall, 1976.
Brijesh Dongol, Victor B.F. Gomes, and Georg Struth. A program construc-

tion and verification tool for separation logic. In Mathematics of Program
Construction, volume 9129 of LNCS, 2015.

Robert W Floyd. Assigning meanings to programs. Mathematical aspects of
computer science, 19(19-32):1, 1967.

Peter Hancock and Pierre Hyvernat. Programming interfaces and basic topology.
Annals of Pure and Applied Logic, 137(1):189–239, 2006.

Peter Hancock and Anton Setzer. Interactive programs in dependent type theory.
In Computer Science Logic, pages 317–331, 2000a.

Peter Hancock and Anton Setzer. Specifying interactions with dependent types.
In Workshop on subtyping and dependent types in programming, 2000b.

Charles Antony Richard Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

Carroll Morgan. Programming from specifications. Prentice-Hall, Inc., 1990.
Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau, and Lars

Birkedal. Ynot: Dependent types for imperative programs. In In Proceedings
of ICFP 2008, 2008.

Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program
analysis. Springer, 1999.

Wouter Swierstra. A Hoare logic for the state monad. In Theorem Proving in
Higher Order Logics, pages 440–451. Springer, 2009a.

Wouter Swierstra. A functional specification of effects. PhD thesis, University
of Nottingham, 2009b.

Wouter Swierstra and Thorsten Altenkirch. Beauty in the beast: A functional
semantics of the awkward squad. In Haskell workshop, 2007.

