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Abstract
The Unix diff utility that compares lines of text is used pervasively
by version control systems. Yet certain changes to a program may
be di�cult to describe accurately in terms of modi�cations to indi-
vidual lines of code. As a result, observing changes at such a �xed
granularity may lead to unnecessary con�icts between di�erent ed-
its. This paper presents a generic representation for describing trans-
formations between algebraic data types and a non-deterministic
algorithm for computing such representations. These representa-
tions can be used to give a more accurate account of modi�cations
made to algebraic data structures – and the abstract syntax trees of
computer programs in particular – as opposed to only considering
modi�cations between their textual representations.

CCS Concepts •Software and its engineering→ Functional
languages; Data types and structures; •Applied computing →
Version control;

Keywords Datatype Generic Programming, Version Control, Dependently-
typed programming, Agda
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1 Introduction
Programming has become a collaborative activity. Besides exter-
nal contributors, we collaborate �rst and foremost with our future
selves. Most software projects nowadays adopt a version control
system to record their history, track changes and enable the con-
current exploration of various lines of thoughts. Both activities –
programming and tracking change – are tightly coupled, as wit-
nessed by various curricula (Cochez et al. 2013; MacWilliam 2013)
that teach both programming and version control in an holistic
manner. Indeed, a disciplined programmer will adopt a program-
ming style that yields a readable history of changes by, for example,
applying small and incremental modi�cations forming a coherent
whole.

This methodology lies at the heart of the development of the
Linux kernel, for which a single release involves around 4000 devel-
opers concurrently modifying the code at a rate of about 9 changes
per hour (Kroah-Hartman 2016). Similar tools and techniques have
been applied in academic circles, a striking example being the HoTT
book (Univalent Foundations Program 2013) written over the course
of a few months by about 20 contributors (Monroe 2014). Over the
past decades, the programming languages community has made
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signi�cant progress toward understanding the essence of program-
ming. This paper is an attempt to extend this inquiry to encompass
the dynamic evolution of programs. As a �rst step in this direc-
tion, we shall concern ourselves with the question of describing,
comparing and computing changes at a syntactical level.

Maintaining a software as complex as an operating system with
as many as several thousands contributors is a technical feat made
possible thanks, in part, to a venerable Unix utility: diff (Hunt and
McIlroy 1976). The diff tool computes the line-by-line di�erence
between two textual �les, determining the smallest set of insertions
and deletions of lines to transform one �le into the other.

This limited grammar of changes works particularly well for
programming languages that organize a program into lines of code.
For example, consider the following modi�cation that extends an
existing for-loop to not only compute the sum of the elements of
an array, but also compute their product:

sum := 0;
+ prod := 1;

for (i in is) {
sum += i;

+ prod *= i;
}

However, the bias towards lines of code may lead to (unnecessary)
con�icts when considering other programming languages. For
instance, consider the following di� between two Haskell functions
that adds a new argument to an existing function:

- head [] = error "?!"
- head (x :: xs) = x
+ head [] d = d
+ head (x :: xs) d = x

This modest change impacts all the lines of the function’s de�nition.
The line-based bias of the di� algorithm may lead to unnecessary

con�icts when considering changes made by multiple developers.
Consider the following innocuous improvement of the original
head function, that improves the error message raised when the
list is empty:

head [] = error "Expecting a non-empty list."
head (x :: xs) = x

Trying to apply the patch above to this modi�ed version of the head
function will fail, as the lines do not match – even if both changes
modify distinct parts of the declaration in the case of non-empty
lists.

The diff tool is too rudimentary for our purposes. The previous
examples suggest that we should exploit the structure of the input
�les, beyond simple lines of code. This structure can be described
by the abstract syntax tree of the language under consideration, or
any approximation thereof. These trees can be modelled accurately
using algebraic datatypes in a functional language.
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If we reconsider our example, we could give a more accurate
description of the modi�cation made to the head function by de-
scribing the changes made to the constituent declarations and ex-
pressions:

head [] {+ d +} = {- error "?!" -} {+ d +}
head (x :: xs) {+ d +} = x

There is more structure here than mere lines of text. In this paper
we will show how to exploit this.

We will present a conceptual and practical framework for de�n-
ing, specifying and manipulating transformations between struc-
tured data. We take advantage of dependent type theory as a
uniform programming language for (meta-)programming typed
representations of data as well as a formal system for specifying
algorithms. We will extensively program with dependent types
to ensure, by construction, that our transformations are structure-
preserving. In particular, this paper makes the following contribu-
tions:

• We de�ne a generic notion of patch for structured data. Our
de�nition is structure and type preserving: applying patches
will always produce well-formed data. We will initially
present a solution for computing the di�erence between
non-recursive datatypes (Section 3), before extending our
results to arbitrary algebraic datatypes (Section 4). We il-
lustrate our approach by revisiting the previous examples
and showing that it subsumes the notion of edit script used
by the Unix diff utility.

• We provide a nondeterministic speci�cation of the di�er-
encing algorithm (Section 5) computing structured patches.
This speci�cation provides a blueprint for the implementa-
tion of domain-speci�c heuristics by precisely identifying
the backtracking points guiding the search space explo-
ration. Furthermore, our speci�cation is executable: we
can enumerate all possible patches between two inputs. We
illustrate the practical bene�t of this formal framework in
two di�erent ways. Firstly, we show that – due to sharing
and type information – non-trivial patches can be success-
fully applied to values besides their original input. This is
especially important when considering our patches as the
potential basis for a version control system, where modi�ca-
tions may be interleaved in a non-trivial fashion. Secondly,
we implement a domain-speci�c heuristic for a data model
exhibiting unique labels, which improves the accuracy of
the resulting patches.

• Finally, we explore the structure and interpretation of our
type-directed patches (Section 6). We shall reveal the groupoid
structure of patches by de�ning inversion and composi-
tion as patch manipulating programs. The interpretation of
patches as partial functions enables us to formalize a notion
of “patch accuracy”.

Throughout this paper we will use Agda (Norell 2009) to model
increasingly complex patches. We will sometimes simplify the code
presented in this paper, for example, by omitting the placement
of universal quanti�ers and type signatures when these can be
inferred from the context. Our entire development is available
online.1

1goo.gl/SY2Dj0

2 Background
Before we can introduce our generic notion of patches and the algo-
rithms to compute them, we �rst introduce some of the terminology
regarding patches that we will use throughout this paper and the
generic programming technology on which our development relies.

Patches
A patch describes a transformation between two values. We expect
any implementation of patches to support at least the following
two functions: a di� function that, given two values, creates a
patch describing how to transform one into the other; and an apply
function that, given a patch and a value, applies the transformation
described by this patch to the value if possible. Formally, this
speci�cation translates into the following abstract interface:

Patch : Set → Set

di� : A → A → Patch A

apply : Patch A → A → Maybe A

correctness : apply (di� x y) x ≡ just y

Note that applying a patch is a partial operation. A patch that
removes a speci�c line from a �le can only be applied to �les
containing that line; if it is applied to any other �le, the result
is unde�ned. The �nal correctness property states that a patches
created through the call di� x y should indeed faithfully reconstruct
y from x. By convention, we will refer to the two arguments of the
di� function as the source and destination respectively.

Given this speci�cation, there is a trivial implementation of
patches that we can de�ne for any type equipped with an equality
test:
Patch∆ : Set → Set
Patch∆ A = A × A

di�∆ : A → A → Patch∆ A
di�∆ x y = (x , y)

apply∆ : Patch∆ A → A → Maybe A

apply∆ (x , y) z = if x ?
= y then just z

else if x ?
= z then just y

else nothing

(2.1)

Here we model a patch as a pair of the source and destination
values. The di�∆ function is trivial; the apply∆ function checks
whether the argument value z is equal to the original source value
x and if so, returns the destination y. Note that if source and
destination are already equal, then apply∆ amounts to an identity
function, ie. we have apply∆ (di�∆ x x) z = just z.

This simple model of patches and application is the one used by
most version control systems to manage binary �les. However, it is
often too simplistic. Even though creating a patch is very e�cient,
the resulting patches do not contain any meaningful information
about the changes that have been made. Furthermore, we can only
ever apply a patch to a single value; this is especially problematic
when having to reconcile two separate patches to the same value.

For these reasons, any realistic di� algorithm will try to exploit
information about the structure of the data being compared. Before
we can do so, however, we will set the stage for our algorithm by
introducing the generic programming technology upon which it
relies.

goo.gl/SY2Dj0
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Datatype Re�ection
To compute more accurate patches, we will need to account for
more structure than mere lines of text. As a �rst step in this direc-
tion, we shall consider data following a regular tree structure. We
model such algebraic datatypes in Agda using universe construc-
tions (Backhouse et al. 1998; Jansson and Jeuring 1997; Martin-Löf
1984; Morris 2007). In particular, we will adopt de Vries and Löh
(2014)’s internalization of data-structures as sums-of-products (SoP).
It is straightforward to extend this approach to handle mutual re-
cursion, as hinted at in Section 7.

Auniverse of sums-of-products. As suggested by the name “sums-
of-products”, we will consider �nitary coproducts of �nitary prod-
ucts of atomic types. An atom can either be some type constant,
such as integers or booleans, or a type variable, used to represent
recursion
data Atom : Set where

K : Konst → Atom
I : Atom

where Konst is a (�nite) enumeration of the constant types available
to the programmer.

From our standpoint, constant types are structurally opaque: we
can only test them for equality and, therefore, they only support
the naive implementation of patches. Throughout this article, we
take
data Konst : Set where
kN : Konst
kB : Konst

J Kk : Konst → Set
JkNKk = N

JkBKk = Bool
whereas our formal development is in fact parametrized by any
such enumeration.

We then represent the SoP structure using a list of coproducts,
each storing a list of products:
Prod : Set
Prod = List Atom

Sum : Set
Sum = List Prod

The type Sum de�nes the code of our SoP universe. Its interpre-
tation builds its corresponding pattern functor (Benke et al. 2003)
of type Set → Set:

J Ka : Atom → (Set → Set)
JIKa X = X
JK κKa X = JκKk

J Kp : Prod → (Set → Set)
J[]Kp X = Unit
Jα :: πKp X = JαKa X × JπKp X

J Ks : Sum → (Set → Set)
J[]Ks X = ⊥

Jπ :: σKs X = JπKp X ] JσKs X

Using this universe, we encode the representation of lists of
natural numbers and 2-3-trees as

listF : Sum
listF = let nilT = []

consT = [ K kN , I ]
in [nilT , consT ]

2-3-treeF : Sum
2-3-treeF = let leafT = []

2nodeT = [ K kN , I , I ]
3nodeT = [ K kN , I , I , I ]

in [leafT , 2nodeT , 3nodeT ]
and we verify that these codes interpret to the expected pattern

functors:
JlistFKs : Set → Set
JlistFKs X = Unit ] N × X × Unit ] ⊥

J2-3-treeFKs : Set → Set
J2-3-treeFKs X = Unit ] N × X × X × Unit

] N × X × X × X × Unit ] ⊥

Despite the redundant Unit and ⊥ types, these functors are
isomorphic to the functors used to represent lists of numbers and 2-
3 trees (Gibbons 2007; Yakushev et al. 2009). To make our code more
readable, we will omit the functor argument X and the subscripts
a, p , s in the interpretation function JtyK� X , whenever these may
be inferred from the context.

Inhabitants of the SoP universe thus have a canonical represen-
tation: they consist of a choice of constructor among the sum of
possibilities, applied to a product of its arguments. For a SoP σ ,
choosing a constructor amounts to picking an element in a �nite
set of length σ elements:
Constr : Sum → Set
Constr σ = Fin (length σ )

On our earlier examples, we name the usual constructor tags as
follows:
c̀ons ǹil : Constr listF
ǹil = zero
c̀ons = suc zero

l̀eaf 2̀-node 3̀-node : Constr 2-3-treeF
l̀eaf = zero
2̀-node = suc zero
3̀-node = suc (suc zero)

A view on sums-of-products. Given a constructor, we can extract
the type of its arguments using the typeOf function below. Together
with suitable arguments, we construct an inhabitant of the desired
type with the inj· function.

typeOf : (σ : Sum) → Constr σ → Prod
typeOf [] ()

typeOf (π :: σ ) zero = π

typeOf (π :: σ ) (suc n) = typeOf σ n

inj : (C : Constr σ ) → JtypeOf σ CKp A → JσKs A
injzero p = i1 p
inj(suc i) p = i2 (inji p)

To witness this isomorphism between the encoded representa-
tion and the constructor-based presentation, we de�ne a view (McBride
and McKinna 2004; Wadler 1987) that teases apart any value in our
SoP universe as a constructor applied to a list of arguments:
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data SOP : JσKs X → Set where
tag : (C : Constr σ ) (p : JtypeOf σ CKp X )

→ SOP (injC p)
sop : {σ : Sum } (s : JσKs X ) → SOP s
sop {[] } ()
sop {π :: σ } (i1 p) = tag zero p
sop {π :: σ } (i2 s)

with sop s
...| tag C s′ = tag (suc C) s′

We can use this view, for instance, to implement the dual of
injC , which will try to pattern-match on constructor i and return
its arguments, if possible.

match· · : (C : Constr σ ) → JσKs X → Maybe JtypeOf σ CKp
matchC s with sop s

...| tag C ′ p with C ?
= C ′

...| true = just p

...| false = nothing

Tying the knot. The SoP provides us with a �rst-order language for
describing pattern functors. To represent actual data-structures, we
must tie the knot and construct the least �xpoint of such functors:
data Fix (σ : Sum) : Set where
〈 〉 : JσKs (Fix σ ) → Fix σ

We can now de�ne the list and 2-3-tree data-structures as follows:
list : Set
list = Fix listF
2-3-tree : Set
2-3-tree = Fix 2-3-treeF
Moreover, we can also de�ne constructors for list in terms of the
tags we de�ned earlier:
nil : list
nil = 〈inj̀ nil �〉
cons : N → list → list
cons x xs = 〈inj̀ cons (x , xs , �)〉

De�ning leaf , 2-node and 3-node in a similar way lets one
easily write some values as if they were values of datatypes de�ned
directly in Agda:
l0 : list
l0 = cons 8 (cons 13 (cons 21 (cons 34 nil)))

t0 : 2-3-tree
t0 = 3-node 1 leaf (2-node 2 leaf leaf) (2-node 3 leaf leaf)

3 Functorial Changes
In Section 2, we speci�ed patches through an abstract interface
and presented a simple implementation. In the following sections,
we will give an intensional model of such a theory for the data-
structures described by the SoP universe. To do so, we �rst consider
a single layer of datatype, ie. a single application of the datatypes
pattern functor. In Section 4, we extend this treatment to recursive
datatypes, essentially by taking the �xpoint of the constructions
we present in this section. Throughout this section, we consider
two structured values:

t1 = 2-node 1 (2-node 3 v1 x) y

t2 = 2-node 2 (3-node 3 w1 x ′ w2 ) y
These two trees are depicted in Figure 1a and Figure 1c respectively.
The �gures show that we will draw our 2-3-trees using black nodes
to represent a 2-node and white nodes to represent a 3-node. We
have replaced the indetermined subtrees (such as x, y and v1) with
labelled leaves in our �gures.

How should we represent the transformation mapping t1 into t2?
Traversing the trees from their roots, we see that on the outermost
level they both consist of a 2-node, yet the �elds of the source and
destination nodes are di�erent: the �rst �eld is modi�ed from a 1 to
a 2; the third �eld y is the same, and can be copied from the source to
destination, but the second �eld is modi�ed. Inspecting the second
argument of 2-node in greater detail we can see that at this level, the
constructor has changed from a 2-node to a 3-node. We have many
di�erent ways to continue recursively. In this example, we assume
that the �elds of two subtrees are modi�ed in the following way:
the integer 3 is simply copied from the source to the destination; the
source subtree v1 is deleted; the destination subtree w1 and w2 are
inserted; and �nally, the source subtree x is modi�ed to construct a
new subtree x ′. All of this is depicted graphically in Figure 1b.

This graphical notation enables us to make a couple of observa-
tions before delving into the formal treatment. We will begin by
sketching its intended semantics. First, we remark that the struc-
ture of a patch closely follows the structure of the trees on which
it operates. For instance, the head constructors of t1 and t2 being
identical, the resulting patch should preserve this sharing – as the
�gure suggests. Second, when two subtrees are absolutely identical
– as is the case for the subtree y – the resulting patch does not need
to store any data and merely record the fact that this data should
be copied from the source to the destination without modi�cation,
depicted by the cloud that ‘hides’ information about the speci�c
values involved. Third, being opaque, distinct atoms – such 1 in t1
and 2 in t2 – cannot be decomposed further. Instead, we record their
di�erence using the a trivial patch we saw in the previous section,
ie. as a pair of source and destination values. This is depicted by
the diamond storing both 1 and 2 as the leftmost child of our patch.

Finally, and more interestingly, a patch may transform one con-
structor into another – as we have seen after matching the out-
ermost nodes of t1 and t2 . At that point, we need to decide how
to continue transforming the various subtrees of the two values
involved. We will refer to such a choice of association between the
constructor �elds of the source value and the constructor �elds of
the destination value as an alignment. Here we chose to copy the
value 3, and recursively continue with the two subtrees x and x ′.
The other subtrees are either deleted from the source (v1) or in-
serted into the destination (w1 and w2 ). In the �gure, we have tried
to visualize this by taking the �elds of the 2-node on the left and
the �elds of the 3-node on the right. When we choose to associate
two �elds from the source and destination, we draw a line between
them. The �rst and third �elds of the source are associated with
the �rst and third �elds of the destination respectively. For each
such association, we either copy the values if they are the same
(such as for 3) or pair them if they are di�erent (such as x and x ′).
Any remaining subtrees from the source are deleted (as is the case
for v1); any remaining subtrees from the destination are inserted
(as is the case w1 and w2).
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1

3 v1 x

y

(a) t1

w1 w2v1

21

x'x

(b) Structured di� between t1 and t2

2

3 w1 x' w2

y

(c) t2

Figure 1. Two trees, t1 and t2, and their di�erence.

This example shows that any de�nition of patches must handle
the coproduct structure and the product structure of our universe
separately. The coproduct structure of our patches records changes
to constructors; the product structure of our patches records how
to align the constructor �elds of the coproducts. This distinction is
re�ected in the de�nition of patch application, which will follow
this phase separation.

Spines
The �rst part of our algorithm handles the sums of the SoP universe.
Given two values, x and y, it computes the spine, capturing the
common coproduct structure. We distinguish three possible cases:

• x and y are fully equal, in which case we copy the full values
regardless of their contents. Figure 2a depicts how an entire
subtree t is copied from the source to the destination.

• x and y have the same constructor – ie. x = injC px and
y = injC py – but some subtrees of x and y are distinct,
in which case we copy the head constructor and handle all
arguments pairwise. Figure 2b illustrates this treatment of
values built from equal constructors.

• x and y have distinct constructors, in which case we record
a change in constructor and a choice of the alignment of
the source and destination’s constructor �elds (Figure 2c).

The datatype S, de�ned below, formalizes this description. The
three cases we describe above correspond to the three constructors
of S. When the two values are not equal, we need to represent the
di�erences somehow. If the values have the same constructor (Fig-
ure 2b) we need to reconcile the �elds of that constructor whereas
if the values have di�erent constructors (Figure 2c) we need to
reconcile the products that make the �elds of the constructors. We
parametrized the data type S by a relation between products, Al ,
that describes what to do with the di�erent �elds, and a predicate
between atoms At , that describes what to do with the paired �elds
in case we have the same constructor.

data S (At : Atom → Set) (Al : Prod → Prod → Set)
(σ : Sum) : Set where

Scp : S At Al σ

Scns : (C : Constr σ )
→ All At (typeOf σ C)
→ S At Al σ

Schg : (C1 C2 : Constr ty)
→ Al (typeOf ty C1) (typeOf ty C2 )
→ S At Al σ

t t

(a) Scp: copy of identical trees

t u v u vt x y z x y z

(b) Scns: sharing of identical constructors

3 v1 x 3 w1 x' w2w1 w2v1
Al

3 3
x
x'

(c) Schg: change of distinct constructors

Figure 2. Spines, graphically
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The Scp constructor simply records that the tree is unchanged
The Scns constructor records that the �rst constructor is the same
in both trees, so we take the arguments of both subtrees and zip
them together. Here the function All lifts the predicate At to work
on the �elds of both constructors. We ommit its de�nition. Finally,
the Schg constructor records a change to the outermost constructor.

Recall the spine shown in Figure 1b. We could represent it using
a value of type S as:

s = Scns 2-node (p , Schg 2-node 3-node a , Scp)

For p and a with appropriate types.
Note that the Al parameter, which handles products, needs to be

heterogeneous: if a constructor changes, the products of arguments
may be of di�erent arity and type. The example in Figure 1b shows
this situation. There we see that a black node has three �elds,
whereas a white node has four. As a result, we cannot assume that
when a constructor changes, we have exactly the same number of
constructor �elds. The Spine itself, though, is de�ned for a single
type: we are only interested in di�ng elements of the same type,
hence, the outermost coproduct structure shall always be the same.

We gave a very intensional description of what a spine consists
of, but we are in fact interested in how to interpret these spines –
that is, what do they mean. Below we interpret a spine as a partial
function. This is also called the application function of a spine, as
it describes the action a spine has on a particular value.

To do so, we require argument functions specifying how to
handle both the atoms, doAt, and the underlying product struc-
ture, doAl. We proceed by matching the spine and argument tree,
yielding the following de�nition in applicative style (McBride and
Paterson 2008).

apply-S : (doAt : At α → JαKa → Maybe JαKa)

→ (doAl : Al π2 π1 → Jπ2Kp → Maybe Jπ1Kp)

→ S At Al σ → JσKs → Maybe JσKs
apply-S doAt doAl Scp x = just x
apply-S doAt doAl (Schg i j p) x with sop x

...| tag cx dx with cx ?
= i

...| false = nothing

...| true = injj <$> doAl p dx
apply-S doAt doAl (Scns i ps) x with sop x

...| tag cx dx with cx ?
= i

...| false = nothing

...| true = inji <$> sAll doAt ps
where

sAll : (doAt : At α → JαKa → Maybe JαKa)

→ All At π → JπKp → Maybe JπKp
We distinguish three possible cases. In the �rst case, Scp, we can
copy over the argument tree without inspecting it. In the second
case, Schg, we check whether or not the argument is built from
the expected constructor. If so, we process the underlying product
structure and reassemble a new tree using injj ; if not, the application
fails and returns nothing. Finally in the case for Scns, we once again
check if the argument is built from the constructor we are expecting.
If so, we map doAt over the pairs of atoms, corresponding to the
constructors �eld. If this succeeds, we can construct a new tree
using inji ; if this fails, the entire application returns nothing.

Alignment
Whereas the previous section showed how to match the constructors
of two trees, we still need to determine how to continue di�ng the
products of data stored therein. At this stage in our construction,
we are given two heterogeneous lists, corresponding to the �elds
associated with two distinct constructors. As a result, these lists
need not have the same length nor store values of the same type.
In the example in Figure 1, we compare two subtrees built from
di�erent constructors. To do so, we need to decide how to line up
the constructor �elds of the source and destination. We shall refer
to the process of reconciling the lists of constructor �elds as solving
an alignment problem.

Our approach is inspired by the existing algorithms computing
the edit distance between two strings. When comparing two text
�les, the diff utility computes an edit script, that is, a sequence
of operations that copy lines from the source to the destination
�le, insert new lines in the destination �le, or discard lines from
the source �le. There are many di�erent choices of edit script for
any two �les. One extreme example would be to delete all the
lines from the source �le and insert each line from the destination
�le. In practice, however, the diff utility minimizes the number of
insertions and deletions, copying information whenever it can.

Finding a suitable alignment between two lists of constructor
�elds amounts to �nding a suitable edit script, that relates source
�elds to destination �elds. The Al data type below describes such
edit scripts for a heterogeneously typed list of atoms. These scripts
may insert �elds in the destination (Ains, Figure 3c), delete �elds
from the source (Adel, Figure 3b), or associate two �elds from
both lists (AX, Figure 3a). Each of the illustrations in Figure 3
shows how a large alignment (delineated by the dashed lines) can
be decomposed into a smaller recursive alignment (delineated by
the inner box labelled Al). Depending on whether the alignment
associates the heads, deletes from the source list or inserts into
the destination, the smaller recursive alignment has shorter lists of
constructor �elds at its disposal.

data Al (At : Atom → Set) : Prod → Prod → Set where
A0 : → Al At [] []
AX : At α → Al At π2 π1 → Al At (α :: π2) (α :: π1)

Adel : JαKa → Al At π2 π1 → Al At (α :: π2) π1
Ains : JαKa → Al At π2 π1 → Al At π2 (α :: π1)

As we did for spines, we once again abstract over the predicate
between the underlying atoms, At : Atom → Set.

Note that we require alignments to preserve the order of the
arguments of each constructors, thus forbidding permutations of
arguments. In e�ect, the datatype of alignments can be viewed as
an intensional representation of (partial) order and type preserv-
ing maps, along the lines of McBride’s order preserving embed-
dings (McBride 2005), mapping source �elds to destination �elds.
Provided a partial embedding for atoms, we can therefore interpret
alignments into a function transporting the source �elds over to
the corresponding destination �elds, failure potentially occurring
when trying to associate incompatible atoms:

apply-Al : (doAt : At α → JαKa → Maybe JαKa)

→ Al At π2 π1 → Jπ2Kp → Maybe Jπ1Kp
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Al

(a) AX: sharing of a sub-tree

v1
Al

(b) Adel: deletion of a source sub-tree

w1

Al

(c) Ains: insertion of a destination sub-tree

Figure 3. Alignments, graphically

apply-Al doAt A0 � = just �
apply-Al doAt (AX p al) (a , p) with doAt p a | apply-Al doAt al p
...| just a′ | just p′ = just (a′ , p′)
...| | = nothing
apply-Al doAt (Ains a al) ps with apply-Al doAt al ps
...| just ps′ = just (a , ps′)
...| nothing = nothing

apply-Al doAt (Adel a1 al) (a2 , ps) with a1
?
= a2

...| false = nothing

...| true = apply-Al doAt al ps
The de�nition is unremarkable. It proceeds by straightforward

induction on the alignment. When the alignment speci�es that
a source �eld is inserted, we perform the remaining alignment,
before inserting the new �eld. When an existing �eld should be
deleted, we need to check that current the value at the ‘head’ of
the list of constructor �elds equals the value we are expecting. If
so, we delete it and recurse; otherwise the application fails.

Atoms
Having dealt with the coproduct structure through the spine S, and
with the product structure therein through the alignments Al, we
are left with atoms. For the moment, we focus on non-recursive
datatypes and parameterized our construction with respect to a
type P : Set of patches for the recursive argument Rec : Set. In
later sections, we will show how to tie this recursive knot.
data At (P : Set) : Atom → Set where

set : TrivialK κ → At P (K κ)

fix : P → At P I
On opaque types, we follow the trivial patch de�nition of (2.1),

de�ne TrivialK as the diagonal interpretation of the constant types

TrivialK : Konst → Set
TrivialK κ = Patch∆ JκKk

apply-K : TrivialK κ → JκKk → Maybe JκKk
apply-K = apply∆

Now, given an application function for P , we can de�ne an
application function for atoms:
apply-At : (doP : P → X → Maybe X ) → At P α → JαKa

→ Maybe JαKa X
apply-At doP (set k) x = apply-K k x
apply-At doP (fix p) x = doP p x

In the following section, we will instantiate this parameter P to
the handle data types recursively.

4 Fixpoint of Changes
In the previous section, we presented patches describing changes
to the coproducts, products, and atoms of our SoP universe. This
development, however, was parametrized over the treatment of
recursive subtrees: it handles a single layer of the �xpoint construc-
tion, but does not yet recurse. In this section, we tie the knot and
de�ne patches describing changes to arbitrary recursive datatypes.
Throughout the remainder of this section, we will consider patches
on a �xed code from our SoP universe, µσ .

To represent generic patches on recursive datatypes, we will
de�ne two mutually recursive data types Alµ and Ctx. The seman-
tics of both these datatypes will be given by de�ning how to apply
them to arbitrary values:

• Much like alignments for products, a similar phenomenom
appears at �xpoints. When comparing two recursive struc-
tures, we can insert, remove or modify constructors. We will
use Alµ : Set to specify these edit scripts at the constructor-
level. Its application function has type:
apply-Alµ : Alµ → Fix µσ → Maybe (Fix µσ )

• Whenever we choose to insert or delete a recursive subtree,
we must specify where this modi�cation takes place. To
do so, we will de�ne a new type Ctx : Prod → Set,
inspired by zippers (Huet 1997), to navigate through our
data-structures. A value of type Ctx π selects a single atom
I from the product of type π . We can use Ctx π to specify
both insertions and deletions:
insCtx : Ctx π → Fix µσ → Maybe JπKp
delCtx : Ctx π → JπKp → Maybe (Fix µσ )

We will now de�ne both these data types and their associated
application functions more precisely.

Aligning Fixpoints
Modeling changes over �xpoints closely follows our de�nition of
alignments of products. Instead of inserting and deleting elements
of the product we insert, delete or modify constructors. Our previous
de�nition of spines merely matched the constructors of the source
and destination values – but never introduced or removed them. It
is precisely these operations that we must account for here.

The Alµ datatype has three constructors: spn, ins, and del:
data Alµ : Set where

spn : S Atµ (Al Atµ ) µσ → Alµ
ins : (C : Constr µσ ) → Ctx (typeOf µσ C) → Alµ
del : (C : Constr µσ ) → Ctx (typeOf µσ C) → Alµ
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(a) spn: matching constructors
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a

x

u
cb
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Ctx

u
x

(b) ins: insertion of destination constructor
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a

u

x

u
x

cb
a

Ctx

(c) del: deletion of source constructor

Figure 4. Recursive alignments, graphically

The �rst constructor, spn, does not perform any new insertions
and deletions, but instead records a spine and an alignment of the
underlying product structure. This closely follows the patches we
have seen in the previous section. To insert a new constructor, ins,
requires two pieces of information: a choice of the new constructor
to be introduced, C, and the �elds associated with that constructor.
Note that we only need to record all but one of the constructor’s
�elds, as represented by a value of type Ctx (typeOf µσ C). We
have tried to visualize this situation in Figure 4b: to transform the
tree u on the left into the larger tree on the right, we introduce
a new 3-node. The information stored in the patch records how
to associate u with one of the subtrees of the new node, together
with the remaining constructor �elds (a,b, and c). The situation for
deletion in Figure 4c is analogous.

The interpretation of these codes is given below:
apply-Alµ : Alµ → Jσ1K → Maybe Jσ2K
apply-Alµ doAt (spn s) x = apply-S (apply-Al doAt) s x
apply-Alµ doAt (ins C ∂) x with insCtx ∂ x
... | nothing = nothing
... | just x ′ = 〈injC x ′〉
apply-Alµ doAt (del C ∂) 〈x〉 with sop x

... | tag C1 p1 with C ?
= C1

... | false = nothing

... | true = delCtx ∂ p1
In the spn case, we call the application functions de�ned for spines
and alignments that we saw previously. Most of the hard work
handling deletions and insertions is done by the insCtx and delCtx,
that we shall cover shortly.

Choosing a Subtree
Our de�nition of insertion and deletions relies on identifying one
recursive argument among the product of possibilities. To model
this accurately, we de�ne an indexed zipper to identify a recursive
atom (indicated by a value of type I) amongst a product of atoms:
data Ctx : Prod → Set where

here : Alµ → All J Ka π → Ctx (I , π )
there : JαKa → Ctx π → Ctx (α , π )

The constructor here designates the �rst subtree; the constructor
there skips the head and recurses. Note that Ctx is de�ned mutually
recursively with Alµ. Whenever we select the subtree on which to
recurse, we require a value of type Alµ describing to to proceed.

To complete the de�nition of patch application given above, we
still need to de�ne insertions and deletions on these contexts. To
insert a new constructor, we exploit the value of type Ctx we are
given to determine where to plug in source tree:
insCtx : Ctx π → Fix µσ → Maybe JπKp
insCtx (here spmu atmus) x = ( :: atmus) <$> apply-Alµ spmu x
insCtx (there atmu ∂) x = (atmu :: ) <$> insCtx ∂ x
Once we have encountered the here constructor, we recursively

call apply-Alµ.
Conversely, upon deleting a constructor from the source struc-

ture, we exploit Ctx to indicate �nd the subtree that should be
used for the remainder of the patch application, discarding all other
constructor �elds:
delCtx : Ctx π → JπKp → Maybe (Fix µσ )

delCtx (here spmu atmus) (x :: p) = apply-Alµ spmu x
delCtx (there atmu ∂) (at :: p) = delCtx ∂ p
This deletion function discards any information we have about

all the constructor �elds, except for the subtree used to continue
the patch application process. This greatly increases the domain of
the application function. Nonetheless, we store information about
these �elds using a Ctx structure to guarantee that our patches
are invertible (Section 6). If we were to discard this information,
inverting a deletion to produce an insertion would require us to
invent the data with which to populate the remaining constructor
�elds out of thin air.

Recursive Atoms
Finally, we still need to specify how to handle the atoms. Where our
previous de�nition merely accounted for opaque types, we would
like to �nally tie the recursive knot. That is, we want to use the
datatype Alµ de�ned above, whenever we reach a recursive position.
The At type de�ned at the end of the previous section abstracted
over the treatment of recursive variables. We can instantiate it to
use our Alµ type as follows:
Atµ : Atom → Set
Atµ = At Alµ
Similarly, the application function on atoms at the end of the

previous section abstracted over the handling of recursive vari-
ables. By passing in the application function de�ned above, writing
apply-At apply-Alµ, we can construct the desired application func-
tion on atoms. Finally, putting these de�nitions together, we obtain
the type of patches over our SoP universe µσ :

Patchµ : Set
Patchµ = Alµ



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Type-Directed Di�ing of Structured Data PL’17, January 01–03, 2017, New York, NY, USA

apply : Patchµ → Fix µσ → Maybe (Fix µσ )

apply = apply-Alµ

Patches do not go wrong: an easily overlooked property of our
patch de�nition is that the destination values it computes are guar-
anteed to be type-correct by construction. This is unlike the line-
based or untyped approaches (which may generate ill-formed val-
ues) and similar to earlier results on type-safe di�erences (Lempsink
et al. 2009).

Meta-programming & programming: While this paper focuses
on the de�nition and study of the Agda model, the de�nition of
the Patchµ datatype is also of interest to programmers of the non-
dependent kind: we may specialize – through partial evaluation
– the de�nition of Patchµ to a speci�c type described by the SoP
universe. In this fashion, we obtain a non-dependent, algebraic
datatype describing changes for that speci�c structure. For example,
in the following section, we show that the edit scripts generated
by Unix diff can be translated to our generic de�nition.

Examples
So far, we have presented a data type to model changes in a struc-
tured fashion. Before exploring the search space and showing how
one can enumerate patches between two values, we shall illustrate
our de�nitions by considering two small case studies.

Patches of S-expressions To show the full applicability of our
approach, let us imagine a simple macro language based on s-
expressions, represented by the following datatype:
data SExp = N String

| Lit String
| Def String SExp SExp
| SExp :> SExp
| Nil

We have chosen this language to be as simple as possible. A more
accurate account of a more realistic programming language would
require several (mutually recursive) data types. While our patches
and application functions can be extended to handle such datatypes,
we refrain from doing so for now.

Let us start by de�ning the head function, that returns the head of
an s-expression or an error code if the expression is nil. Its de�nition
is shown on the left; the corresponding AST, as an inhabitant of
SExp, is shown on the right:
(defun head (s)

(if (null s)
(error "!?")
(car s)

))

k1 = Def "head" (N "s" . Nil)
(N "if" . (N "null" . N "s" . Nil)

. (N "error" . Lit "!?" . Nil)

. (N "car" . N "s" . Nil)

. Nil)

Suppose a programmer decides that the error message is unin-
formative. We can modify the head function accordingly, call its
AST k2:
(defun head (s)
(if (null s)

(error "empty list")
(car s)

))
We can represent the changes that programmer just made us-

ing a Patchµ, instantiated to work on our SExp datatype. Doing

so enables us to de�ne a patch that only modi�es the error mes-
sage, and nothing else. Reusing our suggestive notation from the
introduction, we could write:

(defun head (s)
(if (null s)

(error {- "!?" -}{+ "empty list" +})
(car s)

))

If we compute the patch between these two SExps, this yields a
value of type Patchµ. Applying this patch, is extensionally equal
to the following function:
app12 : SExp → Maybe SExp
app12 (Def x y (z1 . z2 . (w1 . Lit "!?" . w2 ) . z3 ))

= just (Def x y (z1 . z2
. (w1 . Lit "empty list" . w2 )

. z3 ))
app12 = nothing
Here we see that the patch requires the source values to have a

certain form. In particular, it maps the string constant "!?" to
"empty list".

Interestingly, this patch may also be applied to other values than
the original head function de�ned above. To illustrate this point,
consider another modi�cation that might be made to the original
head function de�ned above. Instead of crashing, we might want
to raise an exception by calling the function failWith:
(defun head (s)

(if (null s)
(failWith "!?")
(car s)

))
Once again we can compute the patch associated with this

change. The corresponding application function, app13, is exten-
sionally equal to the following de�nition:
app13 : SExp → Maybe SExp
app13 (Def x y (z1 . z2 . (N "error" . w1 . w2 ) . z3 ))

= just (Def x y (z1 . z2
. (N "failWith" . w1 . w2 )

. z3 ))
app13 = nothing

In a line based setting, these two changes would produce a con-
�ict when merged: the same line was edited in two di�erent ways.
When considering these modi�cations, however, only a�ect distinct
SExps. As a result, our patches can be merged trivially. It is easy
to check that app12 • app13 ≡ app13 • app12, that is, applying
both patches produces the same head function, regardless of the
order in which they are applied:

(defun head (s)
(if (null s)

(failWith "empty list")
(car s)

))

5 Enumerating Patches
In the previous section, we have devised a typed representation for
di�erences. We have seen that this representation is interesting in
and by itself: being richly-structured and typed, it can be thought of
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as a non-trivial programming language whose denotation is given
by the app function. However, as programmers, we are mainly
interested in computing patches from a source and a destination.

In the following section, we provide a nondeterministic speci-
�cation of such an algorithm. This approach allows us to remain
oblivious to various grammar-speci�c heuristics we may want to
consider in practice, thus focusing our attention on the overall
structure of the search space. In particular, we shall strive to iden-
tify don’t care nondeterminism – for which all choices lead to a
successful outcome – from don’t know nondeterminism – for which
a choice may turn out to be incorrect or sub-optimal.

Since we describe our algorithm in Agda, we model don’t know
nondeterminism by programming in the List monad. Nondetermin-
istic choice is modelled by list concatenation, which we denote by
<|> , whereas the absence of valid choice is modelled by the

empty list, which we denote by ∅.

Computing the Spine Given any two trees, we have seen in Sec-
tion 3 that a spine represents their longest shared pre�x. Computing
a spine is thus entirely determined by the source and destination
trees, pairing together any distinct subtrees it encounters. We
denote the resulting diagonal interpretation J · K� × J · K� by
Trivial� · ·. This notational device allows us to distinguish patches
consisting of a pair of a source and a destination value from routine
usage of pairs.

spine : JσK → JσK → S Triviala Trivialp σ

spine x y with x ?
= y | sop x | sop y

...| true | | = Scp

...| false | tag cx dx | tag cy dy = if cx ?
= cy

then Scns cx (zipp dx dy)
else Schg cx cy (dx , dy)

The call spine x y �rst checks if x and y are equal. If so, this
amounts to performing a blind copy between source and destination.
If the constructors are equal, then their respective arguments shall
be compared pairwise. If the constructors are distinct, we record
the constructor change, from the former to the latter, and their
respective arguments must be aligned.

Enumerating Alignments Conversely, there are many ways to
align two heterogeneous lists in a type-preserving manner. In fact,
this is a typed counterpart to the common subsequence problem
solved by the Unix diff tool, which tries to minimize the number
of insertions or deletions of lines of text.

However, minimizing insertions or deletions in absolute terms
may yield sub-optimal results when considering data-structures.
Indeed, deleting a large, shared subtree so as to enable the copy of
several trivial atoms is unlikely to be more useful than the patch
that copies the shared subtree at the expense of some minor modi-
�cations. There is a signi�cant body of work studying various edit
distances for structured data: we refer our reader to Bille (2005) for
a survey of the �eld. There is however a general trend in adopt-
ing structure-speci�c metrics, depending in the semantics of the
data (Autexier 2015). Therefore, rather than commit to a particular
edit-distance in the speci�cation of algorithm, we shall consider
any valid alignment in a don’t know nondeterministic manner.

The align∗ function thus consists in enumerating all the possible
type-preserving edit-scripts for two heterogeneous lists:

align∗ : {π2 π1 : Prod } Jπ2Kp → Jπ1Kp → List (Al Triviala π2 π1)

align∗ � � = return A0
align∗ � (a2 , p2 ) = Ains a2 <$> align∗ � p2
align∗ (a1 , p1) � = Adel a1 <$> align∗ p1 �
align∗ {α1 :: π2 } {α2 :: π1 } (a1 , p1) (a2 , p2 )

with α1
?
= α2

...| true = AX (a1 , p1) <$> align∗ p1 p2
<|> Adel a1 <$> align∗ p1 (a2 , p2 )
<|> Ains a2 <$> align∗ (a1 , p1) p2

...| false = Adel a1 <$> align∗ p1 (a2 , p2 )
<|> Ains a2 <$> align∗ (a1 , p1) p2

By focusing on type-preserving edit-scripts, the enumeration
function need only consider alignments that relate atoms of the
same type. It is nonsensical to even try to relate, say, a boolean with
a natural number. Unlike the untyped approach, the type-directed
approach enables us to exploit the discriminating power of types
to e�ciently guide the exploration of the search space.

Provided an enumeration function for type variables, doP , we
can enumerate the possible ways of handling atoms:
di�-At : {α : Atom } (doP : X → X → List P ) → JαKa X

→ JαKa X → List (At P )
di�-At doP {K κ } k1 k2 = return (set (k1 , k2 ))
di�-At doP { I } x1 x2 = fix <$> doP x1 x2

We can �nally combine all the previous ingredients: enumera-
tion of the spine; enumeration of all their subsequent alignments,
and the enumeration over opaque types in order to obtain the enu-
meration function for the type-preserving functorial alignments:
di�-S : (doP : X → X → List P )

→ JσKs X → JσKs X → M (S (At P ) (Al (At P )) σ )

EnumeratingRecursiveAlignments To compute the di�erence
between two recursive structures, we must �rst establish an align-
ment of their constructors. There are 3 possible cases: either both
source and destination constructors are aligned, in which case we
produce a spn code and enumerate the functorial changes (case
di�-mod), or a constructor may have to be inserted using an ins
code before the source to align with the destination (case di�-ins),
or a constructor may have to be deleted from the source using a
del code to align with the destination (case di�-del).
di�-Alµ : Fix µσ → Fix µσ → List Alµ
di�-Alµ 〈x〉 〈y〉 = di�-mod x y

<|> di�-ins 〈x〉 y
<|> di�-del x 〈y〉

Enumerating the functorial alignments is already handled by
the function di�-S, introduced in the previous section. Deleting
or inserting a constructor is fully determined by the source or the
destination data-structure:

di�-del : JµσKs → Fix µσ → List Alµ
di�-del s1 x2 with sop s1
... | tag C1 p1 = del C1 <$> di�-Ctx x2 p1
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di�-ins : Fix µσ → JµσKs → List Alµ
di�-ins x1 s2 with sop s2
... | tag C2 p2 = ins C2 <$> di�-Ctx x1 p2

These alignment problems thus reduce to enumerating the well-
typed recursive spines, using di�-Ctx, to locate the modi�cation.

Enumerating Subtree Choice We have seen that, conceptually,
a recursive spine is a (typed) one-hole context for I atoms: enu-
merating all valid spines simply amounts to enumerating all the
cursors on those I atoms.

di�-Ctx : Fix µσ → JπKp → List (Ctx π )

di�-Ctx x1 [] = ∅
di�-Ctx {K :: } x1 (k2 :: ats2 )
= there k2 <$> di�-Ctx x1 ats2

di�-Ctx { I :: } x1 (x2 :: ats2 )
= flip here ats2 <$> di�-Alµ x1 x2
<|> there x2 <$> di�-Ctx x1 ats2

We thus obtain a complete nondeterministic speci�cation of a
di�erencing algorithm, as described by di�-Alµ. In practice, enu-
merating all possible patches is far too expensive due to the expo-
nential nature of the enumeration. Instead, heuristics can be used to
favor some patches over others. However, unlike the line-oriented
approach, there is no commonly agreed upon di�erencing heuris-
tic for structured data. In the following section, we consider how
grammar-speci�c heuristics can be developed in our framework.

Heuristics A di�erencing heuristic can be understood as a more
e�cient re�nement of the nondeterministic speci�cation given
above. It takes advantage of domain-speci�c knowledge to improve
accuracy on idiomatic modi�cations or prune the search space.

Consider the grammar of S-expressions SExp. We may simplify
and thus speed up the alignment problem by relying on the name
of Def-nodes, demarcating a function’s body. If two Def-nodes do
not have the same name, we will consider them to be necessarily
distinct. This allows us to rule out the possible modi�cation of one
into the other. We would then write the following, domain-speci�c
re�nement of di�-H:

di�-H : SExp → SExp → List (Patchµ SExp SExp)
di�-H 〈x〉 〈y〉 with δ (fun-name 〈x〉 , fun-name 〈y〉)
...| nothing = di�-ins 〈x〉 y

<|> di�-del x 〈y〉
...| just (nx , ny)

with nx ?
= ny

...| false = di�-ins 〈x〉 y
<|> di�-del x 〈y〉

...| true = di�-mod x y

fun-name : SExp → Maybe String
δ : Maybe A × Maybe B → Maybe (A × B)
Crucially this de�nition only considers the modi�cation alternative,
di�-mod, when both functions have the same name. In practice,
relying on the function name never changing may not be a good
idea – but this small example serves to illustrate how we might use
such information, rather than prescribing any particular choice.

Nonetheless, this re�nement is but a �rst step toward a prac-
tical implementation: being implemented in a pure type theory,
it cannot exploit programming techniques such as memoization
to tame don’t know nondeterminsm nor concurrency to exploit
don’t care nondeterminism. By exploiting standard techniques for
re�ecting e�cient optimization and proof search techniques in type
theory (Claret et al. 2013; Tristan and Leroy 2008), we can nonethe-
less have the best of both worlds: our universe of changes may be
understood as a certi�cate language, witnessing the existence of a
valid patch. The production of such a certi�cate may be left to any
(non-veri�ed, imperative) program.

6 Structure and Interpretation of patches
One motivation for adopting structured di�erences is to improve
the accuracy and compositionality of patches, thus increasing their
versatility. Indeed, while we compute patches between two versions
of a structured document, we intend to apply them to potentially
modi�ed versions of that document and to combine them into
coherent patchsets. The granularity of Unix diff being at the line
level, the resulting patches are line-accurate: if a patch identi�es a
di�erence on a given line, any subsequent modi�cation on that line
– however orthogonal – will trigger a con�ict that requires manual
intervention. Intuitively, structured patches enable the description
of more accurate modi�cations: the unit of change is at level of an
atom of the grammar while con�icts may only occur on insertion
and deletion points, that is, precisely those points where we actually
inspect our input during patch application. In the following, we
set this intuition on a formal footing by characterising accuracy of
application functions.

Accurate Interpretation We have seen that, extensionally, patches
correspond to partial functions (Section 4). We will refer to one
patch as being more accurate than another if it succeeds in produc-
ing a patched result more often. Formally, this amounts to lifting
the canonical partial order on Maybe A

nothing � y

just x � just y i� x ≡ y

to functions by pointwise comparison over the input domain, ie.
we have f � g if ∀ x; f x � g x. This corresponds to the usual
extension order (Robinson and Rosolini 1988) of partial maps.

While this de�nition faithfully translates our intuition, it is unsat-
isfactory from a programming standpoint: it is a too extensional to
be actionable. We could certainly use it for proofs, but would be out
of luck to use it for programming. Instead, we would like to exploit
the syntactic nature of structured patches to compute a measure of
accuracy akin to the edit distance in the string alignment problem.
We could then relate – once and for all – that measure with its ex-
tensional speci�cation introduced above. The idea is to compute a
natural number, called the cost, for every patch. The validity of such
a cost function is then established with respect to the extension
order: given two candidates patches p and q from x to y, it should
be the case that if cost p 6 cost q, then apply q � apply p.

Groupoid Structure Throughout Section 3 and Section 4, we
have been careful to give a perfectly symmetric representation of
di�erences. As a result, we noticed that, in the del case for example,
the patch records information that is not strictly necessary for
implementing the apply function. Maintaining this symmetry is
however crucial to enable us to implement patch inversion, inv :
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Patch → Patch, which transforms a patch from source x to
destination y into a patch from y to x. The implementation of
this operation is unsurprising: it merely transforms insertions into
deletions, and visa versa, while going through the symmetrical
constructs of all our patch operations.

In Section 4, we have seen that, in some cases, we can successfully
apply two patches consecutively, in any order. To do so, we worked
at the semantic level and composed the (partial) apply functions of
both patches. This led us to investigate whether a similar notion
of patch composition exists at the syntactic level. This amounts to
de�ning a partial composition operator, cmp : Patch → Patch →
Maybe Patch, tentatively producing a patch combining the e�ects
of both of its inputs. Partiality comes from the fact that two patches
may make incompatible changes to the input, such as modifying
an opaque value in two inconsistent ways. Applying such patches
would also never produce a valid result.

Interestingly, the combination of a total identity function and
a partial composition function yields a groupoid structure, which
brings our constructions under the comfortable umbrella of pre-
vious developments in patch theory (Angiuli et al. 2014; Jacobson
2009). Our work can thus be seen as an intensional presentation
of these general results for regular data-structures. By o�ering the
desired groupoid structure, it combines with those more general
frameworks, which may provide support for handling binary �les
or �le-system management in an orthogonal manner.

7 Related work
The di�ng problem can be portrayed in a variety of di�erent �a-
vors. The untyped approach has been thoroughly studied in both
its linear (Bergroth et al. 2000) and tree (Akutsu et al. 2010; Autexier
2015; Bille 2005; Chawathe and Garcia-Molina 1997; Demaine et al.
2007; Klein 1998) variations. The canonical solution for the untyped
linear scenario is the well known Unix diff (Hunt and McIlroy
1976). For the tree-structured variation, though, a variety of imple-
mentations (Falleri et al. 2014; Farinier et al. 2015; Hashimoto and
Mori 2008) has arisen in the last few years. In this paper, however,
we have explored how to exploit the type structure of trees to give
a more precise account of our di� algorithm.

Several other pieces of related work exploring the possibilities of
de�ning a data type generic di� algorithm, most notably the work
by Lempsink et al. (Lempsink et al. 2009) and Vassena (Vassena
2016). Both de�ne a data type generic program to compute a di� of
structured data. Their algorithm, however, fundamentally di�ers
from the one presented here. Both papers extend the linear di�
algorithm, as used by the Unix di� utility, to structured data by
considering the pre-order traversal of a data type. This �attening of
the tree structure makes reasoning about patches especially hard.

Beyond di�ng, there is a great deal of work on version control
systems. The canonical example of a formal VCS is Darcs (Roundy
2005). The system itself is built around the theory of patches de-
veloped by the same team. A formalization of such theory using
inverse semigroups was done by Jacobson (Jacobson 2009). An-
other example is the Pijul VCS, inspired by Mimram (Mimram and
Giusto 2013). This uses category theory to de�ne and reason about
patches. The base category on which their work is built, however,
handles �les as a list of lines, thus providing only a theoretical
framework on top of the already existing Unix diff. Swierstra and
Löh (Swierstra and Löh 2014) apply separation logic and Hoare
calculus to be able to de�ne a logic for reasoning about patches.

Separation logic is particularly useful to prove the disjointedness of
patches – and guarantee that their associated apply functions com-
mute. Finally, Anguiuli et al. (Angiuli et al. 2014) have developed a
model of patch theory within Homotopy Type Theory. Although
their model considers various patches and repositories, it does not
provide a generic account for arbitrary data types as done here.

Discussion For the sake of simplicity and uniformity, we have
focused our attention on simple regular types in this paper. Our
Agda model, however, supports mutually recursive de�nitions as
well, enabling us to represent and deal with more practical examples
of programming languages. As a result, the recursive alignment
(Section 4) becomes heterogeneous since we may need to align
constructors of distinct inductive types. For example, in a rose tree,
we may want to insert a rose tree into a list of rose trees, leading to
an heterogeneous alignment between rose tree and list of rose tree.

Our presentation was also made easier by a casual treatment of
recursion, especially in Section 3 where we focused on the functo-
rial semantics. As a result, when tying the knot in Section 4, our
Agda model cannot automatically check for termination for, say,
the application function. We are convinced that we could write a
single mutually-recursive de�nition, at the expense of signi�cantly
obfuscating the code. We refrained from doing so, noticing that ter-
mination follows trivially from the fact that our de�nitions merely
structurally recurse over the Patchµ datatype.

Future Work There are several directions for future work that
we have already started exploring. Although we have used Agda
to explore our de�nition of patches, the sums-of-products universe
we have chosen is still fairly simple. We would like to extend it to
also incorporate the dependently typed ‘sigma-of-sigmas’ universe,
used to model dependent inductive types (Chapman et al. 2010).

Our experiments so far have con�rmed our belief that the al-
gorithms and the framework presented here give a more accurate
account of patches for tree structured data than simple line based
di�s. To provide further evidence to support this, however, we
intend to specialize our algorithm to work on the abstract syntax
trees of a speci�c language. We could then replay the merge history
of large source code repositories online; this would give further
empirical evidence to support our claim.

In this paper we have not yet considered the question of merging
patches: given two patches to the same source value, when can
they be merged into a single patch? This process is of paramount
importance to consolidate changes from di�erent collaborators, as
is done by modern version control systems.

Conclusion De�ning a generic di� algorithm between algebraic
data types is no easy task. Each component of the datatype – the
choice of constructor, the constructor �elds, and recursive subtrees
– may all change in di�erent ways. The purpose of this paper is to
account for all these changes in an accurate and generic fashion.
De�ning the type of patches and their semantics, however, is a
crucial �rst step in the larger research program that we envision.
With this de�nition in hand, we can further explore the theoretical
underpinnings, such as the algebra of generic patches. There are
also immediate practical applications: instantiating our algorithm
to a speci�c datatype allows us to collect empirical results about
avoiding unnecessary con�icts in practice. None of this work is
possible, however, without the results presented here.
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