
Veri�ed Timing Transformations in Synchronous

Circuits with λπ-Ware

João Paulo Pizani Flor, Wouter Swierstra

Utrecht University

{J.P.PizaniFlor,W.S.Swierstra}@uu.nl

1 Introduction

Modelling electronic circuits has been a fertile ground for functional program-
ming (Sheeran, 2005) and theorem proving (Hanna and Daeche, 1992). There
have been numerous e�orts to describe, simulate, and verify circuits using func-
tional languages such as MuFP (Sheeran, 1984) and more recently CλaSH (Baaij,
2015) and ForSyDe (Sander and Jantsch, 2004).

Functional languages have also been used to host an Embedded Domain-
Speci�c Language (EDSL) for hardware description. Some of these EDSLs, such
as Wired (Axelsson et al., 2005), capture low-level information about the layout
of a circuit; others aim to use the host language to provide a higher-level of
abstraction to describe the circuit's intended behaviour. A notable example of
the latter approach is Lava (Bjesse et al., 1999) and its several variations (Gill
et al., 2009; Singh, 2004).

Also interactive theorem proving and programming with dependent types
have been fruitfully used to support hardware veri�cation e�orts, with some
based on HOL (Melham, 1993; Boulton et al., 1992), some on Coq (Braibant,
2011; Braibant and Chlipala, 2013) and some on Martin-Löf Type Theory (Brady
et al., 2007) Following this line of research, we utilize a dependently-typed pro-
gramming language (Agda) as the host of our hardware EDSL, for its proving
capabilities and convenience of embedding.

In particular, this paper focuses on veri�cation related to the hardware design
aspect of timing, that is, the behaviour of a circuit in terms of its inputs over
time. When implementing algorithms in hardware, a compromise must be made
between the area occupied by a circuit and the number of clock cycles it takes
for a computation to be performed.

Circuits with more computation being performed in parallel will occupy a
larger area. This might lead to design constraints being violated, as well as having
an impact in power consumption. A more sequential circuit, on the other hand,
will occupy less area, but might be a bottleneck in computational throughput
and impact other parts of the design that depend on its results.

There are many di�erent ways to implement any speci�c functional be-
haviour, and it can be di�cult to �nd the right spot in the design space up-
front. Timing-related circuit transformations are quite invasive and error-prone
� making it di�cult to correct bad design decisions a posteriori With this pa-
per, we attenuate these issues by de�ning a language for circuit description that

facilitates the exploration of di�erent points in the timing design space. More
speci�cally, this paper makes the following contributions:

� We show how to embed a typed domain speci�c language for circuit descrip-
tion and veri�cation, λπ-Ware, in the general purpose dependently typed
programming language Agda (Section 3), together with an executable se-
mantics based on state transitions (Section 4).

� Next, we de�ne common recursion patterns to build circuits in both parallel
and sequential architectures in λπ-Ware (Section 5). We show how some
well-known circuits can be expressed in terms of these recursion patterns.

� Finally, we de�ne a precise relation between the parallel and sequential ver-
sions of circuits that exhibit equivalent behaviour (Section 5.1). By proving
that di�erent �avours of our recursion schemes are convertible, we allow
hardware designers to tune the degree of parallelism while being certain
that the timing transformations preserve functional semantics up to timing.

Altogether, these contributions help to separate the concerns between the
values that a circuit must compute and the speed with which the computation
is performed. In this way, timing decisions can be modi�ed more easily in a later
stage of design process.

The codebase in which the ideas exposed in this paper are developed is avail-
able online.1 For the sake of presentation, code excerpts in this paper may di�er
slightly from the corresponding ones in the repository.

2 Overview

We begin by presenting a hardware EDSL, λπ-Ware, as the vehicle for describ-
ing our main contributions. Although it is inspired by our previous work, Π-
Ware (Pizani Flor et al., 2016), it has several distinguishing characteristics and
novel features that will be described as we present them. In this section, we illus-
trate the language by means of two variations on a simple circuit. Later section
cover the syntax and semantics of circuits in greater detail.

Example: Horner's method We will look at two example circuits: one performing
its computation in parallel and the other sequentially. Both circuits compute the
value of a polynomial at a given point using the well-known Horner's method,
however, the structure of the circuits is very di�erent.

For any coe�cients a0, . . . , an in N, we can de�ne a polynomial as follows:

p(x) =

n∑
i=0

aix
i = a0 + a1x+ a2x

2 + a3x
3 + · · ·+ anx

n,

In order to compute the value of the polynomial at a speci�c point x0 of its
domain, Horner's method proceeds by using the following sequence of values:

1 https://gitlab.com/joaopizani/lambda1-hdl/tree/paper-2017-comb-seq

https://gitlab.com/joaopizani/lambda1-hdl/tree/paper-2017-comb-seq

bn := an

bn−1 := an−1 + bnx0

...

b0 := a0 + b1x0.

Then b0 is the value of of our polynomial at x0, that is, p(x0). By iteratively
expanding de�nitions for each of the bi in the equations above, one arrives at a
factorized form of the polynomial easily seen as equivalent to the usual series of
powers.

Parallel version This computational process is easily expressed as a fold, and in
λπ-Ware we can build a parallel circuit to compute this fold without the use of
any state or memory element, for any given degree n. When reading the signature
of the horner-par de�nition below, one must note that only the parameters with
the type former λH are circuit inputs, and the others are synthesis parameters.
Thus horner-par takes two inputs of type N and produce one output of type N.

horner-par : ∀ n (x0 : λH N) (an : λH N) (as : Vec (λH N) n)→ λH N
horner-par x0 = foldl-par (λ s a→ a :+: x0 :*: s)

The circuit horner-par n will compute the value of a polynomial of degree n
at a given point. This circuit will contain three inputs: the point at which to
evaluate the polynomial, x0 : λH N; an accumulating argument, an : λH N and
a vector of coe�cients, as : Vec (λH N) n. Later in Section 4 we present the
precise executable semantics of circuits, but for now we can say that horner-par n
will behave accordingly to the behaviour of foldl from the standard library.

To grasp the di�erence between the parallel and sequential versions of horner,
it is also useful to look at each version's architecture. The parallel version,
horner-par, will have the structure in Figure 1:

aₙ horner-par x₀ aₙ as

aₙ₋₁

⊞⊠
x₀

⊞⊠
x₀

⊞⊠
x₀

⊞⊠
x₀

...

aₙ₋₂ aₙ₋₃ a₀

Fig. 1. Block diagram of the horner-par circuit.

In the block diagram of Figure 1, we can clearly see that the inputs of the
circuit are a vector, that the circuit contains no loops nor memory cells, and that

the body of the foldl is replicated n times, thus corresponding to a fully parallel
implementation. Not all parallel circuits are completely stateless as horner-par,
but fully stateless circuits are also commonly called combinational in hardware
parlance.

Sequential version Next, we describe a sequential circuit to do the same calcula-
tion, using internal state to produce a sequence of outputs. The output value of
the circuit at clock cycle i corresponds to the sum of all polynomial terms with
degree smaller than or equal to i, evaluated at point x0.

horner-seq : ∀ (x0 : λH N) (a : λH N)→ λH N
horner-seq x0 = foldl-seq (λ s a→ a :+: x0 :*: s)

The circuit takes two inputs: x0, the point at which we desire to evaluate the
polynomial; and a, a single input containing the n- (i+1)-th coe�cient at the i-th
clock cycle. The circuit is de�ned using the foldl-seq combinator, that iterates
its argument function. This function corresponds to the loop body, mapping
the current approximation, s, and the current value of the inputs, a, to a new
approximation. As we shall see, to execute this sequential circuit, we will need
to provide an initial value for the state, s.

The architecture of horner-seq is the extreme opposite of horner-par when it
comes to parallelism, and is shown in Figure 2.

[s₁, s₂, ...
, sₙ=horner-seq x₀ a
]

a

Delay

s₀ = aₙ

⊞
⊠ x₀

Fig. 2. Block diagram of the horner-seq circuit.

In the block diagram of Figure 2 we can see the body of the foldl is the same
as in the parallel version, but now instead of n instances of the body we have a
single instance with one of its outputs tied back in a loop with a memory cell
(shift register).

We have seen that the parallel and sequential de�nitions are syntactically
similar, but have very di�erent timing behaviour and generate very di�erent
architectures. First of all, the coe�cients input of horner-par is a vector (a bus
in hardware parlance), while the corresponding input of horner-seq is a single
number. Also, all the coe�cients are consumed by horner-par in a single clock

cycle, while horner-loop consumes the sequence of coe�cients over n clock cycles.
It is only after these n cycles, that the results of the two circuits will coincide.

This paper will make precise how two such circuits are related. Before we
can do so, however, we need to describe our domain speci�c language, λπ-Ware,
in greater detail.

3 λπ-Ware

We begin by �xing the universe of types, U B, for the elements that circuits may
produce or consume. This type is parameterized over the type of data carried over
the circuit's wires (B). An obvious choice for B would be bits or booleans, but
other choices are possible when modelling a high-level circuit, such as integers
or a datatype representing assembly instructions for a microprocessor.

data U (B : Set) : Set where

unit : U B
ι : U B
⇒ : (σ τ : U B)→ U B
⊗ : (σ τ : U B)→ U B
⊕ : (σ τ : U B)→ U B
vec : (τ : U B) (n : N)→ U B

This collection of type codes is hardly controversial, consisting of a unit type (1)
and the base type (ι), closed under function space (⇒), products (⊗), coprod-
ucts (⊕), and homogeneous arrays of �xed-size (vec). The decoding function El
maps the elements of U to their corresponding type in the obvious fashion.

Core datatype As mentioned before, our language is a deep-embedding in Agda.
The core datatype representing circuit terms, λB, is given below:

data λB : (Γ : Ctxt B) (τ : U B)→ Set where

〈_〉 : (g : Gate τ)→ λB Γ τ
var : (i : Γ 3 τ) → λB Γ τ
$: (f : λB Γ (σ⇒ τ)) (x : λB Γ σ)→ λB Γ τ
let′ : (x : λB Γ σ) (b : λB (σ :: Γ) τ)→ λB Γ τ
loop : (c : λB (σ :: Γ) (σ ⊗ τ)) → λB Γ τ

Elements of λB are circuit models embedded into Agda using typed De Bruijn
indices for variable binding. However, we do have a convenience layer on top of
λB, called λH, as seen previously in the overview. De�nitions using λH are es-
sentially a shallow embedding of circuit models into Agda, using Higher-Order
Abstract Syntax (HOAS), o�ering a more convenient and user-friendly program-
ming interface. The unembedding technique (Atkey et al., 2009) guaranteed that
it is always possible to go from a circuit de�nition using λH to an equivalent one
using λB.

Returning to the λB datatype itself, it is indexed by the context (Γ : Ctxt B)
representing the arguments to the circuit or any free variables currently in scope.
The datatype is also indexed by the circuit's output type, (τ : U B).

The entire development is parameterized by a type of fundamental gates,
Gate : U B → Set, corresponding to the primitive components of our cir-
cuit. The 〈_〉 constructor creates a circuit from such a fundamental gate. These
typically correspond to the usual triple of boolean gates ({NOT,AND,OR})
with Bool as the chosen base type; circuit designers, however, are free to choose
those fundamental gates that best �t their domain. Besides these fundamental
gates, there are constructors to refer to variables (var), compose circuits through
application (_$_), and to introduce sharing (let′) or recursion (loop).

While these constructors form the heart of the λB datatype, we have addi-
tional constructors for introducing and eliminating products, coproducts, and
vectors:

, : λB Γ τ1 → λB Γ τ2 → λB Γ (τ1 ⊗ τ2)
case⊗_of_ : λB Γ (σ1 ⊗ σ2) → λB (σ1 :: σ2 :: Γ) τ→ λB Γ τ
inl : λB Γ τ1 → λB Γ (τ1 ⊕ τ2)
inr : λB Γ τ2 → λB Γ (τ1 ⊕ τ2)
case⊕_either_or_ : λB Γ (σ1 ⊕ σ2) → λB (σ1 :: Γ) τ → λB (σ2 :: Γ) τ

→ λB Γ τ
nil : λB Γ (vec τ zero)
cons : λB Γ τ→ λB Γ (vec τ n)→ λB Γ (vec τ (suc n))
mapAccumL-par : λB (σ :: ρ :: Γ) (σ ⊗ τ) → λB Γ σ → λB Γ (vec ρ n)

→ λB Γ (σ ⊗ vec τ n)

We give the elimination forms for both products and coproducts uniformly
as case constructs, instead of projections that matches on its argument and
introduces newly bound variables to the context. For vectors, λB has the two
usual introduction forms: one to produce an empty vector of any type (nil) and
to extend an existing vector with a new element (cons). Finally, the accumulating
map, mapAccumL-par, performs a combination of map and foldl: The input vector
with elements of type ρ is pointwise transformed into one with elements of type
τ, all the while threading an accumulating parameter of type σ from left to right.

This eliminator is less general than the usual type theoretic elimination prin-
ciple for vectors; embedding this more general eliminator would require depen-
dent types and higher-order functions in our circuit language. To keep our object
language simple, however, we chose a more simple elimination principle capable
of expressing the most common hardware constructs.

4 Semantics and properties

Where the previous section de�ned the syntax of our circuit language, we now
turn our attention to its semantics. Although there are many di�erent interpre-
tations that we could assign to our circuits, for the purpose of this paper we will
focus on describing a circuit's input/output behaviour.

State transition semantics Circuits de�ned in λB can be classi�ed in two ways.
Combinational circuits do not have any loops; sequential circuits may contain
loops. To de�ne the semantics of sequential circuits, we will need to de�ne the
type of state associated with a particular circuit. To do so, we de�ne the inductive
family λs:

data λs : (c : λB Γ τ)→ Set where

s, : (sx : λs x) (sy : λs y) → λs (x , y)
sLoop : {c : λB (σ :: Γ) (σ ⊗ τ)} → (si : El σ)→ (sc : λs c)→ λs (loop c)
. . .

This family has a constructor for each constructor of λDB. Most of these con-
structors either contain no signi�cant information, or simply follow the structure
of the circuit, like in the clause for pairs, _s,_, shown above. The most inter-
esting case is sLoop, in which the state required to simulate a circuit of the form
loop c consists of a value of type El σ � where σ is the type of the state that
the circuit produces � together with any additional state that may arise from
the loop body.

One other constructor of λs deserves special attention: sMapAccumL-par. A
circuit built with mapAccumL-par consists of n copies of a subcircuit f connected
in a row. Hence, the state of such a circuit consists of a vector of states, one for
each of the copies of f. Correspondingly, we de�ne the state associated with such
an accumulating map as follows:

sMapAccumL-par : (sf : Vec (λs f) n) (se : λs e) (sxs : λs xs)
→ λs (mapAccumL-par f e xs)

With this de�nition of state in place, we turn our attention to the semantics
of our circuits. We will sketch the de�nition of our single step semantics, J_|Ks,
mapping a circuit, initial state and environment to a the value produced by the
circuit and a new state:

J_|Ks : (c : λB Γ τ) (m : λs c) (γ : Env El Γ)→ λs c × El τ

The environment γ assigns values to any free variables in our circuit de�nition.
The base cases for our semantics are as follows:

J 〈 g 〉 |Ks m γ = m , (J�Kg g)
J var i |Ks m γ = m , lookup i γ

In the case for gates, we apply the semantics of our atomic gates, described by
the auxiliary function J�Kg; in the case for variables, we lookup the correspond-
ing value from the environment. Both these cases do not refer to the circuit's
state. This state becomes important when simulating loops. In the clauses for
application, let′ and loop, shown in Listing 1, we do need to consider the circuit's
state.

In the cases of application and let, each subcircuit simply �takes a step�
independently and the next state of the whole circuit is a combination of the

J f $ x |Ks (mf s$ mx) γ = let (mx′ , rx) = J x |Ks mx γ
(mf′ , rf) = J f |Ks mf γ

in ((mf′ s$ mx′) , (rf rx))

J let′ x b |Ks (sLet mx mb) γ = let (mx′ , rx) = J x |Ks mx γ
(mb′ , rb) = J b |Ks mb (rx :: γ)

in ((sLet mx′ mb′) , rb)

J loop f |Ks (sLoop ml mf) γ = let (mf′ , ml′ , rl) = J f |Ks mf (ml :: γ)
in ((sLoop ml′ mf′) , rl)

Listing 1: State-combining clauses of the single-step state transition semantics.

next states of each subcircuit. The case for loop is slightly more interesting: the
loop body,f, takes an additional input, namely the current state given by the ml
parameter of sLoop constructor.

The further clauses of the transition function handle the introduction and
elimination forms of products, coproducts and vectors. They are all de�ned sim-
ply by recursive evaluation of the subcircuits, and are straightforward enough
to omit from the presentation here. For example, the clause for coproduct elim-
ination is shown below:

J case⊕ x∨y either f or g |Ks (sCase⊕ mxy mf mg) γ =
let (mxy′ , rx∨ry) = J x∨y |Ks mxy γ
in [map× (�ip (sCase⊕ mxy′) mg) id ◦ (J f |Ks1 mf γ)

, map× ((sCase⊕ mxy′) mf) id ◦ (J g |Ks1 mg γ)
] rx∨ry

First the coproduct value (x∨y) is evaluated, computing a result value and
its next state. The result of the evaluation (rx∨ry) is then fed to Agda's coprod-
uct eliminator ([_,_]); the functions that process the left and right injections
proceed accordingly. In either case, the value is fed into evaluation of the appro-
priate body (either f or g), and the result is then used as the result of the whole
coproduct evaluation.

Similarly our elimination principle for vectors,mapAccumL-par, is worth high-
lighting:

J mapAccumL-par f e xs |Ks (sMapAccumL-par mfs me mxs) γ =
let (me′ , re) = J e |Ks me γ

(mxs′ , rxs) = J xs |Ks mxs γ
(rz , mfs′ , rys) = mapAccumL2 (transformF J f |Ks2 γ) re mfs rxs

in (sMapAccumL-par mfs′ me′ mxs′ , (rz , rys))

The above clause is key in the relation that we later establish (Section 5.1)
between parallel and sequential versions of circuits. The three key sub-steps in-
volved in this clause are: evaluation of the left identity element (e), the evaluation
of the row of inputs (xs) and the row of step function copies (f).

The �rst two steps are as expected: both the identity and row of inputs take
a step, and we thus obtain the next state and result values of each. The core
step is then evaluating the row of copies of f, and its semantics are given using
the auxiliary function mapAccumL2.

The mapAccumL2 function is simply a two-input version of an accumulating
map, which works by simply zipping the pair of input vectors and calling the
mapAccumL function from Agda's standard library.

mapAccumL : (σ → α→ (σ × β))→ σ → Vec α n→ σ × Vec β n
mapAccumL f s [] = s , []
mapAccumL f s (x :: xs) = let s′ , y = f s x

s′′ , ys = mapAccumL f s′ xs
in s′′ , (y :: ys)

mapAccumL2 : (σ → α→ γ → (σ × β × δ))→ σ → Vec α n→ Vec γ n
→ σ × Vec β n × Vec δ n

mapAccumL2 f s xs ys
= map× id unzip $ mapAccumL (uncurry ◦ f) s (zip xs ys)

In the semantics of mapAccumL-par, we apply mapAccumL2 to the vector
with the result of xs (called rxs) as well as the vector with states for the copies
of f (called mfs). Then, as the result of the application we obtain the �nal accu-
mulator value and vector of result values, together with the vector of next state
values (mfs′).

Multi-step semantics To describe the behaviour of a circuit over time, we need
to de�ne another semantics. More speci�cally, in this work we consider only
discrete-time synchronous circuits, and thus we will show how to use J_|Ks to
de�ne a multi-step state-transition semantics.

J_|Kn : (c : λB Γ τ) (m : λs c) n (γ : Vec (Env El Γ) n)→ λs c × Vec (El τ) n
J_|Kn c m n = mapAccumL J c |Ks m

When simulating a circuit for n cycles, we need to take not one input envi-
ronment but n, and instead of producing a single value, the simulation returns a
vector of n values. Just as we saw for mapAccumL-par, we ensure that the newly
computed state is threaded from one simulation cycle to the next.

This is exactly the behaviour of an accumulating map, thus the use of
mapAccumL here. The use of mapAccumL here is the key to the connection
between the multi-cycle of circuits using loop and the single-cycle behavior of
circuits using mapAccumL-par.

5 Parallel and sequential combinators

With λπ-Ware we intend to give a hardware developer more freedom to explore
the trade-o�s between area, frequency and number of cycles that a circuit might

take to complete a computation. This freedom comes from the proven guarantees
of convertibility between parallel and sequential versions of circuits.

To make it easier to explore this design space, we provide some circuit com-
binators for common patterns. Each of these patterns comes in a sequential and
a parallel version, together with a lemma relating the two. If a circuit is de�ned
using one of these combinators, changing between a serial or parallel design is as
easy as changing the combinator version used. The associated lemma guarantees
the relation between the functional behaviour of the versions.

All combinators in this section are derived from the two primitive construc-
tors loop and mapAccumL-par. By appropriate partial application and the use of
�wrappers� to create the loop body, all sequential combinators are derived from
loop. Similarly, using the same wrappers but with mapAccumL-par, we derive all
parallel combinators.

Of notice is also the fact that, in this section, we present the combinators in
De Bruijn style, as this is the most useful representation to use when evaluating
circuit (generators), which is covered in 5.1

The map combinators For example, we might want to easily build circuits that
map a certain function over its inputs. We will de�ne both the sequential and
parallel map combinators in terms of a third circuit, mapper. The sequential
version is given by map-seq:

mapper : (f : λB (ρ :: Γ) τ)→ λB (σ :: ρ :: Γ) (σ ⊗ τ)
mapper f = #0 , K1 f

map-seq : (f : λB (ρ :: Γ) τ)→ λB (ρ :: Γ) τ
map-seq f = loop {σ = 1} (mapper f)

We de�ne map-seq by applying loop to the mapper f circuit. In mapper, the
next state (�rst projection of the pair) is a copy of its �rst input (#0), whereas
the second projection is made by the weakened f, which discards its �rst input.

The parallel version of the same combinator (map-par) is de�ned in terms of
mapAccumL-par and mapper:

map-par : (f : λB (ρ :: Γ) τ) (xs : λB Γ (vec σ n))→ λB Γ (vec τ n)
map-par f xs = snd (mapAccumL-par (mapper f) unit xs)

In the above de�nition we note that we are free to choose the type of the
�initial element� (2nd argument), but we use 1 (value unit), as units can always
be used regardless of the base type chosen in the development. Furthermore, we
use snd to extract only the second element of the pair (the output vector), and
discard the ��nal element� outputted.

The foldl-scanl combinators Perhaps even more useful than mapping is scanning
and folding over a vector of inputs. To obtain the sequential and parallel versions
of such combinators, we again apply the loop and mapAccumL-par primitives to
a special body which wraps the binary operation (f) of the scan/fold.

folder : (f : λB (σ :: ρ :: Γ) σ)→ λB (σ :: ρ :: Γ) (σ ⊗ σ)
folder f = #0 , f

foldl-scanl-seq : (f : λB (σ :: ρ :: Γ) σ)→ λB (ρ :: Γ) σ
foldl-scanl-seq f = loop (folder f)

The wrapper called folder makes the next state equal to the �rst input of the
binary operator, and the output be the result of applying the binary operator.
In the above de�nition of foldl-scanl-seq, we get the behaviour of scanl and foldl
combined : The circuit outputs from clock cycle 0 to n form the result of the scanl
operation, and the last one at cycle n+1 is the value of the foldl.

The parallel version has also such a combined behaviour:

foldl-scanl-par : (f : λB (σ :: ρ :: Γ) σ) (e : λB Γ σ) (xs : λB Γ (vec ρ n))
→ λB Γ (σ ⊗ vec σ n)

foldl-scanl-par f e xs = mapAccumL-par (folder f) e xs

In the parallel case, we obtain a pair as output, of which the �rst element
is the foldl component, and the second element is the scanl (vector) component.
Thus by simply applying the fst and snd functions we can obtain the usual fold
and scanl.

Whereas these combinators capture some common patterns in hardware de-
sign, their usefulness also depends on lemmas relating their parallel and sequen-
tial versions.

5.1 Convertibility of parallel and sequential versions

In this section we make precise the relation between circuits with di�erent lev-
els of parallelism. In the examples of this paper we convert between extreme
cases: completely parallel (combinational) versus completely sequential. How-
ever, nothing in treatment that follows precludes that it be used for partial
unrolling.

We will show that when two circuits are deemed �convertible up to timing�,
they can be substituted for one another with minor interface changes in the
surrounding context but no alteration of the values ultimately produced.

The relation of convertibility relies on the fact that any sequential circuit will
have an occurrence of the loop constructor. As such, a more parallel variant of
such a circuit can be obtained by substituting the occurrence of loop with one of
mapAccumL-par, thereby unrolling the loop. The fundamental relation between
loop and mapAccumL-par is what we now establish. First, recall the types of the
single- and multi-step semantic functions:

J_|Ks : (c : λB Γ τ) (m : λs c) (γ : Env El Γ) → λs c × El τ
J_|Kn : (c : λB Γ τ) (m : λs c) n (γ : Vec (Env El Γ) n)→ λs c × Vec (El τ) n

Now, to establish the desired relation, we apply both the single and multi-
cycle semantics. The step function subcircuit (called f) is equal in both cases,
and the mapAccumL-par case takes 2 extra parameters besides f.

J mapAccumL-par f (val m) xs |Ks (sMapAccumL-par (replicate mf)) γ : Tpar
J loop f |Kn (sLoop m mf) n (map (_:: γ) xs) : Tloop

where Tpar = λs (. . .) × Tp σ × Vec (Tp τ) n
Tloop = λs (. . .) × Vec (Tp τ) n

The second parameter of mapAccumL-par must be a circuit whose value is
the same as the �rst parameter of sLoop, and we use here the simplest possible
such circuit: (val m). The third parameter (xs) is the input vector of size n, and
is used to build the vector of environments used by the multi-cycle semantics
(map (_:: γ) xs).

Finally, the state of the mapAccumL-par case is built by simply replicating
one state of f by n times. Stating the convertibility property in this way makes it
be valid only for a state-independent f, that is, when the input/output semantics
of f is independent of the state.

state-independent : ∀ (c : λB Γ τ)→ Set
state-independent c = ∀ (sa sb : λs c)→ J c |Ks sa γ ≡ J c |Ks sb γ

This restriction on f could be somewhat further loosened (as is discussed in
Section 6.2), but we work here with state-independent loop bodies to simplify the
presentation.

As we have seen, the results from applying each semantic function have dif-
ferent types (Tpar and Tloop), so the relation comparing these results is more
subtle than just equality. We de�ne this relation, called _=*_, as follows:

=* : Tpar→ Tloop→ Set
(, s′ , xs′) =* (sm′′ , xs′′) = (s′ ≡ gets0 sm

′′) × (xs′ ≡ xs′′)

Both sides of (_=*_) consist of a pair of next state and circuit outputs. In
the mapAccumL-par case, the next state can be ignored in the comparison, but
in the loop case, the value stored in the loop state (obtained by gets0) must
be equal to the �rst output of evaluating mapAccumL-par. With the comparison
function de�ned, we can �nally completely express the relation we desire:

J mapAccumL-par f (val m) xs |Ks (sMapAccumL-par (replicate mf)) γ
=* J loop f |Kn (sLoop m mf) n (map (_:: γ) xs)

Proof of the basic relation The proof of the basic convertibility relation between
mapAccumL-par and loop proceeds by induction on the input vector xs. Due to
the deliberate choice of semantics for both constructors involved, and the choice
of the right parameters for the application of each, a considerable part of the
proof is achieved by just the built-in reduction behaviour of the proof assistant
(Agda).

The only key lemma involved is shown below. Namely, the state-independence
principle is shown to hold for a whole vector, assuming that it holds for the body
circuit f.

state-independent-vec : ∀ (mfas mfbs : Vec (λs f) n) (p : state-independent f)
→ mapAccumL2 (transformF J f |Ks2 γ) e mfas xs
≡ mapAccumL2 (transformF J f |Ks2 γ) e mfbs xs

This lemma is useful because both left-hand side and right-hand side of the
convertibility relation can be transformed into applications of mapAccumL2 sim-
ply by reduction, but with di�erent state vector parameters. Thus the lemma
is used to bring the sub-goals to a state where they can be closed by using the
induction hypothesis.

mapAccumL-par-seq :
J mapAccumL-par f (val m) xs |Ks (sMapAccumL-par (replicate mf)) γ

=* J loop f |Kn (sLoop m mf) n (map (_:: γ) xs)
mapAccumL-par-seq f mf m (x :: xs) γ p = g:m , g:ys where

m′ , mf′ , y = (transformF J f |Ks2 γ) m mf x -- take one step
ih:m , ih:ys = mapAccumL-par-seq f mf′ m′ xs γ p -- ind. hyp.
lemma = state-independent-vec f xs (replicate mf) (replicate mf′) p

g:m : p1 (p2 (J mapAccumL-par f . . . |Ks . . .)) ≡ gets0 (p1 (J loop f |Kn . . .))
g:ys : p2 (p2 (J mapAccumL-par f . . . |Ks . . .)) ≡ p2 (J loop f |Kn . . .)

g:m = (cong . . . lemma) 〈 trans 〉 ih:m
g:ys = cong2 . . . ((cong . . . lemma) 〈 trans 〉 ih:ys)

Convertibility of derived combinators When building circuits using the derived
parallel and sequential combinators (map, foldl-scanl, etc.), the convertibility
between di�erent (more or less parallel) variants of such circuits rely on the
convertibility between the di�erent variants of the combinators themselves.

The basic convertibility principle shown above between mapAccumL-par and
loop is the most general one, and can be directly applied to the derived combi-
nators as well, as they are all just a specialized instance of mapAccumL-par or
loop. However, for the derived combinators, some more speci�c properties are
useful.

With regards to the map combinators, for example, we wish that the vectors
produced by the parallel and sequential versions be equal, without any regard
for initial or �nal states. This can be succinctly expressed as:

snd (J map-par f xs |Ks units γ)
≡ snd (J map-seq f |Kn units′ (map (_:: γ) xs))

Where units and units′ are simply the states (composed of units) that need to
be passed to the semantic function but are irrelevant for the computed vectors.

On the other hand, when comparing foldl-par to foldl-seq, the intermediate
values produced in the output of foldl-seq are disregarded, and only the �nal
state matters.

fst (J foldl-par f (val e) xs |Ks m γ)
≡ fst (J foldl-seq f |Kn (sFoldl e m) (map (_:: γ) xs))

Both of these properties (for map and for foldl) can simply be proven by ap-
plication of the general property shown above for mapAccumL-par and loop. This
is because the de�nition of the derived combinators is just a partial application
of mapAccumL-par and loop, along with projections.

5.2 Applications of the parallel and sequential combinators

In this section we describe several variants of circuit families that compute matrix
multiplication, as a commonly used application of the aforementioned techniques.

The �rst design choice involved in this example application is how to represent
matrices, i.e., the choice of the matrix type. Traditionally in computing contexts,
matrices are mostly represented in two ways: row major (vector of rows) and
column major (vector of columns). As it turns out, both representations are
useful for our purposes, so we show both here:

RMat CMat : (r c : N)→ U N
RMat r c = vec (vec N c) r
CMat r c = vec (vec N r) c

Here, RMat r c and CMat r c both represent matrices with r rows and c
columns, the di�erence being only whether they are row- or column-major. Go-
ing further with the example, we need to de�ne the basic ingredient of matrix
multiplication: the dot product of two equally-sized vectors.

dp : λH (vec N n)→ λH (vec N n)→ λH N
dp xs ys = foldl-par _:+:_ (val 0) (zipWith-par _:*:_ xs ys)

The dot product is simply de�ned as element-wise multiplication of the vec-
tors and summing up the results. We can then use the dot product m times in
order to multiply a vector by a compatibly-sized matrix.

vec×mat-par : λH (vec N n)→ λH (CMat n m)→ λH (vec N m)
vec×mat-par v m = map-par (dp v) m

Here an important detail resides: as the dot product is done for each col-
umn of the matrix, the matrix argument of vec×mat must be in column-major
representation. Also, here we start having choices: we may either have the com-
putation done in parallel as above, or sequentially as below:

vec×mat-seq : λH (vec N n)→ λH (vec N n)→ λH N
vec×mat-seq v m = map-seq (dp v) m

With the multi-step semantics in mind, we know that each of the m columns
of the matrix will be present on the circuit's second input, one per clock cycle,
and that collecting the output values for m cycles gives the same vector of results
as the one from the parallel version.

For de�ning the multiplication of two matrices, we simply use vec×mat on
each row of the left matrix. If using vec×mat-par, we obtain a matrix multipli-
cation circuit with area proportional to r * c, whereas by using vec×mat-seq the
area is proportional to r * 1.

mat×mat-par : λH (RMat n m)→ λH (CMat m p)→ λH (RMat n p)
mat×mat-par mr mc = map-par (�ip vec×mat-par mc) mr
mat×mat-seq : λH (RMat n m)→ λH (vec N m)→ λH (vec N n)
mat×mat-seq mr mc = map-par (�ip vec×mat-seq mc) mr

In the parallel version (mat×mat-par), all the rows in the resulting matrix
are computed in parallel, with the column-positioned values inside each row
computed also in parallel. In the sequential version, at each clock cycle one
whole column is produced, with the row-positioned values inside each column
computed in parallel.

Matrix multiplication as de�ned here has two nested recursion blocks, and
thus four ways in which it could be sequentialized. Above we have shown two
possible such choices, and the other two can simply be obtained by swapping
map-par for map-seq.

6 Discussion

6.1 Related work

There is a rich tradition of using functional programming languages to model
and verify hardware circuits, Sheeran (2005) gives a good overview � we restrict
ourselves to the most closely related languages here. Languages embedded in
Haskell, such as Lava and Wired, typically rely on automated theorem provers
and testing using QuickCheck for veri�cation. In λπ-Ware, however, we can per-
form inductive veri�cation of our circuits. Existing embeddings in most theorem
provers, such as Coquet and π-Ware, have a more limited treatment of variable
scoping and types. More recent work by Choi et al. (2017) is higher level, but
sacri�ces the ability to be simulated directly in the theorem prover.

6.2 Future work

Other timing transformations While our language easily lets you explore possible
designs, trading time and space, there are several alternative transformations,
such as pipelining that we have not yet tried to describe in this setting.

While we have a number of combinators for transforming between parallel
and sequential circuits, these are mostly aimed at linear, list-like data. Event
though these structures are the most prevalent in hardware design, we would
like to explore related timing transformations on tree-structured circuits. To
this end, it would be interesting to look into the formalization and veri�cation
of �attening transformations, and of the work done in the �eld of nested data
parallelism.

Relaxed unrolling restriction In Section 5.1 we mention that the proof of seman-
tics preservation for loop unrolling relies on the premise that the loop body is
state-independent, that is, it has the same input/output behaviour for any given
state. This premise can be relaxed somewhat, and proving that loop unrolling
still preserves semantics under this relaxed premise is (near-)future work.

The relaxed restriction on the body f of a loop to be unrolled is as follows:

state-input-independent : ∀ (c : λB Γ τ)→ Set
state-input-independent c = fst (J c |Ks sa γ) ≡ fst (J c |Ks sa δ)

That is, the next state of the loop body (fst projection of the evaluation
result) does not depend on the values in its input environment. This condition is
necessary because when writing the parallel version of a loop construct we must
give each copy of f its own initial state. As the desired initial state for each such
copy must be known at veri�cation time, it cannot depend on input.

7 Conclusion

There are several advantages to be gained by embedding a hardware design
DSL in a host language with dependent types, such as Agda. Among these
advantages are the easy enforcement of some well-formedness characteristics of
circuits, the power given by the host's type system to express object language
types and design constraints. The crucial advantage though, is the ability to have
modelling, simulation, synthesis and theorem proving in the same language.

By using the host language's theorem-proving abilities, we are able not only
to show properties of individual circuits, but of (in�nite) classes of circuits,
de�ned by using circuit generators. Particularly interesting is the ability to have
veri�ed transformations, preserving some semantics.

The focus of this paper lies on timing-related transformations, but we also
recognize the promise of theorem proving for the formalization of other non-
functional aspects of circuit design, such as power consumption, error correction,
fault-tolerance and so forth. The formal study of all these aspects of circuit con-
struction and program construction could bene�t from mechanized veri�cation.

Acknowledgments

We would like to thank the very fruitful collaboration and helpful feedback gath-
ered during the visit to Chalmers University of Technology, funded by COST
Action EUTypes CA15123. Especially valuable were the meetings and discus-
sions with Mary Sheeran, whose deep knowledge of the �eld oriented and gave
perspective to this work in its beginning stage. Also, we are deeply thankful to
the comments and feedback gathered during our presentation on this topic given
at the TFP2017 conference in Canterbury.

This work was supported by the Netherlands Organization for Scienti�c Re-
search (NWO) project on A Dependently Typed Language for Veri�ed Hardware.

Bibliography

Robert Atkey, Sam Lindley, and Jeremy Yallop. Unembedding Domain-speci�c
Languages. In Proceedings of the 2Nd ACM SIGPLAN Symposium on Haskell,
Haskell '09, pages 37�48, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-
508-6. doi: 10.1145/1596638.1596644. URL http://doi.acm.org/10.1145/

1596638.1596644.
Emil Axelsson, Koen Claessen, and Mary Sheeran. Wired: Wire-Aware Circuit
Design. In Correct Hardware Design and Veri�cation Methods, pages 5�19.
Springer, Berlin, Heidelberg, October 2005. doi: 10.1007/11560548_4. URL
https://link.springer.com/chapter/10.1007/11560548_4.

Christiaan Pieter Rudolf Baaij. Digital circuits in ClaSH: functional speci�ca-
tions and type-directed synthesis. info:eu-repo/semantics/doctoralThesis, Uni-
versity of Twente, Enschede, January 2015. URL https://doi.org/10.3990/

1.9789036538039.
Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: hardware
design in Haskell. ACM SIGPLAN Notices, 34(1):174�184, January 1999.
ISSN 03621340. doi: 10.1145/291251.289440. URL http://portal.acm.org/

citation.cfm?doid=291251.289440.
Richard J Boulton, Andrew D Gordon, Michael JC Gordon, John Harrison,
John Herbert, and John Van Tassel. Experience with embedding hardware
description languages in hol. In TPCD, volume 10, pages 129�156, 1992.

Edwin Brady, James Mckinna, and Kevin Hammond. Constructing Correct
Circuits: Veri�cation of Functional Aspects of Hardware Speci�cations with
Dependent Types. In Trends in Functional Programming 2007, 2007.

Thomas Braibant. Coquet: A Coq Library for Verifying Hardware. In Jean-
Pierre Jouannaud and Zhong Shao, editors, Certi�ed Programs and Proofs,
number 7086 in Lecture Notes in Computer Science, pages 330�345. Springer
Berlin Heidelberg, January 2011. ISBN 978-3-642-25378-2, 978-3-642-25379-9.
URL http://link.springer.com/chapter/10.1007/978-3-642-25379-9_

24.
Thomas Braibant and Adam Chlipala. Formal Veri�cation of Hardware Syn-
thesis. In Natasha Sharygina and Helmut Veith, editors, Computer Aided
Veri�cation, number 8044 in Lecture Notes in Computer Science, pages
213�228. Springer Berlin Heidelberg, January 2013. ISBN 978-3-642-39798-
1 978-3-642-39799-8. URL http://link.springer.com/chapter/10.1007/

978-3-642-39799-8_14.
Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chli-
pala, and Arvind. Kami: A platform for high-level parametric hardware
speci�cation and its modular veri�cation. Proc. ACM Program. Lang., 1
(ICFP):24:1�24:30, August 2017. ISSN 2475-1421. doi: 10.1145/3110268. URL
http://doi.acm.org/10.1145/3110268.

Andy Gill, Tristan Bull, Garrin Kimmell, Erik Perrins, Ed Komp, and Brett
Werling. Introducing Kansas Lava. In Proceedings of the Symposium on Im-

http://doi.acm.org/10.1145/1596638.1596644
http://doi.acm.org/10.1145/1596638.1596644
https://link.springer.com/chapter/10.1007/11560548_4
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.3990/1.9789036538039
http://portal.acm.org/citation.cfm?doid=291251.289440
http://portal.acm.org/citation.cfm?doid=291251.289440
http://link.springer.com/chapter/10.1007/978-3-642-25379-9_24
http://link.springer.com/chapter/10.1007/978-3-642-25379-9_24
http://link.springer.com/chapter/10.1007/978-3-642-39799-8_14
http://link.springer.com/chapter/10.1007/978-3-642-39799-8_14
http://doi.acm.org/10.1145/3110268

plementation and Application of Functional Languages, volume 6041 of LNCS.
Springer-Verlag, Sep 2009.

F. K. Hanna and N. Daeche. Dependent Types and Formal Synthesis. Philo-
sophical Transactions: Physical Sciences and Engineering, 339(1652):121�135,
April 1992. ISSN 0962-8428. URL http://www.jstor.org/stable/54016.

T. Melham. Higher Order Logic and Hardware Veri�cation, volume 31 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1993. ISBN 0-521-41718-X. doi: 10.1017/CBO9780511569845. URL
http://www.cs.ox.ac.uk/tom.melham/pub/Melham-1993-HOL.html.

Joao Paulo Pizani Flor, Yorick Sijsling, and Wouter Swierstra. π-ware : Hard-
ware description and veri�cation in agda. In Tarmo Uustalu, editor, 21th
International Conference on Types for Proofs and Programs (TYPES 2015),
Leibniz International Proceedings in Informatics (LIPIcs), 2016.

I Sander and A Jantsch. System modeling and transformational design re�ne-
ment in ForSyDe [formal system design]. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 23(1):17�32, January 2004.
ISSN 0278-0070. doi: 10.1109/TCAD.2003.819898.

M Sheeran. Hardware Design and Functional Programming: a Perfect
Match. 2005. URL http://www.jucs.org/jucs_11_7/hardware_design_

and_functional/jucs_11_7_1135_1158_sheeran.pdf.
Mary Sheeran. muFP, a language for VLSI design. In Proceedings of the 1984
ACM Symposium on LISP and functional programming, pages 104�112. ACM
Press, 1984. ISBN 0897911423. doi: 10.1145/800055.802026. URL http:

//portal.acm.org/citation.cfm?doid=800055.802026.
S. Singh. Designing recon�gurable systems in Lava. In VLSI Design, 2004.
Proceedings. 17th International Conference on, pages 299�306, 2004. doi: 10.
1109/ICVD.2004.1260941.

http://www.jstor.org/stable/54016
http://www.cs.ox.ac.uk/tom.melham/pub/Melham-1993-HOL.html
http://www.jucs.org/jucs_11_7/hardware_design_and_functional/jucs_11_7_1135_1158_sheeran.pdf
http://www.jucs.org/jucs_11_7/hardware_design_and_functional/jucs_11_7_1135_1158_sheeran.pdf
http://portal.acm.org/citation.cfm?doid=800055.802026
http://portal.acm.org/citation.cfm?doid=800055.802026

	Verified Timing Transformations in Synchronous Circuits with -Ware

