
Embedding the Refinement Calculus in Coq

João Alpuim

University of Hong Kong

Wouter Swierstra

Universiteit Utrecht

Abstract

The refinement calculus and type theory are both frameworks that support the
specification and verification of programs. This paper presents an embedding
of the refinement calculus in the interactive theorem prover Coq, clarifying the
relation between the two. As a result, refinement calculations can be performed
in Coq, enabling the interactive calculation of formally verified programs from
their specification.

1. Introduction

The idea of deriving a program from its specification can be traced back to
Dijkstra (1976), Floyd (1967) and Hoare (1969). The refinement calculus (Back,
1978; Morgan, 1990; Back and Wright, 1998) defines a formal methodology that
can be used to construct a derivation of a program from its specification step by
step. Crucially, the refinement calculus presents single language for describing
both programs and specifications.

Deriving complex programs using the refinement calculus is no easy task.
The proofs and obligations can quickly become too complex to manage by hand.
Once you have completed a derivation, the derived program must still be tran-
scribed to a programming language in order to execute it – a process which can
be rather error-prone (Morgan, 1990, Chapter 19).

To address both these issues, we show how the refinement calculus can be
embedded in Coq, an interactive proof assistant based on dependent types.
Although others have proposed similar formalizations of the refinement cal-
culus (Back and von Wright, 1990; Hancock and Hyvernat, 2006), this paper
presents the following novel contributions:

• After giving a brief overview of the refinement calculus (Section 2), we
begin by developing a library of predicate transformers in Coq, based on

Email addresses: alpuim@cs.hku.hk (João Alpuim), w.s.swierstra@uu.nl (Wouter
Swierstra)

Preprint submitted to Science of Computer Programming March 27, 2017

indexed containers (Altenkirch and Morris, 2009; Hancock and Hyvernat,
2006), making extensive use of dependent types (Section 3). We define a
refinement relation, corresponding to a morphism between indexed con-
tainers, enabling us to prove several simple refinement laws in Coq.

• Next we show how to embed effects, such as mutable state and general
recursion, in Coq using a free monad. We assign semantics to programs in
this monad using the predicate transformers and refinement relation we
described previously (Section 4).

• These definitions give us the basic building blocks for formalizing deriva-
tions in the refinement calculus. They do, however, require that the de-
rived program is known a priori. We address this and other usability
issues (Section 5).

• Finally, we validate our results by performing a small case study 1. In
particular, we show how we can use this library to calculate interactively
the key ingredients of a data structure for persistent arrays (Section 6).

2. Refinement calculus

The refinement calculus, as presented by Morgan (1990), extends Dijkstra’s
Guarded Command language with a new language construct for specifications.
The specification [pre, post] is satisfied by a program that, when supplied an
initial state satisfying the precondition pre, can be executed to produce a final
state satisfying the postcondition post. Crucially, this language construct may
be mixed freely with (executable) code constructs.

Besides these specifications, the refinement calculus defines a refinement re-
lation between programs, denoted by p1 v p2. This relation holds when
forall P ,wp(p1,P)⇒ wp(p2,P), where wp denotes the usual weakest precondi-
tion semantics of a program and its desired postcondition. Intuitively, you may
want to read p1 v p2 as stating that p2 is a ‘more precise specification’ than
p1.

A program is said to be executable when it is free of specifications and only
consists of executable statements. Morgan (1990) refers to such executable
programs as code. To calculate an executable program C from its specification
S , you must find a series of refinement steps, S v M0 v M1 v ... v C .
Typically, the intermediate programs, such as M0 and M1, mix executable code
fragments and specifications.

To find such derivations, Morgan (1990) presents a catalog of lemmas that
can be used to refine a specification to an executable program. Some of these
lemmas define when it is possible to refine a specification to code constructs.
These lemmas effectively describe the semantics of such constructs. For exam-
ple, the following law may be associated with the skip command:

1All the code and examples presented in this paper can be found online at https://github.
com/jalpuim/dtp-refinement.

2

https://github.com/jalpuim/dtp-refinement
https://github.com/jalpuim/dtp-refinement

[x = X ∧ y = Y , x = Y ∧ y = X]

v { by the following assignment law }
[x = X ∧ y = Y , t = Y ∧ y = X]; x ::= t

v { by the following assignment law }
[x = X ∧ y = Y , t = Y ∧ x = X]; y ::= x ; x ::= t

v { by the following assignment law }
[x = X ∧ y = Y , y = Y ∧ x = X]; t ::= y ; y ::= x ; x ::= t

v { by the law for skip }
skip; t ::= y ; y ::= x ; x ::= t

Figure 1: Derivation of the swap program

Lemma 1 (skip). If pre⇒ post, then [pre, post] v skip.

Besides such primitive laws, there are many recurring patterns that pop up
during refinement calculations. For example, combining the rules for sequential
composition and assignment, the following assignment lemma holds:

Lemma 2 (following assignment). For any term E,

[pre, post] v [pre, post [w\E]]; w ::= E

We illustrate how these rules may be used to calculate the definition of a
program from its specification. Suppose we would like to swap the values of
two variables, x and y . We may begin by formulating the specification of our
problem as:

[x = X ∧ y = Y , x = Y ∧ y = X]

Using the two lemmas we saw above, we can refine this specification to an
executable program. The corresponding calculation is given in Figure 1. Note
that we have chosen to give a simple derivation that contains some redundancy,
such as the final skip statement, but uses a modest number of auxiliary lemmas
and definitions.

For such small programs, these derivations are manageable by hand. For
larger or more complex derivations, it can be useful to employ a computer to
verify the correctness of the derivation and even assist in its construction. In
the coming sections we will develop a Coq library for precisely that.

3. Predicate transformers

In this section, we will assume there is some type S , representing the state
that our programs manipulate. In Section 4 we will show how this can be in-

3

stantiated with a (model of a) heap. For now, however, the definitions of speci-
fications, refinement, and predicate transformers will be made independently of
the choice of state.

We begin by defining a few basic constructions in Coq:

Definition Pred (A : Type) : Type := A→ Type.

This defines the type Pred A of predicates over some type A. Using this defini-
tion we can define a subset relation between predicates as follows:

Definition subset (A : Type) (P1 P2 : Pred A) := forall x , P1 x → P2 x .

A predicate P1 is a subset of the predicate P2, if any state satisfying P1 also
satisfies P2. In the remainder of this paper, we will write P1 ⊆ P2 when the
property subset P1 P2 holds.

Next we can define the PT data type, consisting of a precondition and post-
condition:

Record PT (A : Type) : Type :=
MkPT {pre : Pred S ;

post : forall s : S , pre s → A→ Pred S }.

The postcondition is a relation between the input state, a proof that this input
state satisfies the precondition, the value of type A returned by the computation,
and the output state. To avoid the need for ‘ghost variables’, we allow this
relation to refer to both the input and output states (Nanevski et al., 2008b;
Swierstra, 2009a,b). As this data type will be used to represent specifications,
we will use the notation [P ,Q] rather than the more verbose MkPT P Q .

As its name suggests, the PT type has an obvious interpretation as a predicate
transformer, i.e., a function mapping predicates to predicates:

Definition semantics {A : Type} (pt : PT A) : Pred (A ∗ S)→ Pred S :=
fun P s ⇒ {p : pre pt s & forall s ′ v , post pt s p v s ′ → P (v , s ′)}.

The semantics function computes the weakest precondition necessary to guaran-
tee that the desired postcondition P holds after executing a program satisfying
the given specification pt . Intuitively, the precondition of the specification must
hold and the postcondition must imply P . We will sometimes write JptK rather
than semantics pt for the sake of brevity. In what follows, we will sometimes
leave out implicit argument, such as the argument {A : Type} in the semantics
function, from the typeset code presented here.

Next, we characterize the refinement relation between two values of type PT
as follows:

Inductive Refines (pt1 pt2 : PT A) : Type :=
Refinement : forall (d : pre pt1 ⊆ pre pt2),

(forall s p v , post pt2 s (d s p) v ⊆ post pt1 s p v)→
Refines pt1 pt2.

4

We consider pt2 to be a refinement of pt1 when the precondition of pt1 implies
the precondition of pt2 and the postcondition of pt2 implies the postcondition
of pt1. As our postconditions are relations, we need to do some work to describe
the latter condition. In particular, we need to transform the assumption that
the initial state holds for the precondition of pt1 to produce a proof that the
precondition of pt2 also holds for the same initial state. To do so, we use the
first condition, d , that the precondition of pt1 implies the precondition of pt2.
We will use the notation, pt1 v pt2, for the proposition Refines pt1 pt2.

To validate the correctness of this definition, we will show that it satisfies
the characterization of refinement in terms of weakest precondition semantics
given in Section 2. To do so, we have proven the following soundness result:

Theorem soundness : forall (pt1 pt2 : PT A),
pt1 v pt2 ↔ forall P , Jpt1K P ⊆ Jpt2K P .

In other words, the Refines relation adheres to the characterization of the refine-
ment relation in terms of predicate transformer semantics. The proof is almost
trivial after unfolding the various definitions involved.

Even if we have not yet fixed the state space S , we can already prove that
the structural laws of the refinement calculus, such as strengthening of postcon-
ditions, hold:

Lemma strengthen (P : Pred S) (Q1 Q2 : forall s,P s → A→ Pred S)
(H : forall (s : S) (v : A) (p : P s), Q1 s p v ⊆ Q2 s p v) :
Refines ([P , Q2]) ([P , Q1]).

To prove this lemma, we need to show that P ⊆ P and that the postcondition
Q1 implies Q2. The first proof is trivial; the second follows immediately from
our hypothesis. Similarly, we can show that the refinement relation is both
transitive and reflexive.

These definitions by themselves are not very useful. Before we can perform
any program derivation, we first need to fix our programming language.

4. Embedding in Coq

In our previous work (Swierstra and Alpuim, 2016), we showed how to de-
fine a deep embedding of small, imperative programming language. By defin-
ing predicate transformers associated with the various syntactic constructs, we
could then calculate a program from its specification. Such a deep embedding
of the language allows us to inspect the abstract syntax of our object language,
enabling us to generate programs calculated from their specifications. This ap-
proach does have its drawbacks. In particular, the imperative programming
language was too restrictive to cover many, more interesting examples. Fur-
thermore, the mutable references were only allowed to store integers. In this
extended paper, we address these issues.

To begin with, we fix our choice of state S to be a finite map from an abstract
type Ptr to some type of values v . All our developments are parametrised over

5

the particular choice of type to store on the heap. Although we use the finite
map modules from Coq’s standard library to model the heap, several alternative
representations exist (Nanevski et al., 2008a; Swierstra and Altenkirch, 2007;
Swierstra, 2009b).

Instead of a deep embedding of the imperative language, we will provide
a deep embedding only of the effects of our object language, namely mutable
state and unbounded recursion by defining a suitable free monad. We will then
piggyback on Coq’s programming language, Gallina, to define programs using
these effects. We can then customize Coq’s extraction to OCaml to map these
syntactic constructs to their native OCaml counterparts.

We model the effects as an inductive data type in Coq:

Inductive WhileL (a : Type) : Type :=
| New : v → (Ptr→WhileL a)→WhileL a
| Read : Ptr→ (v →WhileL a)→WhileL a
|Write : Ptr→ v →WhileL a →WhileL a
|While : (S → Prop)→ (S → bool)→ (WhileL unit)→

WhileL a →WhileL a
| Spec : PT a →WhileL a
| Return : a →WhileL a.

This data type has constructors for the creation of (New), access of (Read),
and assignment to (Write) mutable references. Each of these constructors takes a
continuation as argument, representing the remaining computation to perform.
Loops may be introduced using the While constructor that takes four arguments:
the loop invariant of type S → Prop; the condition of type S → bool; the loop
body of type WhileL unit; and the remaining computation. The constructor Spec
contains the specification of an unfinished program fragment. The refinement
laws we will define shortly determine how such specifications may be refined to
executable code. Finally, the Return constructor simply returns a ‘pure’ Coq
value.

Semantics

Before discussing the refinement calculation further, we need to fix the se-
mantics of our language. We shall do so by associating a predicate transformer,
i.e., a value of type PT, with every constructor of the WhileL data type.

Each rule in in Figure 2 associates pre- and postconditions, i.e., a value of
type PT, with the constructors of the WhileL data type. We use the somewhat
suggestive notation, {P } c {Q } to associate with the statement c the conditions

[P ,Q]. We also use the notation p
s7→ v to denote that s maps the pointer p

to value v , and p
s7→ to denote that p has some associated value in s. Finally,

the notation P (s [p 7→ v]) denotes that the condition P should hold after
updating the state s, mapping the pointer p to value v .

These rules are not added as axioms to Coq; nor are they the constructors
of an inductive data type. Rather, we can assign semantics to our WhileL data
type directly, as a recursive function:

6

Return{True} Return y {s = s ′ ∧ x = y }

p
s7→ v {P } k v {Q }

Read{P } Read p k {Q }

p
s7→ {P } k {Q }

Write{P (s [p 7→ v])}Write p v k {Q (s [p 7→ v]) x s ′}

p 6∈ dom (s) {P } k p {Q }
New{P (s [p 7→ v])} New v k {Q (s [p 7→ v]) x s ′}

{P1} b {Q1} forall s,¬ c(s) ∧ I s → P2 s {P2} k {Q2}
While{ I s ∧ (∀ t , c(t) ∧ I t → P1 t)∧ }

While c do b od k
{
Q2

}
∀ t t ′, c(t) ∧ I t ∧Q1 t t ′ → I t ′

Figure 2: Semantics of While

Fixpoint semantics (c : WhileL a) : PT a

In addition to the rules from Figure 2, this function simply maps specifications,
represented by the Spec constructor, to their associated predicate transformer.

Let us examine the rules in Figure 2 a bit more closely. Each precondition
may refer to an initial state s; each postcondition is formulated as a relation
between an initial state s, satisfying the precondition, the result returned x , and
the final state s ′. For example, the postcondition of the Return rule states that
the initial state s is equal to the final state s ′ and the result of the computation
is indeed the argument of the Return constructor.

The other rules are defined by induction on the program. For example, the
rule for Read states that, provided the current state maps the pointer p to the
value v , and the remainder of the program has an associated precondition P and
postcondition Q , the composite program has the same pre- and postcondition.
When the state changes, such as in the rules for Write and New, this style of
definition can be a bit confusing. The Write rule, for instance, computes the
precondition and postcondition associated with the remaining program k . The
composite program Write p v k then requires that the precondition P associated
with k holds after updating the state. Similarly, the postcondition Q should
relate the state after being updated with the result x and final state s ′. The
New rule follows exactly the same pattern.

Finally, the While rule is the most complex. Besides the precondition, P1,
and postcondition, Q1, associated with the body of the loop b, the While rule
requires the programmer to specify the loop invariant, I , and continuation k .

7

The precondition of the While rule consists of three conjuncts:

• the invariant I must hold initially;

• the boolean guard c and the invariant must together imply the precondi-
tion of the loop body;

• the loop body must preserve the invariant.

Furthermore, when the loops is finished and c no longer holds, this must imply
the precondition of the continuation k . Finally, the entire expression has the
postcondition Q2 associated with the continuation k . Note that this formulation
captures partial correctness; there is no variant ensuring that the loop must
terminate eventually.

Using these semantics, we now define a refinement relation between state-
ments programs in the WhileL language:

Definition WhileRefines (c1 c2 : WhileL a)
:= Refines (semantics c1) (semantics c2).

Once again, we will use the notation c1 v c2 when WhileRefines c1 c2 holds.

Composing programs

It is rather straightforward to show that WhileL supports a monadic bind
operation:

Fixpoint bind {a b : Type} (w : WhileL a) (k : a →WhileL b) : WhileL b
:= match w with
| New v c ⇒ New v (fun p ⇒ bind (c p) k)
| Read p c ⇒ Read p (fun v ⇒ bind (c v) k)
|Write p v c ⇒Write p v (bind c k)
|While Inv cond body c ⇒While Inv cond body (bind c k)
| Spec pt ⇒ Spec (bindPT pt (fun x ⇒ semantics (k x)))
| Return x ⇒ k x

end.

The function is inductively defined on the first program w . The first four
cases simply propagate the bind operation to their respective continuations.
The only interesting case is that for specifications. The Spec case creates a new
PT, by using its associated predicate transformer composition operator bindPT ,
corresponding to taking the relational composition of the specification and the
semantics associated with the continuation. Finally, the Return case applies k
to the value x .

Using this definition of bind, we can assemble larger, composite programs
that use different effectful operations.

8

Example: square root

With these definitions in place, we can now formalize a refinement derivation
such as the one in Figure 1. However, we do so with a program which calculates
the square root of a number using binary search, taken from our previous work.
This program is not particularly interesting algorithmically, but illustrates how
to use all of the refinement rules we have seen so far.

We begin by defining the specification:

Definition sqrtSpec (P : Ptr) : PT nat :=
[(exists t , find s P = Some t), (v2 6 t < (v + 1)2)]

The precondition requires that P is a valid pointer in our heap, pointing to
some value t . The postcondition guarantees that after execution, the result v
will be the square root of the original value t .

Next we can sketch a candidate sqrt program:

t ← read P
Q ← new Q (t + 1)
R ← new R 0
while(read R + 1 6≡ read Q)

q ← read Q
r ← read R
let mid := (q + r) / 2

if (t <mid2)
then write Q mid
else write R mid

r ← read R
return r

The program starts by creating two auxiliary variables R and Q , which will
serve as the search bounds. The lower bound R is initially set to 0, while the
upper bound Q is set to (t + 1). The while loop then halves (using integer
division) the interval between these bounds on every iteration until the bounds
are consecutive numbers. The loop also needs an invariant, which should imply
the post-condition. We define this in Coq as:

Definition sqrtInv (Q R : nat) (t : nat) (s : heap nat) :=
exists q , r .find s Q = Some q ∧ find s R = Some r ∧ R 6= Q ∧

r2 6 n < q2.

This invariant can be read as follows: for any value q and r referenced by
pointers Q and R, respectively, the original value t must be in between the
square of q and r . Upon completion, the program returns the value referenced
by R.

Proving this program satisfies its specification, amounts to proving the fol-
lowing sqrtCorrect lemma.

9

Lemma sqrtCorrect (P : Ptr) :
sqrtSpec P v sqrt P .

To do so, we can unfold the definitions of sqrt, sqrtSpec, and the semantics we
defined above, yielding a complex verification condition.

This form of post-hoc verification is very different from the interactive pro-
gram calculation that we would like to perform. We need to write the final
program before we start our proof. After unfolding definitions and β-reduction,
the proof goal that we are left with is often large and unwieldy.

In the next section we will develop machinery to enable the interactive dis-
covery of programs, rather than the mere transcription of an existing proof.

5. Interactive refinement

Although we can now take any pen-and-paper proof of refinement and verify
this in Coq, we are not yet playing to the strengths of the interactive theorem
prover that we have at hand. In this section, we will show how to develop
lemmas and definitions on top of those we have seen so far that facilitate the
interactive calculation of a program from its specification.

We start by defining a function that determines when a statement is exe-
cutable, i.e., when there are no occurrences of the Spec constructor:

Fixpoint isExecutable (c : WhileL a) : Prop

Rather than fixing the exact program upfront, we can now reformulate the
correctness lemma of swap as follows:

Definition deriveSqrt (P : Ptr) :
{c : WhileL nat

& (sqrtSpec P) v c
& isExecutable c}.

The notation {x : A & P x & Q x } in Coq is used to denote a dependent triple
consisting of a witness x : A, a proof that x satisfies the property P and a proof
that x satisfies the property Q .

To prove this lemma we need to provide an executable c : WhileL nat and
a proof that sqrtSpec v c. This is a superficial change – we could now
complete the proof by providing our sqrt program as the witness c and reuse our
previous correctness lemma. Instead of doing this, however, we wish to explore
how to reformulate typical refinement calculus laws to enable the interactive
construction of a suitable program.

We begin by observing that the semantics of our WhileL language proceeds
structurally over the various language constructs. As a result, we can define a
lemma for every language construct, describing precisely when a refinement step
introducing that construct is valid. This corresponds to unfolding the definition
of our semantics, for every construct of the WhileL language. For example, the
rule for the Write statement is formulated below.

10

Lemma writeRefines (w w ′ : WhileL a) (ptr : Ptr) (y : v)
(d : pre (semantics w) ⊆ pre (semantics (Write ptr y w ′)))
(h : forall (s : S) (p : pre (semantics w) s) (x : a),

post (semantics w ′) (update s ptr y) (snd (d s p)) x
⊆ post (semantics w) s p x)

: w v Write ptr y w ′.

Despite the apparent complexity, this lemma is trivial to prove: the two hy-
potheses are exactly what is needed to show that w is refined by Write ptr v w ′.
The first proof obligation states that the precondition of w should imply the
precondition of Write ptr v w ′; the second states that when the postcondition
of w ′ holds on the updated state, i.e. after assigning v to the pointer ptr , the
postcondition of w must also hold.

During the interactive refinement of a specification, however, we typically
are not interested in refining two arbitrary WhileL programs, but rather calcu-
lating an executable WhileL program from its specification. Therefore, we can
specialize the writeRefines lemma above to the case when the first program is a
specification. Unfolding the definition of semantics and massaging the required
hypotheses slightly yields the following lemma:

Lemma writeSpec (ptr : Ptr) (y : v) (spec : PT a) (w : WhileL a)
(H : forall s, pre spec s → {x : v & find s ptr = Some x })
(Step : Spec

([fun s ⇒ {t : S & prod (pre spec t) (s = (update t ptr y))},
fun s pres x s ′ ⇒

(post spec (projT1 pres) (fst (projT2 pres)) x s ′)]) v w) :
Spec spec v Write b ptr y w .

Essentially, this lemma states that to refine a specification with a Write state-
ment, we need to prove that the pointer is already allocated on the heap (the
argument H). Furthermore, we need to show after performing this update, we
can refine the specification on the updated heap to some program w . Here the
usage of relations to represent our postconditions introduce a bit of clutter, hav-
ing to take deconstruct various parts of the precondition using the projections
projT1, fst, and projT2 to formulate the desired postcondition.

We can define similar lemmas describing the verification conditions associ-
ated with introducing other constructors of the WhileL language, such as reading
from memory, allocating a fresh pointer, introducing an if clause, or introducing
a loop.

Note that in some cases, the continuation argument requires a more complex,
higher-order hypothesis. For example, the readSpec lemma has the following
general shape:

Lemma readSpec (ptr : Ptr) (spec : PT a) (w : b →WhileL a)
(H : ...)
(Step : forall v ,Spec [...]) v w v) :
Spec spec v Read b ptr w .

11

Here the Step argument quantifies over the result of the read, v ; the specification
makes precise that v is stored on the heap at address ptr . This complexity
arises as we are interested in the result produced by Read, whereas Write does
not produce and interesting result for the remainder of the computation. This is
a natural generalization of the case for Write to handle those cases where some
command produces a result used by the remaining computation.

We can now introduce custom tactics for each of these lemmas. These tactics
apply the lemma and call some rudimentary proof automation:

Ltac WRITE ptr v := eapply (writeSpec ptr v); simpl goal.

Here the simpl goal tactic unfolds various definitions, triggers β-reduction, and
generally cleans up the proof context and goal. The tactic for While follows a
similar structure:

Ltac WHILE I c := eapply (whileSpec I c); simpl goal.

The constructors that have a non-trivial continuation may introduce new vari-
ables, hence we adapt our tactics accordingly.

Ltac READ ptr v := eapply (readSpec ptr); [| intros v]; simpl goal.

We can also provide custom machinery for constructs defined in Coq itself, such
as conditionals:

Lemma ifSpec (cond : bool) (spec : PT v a) (wt we : WhileL v a) :
(if cond then Spec spec v wt else Spec spec v we)→
(Spec spec v (if cond then wt else we)).

The associated tactic applies this lemma, remembers the condition, and splits
the goal into two sub-goals accounting for the condition’s value:

Ltac IFF c := eapply (ifSpec c); remember c as b; destruct b; simpl goal.

Finally, we can conclude any refinement calculation provided we have a suit-
able value and can show that the precondition implies the postcondition for any
state s:

Lemma returnStep (v : a) (w : WhileL a)
(H : forall (s : S) (P : pre (semantics w) s), post (semantics w) s pre v s) :
w v Return v .

We also define a corresponding tactic, RETURN v .
We now have the ingredients to tackle our problem: interactively proving

deriveSqrt. That is, we must produce some code c, together with a proof that
it refines our specification. The proof proceeds by introducing a new existen-
tial variable for c, which will be constructed while we perform the refinement
calculation. We proceed by finding a refinement derivation by applying tactics

12

econstructor.split.
− READ P t .

NEW (s + 1) Q .
NEW 0 R.
WHILE (sqrtInv Q R s) (Cond Q R).
+ ... (* A proof of pre sqrtSpec→ sqrtInv *)
+ READ Q vInQ .

READ R vInR.
IF (s <? ((vInQ + vInR) / 2)2)
∗WRITE Q ((vInQ + vInR) / 2)

RETURN tt .
... (* heap manipulation *)
∗WRITE P ((vInQ + vInR) / 2)

RETURN tt .
... (* heap manipulation *)

+ READ R vInR.
RETURN tt .
... (* heap manipulation *)

− ... (* proving c to be executable *)

Figure 3: Proof sketch of deriveSqrt

13

one by one, that each modify the remaining specification. We have sketched
the proof in Figure 3. Although it leaves out several proof obligations, it is
hopefully clear that the proof structure closely follows the code. Once we have
shown our derivation correct, we still need to prove that the resulting program
is executable—but this is trivial for any complete program.

The missing proof steps are not too long, but they detract from the overall
structure of the proof that we wish to illustrate here. We refer the interested
reader to our Coq development. Upon completing this proof, we can project
out the c : WhileL unit value to obtain the verified program.

In this style, it is possible to start from a specification and incrementally
write a program that satisfies it. Every step of the way, you can inspect how
the specification evolves after applying a specific command. For larger develop-
ments, however, it may sometimes be desirable to intersperse verification and
program development. In the calculation of sqrt above, the only real verification
is done after each RETURN statement. One way to remedy this is by explicitly
reformulating the specification:

Lemma changeSpec (pt1 pt2 : PT a) (w : WhileL a)
(d : pre pt2 ⊆ pre pt1)
(h : forall (s : S) (x : pre pt2 s) v , post pt1 s (d s x) v ⊆ post pt2 s x v)
(H : Spec pt1 v w) :
Spec pt2 v w .

The changeSpec lemma follows immediately from transitivity of our refinement
relation. Essentially, it allows us to replace the current specification with any
other specification that refines it. We can also introduce a corresponding tactic:

Ltac ASSERT P := unshelve eapply (changeSpec P).

This tactic applies the changeSpec lemma, thereby replacing the current spec-
ification with P . The unshelve tactic requires the user to complete the proof
obligations associated with this application of changeSpec, before continuing
the rest of the program calculation. Using these tactics, we are free to mix
verification and calculational steps.

6. Case study: persistent arrays

As a final case study, we describe the derivation of a library for persistent
arrays. A persistent array is a data-structure that stores a regular array and
maintain the state of previous versions of the same array. Persistent arrays can
be used as efficient building blocks of other data-structures, as in the union-find
data-structure. In our development, we will follow the formalization by Conchon
and Filliâtre (2007) done previously in Coq.

The formalization by Conchon and Filliâtre uses two different modules. The
first provides an implementation and interface for persistent arrays; whereas the
second implements the union-find algorithm using this module. Any side effects

14

are encapsulated in the persistent array module, providing a pure interface for
the union-find structure. We will sketch how to calculate the persistent array
module on which the union-find data structure relies using our library.

The module for persistent arrays has the following signature in OCaml:

module type PersistentArray = sig
type a t
val init : int→ (int→ a)→ a t
val get : a t → int→ a
val set : a t → int→ a → a t

end

This module provides quite standard operations for persistent arrays. The
function init takes an integer corresponding to the size of the array and functional
representation of the array and returns a new persistent array t holding values
of type a. The function get should takes such a value of type a t , an index of
the array and returns the value stored there. Finally the function set accepts
an array, an index and a value, and returns a new container with the old value
on the given index replaced by the value passed as argument.

The derivation of each of these function will consist of three parts: a speci-
fication and an interactive proof demonstrating that we can find an implemen-
tation that meets the specification. For the sake of presentation, however, we
will begin discussing the functions to familiarize readers with the algorithms we
intend to derive. The code for these functions is given in Figure 4.

The inductive data-type PAData represents the data to be stored in the heap.
The Arr constructor holds an array, again represented as a function from indexes
to values – for simplicity, we restrict arrays to only store natural numbers and
we let this function be total. Just as in the work by Conchon and Filliâtre, the
regular array lookup is represented as function application; whereas updating an
array at some position with some value, can be done using the update operation.

The Diff constructor holds a position, a value, and a pointer to another array.
It represents a single change in the referenced array at the given position with
the given value. The Diff constructor is what makes the arrays persistent.

The implementation of init simply creates a new array and returns the pointer
associated to it. The get function recursively looks up a value in the chain of
Diffs until it finds an Arr constructor. The set function behaves differently
depending on the value referenced by t . In the Arr case, the array is modified,
and t is set as a new indirection step and the (modified) array is returned. On
the other hand, if the value in t is already a Diff, then a new indirection step is
created an returned.

Note that Conchon and Filliâtre show a slightly different and more efficient
way to implement get and set. However, this requires a new reroot function,
which would introduce more complexity to our formalization.

We can now formalize specifications of the persistent array functions. When
doing so, we notice that the important property to be verified is that each
function should ensure that all pointers it uses should refer to a well-formed

15

Inductive PAData : Type :=
Arr (nat→ nat)
| Diff nat nat Ptr

init n f = new (Arr f) (fun ptr ⇒ Return ptr)

get t i =
read t >>= fun tval ⇒
match tval with
| Arr a ⇒ lookup a i
| Diff (j , v , t ′)⇒

if i ≡ j then v else get t ′ i

set t i v =
read t >>= fun tval ⇒
match tval with
| Arr a ⇒

let old = lookup a i in
new (Arr (update a i v))>>= fun res ⇒
write t (Diff i old res)>>
return res
| Diff ⇒ new (Diff i v t)

Figure 4: Functions manipulating persistent arrays

structure of a persistent array. In order to express that property, we define the
following predicate, taken from Conchon and Filliâtre (2007):

Inductive pa model (s : heap) : Ptr→ (nat→ nat)→ Type :=
| pa model array :

forall p f , find s p = Some (Arr f)→ pa model s p f
| pa mode diff :

forall p i v p′, find s p = Some (Diff i v p′)→
forall f , pa model s p′ f →
pa model s p (update f i v).

This predicate allows us to relate a heap, a pointer and a function that
represents the referenced array. One may informally explain this predicate as:
pa model s p f holds when a pointer p present in heap s, points to a valid per-
sistant array represented by f . The constructor pa model array states that any
pointer that references an array is a valid pointer and the function it represents
is the f to which it is dereferenced. The constructor pa mode diff says that any
pointer p referencing a Diff i v p′ is also a valid pointer, as long as one can
prove this property inductively for p′. The function representing the array will
be an update of the resulting f in position i of v .

After having defined this predicate, we are now ready to formulate our spec-
ifications and derive their implementation.

16

The derivation of init

The init function is not only straightforward in its definition but also in its
specification:

Definition initSpec (n : nat) (f : nat→ nat) : PT Ptr :=
[fun s ⇒ True
, fun s pres v s ′ ⇒

(forall p′ x : find s p′ = Some x → p′ 6= v) ∧ pa model s ′ v f].

The precondition is trivial: init may be called regardless of the current state
of the heap. The postcondition is slightly more interesting. It states that the
returned pointer v should be fresh and that it points to a valid array, repre-
sented by f . Deriving a suitable implementation for such the init function is
straightforward.

The derivation of set

The specification for the set function is slightly more elaborate:

Definition setSpec (ptr : Ptr) (i : nat) (v : nat) : PT Ptr :=
[fun s ⇒ exists f , pa model s ptr f
, fun s pres newPtr s ′ ⇒

pa model s ′ newPtr (update f i v) ∧ pa model s ′ ptr f].

The precondition requires a function f to exist, such that ptr points to a
valid persistent array modeled by f . The postcondition ensures that, both the
returned pointer and the original pointer will point to valid persistent arrays,
and that the former is a suitably modified version the latter.

The derivation of the implementation of setSpec requires more manual proofs
and requires several auxiliary properties relating the heap and pa model. How-
ever, the application of these properties was quite systematic. Notably, this
shows that there may be further room for customizable automation. When
dealing with custom predicates such as pa model, our rudimentary automation
to simplify terms containing heaps does not have much effect. We believe that
further effort, such as constructing suitable hint databases or tactic customiza-
tion opportunities, the proof-to-program ratio can be much improved.

The derivation of get

The specification for the get function is straightforward:

Definition getSpec (ptr : Ptr) (i : nat) : PT nat :=
[fun s ⇒ exists f : pa model s ptr f
, fun s pres v s ′ ⇒ v = f i].

Somewhat surprisingly, this turned out to be the hardest of the three functions
to derive. Despite the simplicity of the specification, the implementation is
quite complex. Notably, it follows pointers in the heap and is not (obviously)

17

structurally recursive. We chose to derive a variant of the original definition,
introducing a While loop. The proof obligations can grow quite unwieldy – once
again highlighting the need for further automation to keep their complexity in
check.

We have sketched how to derive a library for persistent arrays. We expect
that this development can be further combined with the development of other
libraries that use persistent arrays as its key components, such as the existing
Coq verification of the union-find data structure.

7. Discussion

The choice of our PT types and definition of refinement relation are not
novel. Similar definitions of indexed containers (Altenkirch and Morris, 2009)
and interaction structures (Hancock and Setzer, 2000a,b) can already be found
in the literature. Indeed, part of this work was triggered by Peter Hancock’s
remark that these structures are closely related to predicate transformers and
the refinement relation between them, as we have made explicit in this paper.

We are certainly not the first to explore the possibility of embedding a refine-
ment calculus in a proof assistant. One of the first attempts to do so, to the best
of our knowledge, was by Back and Von Wright (Back and von Wright, 1989).
They describe a formalization of several notions, such as weakest precondition
semantics and the refinement relation, in the interactive theorem prover HOL.
This was later extended to the Refinement Calculator (Butler et al., 1997), that
built a new GUI on top of HOL using Tcl/Tk. More recently, Dongol et al. have
extended these ideas even further in HOL, adding a separation logic and its asso-
ciated algebraic structure (Dongol et al., 2015). There are far fewer such imple-
mentations in Coq, Boulmé (2007) being one of the few exceptions. In contrast
to the approach taken here, Boulmé explores the possibility of a monadic, shal-
low embedding, by defining the Dijkstra Specification Monad. Where Boulmé’s
work explores the lattice theoretic structure and fixpoint theory of refinement
relation in Coq, it lacks custom refinement such as those presented here.

There is a great deal of work marrying effects and dependent types. Swier-
stra’s thesis explores one potential avenue: defining a functional semantics for
effects (Swierstra, 2009b; Swierstra and Altenkirch, 2007). For some effects,
such as non-termination, defining such a functional semantics in a total lan-
guage is highly non-trivial. Therefore, systems such as Ynot take a different
approach (Nanevski et al., 2008b). Ynot extends Coq with several axioms, cor-
responding to the different operations various effects support, such as reading
from and writing to mutable state. The type of these axioms captures all the
information that a programmer may use to reason about such effects. These
types are similar to those presented here in Figure 2. Contrary to the approach
taken here, however, Ynot lets users write their programs without considering
their specification. Users only need to write proofs after specifying the pre- and
postconditions for a certain function. The refinement calculus, on the other
hand, starts from a specification, which is gradually refined to an executable
program.

18

In the future, we hope to investigate how these various approaches to veri-
fication may be combined. One obvious next step would be to re-use the sep-
aration logic and associated proof automation defined by later installments of
Ynot (Chlipala et al., 2009) as the model of the heap in our refinement calcu-
lus. Furthermore, we have (for now) chosen to ignore the variants associated
with loops. As a result, the programs calculated may diverge. Embellishing our
definitions with loop variants is straightforward, but will make our definitions
even more cumbersome to use.

Type theory and the refinement calculus are both frameworks that combine
specification and calculation. By embedding the refinement calculus in type
theory, we study their relation further. The interactive structure of many proof
assistants seems to fit well with the idea of calculating a program from its spec-
ification step-by-step. How well this approach scales, however, remains to be
seen. For now, the embedding presented in this paper identifies an alterna-
tive point in the spectrum of available proof techniques for the construction of
verified programs.

Acknowledgments. The second author would like to thank Peter Hancock for
his patience in explaining the relation between interaction structures and the
refinement calculus. The second author’s visit to Scotland was funded by the
London Mathematical Society’s Scheme 7 grant.

Thorsten Altenkirch and Peter Morris. Indexed containers. In Logic In Com-
puter Science, 2009. LICS’09. 24th Annual IEEE Symposium on, 2009.

R. J. R. Back and J. von Wright. Refinement concepts formalized in higher
order logic. Formal Aspects of Computing, 2, 1989.

Ralph-Johan Back and J Von Wright. Refinement Calculus: A Systematic In-
troduction. Springer-Verlag New York, Inc., 1998.

Ralph-Johan R Back and Joakim von Wright. Refinement concepts formalised
in Higher Order Logic. Formal Aspects of Computing, 2(1):247–272, 1990.

R.J.R. Back. On the Correctness of Refinement in Program Development. PhD
thesis, University of Helsinki, 1978.

Sylvain Boulmé. Intuitionistic refinement calculus. In Typed Lambda Calculi
and Applications, pages 54–69. Springer, 2007.

M.J. Butler, J. Grundy, T. L̊angbacka, R. Ruksenas, and J. von Wright. The
refinement calculator. In Formal Methods Pacific, 1997.

Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan
Wisnesky. Effective interactive proofs for higher-order imperative programs.
In International Conference on Functional Programming, ICFP ’09, 2009.

Sylvain Conchon and Jean-Christophe Filliâtre. A persistent union-find data
structure. In Proceedings of the 2007 Workshop on ML, pages 37–46. ACM,
2007.

19

Edsger W. Dijkstra. A discipline of programming. Prentice-Hall, 1976.

Brijesh Dongol, Victor B.F. Gomes, and Georg Struth. A program construc-
tion and verification tool for separation logic. In Mathematics of Program
Construction, volume 9129 of LNCS, 2015.

Robert W Floyd. Assigning meanings to programs. Mathematical aspects of
computer science, 19(19-32):1, 1967.

Peter Hancock and Pierre Hyvernat. Programming interfaces and basic topol-
ogy. Annals of Pure and Applied Logic, 137(1):189–239, 2006.

Peter Hancock and Anton Setzer. Interactive programs in dependent type the-
ory. In Computer Science Logic, pages 317–331, 2000a.

Peter Hancock and Anton Setzer. Specifying interactions with dependent types.
In Workshop on subtyping and dependent types in programming, 2000b.

Charles Antony Richard Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

Carroll Morgan. Programming from specifications. Prentice-Hall, Inc., 1990.

Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau, and Lars
Birkedal. Ynot: Reasoning with the awkward squad. In ICFP ’08: Proceed-
ings of the Twelfth ACM SIGPLAN International Conference on Functional
Programming, 2008a.

Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau, and Lars
Birkedal. Ynot: Dependent types for imperative programs. In International
Conference on Functional Programming, ICFP ’08, 2008b.

Wouter Swierstra. A Hoare logic for the state monad. In Theorem Proving in
Higher Order Logics, pages 440–451. Springer, 2009a.

Wouter Swierstra. A functional specification of effects. PhD thesis, University
of Nottingham, 2009b.

Wouter Swierstra and Joao Alpuim. From proposition to program: embedding
the refinement calculus in Coq. In International Symposium on Functional
and Logic Programming, pages 29–44. Springer, 2016.

Wouter Swierstra and Thorsten Altenkirch. Beauty in the beast: a functional
semantics for the awkward squad. In Haskell Workshop, pages 25–36, 2007.

20

	Introduction
	Refinement calculus
	Predicate transformers
	Embedding in Coq
	Interactive refinement
	Case study: persistent arrays
	Discussion

