
A Research Agenda for Formal Methods
in the Netherlands

Marieke Huisman

Wouter Swierstra

Eelco Visser (editors)

Technical Report UU-CS-2019-004
July 2019

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands
www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

Contents

A Research Agenda for Formal Methods in the Netherlands 3
Marieke Huisman and Eelco Visser
Formal Methods for Be�er So�ware in Computational Science 4
Anna-Lena Lamprecht
Scalable, Non-Intrusive Formal Veri�cation via Modularisation and Parallelisation 6
Anton Wijs
Tools, tools, tools . 8
Arend Rensink
Fast and Safe Linguistic Abstraction for the Masses . 10
Eelco Visser
Formal Methods for Security? . 12
Erik Poll
A Research Agenda for Formal Methods in the Netherlands 14
Frank de Boer
Model Learning and Testing . 15
Frits Vaandrager
Formal Methods for Systems Security . 17
Wan Fokkink, Cristiano Giu�rida, Herbert Bos
Computer Assisted Mathematical Proofs: using the computer to verify computers 18
Herman Geuvers
Formal modelling and analysis . 19
Jan Friso Groote, Bas Lu�ik, Julien Schmaltz, Erik de Vink, Wieger Wesselink and Tim Willemse
Practical Formal Methods . 21
Jeroen Keiren
More Code, More�antities . 23
Joost-Pieter Katoen
Correct Message-Passing So�ware Systems . 25
Jorge Pérez
�e Usability of Static Type Systems . 27
Jurriaan Hage
Towards Reliable Concurrent So�ware . 29
Marieke Huisman
Saving the World . 31
Marko van Eekelen
Research Challenges in Supervisory Control �eory . 35
Michel Reniers
Sound and modular formal methods . 37
Robbert Krebbers

1

CONTENTS 2

Model checking in biology and health care . 39
Rom Langerak
Actionable Feedback during So�ware Development . 41
Sebastian Erdweg
DSLs for Protocols: Open Problems . 43
Sung-Shik Jongmans
In Search for Scalable Correctness Assurance in Virtual Realities 45
Wishnu Prasetya
Programming with dependent types . 47
Wouter Swierstra

A Research Agenda for Formal Methods in the
Netherlands

Marieke Huisman
University of Twente

m.huisman@utwente.nl

Eelco Visser
Technical University of Delft

e.visser@tud.nl

Abstract
On September 3 and 4, 2018, we organized a meeting on
formal methods research in the Netherlands. Goal of the
meeting was to create a Dutch formal methods community,
to increase awareness of each other’s activities, and to find
common grounds for collaborations. All researchers work-
ing on formal methods in the Netherlands were invited to
contribute a 2-page abstract with their vision on the future
of formal methods research. This document bundles these
visions.

1 Goal of the Workshop
Research on Formal methods in the Netherlands is doing well.
Success stories on the use of mechanized theorem proving,
proof assistants, model checking, high-level programming
languages, program verification etc. are ample. Our tech-
niques are becoming mature and have the potential to be
applied in industry.
However, research on formal methods is not “done” yet:

there are still many interesting challenges ahead, for example
concerning scalability and usability of formal methods. To be
able to continue along this path, we need to improve visibility
and funding opportunities for formal methods research.

To achieve this, we need a strong formal methods research
community, that actively collaborates to lobby for research
in this area.

To build up this community, we organized a two day work-
shop in the Lorentz Center in Leiden on Monday 3, and Tues-
day 4 September 2018. During this workshop, we brought
together the key scientists in formal methods in The Nether-
lands.
The purpose of this meeting was to better understand

our individual goals and challenges, and to discuss about
the potential and ideas for research in formal methods for
the next 10 years. Goal of the workshop was to achieve a
better understanding of each other’s research areas, and to
find common challenges and grounds for collaborations, as
such collaborations can further strengthen the Dutch formal
methods research community. Furthermore, we also believe
that being better informed about each other’s research is a
first step towards creating a community with active lobbying
power.

A Research Agenda for Formal Methods in the Netherlands, September 3–4,
Lorentz Center, Leiden, The Netherlands
2018.

2 Workshop Contents
The workshop was filled with short presentations about
current and future research, with ample time for discus-
sions. During the workshop, presentations were given by:
Marieke Huisman (UT), Jan Friso Groote (TU/e), Jurriaan
Hage (UU), Marko van Eekelen (OU), Eelco Visser (TUD),
Robbert Krebbers (TUD), Sung-Shik Jongmans (OU), Jorge
A. Perez (RUG), Frank S. de Boer (UL/CWI), Wouter Swier-
stra (UU), Sebastiaan Joosten (UT), Erik Poll (RU), Gabriele
Keller (UU), Sebastian Erdweg (TUD), Herbert Bos (VU), An-
ton Wijs (TU/e), Anna-Lena Lamprecht (UU), Jeroen Keiren
(OU), Michel Reniers (TU/e), and Herman Geuvers (RU).

3 This Document
All participants were asked to contribute a two page abstract
with their vision for the future of formal methods research.
This document bundles the visions of all participants, as
well as the vision of some researchers in formal methods in
Netherlands that were not able to join the meeting.

Formal Methods for Better Software in
Computational Science

Anna-Lena Lamprecht
Universiteit Utrecht
The Netherlands

a.l.lamprecht@uu.nl

1 Introduction
Science across all domains is increasingly data-driven and
computational, and thus the correctness of research soft-
ware becomes increasingly critical for the validity of sci-
entific results. Yet formal methods and software quality as-
surance in general have not received great attention in this
context in the past.

Software engineering practices in science can differ
widely from what is common in industry. In a recent review
article [3], Heaton et al. report, for example, that scientific
software developers generally do not use a formal software
development methodolody, do not produce proper require-
ments specifications, and do not treat design as a distinct
step in the development process. Furthermore, they find
that the effectiveness of the testing practices currently used
by scientific software developers is limited, that testing is
more complicated for scientific development than tradi-
tional software development since the correct results are
often unknown, and similarly that the lack of suitable test
oracles or comparable software makes validating scientific
software difficult. There are many ways that defects can en-
ter software, but scientists often suspect that any problems
in the result of software result from scientific theory rather
than from implementation. Experimental validation is often
impractical because developers lack the information they
would prefer to use to validate the software.

Moreover, even true wet lab scientists are often not only
end users of software developed by more or less professional
software engineers. Since research topics are often extremely
specific, software for the specific purpose is frequently not
readily available and so scientists need to develop soft-
ware themselves. In many cases this concerns just “glue
code” to connect existing components and automate the pro-
cessing of large numbers of data sets, but nevertheless cor-
rectness is important. Generally, however, scientists (many
of them self-taught programmers) do not test systemati-
cally, let alone verify their programs formally. Code is often
intended to be “Kleenex software” for one-time use, with
the developer being its only user and publishing the results
being the only purpose that matters, so there is no incen-
tive for putting effort into further quality considerations. Of
course, it happens frequently that the software is neverthe-
less used again later on, modified and extended, but never
tested, validated, verified and released properly.

There are many possibilities how formal methods can help
to address these issues. In the following I outline possible
applications in the area of scientificworkflows and in relation
to dynamically typed languages like Python and R, which
relate to own previous work and experiences with scientists
from different domains.

2 Scientific Workflows
The concept of scientific workflows has become popular
in the scientific community over the last years [1]. Work-
flows provide a systematic way of describing data-intensive
computational processes, and provide an interface between
domain specialists and computing infrastructures. Several
workflow management systems exist that support scientists
in their construction and execution, often making use of
graphical representations of the workflow models. Histori-
cally grown and driven by practice, a variety of workflow
languages exists, but slowly the community is progressing
to standardized scientific workflow languages, with the Com-
mon Workflow Language (CWL) and the Workflow Descrip-
tion Language (WDL) currently enjoying great popularity.
Being inherently component-oriented and model-driven,

scientific workflows are an almost natural target for the ap-
plication of model-based formal methods, such as model
checking and synthesis [4, 5].Model checking can in this
context act as a “spell checker”, monitoring the workflow
under development and alerting the user in case it violates
certain constraints. These can be generic, rather technical
issues like mismatching data types (e.g., a certain compo-
nent is not able to work on the data format provided by
its predecessor) and other static analyses, or more domain-
specific, semantic constraints that express knowledge about
the workflow’s purpose or rules of best practice, like, for
example, that all experimental data will eventually be stored
in the project repository, that unexpected analysis results
will always lead to an alert, or chargeable services will not
be called before permission is given by the user.

Synthesis goes a step further: Instead of using constraints
only to check if a workflow is correct, it starts with con-
straints and automatically assembles a workflow that is thus
correct by construction. In addition to general constraints
like those sketched above, this requires the user to express
their intents about the workflow in a suitable way. Intents
like “Take a BLAST result as input and finally produce a

Anna-Lena Lamprecht

phylogenetic tree.” or “Having a single (genetic) sequence,
I want to find similar sequences and get information about
their evolutionary relationship.” can be expressed in formal
logic and processed by a synthesis framework.

The application ofmodel checking and synthesis as sketched
above requires to tailor methods and frameworks to the
specifics of the domain, making use of domain-specific
ontologies that facilitate working with a controlled vocab-
ulary at a level of abstraction that feels natural to the user.
In particular the bioinformatics community has made a lot
of progress in this regard in the last years, with the EDAM
ontology providing a rich domain-specific vocabulary for
the description of bioinformatics operations, data types and
formats, from which tool annotation and constraint-driven
workflow synthesis are straightforward next steps [6].

Future work in this area will in the first place have to ad-
dress issues of usability (accessible specification languages,
usable tools, integration into the scientists’ software ecosys-
tems, high-quality domain models) and scalability (mitiga-
tion of state explosion effects, scaling up ontological mod-
elling and semantic annotation) in collaboration with the
targeted application domains.

3 Python and R
Formally trained computer scientists are often irritated by
the fact that Python and GNU R appear to be themost pop-
ular languages among data scientists of all disciplines. They
are regarded easy to learn, but most importantly in practice,
large amounts of libraries are available for these languages
that readily provide frequently needed functionality. That is,
they are often simply the fastest means to get data analyzed
(and results published). Considerations about correctness,
code quality and maintainability come second.
Python and R are dynamically typed languages, that

is, variables are declared without a concrete type, and get
assigned concrete types only at runtime. Such code is usually
faster to write, but when a program gets more complex, run-
time errors caused by mismatching data types are the norm
and can be difficult to fix (especially by programmers with-
out much experience). Even worse, it can happen that type
mismatches remain undetected and lead to wrong results:
Many libraries like those mentioned above transparently per-
form type casts to make programming simpler for the user,
by “guessing” the correct type. Not suprisingly, sometimes
this goes wrong, and suddenly the data has changed, leading
to alternative results, but no runtime error or warning alerts
the user. If the obtained values are really far away from the
expected, the scientist might get suspicious, but when they
remain in feasible ranges or even give a sensational result,
they just go through to publication.

As of version 3.6 Python includes a static type checker to
support programmers to catch common type-related errors
already while coding. It remains to be seen, however, if this

feature will be taken up by the scientific community. Likely
programming in Python, R and similar languages would
benefit greatly from IDEs that are aware of domain-specific
type systems related to the domain models sketched above,
or even dependent types [7], and based on that provide
support to diagnose and fix type errors as described in [2].

4 Conclusion
In the development of scientific software more attention
needs to be devoted to correctness and other aspects of soft-
ware quality. I am convinced that formal methods can make
a great contribution there, up to providing intuitive, user-
level frameworks for correct-by-construction development
of scientific software. In particular, this will require close
collaboration with scientists from the targeted domains in
order to adapt the general methods to their concrete needs
and to capture and formalize the required domain knowledge
adequately. The Netherlands has strong and internationally
recognized communities in e-Science and Semantic Web re-
search, so there is a lot of potential for joint efforts and
impact in this area.

References
[1] M. Atkinson, S. Gesing, J. Montagnat, and I. Taylor. Scientific workflows:

Past, present and future. Future Generation Computer Systems, 75:216 –
227, 2017.

[2] J. Hage. The usability of static type systems. In A Research Agenda for
Formal Methods in The Netherlands, 2018.

[3] D. Heaton and J. C. Carver. Claims about the use of software engineering
practices in science: A systematic literature review. Information and
Software Technology, 67:207 – 219, 2015.

[4] A.-L. Lamprecht. User-Level Workflow Design - A Bioinformatics Per-
spective, volume 8311 of Lecture Notes in Computer Science. Springer,
2013.

[5] A.-L. Lamprecht, T. Margaria, and B. Steffen. Supporting Process Devel-
opment in Bio-jETI by Model Checking and Synthesis. In Semantic Web
Applications and Tools for Life Sciences (SWAT4LS 2008). CEUR Workshop
Proceedings, volume 435, 2008.

[6] M. Palmblad, A.-L. Lamprecht, J. Ison, and V. SchwÃďmmle. Auto-
mated workflow composition in mass spectrometry-based proteomics.
Bioinformatics, page bty646, 2018.

[7] W. Swierstra. Programming with dependent types. In A Research
Agenda for Formal Methods in The Netherlands, 2018.

Scalable, Non-Intrusive Formal Verification via
Modularisation and Parallelisation

Anton Wijs
A.J.Wijs@tue.nl

Eindhoven University of Technology, Eindhoven, The Netherlands

1 Introduction
The development of complex, concurrent software is error-
prone and costly. Formal methods can play a key role in
making the software development process more structured
and transparent, but in order to do so, formal verification
results should be produced efficiently and frequently dur-
ing the development process. In my research, I focus on
the application of model checking [1]. Model checking is a
push-button technique to formally verify the functional cor-
rectness of hardware and software models. It is performed
by systematically exploring the state space implied by the
model. The main drawback of model checking is the state
space explosion problem: a linear growth of the model tends
to lead to an exponential growth of the state space. Although
traditionally, this meant that computer memory was practi-
cally the only bottleneck, these days, with large amounts of
memory at our disposal, the (lack of) scalability of the run
time is often hindering our ability to reason about models in
a reasonable amount of time. For this reason, I focus on two
seemingly disconnected topics, which on closer inspection
in fact strengthen each other, and are in my opinion key top-
ics to focus on in order to make formal methods practically
appealing for industrial use:

1. The modularisation of verification problems into sub-
problems, such that verification tasks do not need to
be performed monolithically.

2. The parallelisation of verification algorithms to make
the verification of (sub)problems as efficiently as pos-
sible.

2 Modularisation of model checking
To make the verification of (designs of) industrial-sized soft-
ware practically feasible, I focus in my research on various
approaches to break down the verification task into smaller
subtasks that can each ideally be solved totally independently.
The approaches that I focus on mostly are:

1. Compositional model checking. As many software de-
signs consist themselves of multiple components or
concurrent processes, these can be analysed individu-
ally and the results can gradually be combined, ideally
leading to a result about the entire system by using
fewer resources than the straightforward, monolithical
model checking approach would need. In recent work,
we have studied what the key structural characteristics

are of software designs that determine whether com-
positional model checking can be applied successfully
or not [2, 4]. We have also worked on incrementally
searching for a counter-example to a given property
by combining concrete parts of the model with over-
approximations of the remainder of the model, and
gradually making the overapproximation part more
concrete [11].

2. Model transformation verification. In model driven soft-
ware engineering, software designs are typically not
constructed in one single design step. Instead, they
usually result from a design process in which an initial
abstract model is made more and more concrete via
a number of steps (see Figure 1). These steps can be
automated by means of model transformations, which
makes the design process more systematic since the
application of transformations is both repeatable and
reversable. In my research, I focus on formalising such
model transformations, and investigating to what ex-
tent functional properties of the transformations them-
selves, as opposed to the models they are applied on,
can be determined. This has lead to a (in turn formally
verified) technique to efficiently identify whether a
transformation preserves given functional properties [3].
In other words, given any model that satisfies a prop-
erty φ, application of such a property preserving trans-
formation is guaranteed to produce a new model that
also satisfiesφ. Verifying the development workflow in
this way is likely to be much more efficient than each
time verifying a new model resulting from a transfor-
mation application, since the definition of the trans-
formations tends to be very small, while the models
they produce can be arbitrarily large. In the future, we
plan to work on investigating property maintenance,
i.e., we plan to consider the possibility of evolving the
properties along with the models themselves.

In addition, I also work on the construction of suitable
Domain Specific Languages to conveniently design software
systems, and on verifying the final step in the model driven
software engineering workflow (Figure 1), namely the con-
struction of code based on a detailed design of the system, for
instance see [13]. For this purpose, a collaboration with the
team of prof. Marieke Huisman of the University of Twente
has recently been initiated, to apply their code verification
techniques to verify whether produced code adheres to the

Figure 1. Verified development steps from initial model to
code in a model-driven development workflow

specification given in the form of the software design that
serves as input to the code generator.

3 Parallelisation of model checking
One way to improve the run time of model checking is by
exploiting the computing power of modern parallel archi-
tectures. Graphics processing units (GPUs) have a lot of
potential in this respect: they can run thousands of threads
in parallel and can offer a speed-up of several orders of mag-
nitude. GPUs tend to have much less memory than modern
computer systems, but the current trend is that this amount
doubles every few years. Hence, it is interesting to inves-
tigate to what extent model checking algorithms can be
adapted to run on GPUs. In the last few years, GPUs have
been successfully used for several model checking proce-
dures, and in my work, I have studied the applicability of
GPUs to perform on-the-fly model checking [6–8, 12], min-
imisation of state spaces [5], and structural analysis of state
spaces [9, 10]. By carefully designing implementations of the
algorithms, speedups over hundreds of times can be achieved
compared to traditional, sequential computations. Practically,
this can reduce computation times from days or weeks to
mere seconds or minutes, which can suddenly make repeated
application of these methods feasible and non-intrusive in
the software development workflow. A prime example is the
tool GPUexplore [7, 12], which is the first to completely
perform on-the-fly model checking on the GPU.
The work mentioned above all focusses on explicit-state

model checking, in which each possible state of the system
design is handled individually. Recently, I started a project
to investigate the potential for GPUs to accelerate symbolic
model checking techniques, in particular the ones relying
on SAT solving. Initial results are promising, in which we
have demonstrated that GPUs can effectively impact SAT
solving by employing them to simplify SAT problems before
trying to solve them. Not only can such a simplification
phase be performed much faster, the computational power
of GPUs also allows to push the simplification further within
a shorter amount of time, thereby achieving higher quality
simplifications that positively impact the solving time.

References
[1] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press,

2008.

[2] S. de Putter and A. Wijs. Compositional Model Checking is Lively.
In Proc. 14th International Conference on Formal Aspects of Compo-
nent Software (FACS 2017), volume 10487 of Lecture Notes in Computer
Science. Springer, 2017.

[3] S. de Putter and A. Wijs. A Formal Verification Technique for Be-
havioural Model-To-Model Transformations. Formal Aspects of Com-
puting, 30(1):3–43, 2018.

[4] S. de Putter and A. Wijs. To Compose or Not to Compose, That is the
Question: An Analysis of Compositional State Space Generation. In
Proc. 22nd International Symposium on Formal Methods (FM 2018), 2018
(accepted for publication).

[5] A.Wijs. GPUAccelerated Strong and Branching Bisimilarity Checking.
In Proc. 21st International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2015), volume 9035 of
Lecture Notes in Computer Science, pages 368–383. Springer, 2015.

[6] A. Wijs. BFS-Based Model Checking of Linear-Time Properties With
An Application on GPUs. In CAV, Part II, volume 9780 of LNCS, pages
472–493, 2016.

[7] A. Wijs and D. Bošnački. GPUexplore : Many-Core On-the-Fly State
Space Exploration Using GPUs. In TACAS, volume 8413 of LNCS, pages
233–247. Springer, 2014.

[8] A. Wijs and D. Bošnački. Many-core on-the-fly model checking of
safety properties using GPUs. STTT, 18(2):1–17, 2015.

[9] A. Wijs, J.-P. Katoen, and D. Bošnački. GPU-Based Graph Decompo-
sition into Strongly Connected and Maximal End Components. In
Proc. 26th International Conference on Computer Aided Verification (CAV
2014), volume 8559 of Lecture Notes in Computer Science, pages 310–326.
Springer, 2014.

[10] A. Wijs, J.-P. Katoen, and D. Bošnački. Efficient GPU Algorithms for
Parallel Decomposition of Graphs into Strongly Connected and Maxi-
mal End Components. Formal Methods in System Design, 48(3):274–300,
2016.

[11] A.Wijs and T. Neele. Compositional Model Checking with Incremental
Counter-Example Construction. In Proc. 29th International Conference
on Computer-Aided Verification (CAV 2017), Part I, volume 10426 of
Lecture Notes in Computer Science, pages 570–590. Springer, 2017.

[12] A. Wijs, T. Neele, and D. Bošnački. GPUexplore 2.0: Unleashing GPU
Explicit-State Model Checking. In FM, volume 9995 of LNCS, pages
694–701. Springer, 2016.

[13] D. Zhang, D. Bošnački, M. van den Brand, C. Huizing, B. Jacobs,
R. Kuiper, and A. Wijs. Verification of Atomicity Preservation and
Deadlock Freedom of a Generic Shared Variable Mechanism Used in
Model-To-Code Transformations. In Proc. 4th International Confer-
ence on Model-Driven Engineering and Software Development (MODEL-
SWARD 2016) - Revised Selected Papers, volume 692 of Communications
in Computer and Information Sciences, pages 249–273. Springer, 2017.

2

Tools, tools, tools
Arend Rensink

Department of Computer Science
University of Twente

Enschede, The Netherlands
arend.rensink@utwente.nl

Abstract
We argue that a major obstacle to the (more) widespread
adoption of formal methods is the scarcity of adequate tool
support. To change this, we need to rethink our values about
what constitutes good research in formal methods, and move
from a too-exclusive emphasis on papers to a new status quo
where tool development and support is regarded as normal.

Keywords Tool support

1 Tooling is immature
What should we do to improve the adoption of formal meth-
ods in practice? We should package them for use by those
who can benefit from them. This especially means: provide
reliable tool support.
On the positive side: the past decade has seen a growing

realisation of the importance of tooling in formal methods
research. There is now a number of established competition-
type events where tools with similar functionality are com-
pared with one another. There is also some more attention
toward making formal methods experiments reproducible,
in the sense of making the underlying tool chain, the input
data and the raw results available: several conferences have
established procedures for submitting and reviewing the tool
support underlying a submitted paper.
On the negative side, we are still plagued by the concept

of “PhD-ware:” the prototype tools created in the course of
a PhD project all too often stop being maintained after the
candidate has received his degree — maybe even with good
reason, if the prototype was never developed far enough to
run more than the few samples it was used for. Our submis-
sion, reviewing and publication processes all revolve around
papers — there typically is not even the possibility of submit-
ting other electronic resources, be they data or code, though
they may have been instrumental in achieving the results.
This sends out the message that the ladders may be discarded
once the heights have been scaled. I believe that is the wrong
message, as those ladders (or probably a less rickety version
of them) are essential to get formal methods to be adopted.
If, as the call for contributions for this event states, “suc-

cess stories on the use of [name your favourite formalmethod]
are ample,” and “our techniques are becoming mature and
have the potential to be applied in industry,” then the next
step is to proceed from stories to books and from potential

to actual application. The availability of tools is a necessary
requirement that has not yet been met.

2 Tooling is hard
It is easy to bring up arguments why we (as in “the academic
community”) will never be able to produce tools with suffi-
cient maturity and support to enable a breakthrough in their
use in practice. The most common arguments of this kind are
that developing tools is not the core business of researchers
— indeed, that they may in fact not be very qualified to do
so — and that “sufficient maturity” is an unattainable goal,
especially where it concerns the guarantee of support for
users that may come to rely on the tool in question. Such
support requires that there is a person in charge of mainain-
ing the tool, at least to the level of answering questions and
(where necessary) fixing severe bugs. That contrasts with the
composition of typical research groups in computer science,
most particularly formal methods groups, where any bud-
get to be had for personnel preferably goes to researchers —
PhD candidates, postdocs, lecturers — and very little if any
long-term lab support exists.
I think a more interesting and fruitful discussion can be

engendered by turning the question around: let’s not ask
ourselves why our tooling currently does not meet standards
that make their adoption feasible, but instead how we can
create a viable ecosphere in which there is room for meeting
such standards in the future. This may very well require
redefining or broadening and expectations about what con-
stitutes leading research: to name just one thing, already
alluded to above, our exclusive focus on papers (published
in prestigious conferences and journals) as the end-all and
be-all of academic research may have to be put in question.

3 Tooling is undervalued
This brings me to my final observation, which for me touches
upon the root cause of our generally low tooling standards. In
contrast to other technical disciplines, computer science (and
again formal methods in particular) does not have a valued
tradition of laboratory infrastructure as the foundation upon
which new results are achieved. The concept of a laboratory
hardly exists. Reasons may be thought of why this is so — the
essence of our subject matter being in software rather than
hardware comes to mind — but I believe this observation
itself to be key, and worth thinking about. If only it were an
accepted normality that formal research methods can only

Arend Rensink

exist when closely coupled to a laboratory, properly staffed
with technicians, where all research ideas are by default put
to the rigour of being properly tool-supported, this would
reflect a very different system of values according to which
we judge research quality.

Such a system of values would have a price tag. Infras-
tructure is not cheap. Again, this is an accepted fact in other
technical disciplines — why not in computer science? If it
remains the case that there is only funding for pure research
positions, and anymention of technical support is a detractor
in the chances for acceptance of a project proposal, then our
tooling will forever remain underdeveloped. Nothing comes
for free.

Let us not forget to acknowledge that there are clear cases
where the creation and maintenance of a tool or tool set
has greatly contributed to the reputation and visibility of
research groups. This goes to show that there is no con-
tradiction between great research and great tool support,
and such tools have demonstrably contributed to the accep-
tance of the methods thus made accessible to those who can
benefit from them. However, such cases are currently the
exception rather than the rule, and exist in spite of, rather
than thanks to, what we primarily value as good research in
formal methods. I propose to challenge that status quo.

Fast and Safe Linguistic Abstraction for the Masses
Eelco Visser

Delft University of Technology

Abstract Language workbenches support the high-level
definition of (domain-specific) programming languages and
the automatic derivation of implementations from such def-
initions. The mission of language workbench research is
to increase the level of abstraction of language definitions
and expand the range of tools that can be generated auto-
matically from language definitions. In this note, I give an
overview of research into language workbenches at TU Delft
and the perspective of future research.

Linguistic Abstraction Software engineering is the act
of encoding intent into programs. A mismatch between the
concepts being encoded and the intent to be expressed leads
to unnecessary software complexity. Linguistic abstraction is
the process of turning software design patterns into language
constructs in order to support expressing intent at the right
level of abstraction [15]. A linguistic abstraction provides
notation, static checking, and implementation strategies that
take the understanding of the domain into account. For exam-
ple, in the IceDust language for data modeling, a programmer
directly expresses how derived values are computed from
base values, without being concerned about implementation
techniques for caching computed values and incrementally
recomputing values upon data changes; an implementation
of an efficient incremental re-computation strategy is gen-
erated automatically from an IceDust program [3–6]. While
many DSLs exist, the process of developing DSLs should
become more systematic and requires further industrial case
studies.

Linguistic Abstraction for theMasses Adomain-specific
programming language can be beneficial for its programmers,
but can be expensive to develop. Language workbenches are
tools to reduce the cost of DSL development by generating
language implementation from language definitions [1, 2].
Spoofax is a language workbench developed in the Program-
ming Languages group at TU Delft [7, 16]. Spoofax has been
applied to DSLs in industry (Oracle, Océ) and academia.

Linguistic Abstraction for Linguistic Abstraction Rather
than implememting languages in a general purpose language,
language workbenches provide domain-specific abstractions
for language development, i.e. linguistic abstractions for lin-
guistic abstraction. Spoofax is a test bed for the exploration
of the design of high-level declarative meta-languages for
various aspects of language definition. A recent example
is the development of the Statix DSL for the specification
of type systems [11, 12]. The DSL is based on a novel ap-
proach to the formalization of name binding in programming

languages using scope graphs [8]. A scope graph is an ab-
straction of a program that represents its binding facts. This
abstraction allows the definition of a language independent
calculus to define name resolution in programs, giving rise
to a range of language independent tools.

Fast LinguisticAbstraction Traditionally, languagework-
benches define code generators to realize the implementation
of DSLs programs. The disadvantage of this approach is that
the semantics of the language is defined through a translation
relation in terms of a target language. We are investigating
whether it is possible to define directly the semantics of lan-
guages and derive an implementation from such definitions.
The DynSem meta-language is designed for the high-level
declarative specification of the operational semantics of pro-
gramming languages [13]. DynSem specifications can be
executed directly using a meta-interpreter that interprets
a DynSem specification with respect to an object program,
which gives rise to two levels of interpretation and signifi-
cant overhead. A promising direction of research is to use
partial evaluation techniques to specialize the application of
a meta-interpreter [14] to provide both a fast turn around
time for language design experiments and at the same time
get a fast run time for the language under specification.

Safe Linguistic Abstraction In addition to producing im-
plementations, the proper design of a programming language
requires proofs that a design satisfies properties such as type
soundness and semantics preservation of transformations.
Traditionally, proving such properties is separated from lan-
guage implementation, leading to proofs for only subsets
of a language and a divergence of specification and imple-
mentation. We are investigating meta languages that enable
the automatic verification of such properties. A first proof
of concept automates the verification of type soundness. A
complication in type soundness proofs is the alignment of
the binding of names statically and at run time. We have
developed a systematic approach to formalizing this align-
ment by relating scopes in scope graphs to frames in frame
heaps [9]. By encoding a scope graph based type system as an
intrinsically typed abstract syntax signature, type checking
the evaluation rules of a definition interpreter against such
a signature entails type soundness of the language under
definition [10].

FutureWork In this abstract I have described several proof
of concept components of a development environment for
creating new (domain-specific) programming languages from
declarative specifications that are safe by construction and

Eelco Visser

that have fast runtimes. Fully realizing the promise of these
proofs of concept requires scaling up the techniques to more
advanced programming languages and large code bases.

References
[1] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma,

Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik,
Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi,
Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido Wachsmuth,
and Jimi van derWoning. The state of the art in language workbenches
- conclusions from the language workbench challenge. In Martin
Erwig, Richard F. Paige, and Eric Van Wyk, editors, Software Language
Engineering - 6th International Conference, SLE 2013, Indianapolis, IN,
USA, October 26-28, 2013. Proceedings, volume 8225 of Lecture Notes in
Computer Science, pages 197–217. Springer, 2013.

[2] Sebastian Erdweg, Tijs van der Storm, Markus VÃűlter, Laurence Tratt,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik,
Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi,
Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido Wachsmuth,
and Jimi van der Woning. Evaluating and comparing language work-
benches: Existing results and benchmarks for the future. Computer
Languages, Systems & Structures, 44:24–47, 2015.

[3] Daco Harkes, Danny M. Groenewegen, and Eelco Visser. Icedust:
Incremental and eventual computation of derived values in persistent
object graphs. In Shriram Krishnamurthi and Benjamin S. Lerner,
editors, 30th European Conference on Object-Oriented Programming,
ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[4] Daco Harkes and Eelco Visser. Unifying and generalizing relations
in role-based data modeling and navigation. In Benoît Combemale,
David J. Pearce, Olivier Barais, and Jurgen J. Vinju, editors, Software
Language Engineering - 7th International Conference, SLE 2014, Västeras,
Sweden, September 15-16, 2014. Proceedings, volume 8706 of Lecture
Notes in Computer Science, pages 241–260. Springer, 2014.

[5] DacoHarkes and Eelco Visser. Icedust 2: Derived bidirectional relations
and calculation strategy composition. In Peter Müller, editor, 31st
European Conference on Object-Oriented Programming, ECOOP 2017,
June 19-23, 2017, Barcelona, Spain, volume 74 of LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2017.

[6] Daco C. Harkes, Elmer van Chastelet, and Eelco Visser. Migrating
business logic to an incremental computing dsl: a case study. In
David Pearce 0005, Tanja Mayerhofer, and Friedrich Steimann, editors,
Proceedings of the 11th ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2018, Boston, MA, USA, November
05-06, 2018, pages 83–96. ACM, 2018.

[7] Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench:
rules for declarative specification of languages and IDEs. In William R.
Cook, SiobhÃąn Clarke, and Martin C. Rinard, editors, Proceedings
of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2010, pages
444–463, Reno/Tahoe, Nevada, 2010. ACM.

[8] Pierre NÃľron, Andrew P. Tolmach, Eelco Visser, and Guido
Wachsmuth. A theory of name resolution. In Jan Vitek, editor, Pro-
gramming Languages and Systems - 24th European Symposium on Pro-
gramming, ESOP 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings, volume 9032 of Lecture Notes in Computer Science,
pages 205–231. Springer, 2015.

[9] Casper Bach Poulsen, Pierre Néron, Andrew P. Tolmach, and Eelco
Visser. Scopes describe frames: A uniform model for memory layout in
dynamic semantics. In Shriram Krishnamurthi and Benjamin S. Lerner,

editors, 30th European Conference on Object-Oriented Programming,
ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[10] Casper Bach Poulsen, Arjen Rouvoet, Andrew P. Tolmach, Robbert
Krebbers, and Eelco Visser. Intrinsically-typed definitional interpreters
for imperative languages. Proceedings of the ACM on Programming
Languages, 2(POPL), 2018.

[11] Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco
Visser, and Guido Wachsmuth. A constraint language for static seman-
tic analysis based on scope graphs. In Martin Erwig and Tiark Rompf,
editors, Proceedings of the 2016 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016, pages 49–60. ACM, 2016.

[12] Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and
Eelco Visser. Scopes as types. Proceedings of the ACM on Programming
Languages, 2(OOPSLA), 2018.

[13] Vlad A. Vergu, Pierre Néron, and Eelco Visser. Dynsem: A dsl for
dynamic semantics specification. In Maribel FernÃąndez, editor, 26th
International Conference on Rewriting Techniques and Applications, RTA
2015, June 29 to July 1, 2015, Warsaw, Poland, volume 36 of LIPIcs, pages
365–378. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[14] Vlad A. Vergu and Eelco Visser. Specializing a meta-interpreter: Jit
compilation of Dynsem specifications on the Graal vm. In Eli Tile-
vich and Hanspeter MÃűssenbÃűck, editors, Proceedings of the 15th
International Conference on Managed Languages & Runtimes, ManLang
2018, Linz, Austria, September 12-14, 2018. ACM, 2018.

[15] Eelco Visser. Understanding software through linguistic abstraction.
Science of Computer Programming, 97:11–16, 2015.

[16] Guido Wachsmuth, Gabriël Konat, and Eelco Visser. Language design
with the spoofax language workbench. IEEE Software, 31(5):35–43,
2014.

Formal Methods for Security?
Erik Poll

Digital Security group
Radboud University
erikpoll@cs.ru.nl

This position paper sketches some opportunities in applying
formal methods for security, more specifically security of
software.

A killer application for formal methods?
At first sight – and even at second sight – security looks like
an interesting application area for formal methods.
One reason for this is that security flaws have a higher

impact than more harmless bugs. This might justify or even
require the extra effort to invest in using formal methods.
Indeed, the highest levels of certification using the Com-
mon Criteria security evaluation standard require the use of
formal methods.

Another reason is that some security problems are orthog-
onal to – or at least largely independent of – the functionality
of a system. Indeed, security vulnerabilities can be seen as
‘anti-functionality’: functionality that is unintentionally pro-
vided, also to attackers, which should not be available at all.
Given that writing complete functional specifications is hard,
and totally unfeasible in most cases, concentrating on partial
specs that ensure some generic safety properties problems
might provide a better return of investment, also because
such specs could be re-used across applications.
Unfortunately, things are not so simple. Security proper-

ties can be tricky to specify. Indeed, attackers can be very
creative in finding and exploiting new loopholes. A com-
mon and natural way to specify security properties is in a
‘negative’ way, by saying that something – some type of
attack – is not supposed to be possible. For example, a web
application should not be vulnerable to SQL injection or XSS.
List of these negative properties are useful in testing, as they
suggest negative tests (i.e. test-cases which are supposed
to fail, by triggering some error response), but they are not
immediately helpful in construction. Moreover, these lists
of negative properties are typically incomplete. They only
address a limited set of known potential problems, not all
potential problems.
Moreover, sometimes security problems arise because it

turns out fundamental assumptions about programs can be
broken by an attacker, invalidating the very abstractions that
we use in formal methods to reason about programs. Classic
examples here are fault attacks (for example the Rowhammer
attack to flip some bits in DRAM memory) or information
leaking through side-channels (for example the Spectre and
Meltdown timing attacks on modern CPUs). Of course, our

formal models could be refined to accomodate these low-
level attacks, but at the (high) cost of extra complexity.

Security functionality , secure functionality
When investigating at the security of software, it is natural
to focus on the security functionality, i.e. the functional-
ity specifically intended to provide some security guaran-
tees, such as access control checks or security protocols like
SSL/TLS. Such functionality is obviously security-critical.
However, while this may suggest rewarding aspects or

components to investigate, it is dangerous to fall into the trap
of thinking that such security functionality is the only or
even the most important area to look for problems. Not only
the security functionality has to be secure: all functionality
needs to be, as security vulnerabilities can lurk in any line of
code that can be triggered by input controlled by the attacker.
The bulk of security bugs is not in code specifically aimed
at achieving some security goal, but is in more mundane
functionality, say the parsing of PDF files or the rendering
of some graphical format, with Flash as the most notorious
example.

LangSec: back to basics?
The paradigm of LangSec (language-theoretic security)1 pro-
vides very good insights into the root causes of the over-
whelming majority of security flaws, namely bugs in han-
dling input, which typically boil down to bugs in the parsing
and processing input languages and formats, rather than
bugs in the application logic.

One problem is with the input languages themselves: they
are typically overly complex, too expressive, and poorly –
and informally – specified. To make matters worse, there
are many of these languages, at every level of the network
and software stack, and they can be combined or nested.
A further problem here is that the code to process these
languages is typically hand-coded, and not obtained using
parser generation.

Ironically – or embarrassingly, for the computing science
community – theories for formal language definitions and
parser generation are some of the oldest andmost established
areas in formal methods. Still, somehow the whole world is
still writing long prose documents to specify languages and
protocols, and then hand-coding parsers – often in memory
unsafe languages like C or C++, where the potential security
1See also http:\langsec.org, esp. [1], or [7] for a more recent entry point into
the LangSec literature.

impact of flaws is the biggest (namely remote code execution).
There is a huge opportunity here to provide better notations
and tools to prevent all this misery. Or maybe these already
exist, and we should do a better job in training people – incl.
our students – on how to use them?
One step further from formal specs and associated code

generation for parsers and pretty printers would be domain-
specific programming languages to support different input
formats and languages as first class citizens, as envisioned
in Wyvern [8].

Security Testing & Model Extraction
The past decade has seen a lot of fruitful interaction be-
tween formal methods and testing, also in security testing.
An interesting trend is the use of formal methods, notably
symbolic/concolic execution, for security testing [6, 11] or
even going one step further and actually develop exploits
as in the angr tool [10]. If we cannot get developers to use
formal methods, maybe we should concentrate efforts on
getting security testers and hackers to use formal methods?
(Of course, with more robust parser code that has generated
from formal language specs, as we argue for above, it should
be harder to find security flaws . . .)
Test techniques can also provide a way to obtain formal

specs from implementations. Given the difficulty of obtain-
ing formal models this is an interesting direction of work.
Existing fuzzers can already reverse-engineer input formats
[2, 3], and state machine inference can be used to extract
security-relevant behaviour from code [9].
All such formal techniques for security testing or model

inference could be combined with machine-based learning
or AI approaches, to improve results and/or the level of
automation.

Practical information flow
Information flow properties are an interesting class of se-
curity properties. Information flow can be used to track po-
tential leakage of confidential information or to track the
flow of tainted input to places where such input may do
damage. Research on information flow has a long history,
dating back to the 1970s [4], and ad-hoc information anal-
yses are implemented in code analysis for security flaws –
aka Static Application Security Testing (SAST), by tools such
as Coverity, Checkmarx, or Fortify, but flexible and practical
approaches to express and enforce information flow for pro-
grams in popular programming languages (e.g. [5] for Java)
are still rare and not commonly used.

New (and safer) programming languages, new
opportunities?
One positive development for security in recent years has
been the advent of new programming languages – Rust, D,
Go, Swift, Nim, . . . – where safety is very much a design goal.
Some of these languages are specifically aimed for low-level

programming and might become viable, widely-used, and
safer alternatives for C/C++ and then reduce the prevalence
of memory corruption problems.
The advent of these new languages is a double-edged

sword. An advantage is that they are designed to be more
amenable to formal analysis and have some security guaran-
tees built in at the language level. A downside is that new
languages require new tools. Building and maintaining good
formal methods tools is a major bottleneck, so here the ad-
vent of new languages is bad news. For researchers these
new languages represent new research opportunities. This
may be good news, if this new research gets us further, or
bad news, if this research is merely repeating and recycling
the same old ideas without getting us further.

References
[1] 2013. LangSec: Recognition, Validation, and Compositional Correct-

ness for Real World Security. (2013). USENIX Security BoF hand-out.
Available from http://langsec.org/bof-handout.pdf.

[2] J. Caballero, H. Yin, Z. Liang, and D. Song. 2007. Polyglot: Automatic
extraction of protocol message format using dynamic binary analysis.
In CCS’07. ACM, 317–329.

[3] P.M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda. 2009.
Prospex: Protocol specification extraction. In Security and Privacy,
2009 30th IEEE Symposium on. IEEE, 110–125.

[4] D.E. Denning and P.J. Denning. 1977. Certification of Programs for
Secure Information Flow. Commun. ACM 20, 7 (July 1977), 504–513.

[5] W. Dietl, S. Dietzel, M.D. Ernst, K. Muşlu, and T.W. Schiller. 2011.
Building and Using Pluggable Type-checkers. In ICSE’11. ACM, 681–
690.

[6] P. Godefroid, M.Y. Levin, and D. Molnar. 2012. SAGE: whitebox fuzzing
for security testing. Queue 10, 1 (2012), 20.

[7] F. Momot, S. Bratus, S.M. Hallberg, and M.L. Patterson. 2016. The
seven turrets of Babel: A taxonomy of LangSec errors and how to
expunge them. In Cybersecurity Development (SecDev). IEEE, 45–52.

[8] C. Omar, D. Kurilova, L. Nistor, B. Chung, A. Potanin, and J. Aldrich.
2014. Safely composable type-specific languages. In ECOOP’14 (LNCS),
Vol. 8586. Springer, 105–130.

[9] E. Poll, J. de Ruiter, and A. Schubert. 2015. Protocol state machines and
session languages: specification, implementation, and security flaws.
In Workshop on Language-Theoretic Security (LangSec’15), Symposium
on Security and Privacy Workshops. IEEE, 125 – 133.

[10] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna. 2016. SOK:(state
of) the art of war: Offensive techniques in binary analysis. In Sympo-
sium on Security and Privacy (SP). IEEE, 138–157.

[11] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y.
Shoshitaishvili, C. Kruegel, and G. Vigna. 2016. Driller: Augmenting
Fuzzing Through Selective Symbolic Execution. In NDSS’16, Vol. 16.
Internet Society, 1–16.

A Research Agenda for Formal Methods in the
Netherlands

Frank de Boer
Leiden Institute of Advanced Computer Science/CWI

The Netherlands

Software libraries are the building blocks of millions of pro-
grams, and they run on the devices of billions of users every
day. Therefore, their correctness is of the utmost importance.
Recently, the use of formal methods led to the discovery of
a major flaw in the design of TimSort, the default sorting
library in many widely used programming languages, in-
cluding Java and Python, and platforms like Android. An
improved version of TimSort was proven correct with the
state-of-the-art theorem prover KeY. This correctness proof
convincingly illustrates the importance and potential of for-
mal methods as a means of putting state-of-the-art software
to the test and improving it.
A major future challenge is a systematic verification of

mainstream libraries of the popular programming language
Java. However, the TimSort case study revealed several chal-
lenging scientific problems which need to be addressed, e.g.,
automatic generation of high-level proof scripts, a novel
proof methodology for the specification and verification of
interfaces, and new co-inductive techniques for the incre-
mental behavioral refifinement of an abstract model of the
program.

Model Learning and Testing
(and some observations on formal methods research in the Netherlands)

Frits Vaandrager
Institute for Computing and Information Sciences

Radboud University
Nijmegen, the Netherlands
F.Vaandrager@cs.ru.nl

1 Formal Methods in The Netherlands:
Where Are We?

Formal methods is often defined as the applied mathematics
of computer system engineering. The Netherlands has a
strong tradition in this area. This startedwith scientific giants
such as Van Wijngaarden and Dijkstra, continued with e.g.,
De Bakker, De Roever, Rozenberg, Rem, Barendregt, Bergstra
and Klop, and led to the strong formal methods groups that
we see at Dutch universities today. In addition, some highly
visible Dutch formal methods researchers are active abroad,
e.g., Katoen, Holzmann, Van Glabbeek and Bloem.

Still, my impression is that Dutch formal methods research
is not as influential and authoritative as it used to be. A
number of factors may have contributed to this:

1. The field has matured and changed considerably over
the years.Whereas, for instance, Bergstra & Klop could
create major impact with papers on complete axioma-
tizations of process algebras, nowadays a nice theoret-
ical idea is not enough. You also must show (or at least
make it plausible) that an idea can be implemented and
be effectively used to advance the state-of-the-art of
computer system engineering. This is a different game,
where rather than one or two brilliant theoreticians,
you need a whole team/network of researchers, with
different people focusing on theory, tools and appli-
cations. Despite notable exceptions, the Dutch formal
methods community as a whole has not adapted fast
enough to this new reality. Too often, I see formal
methods papers in which the introduction refers to
the importance of correct software, but the proposed
methods have not been applied to real software yet,
and there is not even a plausible scenario of how the
results could be applied to real systems. Too often,
also, I see colleagues write papers on questions and
research approaches that are almost identical to the
ones they explored in their thesis many years ago.

2. The funding situation has not been very helpful with
on the one hand the personal grants that support in-
dividuals (rather than teams/networks), and on the
other hands projects that require direct support from
industry (and typically have a focus on short term ap-
plications). The funding does not have the scale and

time horizon needed to solve the challenges that our
field is facing.

3. Maybe we no longer succeed to attract the most bril-
liant and ambitious students. Somehow, cyber security,
artificial intelligence and data science appear to have
a more attractive proposition.

2 Formal Methods in The Netherlands:
Where Do We Want To Go?

So what should we do to address the above problems? A first
thing is to bring the community together and to discuss the
problems. I am most grateful to Marieke and Eelco for their
initiative to organize this workshop. I suggest a couple of
actions:

1. Research agenda. We need to identify a couple of
major research challenges where we believe Dutch FM
researchers can really make a difference on industrial
practice within say seven years, and outline how we
want to do it. Only by working together we can create
the desired impact. Different teams may work on each
of these challenges, combining expertise ranging from
pure theory all the way to practical application. (Below
I will discuss the research challenge we work on.)

2. Industrial support crucial. In his contribution for
this meeting, Joost-Pieter Katoen argues for “More
Programs, Less Models”, and observes an international
trend “from model-based to code-based analysis”. In
my view, there are many good reasons why the Dutch
high-tech industry is still pursuing a model-based ap-
proach (high level of abstraction, possibility to simu-
late cyber-physical systems and explore design alterna-
tives before they are built (“digital twins”), automatic
code generation, etc,..). The presence of a number of
big companies that invest in model-based development
offers excellent opportunities for Dutch formal meth-
ods research, as long as we are willing to face the
complexity of industrial design, and try to help people
in industry with the problems they face (e.g., dealing
with complexity of models and with legacy software
for which no models are available. Having said that, I
do think (based on my own experience and feedback
from students who did internships) that within indus-
try there is much ignorance about modern software

Frits Vaandrager

analysis techniques, and alsowithin the formal method
community we could use more expertise on e.g., static
analysis and software verification.

3. Funding strategy/lobby.Once a national formalmeth-
ods agenda is there, we should just start working on
it, irrespective of whether the agenda is supported by
funding agencies. Simultaneously, we should try to
get funding from a variety of sources asap. For this it
would be helpful if the agenda gets some formal status
and is officially recognized by VERSEN, IPN, as part of
the new sector plan, and/or even as part of the Dutch
national science agenda. We should definitely lobby
for a Jacquard like program funded by NWO. In the
discussion about funding it is urgent to arrive at a clear
division of work / areas of expertise between different
formal methods groups in the Netherlands, e.g., via
a list of ten subfields where each university claims a
leading role in at most two or three topics.

4. Attracting talent. Clearly, having a convincing re-
search agenda with challenging problems and a vision
on how to tackle these problems will attract talent. My
suggestion would be to organize another meeting at
some point to exchange ideas on how we can attract
more talented students to our area.

3 Model Learning and Testing
Active automata learning (or model learning) aims to con-
struct black-box state machine models of software and hard-
ware systems by providing inputs and observing outputs.
State machines are crucial for understanding the behavior
of many software systems, such as network protocols and
embedded control software, as they allow us to reason about
communication errors and component compatibility. Model
learning is emerging as a highly effective bug-finding tech-
nique [1]. It has been successfully used in several different
application domains, including

• generating conformance test suites of software com-
ponents, a.k.a. learning-based testing,

• findingmistakes in implementations of security-critical
protocols,

• learning interfaces of classes in software libraries,
• checking that a legacy component and a refactored
implementation have the same behavior.

There is certainly a large potential for application of model
learning to many different aspects of software development,
maintenance and refactoring, especially when it comes to
handling legacy software. To realize this potential, two major
challenges must be addressed: (1) currently, techniques do
not scale well, and (2) they are not yet satisfactorily devel-
oped for richer classes of models.

One way to address these challenges is to augment model
learning with white-box information extraction methods
(e.g., symbolic execution, tain analysis, static analysis), which

are able to obtain information about the system-under-learning
at lower cost than black-box techniques. When dealing with
computer-based systems, there is a spectrum of how much
information we have about the code. For third party com-
ponents that run on separate hardware, we may not have
access to the code at all. Frequently we will have access to
the executable, but not anymore to the original code. Or we
may have access to the code, but not to adequate tools for
analyzing it (this often happens with legacy components). If
we can construct a good model of a component using black-
box learning techniques, we do not need to worry about
the code. However, in cases where black-box techniques do
not work and/or the number of queries becomes too high,
it makes sense to exploit information from the code during
model learning.

Active automata learning is closely related to model-based
testing, and both activities can be viewed as two sides of the
same coin. Whereas automata learning aims at constructing
hypothesis models from observations, model-based testing
checks whether a system under test conforms to a given
model. Model-based test tools play a crucial role within active
automata learning, as a way to determine whether a learned
model is correct or not. For this reason, the activities in
Nijmegen on model learning and model-based testing are
closely aligned, and inspire/challenge each other.

Within our group, Nils Jansen recently started as an assis-
tant professor working at the intersection between formal
verification, machine learning, and control theory, along the
lines described in Sections 4 and 5 of Katoen’s contribution.

Research objective. Our objective is to reach — within say
seven years – the point where active automata learning and
model based testing have become standard tools in the tool-
box of the software engineer, equally mature as model check-
ing is right now.

Collaboration. Our group e.g., collaborates closely with the
groups of Bernhard Steffen and Falk Howar at the TU Dort-
mund on learning tools, with the group of Andreas Zeller
from Saarland University on the use of taint analysis in learn-
ing, with TNO ESI on the model-based testing tool TorXakis,
with the Digital Security Group in Nijmegen on case studies
related to security, and with ASML and Philips Healthcare
on case studies related to refactoring of legacy software. All
these collaborations are vital for reaching our research ob-
jectives. We would be most interested to collaborate with
other groups in the Netherlands, e.g., on the use of white-box
analysis techniques in automata learning.

References
[1] F.W. Vaandrager. 2017. Model Learning. CACM 60, 2 (Feb. 2017), 86–95.

https://doi.org/10.1145/2967606

Formal Methods for Systems Security
Wan Fokkink, Cristiano Giuffrida, Herbert Bos

Formal methods are being successfully applied in the realm
of security, notably in the analysis of network protocols.
However, security vulnerability of computer systems nowa-
days occur more and more at the hardware level. A poignant
example is the recent string of cache side-channel attacks,
which exploit minimal information leakage via caches. Or
the sensational exploits of speculative execution, where mi-
croprocessors do work in advance, to prevent delay in case
the work is actually needed later; if it turns out the work
is not needed, changes are reverted and results are ignored.
Notable recent attacks that target microprocessors are Melt-
down, Spectre and TLBleed. And at the software level, soft-
ware patches, which often aim to repair security leaks, tend
to introduce new security vulnerabilities that go undetected
by software developers.
Formal methods are of the essence to help in harnassing

computer systems against such low-level attacks. For this,
first of all formal models need to be developed that are at
a sufficiently abstract level to obtain general correctness
results, but at a sufficiently detailed level to analyze and
guarantee security properties at the hardware level. Notably,
the CacheAudit tool for static analysis of cache side channels
developed by Boris Köpf and his co-workers is an interesting
first step in this direction. The groundbreaking work of the
team of Gernot Heiser at NICTA, on the microkernel seL4
that was verified using Isabelle/HOL, can also be considered
a road map for achieving firm security guarantees at the sys-
tem level through formal verification. The work has reached
sufficiently mature levels to allow for adoption in real-workd
systems. Such and similar work at MIT and other places on
reliable and secure file systems, compilers and other compo-
nents of low-level systems indicate both a growing trend in
research in the space between systems security and formal
methods and an increasing need for such research.
The security and formal methods groups in the depart-

ment of computer science at the Vrije Universiteit Amster-
dam are joining forces and work on formal methods for
systems security. A first result of this collaboration is the
master thesis of Kevin Maiutto from August 2018, in which
the TLBleed attack has been analyzed using CacheAudit.
The long-term plan for this effort is to generalize the cur-
rent framework to several classes of side-channel attacks
and model arbitrary defenses as constraints on the underly-
ing formal model. More broadly, focus points for the coming
years are formally reasoning over the properties of side chan-
nel attacks in the memory subsystem and guaranteeing the
correctness of software patches.

Computer Assisted Mathematical Proofs: using the
computer to verify computers

Herman Geuvers
Radboud Universiteit
The Netherlands

Mathematical proofs get more and more difficult and com-
plex. At the same time more and more computer systems
(software and hardware) can be verified rigidly using mathe-
matical proof, so there is an increasing request for completely
verified mathematical proofs.

The field of Computer Assisted Mathematical Proofs fills
this gap by allowing users to create complete mathematical
proofs, interactively with the computer, where the computer
checks each small reasoning step. In this way we obtains the
utmost guarantees of correctness.

In the talks we will discuss the present state of Computer
Assisted Mathematical Proofs and how it works by some
examples. We will discuss its limitations, which basically
rest on the limitations of proof automation. It has recently
become clear that Machine Learning provides methods that
apply very well to speeding up proof automation. Machine
Learning does not supersede standard techniques (from Au-
tomated Theorem Proving) but provides the ideal additional
technique.

Formal modelling and analysis
The road to affordable, high quality (control) software

Jan Friso Groote, Bas Luttik, Julien Schmaltz, Erik de Vink, Wieger Wesselink, Tim Willemse

{J.F.Groote,S.P.Luttik,J.Schmaltz,E.P.d.Vink,J.W.Wesselink,T.A.C.Willemse}@tue.nl
Department of Mathematics and Computer Science

Eindhoven University of Technology

Abstract
The research interest of the Formal Systems Analysis (FSA)
research group at Eindhoven University lies in the develop-
ment of techniques to efficiently develop software that is
guaranteed to work as expected. Our tools and methods are
starting to find widespread use in the embedded systems
industry. We identify the success factors and indicate what
we believe are the most important research directions.

1 Introduction
Can we make software that works most of the time? The
answer is yes, and it is all around us. But a trickier ques-
tion is whether we can make software that always works
as expected and that is still affordable. The answer to that
is quite open, and it is one of the fundamental quests of
computer science. In the Formal Systems Analysis group at
Eindhoven University we believe that the solution to this
quest can only be found through the use of mathematical
analysis techniques assisted by appropriate methods and
tools.
We can safely say that throughout the years we made

good progress towards an answer. We have analysed the ac-
tual software of numerous large scale projects varying from
train and bridge controllers [4, 9], control software for wafer
steppers [10] and X-ray scanners [11] and even the detector
control software of the CMS and ATLAS projects at CERN [8].
In almost all cases we could identify flaws, have them re-
paired and we could always show that the resulting software
was performing according to given correctness requirements.
This success led to the uptake of the mCRL2 toolset as the
verification backend of the Verum toolset. Verum is currently
a major supplier for tools to design reliable embedded soft-
ware. Analysis of the use of Verum’s methods show that
they lead to a tenfold reduction of errors and a speedup of
development of a factor three [11].
Below we identify the factors that made these projects

successful and how they lead the way of further research.
The successful methods need to be strengthened and they
have to made available to larger groups of developers at an
even further reduced cost.

1.1 Formal Model-Driven Engineering
All projects where we successfully applied model checking
to increase the quality of the code were using some form
of Domain Specific Language (DSL). All DSLs that we en-
countered essentially consisted of a finite automata language
with inputs and outputs. Examples are safety programmable
logical controllers (PLCs), finite automata at CERN and ASD
and Dezyne at Verum [1].
The effectiveness of DSLs has three causes. Firstly, pro-

grams written in a DSL are much more concise than pro-
grams written in a general programming language. Secondly,
DSLs restrict the expressivity of programmers, which means
that programs written in DSLs are far more comprehensible
by other programmers. Finally, DSLs are easier to analyse
and verify by formal means, meaning that their quality can
be mademuch higher than that of regular programs. This last
aspect is probably the most important of these three. Formal
verification is an effective way the let the software attain its
desired quality, avoiding expensive testing and continuous
redesign.
In all cases we wrote translators from DSLs to the most

appropriate verification framework (mCRL2 [6] or SAT) to
perform the verification. Formal verification of systems writ-
ten in general purpose languages require manual translation
to a formal setting. As such software is complex and often
badly documented, its translation is generally unsatisfactory
and inefficient, unsuitable to become part of an effective
workflow.

Model-Driven engineering with behavioural analysis can
be made more effective in the following ways:

• More effectivemeans to transform programswritten in
aDSL into a verification framework. It is not efficient to
build verification toolsets for each DSL from scratch. It
should be possible to define the translations abstractly,
after which the necessary transformation framework
is automatically generated.

• An effective theory to denote and reason about the
meaning of DSL programs. This theory should also
allow to assess the correctness of the translations to
verification formalisms.

• An understanding of the do’s and don’ts within the
design of DSLs such that they are suitable for their
domains, allow verification and do not become too

Jan Friso Groote, Bas Luttik, Julien Schmaltz, Erik de Vink, Wieger Wesselink, Tim Willemse

expressive hampering understandability of programs
written in it. As an example the DSLs ASD and Dezyne
do not allow to write programs that manipulate input
data, to avoid a state space explosion that could hamper
verifiability.

1.2 Coordination Architecture
Another important observation behind most of the effec-
tive verifications is that the architecture of the system has a
strong influence on verifiability [5]. At CERN we are speak-
ing about systems of up to 60,000 cooperating components
in a strict tree structure. At ASML we verified a system with
250 components with on average more than 1000 ‘rule cases’
each, of which the coordination architecture could be trans-
formed into a tree [10].
But it is unlikely that tree like software architectures

would fit all applications. We need to identify which soft-
ware structures are more amenable to verification, and which
verification techniques are most suitable for those cases.

We then need to change the attitude to system design.
When setting up a system, the software architecture that
is chosen must not only be suitable for the purpose of the
software, but also need to fit the verification needs.

1.3 A Unified Analysis Framework
The diverse, and relatively separate visions and solutions
for analysing the behaviour of systems within various spe-
cialised problem domains have led to a situation in which
results that are obtained in one domain are not easily trans-
fered to other domains. There is a serious risk that this will
inhibit the progress we can achieve in the near future.
What is needed is to identify a formalism that unifies

existing behavioural analysis techniques. Such a formalism
should be independent of the specification languages used to
describe the systems, but, more importantly, the formalism
should be sufficiently powerful to unify all the techniques
developed in the separate specialised verification disciplines.
A serious candidate is the formalism of parameterised

Boolean equation systems [7]. This formalism is firmly rooted
in mathematical fixpoint theory and logic, and admits an
elegant game theoretical interpretation. Model checking in
mCRL2 is done via a translation to PBESs. Moreover, the
techniques developed for PBESs can be studied in their own
right, leading to new insights into existing theories. A beauti-
ful example thereof is the theory of abstraction for PBESs [3],
which, inspired by abstraction theories for transition sys-
tems, substantially improves upon it.

The PBES theory has, by now, successfully demonstrated
its status as a unified framework for analysing data-dependent
systems and real-time systems. However, more is needed.
Apart from continuing the prime research line of unifying
existing specialised techniques (e.g. partial order and sym-
metry reduction) for data-dependent and real-time systems
into the the theory of PBESs we need to:

• define specialised theories for PBESs that involve (frag-
ments of) real-valued and complex numbers; such the-
ories are needed to deal with continuous variables
and problems stemming from e.g. hybrid systems and
hybrid approaches to fluid dynamics. Of particular in-
terest is the algorithmic study of PBESs that include
such numbers;

• extend the PBES theory to deal with quantitative anal-
ysis problems to allow for analysing probabilistic and
stochastic systems, optimisation problems, etcetera,
and demonstrating that these extensions are sufficiently
powerful to solve the analytical problems in the respec-
tive application areas.

• address the fundamental open questions in the theory
of PBESs; e.g. establishing the long standing open prob-
lem of the exact computational complexity of solving
PBESs or parity games [2]; identifying a complete (as
in finite) abstraction theory for PBESs; identifying the
limits of PBESs as a unifying framework.

References
[1] Guy H. Broadfoot. 2005. ASD Case Notes: Costs and Benefits of Ap-

plying Formal Methods to Industrial Control Software. In FM 2005:
Formal Methods, International Symposium of Formal Methods Europe,
Newcastle, UK, July 18-22, 2005, Proceedings (Lecture Notes in Computer
Science), John S. Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki (Eds.),
Vol. 3582. Springer, 548–551. https://doi.org/10.1007/11526841_39

[2] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and
Frank Stephan. 2017. Deciding parity games in quasipolynomial time.
In STOC. ACM, 252–263.

[3] Sjoerd Cranen, Maciej Gazda, Wieger Wesselink, and Tim A.C.
Willemse. 2015. Abstraction in Fixpoint Logic. ACM Trans. Com-
put. Log. 16, 4 (2015), 29:1–29:39.

[4] Jan Friso Groote, Jeroen Keiren, Anson van Rooij, Vikram Saralaya, and
AntonWijs. 2013. Verificatie van de correctheid van de PLC-software van
de Algerabrug. Technical Report. Technical report for Rijkswaterstaat
(confidential).

[5] Jan Friso Groote, Tim W. D. M. Kouters, and Ammar Osaiweran. 2015.
Specification guidelines to avoid the state space explosion problem.
Softw. Test., Verif. Reliab. 25, 1 (2015), 4–33.

[6] Jan Friso Groote and Mohammad Reza Mousavi. 2014. Modeling and
Analysis of Communicating Systems. MIT Press.

[7] Jan Friso Groote and Tim A.C. Willemse. 2005. Parameterised boolean
equation systems. Theor. Comput. Sci. 343, 3 (2005), 332–369.

[8] Yi-Ling Hwong, Jeroen J. A. Keiren, Vincent J. J. Kusters, Sander J. J.
Leemans, and Tim A. C. Willemse. 2013. Formalising and analysing
the control software of the Compact Muon Solenoid Experiment at the
Large Hadron Collider. Sci. Comput. Program. 78, 12 (2013), 2435–2452.

[9] J.W.C. Koorn J.F. Groote and S.F.M. van Vlijmen. 1995. The safety
guaranteeing system at station Hoorn-Kersenboogerd (Extended ab-
stract). In Proceedings 10th Annual Conference on Computer Assurance
(COMPASS’95). IEEE, Gaithersburg, Maryland, 57–68.

[10] Ruben Jonk. 2016. The semantics of ALIAS defined in mCRL2. Technical
Report. Eindhoven University of Technology, Department of Computer
Science, The Netherlands. master thesis.

[11] Ammar Osaiweran, Mathijs Schuts, Jozef Hooman, Jan Friso Groote,
and Bart J. van Rijnsoever. 2016. Evaluating the effect of a lightweight
formal technique in industry. STTT 18, 1 (2016), 93–108. https:
//doi.org/10.1007/s10009-015-0374-1

Practical Formal Methods
Jeroen J.A. Keiren

Department of Computer Science
Open University of the Netherlands
Department of Digital Security, ICIS

Radboud University
Nijmegen, The Netherlands

Delft University of Technology
Delft, The Netherlands
Jeroen.Keiren@ou.nl

1 Introduction
Today, we heavily depend on software. We do not only use
the computers on our desktops and the mobile phones in
our pockets. Financial infrastructures and automatic stock
trading are controlled by computers, and computer systems
are embedded in home appliances such as televisions, safety
critical systems such as cars and airplanes, as well as systems
controlling (access to) infrastructure such as bridges and
tunnels.

During the development of software, inevitably, mistakes
are made. In fact, on average, every 1000 lines of code contain
up to 10-16 bugs [? ?]. Some of these bugs will only show up
once the system is running. At that point, the consequences
can range from being harmless – e.g. needing to restart your
phone because it freezes –, to very severe – such as a car
crashing [?], hundreds of millions of dollars being lost in in
the stock markets [?]. Furthermore, a growing reliance on
battery-powered devices and the effects of climate change
have resulted in an increased interest in green computing.
Bugs that lead to quick draining of batteries have gained a
lot of publicity [?].

To effectively detect or avoid such bugs early (preferably
before software is used) calls for a range of different tools
and techniques. This ranges from exact and exhaustive veri-
fication methods such as (automated) theorem proving and
model checking, to formal testing techniques such as model
based testing, automated testing at the level of graphical user
interfaces, as well as more traditional testing techniques such
as unit- and integration testing. The formal methods and
software engineering communities in the Netherlands have
a long track record in developing such techniques.

When considering, especially, the more formal approaches
such as model checking, theorem proving and model-based
testing, there is a lot of anecdotal evidence that they are
effective in finding and avoiding bugs, for instance [? ? ?].
However, the techniques typically require experts that are
well-versed in both the application domain as well as in the
formal methods applied. Furthermore, a clear business case
for the application of formal methods is missing.

Besides the mainly theoretical research into the founda-
tions of formal methods based verification and testing tech-
niques, there are three research directions that deserve our
undivided attention.

1. Develop formal methods that can be used by software
engineers that are not formal methods experts.

2. Establish a business case for the industrial application
of formal methods through empirical research.

3. Determine how formal methods can best be integrated
in software engineering and computer science curric-
ula.

I will detail each of these three points in the rest of this
abstract.

2 Bringing formal methods to the masses
The application of formal methods such as model checking
or model based testing to industrial cases is still very much
an expert activity. Tools often rely on models of the software,
instead of the software itself, and the models are specified
in domain-specific languages whose syntax is far from the
the programming languages software engineers are used to.
Throughout the years many applications of such techniques
have been reported as a success, e.g., [? ?], but large-scale
industrial application has yet to gain traction.
In software model-checking, some successes have been

obtained, e.g., at Microsoft using SLAM1 [?] and TERMI-
NATOR, continued as T2 [?], for the verification of C code,
where verifying a limited set of properties on an actual (C-
code) implementation seems to be one of the success criteria.
To bring formal methods to the masses, as a community

we need to invest not just in new techniques, but also in the
engineering of tooling and languages that can be used in
the industrial software engineering process, and recognise
that this step is not “just trivial engineering”. We should
therefore not stop at the development of prototype tools,
but also look at industry needs and invest in making the
tooling mature enough for use in production systems. At
CERN, for example, we went from high-level academic tools,
down to an integration of the verification in the IDE used by
1https://www.microsoft.com/en-us/research/project/slam/, accessed 9 Au-
gust 2018

Jeroen J.A. Keiren

the developers, effectively providing developers with push-
button access to model checking [?].

3 Empirical evidence for the merits of
formal methods

Industrial application of formal methods are typically re-
ported as succes stories. However, from an industrial per-
spective, it is important to know the effects on applying such
techniques. How does the application of formal methods
affect, for example, time-to-market, number of bugs found
after deployment, etc.

Unfortunately, such information is currently lacking from
the formal methods literature. Some vendors, such as Verum
with its Dezyne toolkit – which is based on mCRL2 [?] –, do
report benefits such as “50% reduction in development costs,
25% reduction in the cost of field defect and 20% decrease in
time-to-market”2, but the sources and reliability of such data
are unclear. In order to build a successful business case for
the application of formal methods in software engineering
practice, a collaborative effort should be made to collect
data about the application of formal methods. Based on the
collected data, a business case for the application of formal
methods should be developed. One possibility could be the
collection of data in a large number of student projects, such
as [?].

4 Teaching formal methods
A final advance in the acceptance of formal methods lies in
the way we teach formal methods. It appears commonplace
in software engineering and computer science curricula to
present formal methods more as a research topic than as
a software engineering topic. A typical question one gets
from students is “so, where and how are these techniques
actually applied in industry”. In recent years, I have seen
more critical attitudes of students towards formal methods
courses. Should we do a better job at integrating formal
methods into our curricula, to really show the students what
the can do with formal methods instead of how the formal
methods work?

Note that there is more to the teaching of formal methods.
How can we effectively teach such methods using modern
tools and techniques such as massive open online courses
(MOOCs)? In particular, with (sometimes dramatically) in-
creasing numbers of students, and in the context of distance
learning, we need to find ways of providing feedback in for-
mal methods education that does not rely on expert feedback.
Is it possible to build interactive online tools that present
feedback to students about their solutions? Are there more
effective ways of teaching formal methods than we currently
use in our courses? Can we, in this respect, learn from pro-
gramming education research such as [? ?]?

2https://www.verum.com, accessed 9 August 2018.

More Code, More Quantities
Joost-Pieter Katoen

RWTH Aachen University, Software Modeling and Verification
Aachen, Germany

University of Twente, Formal Methods and Tools
Enschede, The Netherlands

katoen@cs.rwth-aachen.de,katoen@utwente.nl

Abstract
Formal methods are pretty strong in the Netherlands. It is
however primarily focused on correctness in the Boolean
sense: an artefact (being it a program or a system) is correct
or not. Without doubt correctness is of pivotal importance,
but in my view we should be ready to make a paradigm shift
to a more quantitative setting. Big data, machine learning,
robots (to mention a few) rapidly are becoming dominant
for programs and (safety-critical) ICT systems. They come
with a high degree of uncertainty. Reasoning about this re-
quires that formal methodists leave the Boolean territory
— it is quantitative reasoning that is sought for! In addition,
model-based techniques prevail in Dutch formal methods.
This contrasts the international trend where more and more
emphasis is put on (continuously) verifying software at the
code level. It is time that Dutch formal methodists take soft-
waremore seriously — it is software in cars, washingmachines,
and aerospace systems that becomes the bottleneck!

1 Formal Verification
Key considerations for computer programs are whether they
will terminate, and if so, whether the result of their computa-
tion is correct. The fundamental questions “does a computer
program terminate?” and “does a computer program work as
expected?” are core — if not the most important — research
topics in program analysis ever since Turing’s seminal pa-
per on providing a program proof in 1949. As hard guaran-
tees cannot be achieved using common techniques such as
peer review (aka: manual inspection), extensive simulation
and testing, more rigorous means are needed. This is where
formal verification techniques enter the scene. They strive
for establishing that a program is correct with respect to a
given specification, a precise description of the input-output
behaviour of the program. This is a challenge as proving
program correctness is undecidable in general. Main tech-
niques are deductive techniques à la Floyd-Hoare and model
checking.
Model checking is a successful technique for finite-state

systems making it very popular for checking hardware; e.g.,
the temporal logic PSL is an international standard for for-
mal hardware specifications. The state-of-the art in software

verification is to use a carefully balanced mixture of deduc-
tive techniques (to support computing weakest precondi-
tions), model checking, program analysis, and satisfiability-
modulo theory (SMT) techniques [5]. Powerful abstraction-
refinement techniques enable the automated verification of
a large class of programs.

2 The Rise of Software Verification
Formal verification has been adopted by the main software
companies. On the world-wide level, Microsoft uses program
verification to find bugs (or better: show their absence) in
device-driver software, Facebook provides their program-
mers with tools employing lightweight formal verification
to improve their software quality by tracing memory leaks
and null pointer dereferencing, and Amazon web services
attacks security leaks with formal verification [2]. Microsoft,
Google, Amazon, and Facebook all provide funding possibil-
ities for applying and further developing formal verification.
Facebook’s continuous verification program to boost the
scalability of formal verification is an interesting example of
this [7].
Also in Germany, formal verification is (finally) on the

agenda of some major companies. This includes car manu-
facturers such as BMW and Mercedes, but also companies
such as Bosch and Siemens. In close collaboration with —
and completely funded by — Siemens we have recently fin-
ished building an IC3-based software model checker for C
programs in the last five years [6]. Although it is applicable
to general C programs, it is tailored to programmable logic
controllers (PLCs) with specific support for arrays, float-
ing points (for treating trigonometric functions occurring
in motor control), and bit-vector analysis. The underlying
technology is based on aggressive abstraction (IC3 and gen-
eralization), SMT, and deductive techniques for computing
weakest preconditions. Together with — and fully funded
by — Ford motor company (in Germany and the USA), we
are currently applying software verification to C code that
is automatically generated from Simulink [1].

3 More Programs, Less Models
I observe two trends. The first trend: software companies
have adopted formal verification to quite some extent. They
have entire research groups, bought out famous academics

Joost-Pieter Katoen

in the field, and invest substantial amounts in further devel-
oping the field. And is not safety-critical software per se that
is focused on. It seems that Dutch software industry does not
follow this international trend at all.Why is this? Is it their
ignorance? Is software development not major enough?

Or does it have perhaps to do with the second trend: there
is a clear shift from model-based to code-based analysis.
Whereas until about a a decade ago, model-based verification
(UML, AADL, process algebra, etc.) was prevailing, software
verification — directly proving properties on the code — is
taken over. It seems that Dutch formal methodists do not follow
this trend. There are a few Dutch groups doing (excellent)
research on (semi-)automated program verification, but it
seems (to me) that model-based techniques are still in their
majority. Why? Is this because of the strong Dutch tradition
on model-based formalisms such as process algebras? Or are
we more system oriented rather than software oriented? Or
is it because in the Netherlands the primary use of software
is in trading and finance, and not in industry?

4 The Rise of Uncertainty
Uncertainty is nowadays more and more pervasive in com-
puter science. It is important both in big data and at the
level of events and control. Applications have to treat lots
of data, often from unreliable sources such as noisy sensors
and untrusted web pages. Data may also be subject to con-
tinuous changes, may come in different formats, and is often
incomplete. Systems have to deal with unpredictable and
sometimes hostile environments. A different, also inevitable,
kind of uncertainty arises from abstractions in system mod-
els focusing on the control of events.
Probabilistic modelling and randomization are key tech-

niques for dealing with uncertainty. Many trends witness
this. Real-world modelling in planning is advancing by prob-
abilistic programs describing complex Bayesian networks.
In security, hostile environments are often captured by prob-
abilistic adversaries. Probabilistic databases deal with uncer-
tain data by associating probabilities to the possible worlds.
In systems verification, probabilistic model checking has
emerged as a key technique allowing for correctness check-
ing and performance analysis. Similar developments take
place in logic and game theory. The pervasiveness of un-
certainty urges to make substantial enhancements in proba-
bilistic modelling and reasoning so as to understand, reason
about, and master uncertainty. This requires a paradigm shift
from reasoning about Boolean correctness — a system is correct
or not — to a more quantitative notion. This is in line with
Henzinger’s convincing arguments of a few years ago [3].
With the advent of machine learning, big data, and robotics,
I feel that such shift is more needed than ever.

5 More Quantities, Less Booleans
With the rapidly growing application of machine learning
in e.g., self–driving cars, the need for verified guarantees
against potentially fatal accidents is self–evident. To substan-
tiate this, let me quote the U.S. government report “Preparing
for the Future of Artificial Intelligence” :

If practitioners cannot achieve justified confi-
dence that a system is safe and controllable, so
that deploying the system does not create an un-
acceptable risk of serious negative consequences,
then the system cannot and should not be de-
ployed.

Machine learning naturally cannot guarantee safe behavior.
However, growing application areas such as autonomous
driving, require the exclusion or likely avoidance of unsafe
behaviors. Formal verification has the potential to indicate
confidence in system behaviors obtained frommachine learn-
ing. Vice versa, leveraging the capabilities of machine learn-
ing to quickly assess large data sets may help to enable verifi-
cation for more realistic systems. Machine learning typically
obtains results but provides no evidence about this.1 Formal
verification techniques such as counterexample generation
have the potential to obtain some explainability. A recent
list of challenges on the edge of machine learning and for-
mal verification [4] includes a.o. safety verification of deep
neural networks, formal program synthesis and analysis us-
ing machine learning, explainable AI, machine learning in
motion planning, and guarantees on reinforcement learning
in verification. Evidently, quantities is what is sought for; it is
no longer sufficient to treat correctness in a Boolean, absolute
sense.

References
[1] Philipp Berger, Joost-Pieter Katoen, Erika Ábrahám, Md Tawhid Bin

Waez, and Thomas Rambow. 2018. Verifying Auto-generated C Code
from Simulink - An Experience Report in the Automotive Domain. In
FM (LNCS), Vol. 10951. Springer, 312–328.

[2] Byron Cook. 2018. Formal Reasoning About the Security of Amazon
Web Services. In CAV (1) (LNCS), Vol. 10981. Springer, 38–47.

[3] Thomas A. Henzinger. 2013. Quantitative reactive modeling and verifi-
cation. Computer Science - R&D 28, 4 (2013), 331–344.

[4] Nils Jansen, Joost-Pieter Katoen, Pushmeet Kohli, and Jan Kretinsky.
2018. Machine Learning and Model Checking Join Forces (Dagstuhl
Seminar 18121). Dagstuhl Reports 8, 3 (2018), 74–93.

[5] Ranjit Jhala and Rupak Majumdar. 2009. Software model checking.
ACM Comput. Surv. 41, 4 (2009), 21:1–21:54.

[6] Tim Lange, Frederick Prinz, Martin R. Neuhäußer, Thomas Noll, and
Joost-Pieter Katoen. 2018. Improving Generalization in Software IC3.
In SPIN (LNCS), Vol. 10869. Springer, 85–102.

[7] Peter W. O’Hearn. 2018. Continuous Reasoning: Scaling the impact of
formal methods. In LICS. ACM, 13–25.

1The NIPS 2017 test-of-time award presentation claims that machine learn-
ing has become alchemy.

Correct Message-Passing Software Systems
Current and Future Research Challenges

Jorge A. Pérez
Bernoulli Institute for Mathematics, Computer Science, and Artificial Intellgence

University of Groningen
The Netherlands
j.a.perez@rug.nl

Abstract
Many critical software systems rely on message-passing be-
tween distributed artefacts, such as (micro)services. To a
large extent, certifying system correctness amounts to en-
suring that these artefacts respect some intended protocol.

Rooted in programming models from concurrency theory,
behavioral type systems are a rigorous verification technique
for message-passing programs. While these type systems are
well understood by now, a main challenge remains: as their
precision varies ostensibly, they induce seemingly unrelated
forms of correctness. Since behavioral type systems still lack
unifying foundations, it is hard to establish a most necessary
dialogue with other researchers and software practitioners.

This note briefly introduces behavioral type systems and
describes current research that targets the above challenge,
framed within my VIDI career grant, recently awarded. It
also suggests links between type-based program verification
and other approaches in the intersection of formal methods,
programming languages, and software engineering.

Keywords message-passing concurrency, verification, types

1 Communication Correctness
Ensuring software systems correct is widely recognized as
a societal challenge (see, e.g., [8]). Establishing correctness
for concurrent programs is much harder than for sequential
programs. For message-passing programs, we may define
communication correctness as the interplay of four properties:

- Fidelity: programs respect interaction protocols;
- Safety: programs do not get into errors, e.g., communica-
tion mismatches;

- Deadlock-freedom: programs do not get stuck;
- Termination: programs do not have infinite internal runs.

Certifying communication correctness is notoriously hard.
Developers need effective and practical verification tools.
Effective tools detect insidious bugs (e.g., communication
errors, protocol mismatches, deadlocked services) before
programs are run. Practical tools reconcile the programming
view that developers understand well (where programs are
implemented) and the engineering view needed to build large
systems (where protocols are conceived).

2 Behavioral Types
Framed within concurrency theory and programming lan-
guages, behavioral type systems (or just behavioral types [9])
are a rigorous technique for certifying that message-passing
programs satisfy communication correctness.

From Data Types to Behavioral Types Type systems pre-
vent the occurrence of errors during the execution of a pro-
gram [4]. The most basic property of a type system, sound-
ness, ensures that “well-typed programs can’t go wrong” [12].
While usual data types classify values, behavioral types

organize concurrent interactions into communication struc-
tures, which are explicit for developers and architects [19].
Implementation agnostic, behavioral types are effective: the
interaction sequences they codify are useful to exclude bugs
that jeopardize communication correctness. Behavioral types
are practical: communication structures can be composition-
ally expressed at different abstraction levels. Soundness of a
behavioral type system typically ensures fidelity and safety;
deadlock-freedom and termination are harder to enforce.

Foundations and (TooMany) Variants Behavioral types
are usually defined on top of process calculi, formal languages
that treat concurrent processes much like the λ-calculus
treats computable functions. The π -calculus [13], the paradig-
matic calculus of concurrency, is the specification language
for many behavioral type systems. The intent is to define
robust type systems for the π -calculus, and then transfer
such foundations to specific languages. This is how verifica-
tion tools based on behavioral types have been successfully
developed for Haskell [16], Go [11, 15], and Scala [18].
Many behavioral type systems exist; see [9] for a survey.

Primarily intended as static verification techniques, which
enforce correctness prior to a program’s execution, behav-
ioral types may help also in defining dynamic verification
techniques that couple message-passing programs with so-
called monitors that ensure fidelity and safety at run-time.

3 Two Pressing Challenges
While specific theories of behavioral types (most notably,
session types [6, 7]) are gradually reaching maturity, the body
of knowledge on behavioral type systems as a whole is still
immature, as two basic issues still lack proper justifications.

Jorge A. Pérez

First, different behavioral type systems enforce different
notions of communication correctness: hence, a program ac-
cepted as well-typed (i.e., communication-correct) by one
type system could be ruled out as incorrect by another.
Second, and related to the above point, since the precise

relations between different behavioral types are still poorly
understood, their derived verification tools are hardly in-
teroperable. As such, we still do not know how to combine
distinct verification tools in the formal analysis of communi-
cation correctness in complex software systems.

Our ongoing research, recently supported by a VIDI career
grant, aims at jointly tackling both challenges.1
In short, my VIDI career grant aims to unify distinct no-

tions of communication correctness induced by different
theories of behavioral types. To this end, various verification
techniques for message-passing programs will be rigorously
related in terms of their relative expressiveness [17]. To artic-
ulate a unified theory of correctness, we will crucially rely
on the Curry-Howard correspondence for concurrency [3],
the most principled link between concurrency and logic. Our
preliminary results [2, 5, 10] are rather promising. We plan
to validate these foundational results through case studies
and tool prototypes.

4 A Research Agenda for the Future?
Tackling the two above challenges appears to be a pre-requi-
site step for addressing other relevant research questions in
the intersection of formal methods, programming languages,
and software engineering. Such questions include:
- Integration of techniques. Can we combine techniques
based on behavioral types with complementary techniques
developed by (Dutch) researchers on formal methods, such
as model checking and (concurrent) program logics?

- Cyber-security and trustworthiness. Verification based
on behavioral types uses protocols as key abstraction for
enforcing communication correctness. There is potential
for using this abstraction in other settings. For instance, can
we reconcile this view of protocols with the one typically
required to certify security protocols in critical software
systems? (We have given a preliminary answer in [14].)

- Industrial transfer and impact. To what extent verifi-
cation based on behavioral types has a place in validation
phases used by (Dutch) software industries?

- Usability. Are verification frameworks based on behav-
ioral types usable by software developers in practice? Can
practice inform further theoretical research on type-based
program verification? (A preliminary answer is in [20].)

While this list is by nomeans exhaustive, in our opinion these
questions already suggest potential grounds for collabora-
tion with other (Dutch) researchers, as well as also medium-
and long-term challenges to be tackled in cooperation with
practitioners and software industries.
1See http://www.jperez.nl/vidi for details.

References
[1] E. Albert and I. Lanese, editors. Formal Techniques for Distributed

Objects, Components, and Systems - 36th IFIP WG 6.1 International
Conference, FORTE 2016, volume 9688 of Lecture Notes in Computer
Science. Springer, 2016.

[2] L. Caires and J. A. Pérez. Multiparty session types within a canonical
binary theory, and beyond. In Albert and Lanese [1], pages 74–95.

[3] L. Caires, F. Pfenning, and B. Toninho. Towards concurrent type theory.
In B. C. Pierce, editor, Proceedings of TLDI 2012, pages 1–12. ACM, 2012.

[4] L. Cardelli. Type systems. In A. B. Tucker, editor, The Computer Science
and Engineering Handbook, pages 2208–2236. CRC Press, 1997.

[5] O. Dardha and J. A. Pérez. Comparing deadlock-free session typed pro-
cesses. In S. Crafa and D. Gebler, editors, Proceedings of EXPRESS/SOS
2015, volume 190 of EPTCS, pages 1–15, 2015.

[6] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and
type discipline for structured communication-based programming. In
C. Hankin, editor, Programming Languages and Systems - ESOP’98,
volume 1381 of Lecture Notes in Computer Science, pages 122–138.
Springer, 1998.

[7] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous
session types. In G. C. Necula and P. Wadler, editors, Proceedings of
POPL 2008, pages 273–284. ACM, 2008.

[8] M. Huisman, H. Bos, S. Brinkkemper, A. van Deursen, J. F. Groote,
P. Lago, J. van de Pol, and E. Visser. Software that meets its intent. In
T. Margaria and B. Steffen, editors, Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA 2016), Proceedings, Part II,
volume 9953 of Lecture Notes in Computer Science, pages 609–625, 2016.

[9] H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone,
P. Deniélou, D. Mostrous, L. Padovani, A. Ravara, E. Tuosto, H. T.
Vieira, and G. Zavattaro. Foundations of session types and behavioural
contracts. ACM Comput. Surv., 49(1):3, 2016.

[10] D. Kouzapas, J. A. Pérez, and N. Yoshida. On the relative expressive-
ness of higher-order session processes. In P. Thiemann, editor, 25th
European Symposium on Programming, ESOP 2016, volume 9632 of
Lecture Notes in Computer Science, pages 446–475. Springer, 2016.

[11] J. Lange, N. Ng, B. Toninho, and N. Yoshida. Fencing off go: liveness
and safety for channel-based programming. In G. Castagna and A. D.
Gordon, editors, Proceedings of POPL 2017, pages 748–761. ACM, 2017.

[12] R. Milner. A theory of type polymorphism in programming. J. Comput.
Syst. Sci., 17(3):348–375, 1978.

[13] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, i.
Inf. Comput., 100(1):1–40, 1992.

[14] D. Nantes and J. A. Pérez. Relating process languages for security
and communication correctness (extended abstract). In C. Baier and
L. Caires, editors, Proc. of FORTE 2018, volume 10854 of Lecture Notes
in Computer Science, pages 79–100. Springer, 2018.

[15] N. Ng and N. Yoshida. Static deadlock detection for concurrent go by
global session graph synthesis. In A. Zaks and M. V. Hermenegildo,
editors, Proceedings of CC 2016, pages 174–184. ACM, 2016.

[16] D. A. Orchard and N. Yoshida. Effects as sessions, sessions as effects.
In R. Bodik and R. Majumdar, editors, Proceedings of POPL 2016, pages
568–581. ACM, 2016.

[17] J. A. Pérez. The challenge of typed expressiveness in concurrency. In
Albert and Lanese [1], pages 239–247.

[18] A. Scalas, O. Dardha, R. Hu, and N. Yoshida. A linear decomposition of
multiparty sessions for safe distributed programming. In P. Müller, edi-
tor, 31st European Conference on Object-Oriented Programming, ECOOP
2017, volume 74 of LIPIcs, pages 24:1–24:31. Schloss Dagstuhl, 2017.

[19] V. T. Vasconcelos. Sessions, from types to programming languages.
Bulletin of the EATCS, 103:53–73, 2011.

[20] A. L. Voinea and S. J. Gay. Benefits of session types for software
development. In C. Anslow, T. D. LaToza, and J. Sunshine, editors,
Proc. of the 7th Workshop on Evaluation and Usability of Programming
Languages and Tools, PLATEAU@SPLASH’16, pages 26–29. ACM, 2016.

The Usability of Static Type Systems
Jurriaan Hage

Universiteit Utrecht
The Netherlands
j.hage@uu.nl

1 Introduction
Types are used in statically typed languages to guarantee
that “well-typed programs do not go wrong” (for the right
definition of wrong). Typically, this means that the compiler
for the language prevents certain programs from compiling,
because it has discovered that while running the program a
value may be passed to an operation that works on values
of an incompatible type. Such a type system is called an
intrinsic type system, as it is part of the language definition
that defines what are valid programs (for the given language).
Rice’s theorem [7] implies that no type system for a Tur-

ing complete language can precisely characterize the set of
programs that always go right. In a statically typed language
this means that the type system allows only a subset of such
programs. For example, a compiler for such a language will
enforce type correctness for all parts of a program, even for
dead code.
Another example of such over-approximation is the fol-

lowing. According to the Hindley-Milner type discipline [6]
(used as the basis for the type systems of many statically
typed functional languages), an expression like (λx .xx)(λy.y)
is considered ill-typed. The reason is that in the first lambda-
abstraction x is applied to itself, leading to an infinite type
to be inferred for it, something which is not allowed within
the discipline. For that reason, people have sought to ex-
tend the type system leading to the invention of so-called
higher-ranked types.

Extending and refining the intrinsic type system of a pro-
gramming language to ensure that it can soundly (with re-
spect to the semantics of the language) accept more and
more programs is a game the programming language com-
munity has been playing for some time. For a language such
as Haskell alone, type system concepts such as Generalized
Abstract Datatypes (GADTs) [10], and many of Haskell’s
other type system extensions have been developed to allow
the programmer to express more precise correctness proper-
ties for their programs. At the extreme end of that spectrum
we find the dependently typed languages, such as Agda and
Idris, in which the worlds of type and values have merged so
that almost any property can be expressed within the type
system [9].
The development of new type system features to extend

the set of known well-behaved programs has some of the
characteristics of an armament race. Consider the following,
highly idealized, scenario for the programming language
X. At one point, users of X discover that a particular class

of properties cannot be easily expressed in X, or that cer-
tain classes of programs that clearly do not go wrong are
forbidden by its type system. This prompts programming
language researchers to develop extensions to or refinements
of the existing type system of X to deal with this issue; proto-
type implementations are made to experiment with the new
“weapon”; interactions with existing features of X are (hope-
fully) considered and if everything proceeds as planned, the
new feature can be placed into the hands of the programmer
by an implementation into a industry-strength compiler for
X, unaware that some of these new features can easily blow
up in your face.

2 The diagnosis of type errors
Fortunately, most programs and compilers do not actually
blow up in anyone’s face. What a compiler might do, is refuse
to compile a program and generate a type error message.
And, the more complicated and advanced the type system
and its implementation is, the harder it will be to convey
such a message correctly and comprehensibly. This is not
only due to the intricacy of the new concept, but also to
the tendency to focus only on the implementation of the
concept itself: dealing with all the complicated interactions
with other features often takes second place. If the usability
of a new feature receives any attention at all it gets very
little, and often as an afterthought.
Sometimes, the design of a new feature is very pleasing

from a programming language viewpoint, but unintuitive
from a programmer’s viewpoint. A good example is the no-
tion of type classes in Haskell tomodel ad-hoc polymorphism
(aka overloading, the ability to refer to, say, the implementa-
tion of equality for strings and for booleans with the same
name). In the setting of Haskell, when a programmer acciden-
tally compares two functions, the type error message may
suggest to add a method for comparing functions, although
no sensible implementation can in fact be given. In practice,
the programmer simply forgot to provide arguments to the
functions. In the presence of overloaded numerals such error
messages can become even more confusing.
Other challenges include the diagnosis of type errors in

Domain-Specific Languages (DSLs) embedded into a gen-
eral purpose host language [4]. The aim in this case is to
introduce a new language specialized for a domain as part
of an existing (host) language. As part of the embedding, we
may even want to use the type system of the host to encode
type-like properties for the embedded language. Type error

Jurriaan Hage

diagnosis in such a setting is quite different from ordinary
type error diagnosis, in that the host language compiler has
absolutely no knowledge of the domain we are dealing with.
In particular, error messages will typically fail to talk to the
programmer in terms of the domain. This information then
has to be provided as part of the DSL definition. Some solu-
tions to this problem can be found in the literature [8], and
although some implementations exist in realistic languages,
much work still has to be done.
At the farthest extreme in terms of the guarantees that

can be provided by the programmer we find the dependently
typed languages (see [9] for more details). In this setting
computation and type have all become one. This means that
very precise properties can be checked, although typically
the language itself imposes certain demands on the programs
to make type checking work. The core idea of this paradigm
is that code comes with a correctness proof for the code, in-
tegrated seamlessly into a single program. In practice, these
languages are very hard to use, introducing diagnosis prob-
lems at various levels: on top of the usual unification errors,
e.g., a function is called with arguments in the wrong or-
der, at another level we might want the compiler to suggest
strengthening a lemma to make the proof of a theorem go
through.

3 Transparent programmer assistance for
optimising functional programs

It may not be at all clear that the problems observed in the
previous section carry over to the optimisation of statically
typed functional languages. But here is how.
The advent of intrinsic type systems has led to the de-

velopment of what are often called type and effect systems
(some call these non-standard type system, or annotated type
systems) [5]. The idea is to annotate the intrinsic types with
properties of interest (e.g., strictness information for a lazy
language [3], usage information [1], or control-flow informa-
tion [2]). The advantages of this approach are twofold: types
provide additional structure that we can exploit during the
analysis, and we can reuse vocabulary and implementation
techniques from the world of type systems. For example,
let-polymorphism in the Hindley-Milner type system gives
rise to so-called let-polyvariance in type and effect systems.
We can, however, go one step further. Optimisations are

usually performed deep down inside a compiler on a core
language to which the original program has been desugared.
Whether an analysis actually leads to an optimisation, and
how that is affected by how the program was written is not
known to the programmer unless he/she is willing to spend
time inspecting the generated object code. Typically, after
some profiling, we simply try something, and see how that
affects the running time and memory consumption.
Unsurprisingly, this ad-hoc approach can be very time

consuming, a problem that becomes more pronounced as the

abstraction level of a language rises. Although performance
is not often a problem these days, when it is then developing
applications in very high-level languages becomes a risk in
itself and developers may prefer to resort to lower-level lan-
guages instead. To counter this development, what we need
is that compilers for such high-level languages are transpar-
ent in that the information they collect for a given program
are made available to programmers at a suitably high level of
abstraction. One way to present this information is as type
signatures decorated with the analysis information. Going
one step further, these signatures can be supplied by the
programmer so that the compiler can either verify that it
can derive that information (showing that the programmer’s
expectations are correct). In other situations, the progrsam-
mer may want the compiler to take this information at face
value, and to use it to generate more efficient code (albeit
potentially unsafe, this is not any different from allowing
programmers in Haskell to use seq to enforce strictness.)
Here again, we have a situation in which the compiler

needs to communicate with the programmer and the same
problems that have bothered implementors of statically typed
functional languages show up in another guise, but also bring
their own set of challenges to the table.

References
[1] J. Hage, S. Holdermans, and A. Middelkoop. 2007. A generic usage

analysis with subeffect qualifiers. In Proceedings of the 12th ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2007,
Freiburg, Germany, October 1–3, 2007. ACM Press, 235–246.

[2] S. Holdermans and J. Hage. 2010. Polyvariant flow analysis with
higher-ranked polymorphic types and higher-order effect operators.
In Proceedings of the 15th ACM SIGPLAN 2010 International Conference
on Functional Programming (ICFP ’10). ACM Press, 63–74.

[3] S. Holdermans and J. Hage. 2011. Making “stricterness” more relevant.
Higher-Order and Symbolic Computation 23 (2011), 315–335. Issue 3.

[4] Paul Hudak. 1996. Building domain-specific embedded languages.
ACM Comput. Surv. 28, Article 196 (December 1996). Issue 4es.

[5] J. M. Lucassen and D. K. Gifford. 1988. Polymorphic effect systems. In
POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. ACM, New York, NY, USA,
47–57.

[6] R. Milner. 1978. A Theory of Type Polymorphism in Programming. J.
Comput. System Sci. 17 (1978), 348–375.

[7] H. G. Rice. 1953. Classes of Recursively Enumerable Sets and Their
Decision Problems. Trans. Amer. Math. Soc. 74 (1953), 358–366.

[8] Alejandro Serrano and Jurriaan Hage. 2016. Type Error Diagnosis for
Embedded DSLs by Two-Stage Specialized Type Rules. In Programming
Languages and Systems - 25th European Symposium on Programming,
ESOP 2016, Proceedings. 672–698.

[9] Wouter Swierstra. 2018. Programming with dependent types. (2018).
[10] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. 2006.

Simple unification-based type inference for GADTs. In Proceedings of
the ACM SIGPLAN International Conference on Functional Programming
(ICFP’06). ACM Press, 50–61.

Towards Reliable Concurrent Software
Marieke Huisman
University of Twente

m.huisman@utwente.nl

Abstract
As the use of concurrent software is increasing, we urgently
need techniques to establish the correctness of such appli-
cations. Over the last years, significant progress has been
made in the area of software verification, making verifica-
tion techniques usable for realistic applications. However,
much of this work concentrates on sequential software, and
a next step is necessary to apply these results also on realistic
concurrent software. In this abstract, we argue that current
techniques for verification of concurrent software need to be
further developed in multiple directions: extending the class
of properties that can be established, improving the level of
automation that is available for this kind of verification, and
enlarging the class of programs that can be verified.

1 Introduction
Software is everywhere! Every day we use and rely upon
enormous amounts of software, It has become impossible
to imagine what life would be like without software. This
creates the risk that one day software failures will bring our
everyday life to a grinding halt. In fact, all software contains
errors that cause it to behave in unintended ways [4, 6], and
substantial research is needed to to help software developers
to make software that is reliable under all circumstances,
without compromising its performance.

A commonly used approach to improve software perfor-
mance is the use of concurrency and distribution. For many
applications, a smart split into parallel computations can
lead to a significant increase in performance. Unfortunately,
parallel computations make it more difficult to guarantee
reliability of the software. The consequence is unsettling:
the use of concurrent and distributed software is widespread,
because it provides efficiency and robustness, but the unpre-
dictability of its behaviour makes that errors can occur at
unexpected, seemingly random moments.
The quest for reliable software builds on a long history,

and significant progress has already been made. Neverthe-
less, ensuring reliability of efficient software remains an
open challenge. Ultimately, it is our dream that program
verification techniques are built into software development
environments. When a software developer writes a program,
he explicitly writes down the crucial desired properties about
the program, as well as the assumptions under which the dif-
ferent program components may be executed. Continuously,
an automatic check is applied to decide whether the desired
properties are indeed established, and whether the assump-
tions are respected. If this is not the case, this is shown to

the developer – with useful feedback on why the program
does not behave as intended.

2 Abstraction Techniques for Functional
Verification

One of the main challenges for the verification of concur-
rent software that we see is to automatically verify global
functional correctness properties of concurrent software. To
reach this goal, we advocate an approach where amathemat-
ical model of a concurrent application is constructed, which
provides an abstract view of the program’s behaviour, leav-
ing out details that are irrelevant for the properties being
checked [3, 7], see Figure 1. The main verification steps in
this approach are

1. algorithmic verification over the mathematical model
to reason about global program behaviour, and

2. program logics to verify the formal connection between
the software and its mathematical model.

Typically, the basic building blocks of the abstract math-
ematical model are actions, for which we can prove a cor-
respondence between abstract actions and concrete code
fragments. A software designer specifies the desired global
properties for a given application in terms of abstract actions.
The software developer then specifies how these abstract ac-
tions map to concrete program state: in which states is the
action allowed, and what will be its effect on the program
state. Global properties may be safety properties, e.g., an in-
variant relation between the values of variables in different
components, or a complicated protocol specifying correct in-
terface usage, but we believe that extensions of the approach
to liveness and progress properties are also possible.
To further develop this approach and make it scale, we

believe the following challenges should be addressed:
1. identify a good abstraction theory,
2. extend the abstraction theory to reason about progress

and liveness properties of code, and
3. use the abstraction theory to guide the programmer

to develop working code through refinement.

3 Automating the Verification Process
Another major challenge is how to automate the verification
process. At the moment, program verification requires many
user annotations, explicitly describing properties which are
often obvious to developers. We believe that many of the
required annotations can be generated automatically, us-
ing a combination of appropriate static analyses and smart
heuristics.

Marieke Huisman

action a1 action a2

Mathematical model

Software code

Step 1: has property ϕabstract over
actions a1 and a2

Step 2: actions a1 and a2 corre-
spond to suitable code fragments

Conclusion: code has property
ϕconcrete

Figure 1. Using abstraction for the verification of concurrent and distributed software

We advocate a very pragmatic approach to annotation
generation, where any technique that can be used to reduce
the annotation burden is applied, combined with a smart
algorithm to evaluate the usability of a generated annota-
tion, removing any annotations that do not help automation.
This will lead to a framework where for a large subset of
non-trivial programs, we can automatically verify many com-
mon safety properties (absence of null-pointer dereferencing,
absence of array out of bounds indexing, absence of data
races etc.), and if we wish to verify more advanced functional
properties, the developer might have to provide a few crucial
annotations, but does not have to spell out in detail what
happens at every point in the program (in contrast to current
program verification practice).

4 Verification of Programs using Different
Concurrency Paradigms

Finally, verification techniques need to support different pro-
gramming languages, and different concurrency paradigms.
In particular, we believe that it is important to investigate
how to reason about programs written using the structured
parallel programming model where all threads execute the
same instructions. Recently, we have shown how our verifica-
tion techniques can be adapted in a straightforward manner
to GPUs (including atomic update instructions) [1, 2]. It turns
out that the restricted setting of a GPU has a positive impact
on verification: the same verification techniques can be used,
and verification actually gets simpler. We believe that this
direction should be explored further, as typical GPU pro-
grams are usually quite low-level, which makes them more
error-prone.
An interesting extension of this work is to automatically

transform a verified sequential program with annotations
into an annotated GPU program, which will be directly ver-
ifiable [5]. We believe this idea can also be used for other

compiler optimisations, such that they do transform not only
the program, but also the correctness annotations, such that
the result is a (hopefully) verifiable program again. Instead
of proving correctness of the transformation, both the pro-
gram and the annotations are transformed, such that after
the transformation the resulting program with annotations
can be reverified.

References
[1] S. Blom, S. Darabi, and M. Huisman. 2015. Verification of loop paralleli-

sations. In FASE (LNCS), Vol. 9033. Springer, 202–217.
[2] S. Blom, M. Huisman, and M. Mihelčić. 2014. Specification and Verifica-

tion of GPGPU programs. Science of Computer Programming 95 (2014),
376–388. Issue 3.

[3] S. Blom, M. Huisman, and M. Zaharieva-Stojanovski. 2015. History-
based verification of functional behaviour of concurrent programs. In
SEFM (LNCS), Vol. 9276. Springer, 84 – 98.

[4] ArchanaGanapathi andDavid A. Patterson. 2005. CrashData Collection:
A Windows Case Study.. In Dependable Systems and Networks (DSN)
(2005-08-01). IEEE Computer Society, 280–285.

[5] M. Huisman, S. Blom, S. Darabi, and M. Safari. 2018. Program Correct-
ness by Transformation. In 8th International Symposium On Leverag-
ing Applications of Formal Methods, Verification and Validation (ISoLA)
(LNCS). Springer. To appear.

[6] Rivalino Matias, Marcela Prince, Lúcio Borges, Claudio Sousa, and Luan
Henrique. 2014. An Empirical Exploratory Study on Operating System
Reliability. In 29th Annual ACM Symposium on Applied Computing (SAC).
ACM, 1523–1528. https://doi.org/10.1145/2554850.2555021

[7] W. Oortwijn, S. Blom, D. Gurov, M. Huisman, and M. Zaharieva-
Stojanovski. 2017. An Abstraction Technique for Describing Concurrent
Program Behaviour. In VSTTE (LNCS), Vol. 10712. Springer, 191 – 209.

Saving the World
A long and windy road towards sustainability and formal verification in practice

Marko van Eekelen
Full Professor, Head of Department
Computer Science Department

Faculty of Management, Science and Technology; Open University of The Netherlands
Heerlen

Marko.vanEekelen@ou.nl
Associate Professor
Digital Security

Institute for Computing and Information Sciences, Radboud University
Nijmegen

marko@cs.ru.nl

Abstract
My research is spread over two universities, mainly in the
following two different research areas:

• Resource consumption analysis
• Formal verification methods for verifying security and
correctness in cyber physical systems.

1 Introduction
1.1 Computer Science Research at the Open

University
The OU CS department has an emerging research group
within the Netherlands. Only since 2009 de OU formally has
a disciplinary research task. Since 2014 the author is chairing
the OU Computer Science Department with the intention
that research at the Open University is just as important
as education. This has lead to a growth of the department
to a current size of over 30 members (4 full professors, 1
associate professor, 17 assistant professors, 5 lecturers, 4
postdocs, 13 external Ph.D. students) performing research in
3 focal points:

• Learning (in 3 topics: Tools for Supporting Learning,
Computer Science Education, Computer Science Di-
dactics),

• Resilience - Trustworthy Systems (in 2 topics: Verifi-
cation, Security & Privacy)

• Innovation (Artificial Intelligence, Machine Learning).
The research is embedded in the Faculty of Management,

Science and Technology promoting a culture of interdisci-
plinary research.

The members of the department recently acquired several
grants (on Regional, National, European and American level)
among which a Rubicon and a Veni grant.

2 Resource Consumption Analysis
Functional properties of programs are widely studied. It is
however less common to study non-functional properties of

code. Recently, the resources studied are diversifying [12]. In
particular, the study of the consumption of other resources
than time is an opening field. Studying resources such as
memory and energy seems to the most promising [22].
From the practical point of view, the results discussed

in [16] improve polynomial resource analysis of computer
programs as presented in [19]. There the authors consider
the size of output as a polynomial function on the sizes of
inputs [18, 21]. In the NL NWOAHA project (2006-2011), the
EU Charter Artemis project (2009-2012) and the NL GoGreen
IOP GenCom project (2011-2015) the ResAna tool [10, 15,
20, 25] was developed that applies polynomial interpolation
to generate an upper bound on Java loop iterations. The
tool requires the user to input the degree of the solution.
In [16] a partial result for that was provided. The results of
recent work [17] make it possible to automatically obtain the
degree of the polynomial in all cases for quadratic algebraic
difference equation with constant coefficients.

Building upon this work, the focus moved from size, mem-
ory and loop bounds to sustainability of software [24] in
general and of energy consumption analysis in particular.

2.1 A Moral Appeal
Computer Science is not the most sustainable discipline, to
say the least. Every few years new equipment ’has’ to be
bought. The energy consumption due to digital equipment is
seldom an issue. In software development energy consump-
tion is rarely an issue. Instead of paying attention to the
sustainability of software in such a way that an important
design concern is that during the software life cycle as less
as possible energy is consumed, the sole focus seems to be
to keep legacy systems running in terms of functionality
whatever the influence is on energy consumption.

As a discipline we need to do better with respect to sus-
tainability. In fact, I would like to make a moral appeal for
performing research in the area of energy analysis consump-
tion paraphrasing famous words of John F. Kennedy:

Marko van Eekelen

"And so my fellow Formal Method researchers: ask not what
the world can do to reduce the energy consumption for you -
ask how you can apply Formal Methods to reduce the energy
consumption of the world: ask not what other researchers will
do for you, but what together we can do for reducing the energy
consumption of man."
The good news is that interest in energy consumption

and in greenIT in the Netherlands is growing, e.g. at the
Free University of Amsterdam [13], at the Software Improve-
ment Group [7], at Utrecht University [5, 6] and at the Open
University.

2.2 Energy Consumption Analysis at the Open
University

Building upon practical resource analysis work [8] a re-
search track on static analysis of energy consumption. This
started with defining a suited Hoare logic that enabled a
safely approximating static analysis [9]. This resulted in a
webtool, ECAlogic [14], thatmade it possible to derive energy
consumption bounds for small systems (hardware compo-
nents controlled by a software application) in a hardware-
parametric way. Due to this work the focus of the research
changed to analysing IT controlled systems parametrised by
hardware finite state machine models [3]. The corresponding
approach was to focus on systems with multiple components,
model the components and analyse the control software to
estimate the energy consumption of the system. Using de-
pendent types the analysis was made ready for a practical,
precise and parametric energy analysis of IT controlled sys-
tems [4]. In working towards actual practice a first, small
case study revealed that instead of doing a full analysis it can
be worthwhile to focus solely on finding energy hot spots
and energy bugs [2].

The OU memory and energy consumption analysis work
was disseminated at the 2013 IPA Winterschool on Soft-
ware Technology in Eindhoven, at the 2016 EU COST action
TACLe Summerschool in Vienna and at the 2017 IPA Fall
Days on System and Software Analysis.

2.3 Formal verification methods for verifying
security and correctness in cyber physical
systems at Radboud Unversity

My Radboud research in formal verification started with
work on a dedicated proof assistant for the functional pro-
gramming language Clean with special support for generic
type classes and explicit strictness [1, 23, 26]. In the context
of LaQuSO (Laboratory for Quality Software) we were able
to verify the core decision algorithm of the Dutch Storm
Surge Barrier ’Maeslantkering’ protecting the Rotterdam
area against flooding. The algorithm was formally specified
in Z. We checked the code against the specification and we
validated the specification. As a result firstly some minor
changes were needed both in the specification and in the

Figure 1. Maeslantkering.

code and secondly a scenario popped up from model check-
ing in which the barrier would not close according to the
specification while it should close according to the experts
[11]. Everything was fixed such that the Dutch are saved
from ’getting their feet wet’.

Currently, together with Herman Geuvers I am leading the
STW Sovereign project (2016-2020) supported by RWS (the
Dutch ministry of Transport, Public Works and Water Man-
agement) and NRG (the Dutch Nuclear Research Group). The
goal of this project is to develop verification techniques for
safety critical software based on the following challenging
principles. Verification should be (1) scalable (costs should
not grow exceedingly as the size of the system increases),
(2) compositional (global properties are directly inferable
from local properties of the subsystems), (3) incremental (the
verification process can be performed iteratively while pre-
vious intermediate results are still usable), and (4) effective
(the proposed methodology will be applied successfully in
some real-world case studies). The fundamental idea of our
proposal can be illustrated best with our motto: ÕScalability
through modularityÕ. Modularity is commonly recognized
as the key for managing complex software systems. With
regards to programs, we will elaborate on the concept of
design pattern (a description of a solution to a recurring
problem) as a modularizing construct. We will investigate
both general and security specific design patterns, and de-
velop accompanying proof patterns that simplify the formal
verification process. Moreover, as an follow-up of our work
on the formalization of the C11 standard, we aim to make
an important step in improving the scalability of the C veri-
fication process.

3 Moral Discussion
Answer the following questions:

• Is n’t it about time that IT starts saving the world
instead of consuming it?

Saving the World

• Is n’t it about time that IT starts saving the world
before it is too late?

• Is n’t it about time that designs and implementations
of safety critical cyber physical systems are subject to
formal verification on a regular basis?

With every ’yes’ we contribute to saving the world. . . .

References
[1] Maarten de Mol and Marko C. J. D. van Eekelen. 1999. A Proof Tool

Dedicated to Clean - The First Prototype. In Applications of Graph
Transformations with Industrial Relevance, International Workshop, AG-
TIVE’99, Kerkrade, The Netherlands, September 1-3, 1999, Proceedings.
271–278. https://doi.org/10.1007/3-540-45104-8_22

[2] Pascal van Gastel, Bernard van Gastel, and Marko van Eekelen. 2018.
Detecting Energy Bugs and Hotspots in Control Software Using Model
Checking. In Conference Companion of the 2Nd International Conference
on Art, Science, and Engineering of Programming (Programming Along
the System Stack '18 Companion). ACM, NewYork, NY, USA, 93–98.
https://doi.org/10.1145/3191697.3213805

[3] Bernard van Gastel, Rody Kersten, andMarko van Eekelen. 2016. Using
dependent types to define energy augmented semantics of programs.
In Proceedings of the Fourth InternationalWorkshop on Foundational and
Practical Aspects of Resource Analysis (FOPARA’15) (LNCS), Vol. 9964.
Springer, 1–20. https://doi.org/10.1007/978-3-319-46559-3_2

[4] Bernard van Gastel and Marko van Eekelen. 2017. Towards practical,
precise and parametric energy analysis of IT controlled systems. In
Proceedings of the Fifth International Workshop on Foundational and
Practical Aspects of Resource Analysis (FOPARA’17).

[5] Erik Jagroep, Jordy Broekman, Jan Martijn E. M. van der Werf, Patricia
Lago, Sjaak Brinkkemper, Leen Blom, and Rob van Vliet. 2017. Awak-
ening Awareness on Energy Consumption in Software Engineering.
In 39th IEEE/ACM International Conference on Software Engineering:
Software Engineering in Society Track, ICSE-SEIS 2017, Bueons Aires,
Argentina, May 20-28, 2017. 76–85. https://doi.org/10.1109/ICSE-SEIS.
2017.10

[6] Erik Jagroep, Jan Martijn E. M. van der Werf, Slinger Jansen,
Miguel Alexandre Ferreira, and Joost Visser. 2015. Profiling en-
ergy profilers. In Proceedings of the 30th Annual ACM Symposium
on Applied Computing, Salamanca, Spain, April 13-17, 2015. 2198–2203.
https://doi.org/10.1145/2695664.2695825

[7] Georgios Kalaitzoglou, Magiel Bruntink, and Joost Visser. 2014. A
Practical Model for Evaluating the Energy Efficiency of Software Ap-
plications. In ICT for Sustainability 2014 (ICT4S-14), Stockholm, Sweden,
August 25, 2014. https://doi.org/10.2991/ict4s-14.2014.9

[8] Rody Kersten, Olha Shkaravska, Bernard van Gastel, Manuel Montene-
gro, and Marko van Eekelen. 2012. Making resource analysis practical
for real-time Java. In Proceedings of the 10th International Workshop
on Java Technologies for Real-time and Embedded Systems (JTRES)
(JTRES’12), Martin Schoeberl and Andy J. Wellings (Eds.). ACM, New
York, NY, USA, 135–144. https://doi.org/10.1145/2388936.2388959

[9] Rody W.J. Kersten, Paolo Parisen Toldin, Bernard E. van Gastel,
and Marko C.J.D. van Eekelen. 2014. A Hoare Logic for Energy
Consumption Analysis. In Proceedings of the Third International
Workshop on Foundational and Practical Aspects of Resource Analy-
sis (FOPARA’13) (LNCS), Vol. 8552. Springer, 93–109. https://doi.org/
10.1007/978-3-319-12466-7_6 Referenced in the thesis as [BvG-9], see
appendix ??.

[10] Rody W. J. Kersten, Bernard van Gastel, Olha Shkaravska, Manuel
Montenegro, and Marko C. J. D. van Eekelen. 2014. ResAna: a resource
analysis toolset for (real-time) JAVA. Concurrency and Computation:
Practice and Experience 26, 14 (2014), 2432–2455. https://doi.org/10.
1002/cpe.3154

[11] Ken Madlener, Sjaak Smetsers, and Marko C. J. D. van Eekelen. 2010.
A Formal Verification Study on the Rotterdam Storm Surge Barrier.
In Formal Methods and Software Engineering - 12th International Con-
ference on Formal Engineering Methods, ICFEM 2010, Shanghai, China,
November 17-19, 2010. Proceedings. 287–302. https://doi.org/10.1007/
978-3-642-16901-4_20

[12] Reinhard Wilhelm Florian Zuleger Marco Gaboardi, Jan Hoffmann
(Ed.). 2018. Resource Bound Analysis: Report from Dagstuhl Seminar
17291. Dagstuhl Reports (2018).

[13] Fahimeh Alizadeh Moghaddam, Patricia Lago, and Iulia Cristina Ban.
2018. Self-adaptation approaches for energy efficiency: a systematic
literature review. In Proceedings of the 6th International Workshop
on Green and Sustainable Software, GREENS@ICSE 2018, Gothenburg,
Sweden, May 27, 2018. 35–42. https://doi.org/10.1145/3194078.3194084

[14] Marc Schoolderman, Jascha Neutelings, Rody W.J. Kersten, and
Marko C.J.D. van Eekelen. 2014. ECAlogic: Hardware-parametric
Energy-consumption Analysis of Algorithms. In Proceedings of the
13th Workshop on Foundations of Aspect-oriented Languages (FOAL’14).
ACM, New York, NY, USA, 19–22. https://doi.org/10.1145/2588548.
2588553

[15] Olha Shkaravska, Rody Kersten, and Marko C. J. D. van Eekelen. 2010.
Test-based inference of polynomial loop-bound functions. In Proceed-
ings of the 8th International Conference on Principles and Practice of
Programming in Java, PPPJ 2010, Vienna, Austria, September 15-17,
2010, Andreas Krall and Hanspeter Mössenböck (Eds.). ACM, 99–108.
https://doi.org/10.1145/1852761.1852776

[16] O. Shkaravska and M. van Eekelen. 2014. Univariate polynomial
solutions of algebraic difference equations. Journal of Symbolic Com-
putation 60 (2014), 15 – 28. https://doi.org/10.1016/j.jsc.2013.10.010

[17] O. Shkaravska and M. van Eekelen. 2018. Polynomial solutions of alge-
braic difference equations and homogeneous symmetric polynomials.
Journal of Symbolic Computation (2018). Under Submission.

[18] Olha Shkaravska, Marko C. J. D. van Eekelen, and Alejandro Tamalet.
2013. Collected Size Semantics for Strict Functional Programs over
General Polymorphic Lists. In Foundational and Practical Aspects of
Resource Analysis - Third International Workshop, FOPARA 2013, Berti-
noro, Italy, August 29-31, 2013, Revised Selected Papers (Lecture Notes in
Computer Science), Ugo Dal Lago and Ricardo Peña (Eds.), Vol. 8552.
Springer, 143–159. https://doi.org/10.1007/978-3-319-12466-7_9

[19] Olha Shkaravska, Marko C. J. D. van Eekelen, and Ron van Kesteren.
2009. Polynomial Size Analysis of First-Order Shapely Functions.
Logical Methods in Computer Science 5, 2 (2009). http://arxiv.org/abs/
0902.2073

[20] Olha Shkaravska, Ron van Kesteren, and Marko C. J. D. van Eekelen.
2007. Polynomial Size Analysis of First-Order Functions. In Typed
Lambda Calculi and Applications, 8th International Conference, TLCA
2007, Paris, France, June 26-28, 2007, Proceedings (Lecture Notes in Com-
puter Science), Simona Ronchi Della Rocca (Ed.), Vol. 4583. Springer,
351–365. https://doi.org/10.1007/978-3-540-73228-0_25

[21] Alejandro Tamalet, Olha Shkaravska, and Marko C. J. D. van Eekelen.
2008. Size Analysis of Algebraic Data Types. In Proceedings of the
Nineth Symposium on Trends in Functional Programming, TFP 2008,
Nijmegen, The Netherlands, May 26-28, 2008. (Trends in Functional
Programming), Peter Achten, Pieter W. M. Koopman, and Marco T.
Morazán (Eds.), Vol. 9. Intellect, 33–48.

[22] Marko van Eekelen. 2018. ECA: Energy Consumption Analysis of
software controlled systems, In Resource Bound Analysis: Report
from Dagstuhl Seminar 17291, Reinhard Wilhelm Florian Zuleger
Marco Gaboardi, Jan Hoffmann (Ed.). Dagstuhl Reports, 84.

[23] Marko C. J. D. van Eekelen and Maarten de Mol. 2005. Proof Tool
Support for Explicit Strictness. In Implementation and Application of
Functional Languages, 17th International Workshop, IFL 2005, Dublin,
Ireland, September 19-21, 2005, Revised Selected Papers. 37–54. https:
//doi.org/10.1007/11964681_3

Marko van Eekelen

[24] Bernard van Gastel. 2016. Assessing sustainability of software. Ph.D.
Dissertation. Open University of the Netherlands.

[25] Ron van Kesteren, Olha Shkaravska, and Marko C. J. D. van Eeke-
len. 2008. Inferring Static Non-monotone Size-aware Types Through
Testing. Electr. Notes Theor. Comput. Sci. 216 (2008), 45–63. https:
//doi.org/10.1016/j.entcs.2008.06.033

[26] Ron van Kesteren, Marko C. J. D. van Eekelen, and Maarten de Mol.
2004. Proof support for generic type classes. In Revised Selected Papers
from the Fifth Symposium on Trends in Functional Programming, TFP
2004, München, Germany, 25-26 November 2004. 1–16.

Research Challenges in
Supervisory Control Theory

Michel Reniers
Eindhoven University of Technology

M.A.Reniers@tue.nl

1 Introduction
In the era of Cyber-Physical Systems (of Systems) and the
Internet of Things, much effort goes into the development
of supervisory controllers that need to provide a safe (and
efficient) coordination of subsystems.

One of the approaches that has been researched in the past
decades is supervisory control theory [9], where based on a
model of the uncontrolled system and a model of the (safety)
requirements, a model of the supervisory controller is gen-
erated such that the controlled system (i.e., the uncontrolled
system under the control of the supervisory controller) is (1)
controllable, (2) safe w.r.t. the requirements, and (3) nonblock-
ing. Traditionally, SCT works with so-called discrete-event
systems, typically in the form of (extended) finite automata
[3, 12].
In this short position paper, research challenges that are

currently worked on and for which progress is expected /
needed in the near future are described. This is not intended
to be an overview of all the activities that take place in the
field, but merely presents the authors current view on some
interesting ones.

2 Core challenges in SCT
Challenges in the area of supervisory control synthesis, in
no particular order, are

1. development of a discipline of modelling that facilitates
use of the model-based engineering approach towards
supervisory control synthesis;

2. scalability of supervisory controller synthesis;
3. expressivity of requirements;
4. development of synthesis techniques for networked

supervisors, i.e., supervisors that are connected with
the uncontrolled system by means of a network with
its inherent communication characteristics (e.g., com-
munication delays and losses);

5. integration of performance optimization techniques
and supervisory controller synthesis.

2.1 A discipline of modelling for SCT
Inspired by experiences from application of supervisory con-
trol synthesis to relevant cases such as manufacturing sys-
tems [15], automotive systems [7], and waterway locks [11],
recent (unpublished) research attempts to provide a set of
sufficient conditions on models of uncontrolled system and

requirements that provide a trivial controllable system with-
out blocking.

Of course there are also relevant systems for which these
conditions do not hold, and it is important to establish heuris-
tics for modelling such systems that on the one hand allow
application of supervisory controller synthesis, and on the
other hand make the modelling effort itself manageable in
terms of compositionallity and evolvability.
It is our ambition to formulate a discipline of modelling

that allows practical and efficient application of supervisory
control synthesis.

2.2 Scalability of supervisory controller synthesis
Scalability issues with monolithic synthesis algorithms have
led to the study of techniques that decompose the synthesis
problem into a number of smaller synthesis problems from
the solution of which a supervisor can be obtained. Most of
these techniques require a creative/manual effort to decide
the decomposition of the system.

In recent research, Design Structure Matrices and cluster-
ing techniques are used to obtain a decomposition automati-
cally [5]. Still much research is needed to provide guarantees
for the supervisor obtained by composing the supervisors for
the subproblems as in general nonblockingness and maximal
permissiveness are sacrificed in such an approach.

Ideas for a form of compositional synthesis (involving in-
termediate abstractions and synthesis steps) are emerging in
literature [4] and are actively researched by research groups
involved with the tool sets Supremica [1] and CIF [2].
Adaptation of the well-known partial-order reduction

techniques from model checking for use in the domain of
supervisory control theory are studied in [14]. Such reduc-
tions need to preserve properties such as controllability and
nonblocking, which are not standard in model checking in
general.

2.3 Expressivity of requirements
Traditional synthesis is restricted to requirements specified
by (extended) finite automata and state-based expressions. In
recent years there have been some attempts to generalize the
synthesis to requirements in fragments of temporal logics
such as LTL and modal µ-calculus (see, e.g., [6]), but still
much more expressivity is needed to capture meaningful
behavioural requirements.

Michel Reniers

For (mechanical and control) engineers, capturing infor-
mal requirements in formal models is more than a challenge,
and much better support is needed in formulating such prop-
erties. Candidates are formulation of properties in terms of
scenarios-based formalisms such as life sequence charts. Val-
idation of complex requirements is hardly supported by tool
sets in the domain of supervisory control.

2.4 Synthesis of networked supervisors
A basic assumption in the supervisory control theory frame-
work is that the supervisor and uncontrolled system inter-
act synchronously. Practical applications require to relax
this assumption since mostly there is some communication
medium between supervisory controller and (parts of) the
uncontrolled system. Such communication media introduce
asynchronicity between plant and supervisor and may result
in overtaking of messages and even message losses. Under
such conditions obtaining a safe and nonblocking supervi-
sory control becomes more challenging, obviously. Initial
work is reported (see [10], and references therein), but both
conceptually as well as in terms of applicability many im-
provements are still expected and required before such theo-
ries may become usable.

2.5 Synthesis of performance-optimal supervisors
It would be interesting and practically relevant if we could
combine techniques for obtaining a supervisor that provides
functional properties of the system and techniques for obtain-
ing a supervisor that adheres to some performance proper-
ties, such as a guaranteed throughput. For fully controllable
systems, promising first results have been developed in [13],
and for partially controllable systems, initial work is given
in [8].

References
[1] K. Åkesson, M. Fabian, H. Flordal, and R. Malik. 2006. Supremica - An

integrated environment for verification, synthesis and simulation of
discrete event systems. In 2006 8th International Workshop on Discrete
Event Systems. 384–385. https://doi.org/10.1109/WODES.2006.382401

[2] D.A. van Beek, W. J. Fokkink, D. Hendriks, A. Hofkamp, J. Markovski,
J.M. van de Mortel-Fronczak, and M.A. Reniers. 2014. CIF 3: Model-
based engineering of supervisory controllers. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) (2014), 575–580. https:
//doi.org/10.1007/978-3-642-54862-8_48

[3] Christos G. Cassandras and Stephane Lafortune. 2008. Introduction
to Discrete Event Systems. Springer. 769 pages. https://doi.org/10.
1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C
arXiv:arXiv:1011.1669v3

[4] Hugo Flordal, Robi Malik, Martin Fabian, and Knut Åkesson. 2007.
Compositional synthesis of maximally permissive supervisors us-
ing supervision equivalence. Discrete Event Dynamic Systems: The-
ory and Applications 17, 4 (2007), 475–504. https://doi.org/10.1007/
s10626-007-0018-z

[5] Martijn Goorden, Joanna M. van de Mortel-Fronczak, Michel A. Re-
niers, and Jacobus E. Rooda. 2017. Structuringmultilevel discrete-event

systems with dependency structure matrices. In 56th IEEE Annual Con-
ference on Decision and Control, CDC 2017, Melbourne, Australia, Decem-
ber 12-15, 2017. 558–564. https://doi.org/10.1109/CDC.2017.8263721

[6] A.C. van Hulst, Michel A. Reniers, and Wan J. Fokkink. 2017. Max-
imally permissive controlled system synthesis for non-determinism
and modal logic. Discrete Event Dynamic Systems 27, 1 (2017), 109–142.
https://doi.org/10.1007/s10626-016-0231-8

[7] Tim Korssen, Victor S. Dolk, Joanna M. van de Mortel-Fronczak,
Michel A. Reniers, and Maurice Heemels. 2018. Systematic Model-
Based Design and Implementation of Supervisors for Advanced Driver
Assistance Systems. IEEE Trans. Intelligent Transportation Systems 19,
2 (2018), 533–544. https://doi.org/10.1109/TITS.2017.2776354

[8] Berend Jan Christiaan van Putten. 2018. Tackling Uncontrollability
in the Specification and Performance of Manufacturing Systems.
Master’s thesis. Eindhoven University of Technology. Available
online: michelreniers.files.wordpress.com/2018/06/
masterthesisvanputten2018.pdf.

[9] P.J. Ramadge and W.M. Wonham. 1987. Supervisory control
of a class of discrete event processes. SIAM journal on control
and optimization 1987, 1 (1987), 206–230. https://doi.org/10.
1109/ROBOT.2001.932624

[10] Aida Rashidinejad, Michel Reniers, and Lei Feng. 2018. Su-
pervisory Control of Timed Discrete Event Systems Subject to
Communication Delays and Non-FIFO Observations. In 14th
International Workshop on Discrete Event Systems WODES 2018.
IEEE.

[11] F. F. H. Reijnen, M. A. Goorden, J. M. van de Mortel-Fronczak,
and J. E. Rooda. 2017. Supervisory control synthesis for a
waterway lock. In 2017 IEEE Conference on Control Technology
and Applications (CCTA). 1562–1563. https://doi.org/10.1109/
CCTA.2017.8062679

[12] Markus Sköldstam, Knut Åkesson, and Martin Fabian. 2007.
Modeling of discrete event systems using finite automata with
variables. In 46th IEEE Conference on Decision and Control, CDC
2007, New Orleans, LA, USA, December 12-14, 2007. 3387–3392.
https://doi.org/10.1109/CDC.2007.4434894

[13] Bram van der Sanden, João Bastos, Jeroen Voeten, Marc Geilen,
Michel Reniers, Twan Basten, Johan Jacobs, and Ramon Schif-
felers. 2016. Compositional Specification of Functionality and
Timing of Manufacturing Systems. In 2016 Forum on Specifica-
tion and Design Languages (FDL). Bremen, Germany.

[14] Bram van der Sanden, Marc Geilen, Michel Reniers, and Twan
Basten. 2018. Partial-Order Reduction for Supervisory Con-
trollers. (2018). In submission.

[15] Bram van der Sanden, Michel Reniers, Marc Geilen, Twan
Basten, Johan Jacobs, Jeroen Voeten, and Ramon Schiffelers.
2015. Modular model-based supervisory controller design for
wafer logistics in lithography machines. In 2015 ACM/IEEE
18th International Conference on Model Driven Engineering
Languages and Systems, MODELS 2015 - Proceedings. 416–425.
https://doi.org/10.1109/MODELS.2015.7338273

Sound and modular formal methods
Robbert Krebbers

Delft University of Technology
Delft, The Netherlands

Abstract
This short paper is a contribution to the Lorentz Center
workshop on “A Research Agenda for Formal Methods in
The Netherlands” on September 3 and 4, 2018 in Leiden.

1 Introduction
Depending on the way software is used, and the resources
that are available to ensure its quality, it is desired to establish
different correctness properties. In some cases, safety prop-
erties may be sufficient, whereas in other cases (in particular,
mission critical software), it would be desired to establish
full functional correctness.
As such, I believe it is important that the formal meth-

ods community in the Netherlands develops a large vari-
ety of formal methods techniques and tools—ranging from
static analysis, type systems and model checkers, to meth-
ods for establishing full functional correctness. This way,
we can make sure that we—as the Dutch formal methods
community—cover the whole spectrum.

Regardless of the actual tools or techniques that are being
used, it is crucial that these are sound and modular. Sound-
ness means that whenever the tool says that software satis-
fies a certain property, that is undoubtedly the case. After
all, we do not want to give false pretenses—software that is
said to be formally verified should not go wrong. To achieve
this, we should use sound mathematical principles as the
basis to build tools and develop techniques. On top of that,
we should make sure that the implementations of the tools
we are using are mathematically verified.

Modularity means that each component of a piece of soft-
ware can be verified in isolation, and that when all of the
components are combined into a larger piece of software, we
obtain the intended correctness property for the software as
a whole. Modularity is crucial to achieve scalability, which
is crucial to use formal methods in the large.

2 Current research
My research has focused on the following topics:

1. How to develop formal semantics of realistic program-
ming languages (like C and Rust), and use said formal
semantics to reason about such languages.

2. How to develop separation logics and logical relations
that support modular reasoning about daring program-
ming features such as fine-grained concurrency, higher-
order functions, non-local control, etc.

3. How to modularly establish meta theoretical proper-
ties of whole programming languages, like type safety.

4. How to develop tools that enable convenient and proved
sound reasoning about programs.

As the basis of my research I am using proof assistants,
which can be used to specify programming languages, to
reason about programs, and to validate mathematical results,
in the most reliable and trustworthy way. I am an active user
of the Coq proof assistant [2] and nearly all of my recent
research has been entirely formalized using it.

Below I will list some noteworthy research projects that I
have been involved in:

• As part of my PhD [9, 10, 13], I have developed a formal
semantics of a large part of the C programming lan-
guage, based on the official specification of C from the
C11 standard. My C semantics, called CH2O, comes
in the form of a type system, an operational and exe-
cutable semantics, and a separation logic. All of these
components have been defined in Coq and are proved
to match up with each other.

• I am one of the main developers of Iris [5, 6, 11]—
a framework for higher-order concurrent separation
logic, which has been implemented in the Coq proof
assistant and deployed very effectively in a wide vari-
ety of verification projects world-wide. Among many
other things, we have used Iris to establish the correct-
ness of the Rust type system and some of its standard
libraries [4], and to develop an expressive logic to rea-
son about refinements of concurrent programs [3].

• I have worked on so-called tactic languages for carry-
ing out proofs in a proof assistant. Notably, I have co-
developed the tactic languages Iris Proof Mode [12]
andMoSeL [8] for separation logic proofs in Coq, and
have co-developed Mtac2 [7], a dependently typed
language for safe tactic programming in Coq.

• Most of the aforementioned results use separate proofs
to establish properties of programs and programming
languages. In other work [14], we have investigated
how to use dependent types to define programming
language specifications so that certain properties (like
type safety) hold by construction.

3 Future research
There are many directions for future work in formal methods.
In this section I will a (non-exhaustive) list of some directions
that I plan to work on in the coming years:

• I have recently been awarded an NWO Veni grant
to apply formal verification to programs written in
a combination of different programming languages.

Robbert Krebbers

This is needed, because actual software is not writ-
ten in a single programming language, but consist
of many components written in different languages
that interact with each other. As part of the Veni, I
will develop formal semantics and reasoning tools for
shared-memory interaction via foreign function inter-
faces, and message passing via sockets or signals, and
apply this to the web, where programming language
interaction is omnipresent.

• A lot of the formal verification research has focused on
functional correctness, i.e., that the program has the
correct output given some input. However, I think we
should go beyond that, and develop sound andmodular
techniques and tools for establishing non-functional
properties such as resource usage, complexity, secu-
rity properties like non-interference, etc. In a recent
manuscript, we have developed a separation logic to es-
tablish correct disposal of resources in a programming
language with concurrency [1].

References
[1] Aleš Bizjak, Daniel Gratzer, Krebbers, Robbert, and Lars Birkedal. Iron:

Managing Obligations in Higher-Order Concurrent Separation Logic,
2018. Manuscript under submission.

[2] Coq Development Team. The Coq Proof Assistant Reference Manual,
2015. Available at https://coq.inria.fr/doc/.

[3] Dan Frumin, Robbert Krebbers, and Lars Birkedal. Reloc: Amechanised
relational logic for fine-grained concurrency. In LICS, pages 442–451,
2018.

[4] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
RustBelt: Securing the foundations of the Rust programming language.
PACMPL, 2(POPL):66:1–66:34, 2018.

[5] Ralf Jung, Krebbers, Robbert, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from the ground up: A modular foun-
dation for higher-order concurrent separation logic, 2018. Accepted
to Journal of Functional Programming (JFP).

[6] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-
order ghost state. In ICFP, pages 256–269, 2016.

[7] Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas,
and Derek Dreyer. Mtac2: Typed tactics for backward reasoning in
Coq. PACMPL, 2(ICFP):78:1–78:31, 2018.

[8] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti,
Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek
Dreyer. MoSeL: A general, extensible modal framework for interactive
proofs in separation logic. PACMPL, 2(ICFP):77:1–16:30, 2018.

[9] Robbert Krebbers. An Operational and Axiomatic Semantics for Non-
determinism and Sequence Points in C. In POPL, pages 101–112, 2014.

[10] Robbert Krebbers. The C standard formalized in Coq. PhD thesis,
Radboud University Nijmegen, 2015.

[11] Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek
Dreyer, and Lars Birkedal. The Essence of Higher-Order Concurrent
Separation Logic. In ESOP, volume 10201 of LNCS, pages 696–723,
2017.

[12] Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs
in higher-order concurrent separation logic. In POPL, pages 205–217,
2017.

[13] Robbert Krebbers and Freek Wiedijk. Separation Logic for Non-local
Control Flow and Block Scope Variables. In FoSSaCS, volume 7794 of
LNCS, pages 257–272, 2013.

[14] Casper Bach Poulsen, Arjen Rouvoet, Andrew Tolmach, Robbert Kreb-
bers, and Eelco Visser. Intrinsically-typed definitional interpreters for
imperative languages. PACMPL, 2(POPL):16:1–16:34, 2018.

Model checking in biology and health care
Rom Langerak

Formal Methods and Tools
University of Twente
r.langerak@utwente.nl

Abstract
Model checking is a useful technique for analyzing models in
biology and health care. Here we point out several research
topics concerning the modeling of various networks in biol-
ogy, and modeling of diagnostic and treatment protocols in
health care.

1 Introduction
Many complex biological phenomena can be modeled as
networks. Prominent examples within biological cells are
metabolic neworks, signaling networks, and gene regulatory
networks. Understanding the quantitative and qualitative
behavior of such networks is an important prerequisite for
curing various diseases. Modeling these networks within a
framework that allows model checking is an attractive way
of gaining such understanding [Brim et al. 2013; David et al.
2015].
In Twente the contribution of computer science to this

research has concentrated on the use of UPPAAL [UPPAAL
website 2018]. UPPAAL is attractive as it is a mature tool
allowing a compositional approach, and with a graphical
interface that facilitates communication with non-experts in
formal methods.

Kinase signaling networks have been modeled in the con-
text of osteoarthritis [Scholma et al. 2013, 2014]. A tool called
ANIMO has been created [ANIMO 2018] that makes use of
UPPAAL and is intended to be used by molecular biologists.
ANIMO has been succesfully used to model realistically sized
biological networks [Schivo et al. 2014; Schivo et al. 2016,
2013; Schivo et al. 2012; Scholma et al. 2014]. Below we list
several research topics for the modeling and analysis of bio-
logical networks.
Another line of research is modeling protocols for diag-

nosis and treatment, and then using model checking for
analysing these protocols for effectiveness, efficiency, and
costs. In Twente such analysis has been performed using UP-
PAAL for prostrate cancer [Degeling et al. 2017; Schivo et al.
2015] and tooth wear [Choudry 2018; van Rooijen 2018]
(in collaboration with the Academic Centre for Dentistry
Amsterdam). Below we list several research topic for the
modeling and analysis of diagnosis and treatment protocols.

2 Research topics for modeling and
analysis of biological networks
Tools Modeling and analysis techniques should be of-

fered to biologists and medical researchers via tools
that hide as much as possible the technical complexi-
ties of the underlying computer science models. One
way of achieving this is to try to stick as close as pos-
sible to user interfaces of the mostly informal network
tools that have been developed already in biology.

Model generation Creating a model can be a time con-
suming task. Often the information needed for con-
structing amodel can be found in literature or databases.
Therefore we need to investigate techniques for build-
ing initial models from information that is extracted
from heterogeneous sources. It is important to be able
to deal with missing or incomplete information.

Parameter fitting and sensitivity Much of the effort
in creating a model goes into providing the right pa-
rameters for a model. This is related to the issue of
parameter sensitivity and robustness. Especially for
parameters that vary from patient to patient is is impor-
tant to establish that model properties are not critically
dependent on such parameters.

Simulation and visualization Simulations are needed
initially to gain confidence in the correctness of a
model. Once confidence has been gained in the cor-
rectness, a model can be explored by simulating it with
various stimuli. In this way hypotheses can be checked
by in-silico experimentations. Challenges are the ef-
ficiency of such simulations, especcially if reactions
may take place at different timescales. In addition, the
way results are visually and graphically presented to
researchers of medical practitioners is of crucial im-
portance.

Relating models and experiments Experiments will
always form an indispensible component of biological
research, and modeling can geatly enhance the effec-
tivity and efficiency of experiments. Models can be of
great help0 in suggesting experiments and thereby
pruning the large amount of possible experiments.
Models are also important in interpretating the (of-
ten verly large) amount of experimental data - just
indicating which data is in accordance with the model
sofar, andwhich data is not, is already extremely useful.
And more research should be performed on automatic

Rom Langerak

suggestions for model improvement in the light of new
experimentalo data.

Using model checking for drug synthesis For some
goal in a network model, model checking can provide
the stimuli that have to be offered to a network in order
to reach that goal, by analyzing the trace leading to the
goal. In this way model checking is a powerful tech-
nique supporting drug synthesis. Since network mod-
els may have an enormous state space, the challenge is
to find abstraction and high performance computing
technqiues that enable to check large scale network
models.

3 Research topics for modeling and
analysis of treatment protocols
Tools The ambition is to create a tool that enables health

practitioners to create their own treatment protocols,
and analyze them. This asks for a domain specific lan-
guage that is both easy to use and sufficiently flexible
and expressive to deal with many different scenarios.

Educated guesses for parameters Usually whenmod-
eling a treatment protocol many parameters are un-
known or not known precisely, and it would be too
costly or time consuming to establish such parameters
by clinical trials. What is needed is a framework to
deal with such educated guesses; by sensitivity analy-
sis or parameter sweeps it could be established which
parameters need to be established with more preci-
sion, and which parameters are not so crucial for the
analysis outcomes.

Optimization It would be very useful to establish the
optimal protocol under some constraint. What is the
most effective protocol given a certain budget, or what
is the most economic protocol that is able to obtain a
given level of effectiveness? This asks for a theory of
optimization of timed stochastic processes with costs.

References
ANIMO. 2018. http://fmt.cs.utwente.nl/tools/animo. (2018).
Luboš Brim, Milan Češka, and David Šafránek. 2013. Model Checking

of Biological Systems. In Formal Methods for Dynamical Systems: 13th
International School on Formal Methods for the Design of Computer, Com-
munication, and Software Systems, SFM 2013, Bertinoro, Italy, June 17-22,
2013. Advanced Lectures. Springer Berlin Heidelberg, Berlin, Heidelberg,
63–112. https://doi.org/10.1007/978-3-642-38874-3_3

Umarah Choudry. 2018. Timed Automata Modeling for the Tooth Wear Evalu-
ation System. Master’s thesis. Academic Centre for Dentistry Amsterdam
(ACTA), The Netherlands.

Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis,
Danny Bøgsted Poulsen, and Sean Sedwards. 2015. Statistical model
checking for biological systems. International Journal on Software Tools
for Technology Transfer 17, 3 (2015), 351–367.

Koen Degeling, Stefano Schivo, Niven Mehra, Hendrik Koffijberg, Romanus
Langerak, Johann de Bono, and Maarten Joost IJzerman. 2017. Compari-
son of Timed Automata with Discrete Event Simulation for Modeling
of Biomarker-Based Treatment Decisions: An Illustration for Metastatic

Castration-Resistant Prostate Cancer. Value in health 20, 10 (12 2017),
1411–1419. https://doi.org/10.1016/j.jval.2017.05.024

Stefano Schivo, K. Degeling, Koen Degeling, Hendrik Koffijberg, Maarten
Joost IJzerman, and Romanus Langerak. 2015. PRM113 - Timed Au-
tomata Modeling of The Personalized Treatment Decisions In Metastatic
Castration Resistant Prostate Cancer. In ISPOR 18th Annual European
Congress Research Abstracts (Value in Health). International Society
for Pharmacoeconomics and Outcomes Research (ISPOR), A702–A703.
https://doi.org/10.1016/j.jval.2015.09.2630 eemcs-eprint-26885.

S. Schivo, J. Scholma, H. B. J. Karperien, J. N. Post, J. C. van de Pol, and R.
Langerak. 2014. Setting Parameters for Biological Models With ANIMO.
http://eprints.eemcs.utwente.nl/24659/. In Proceedings 1st International
Workshop on Synthesis of Continuous Parameters, Grenoble, France (Elec-
tronic Proceedings in Theoretical Computer Science), É André and G. Frehse
(Eds.), Vol. 145. Open Publishing Association, 35–47.

Stefano Schivo, Jetse Scholma, Paul E. van der Vet, Marcel Karperien, Ja-
nine N. Post, Jaco van de Pol, and Rom Langerak. 2016. Modelling with
ANIMO: between fuzzy logic and differential equations. BMC Systems
Biology 10, 1 (2016), 56. https://doi.org/10.1186/s12918-016-0286-z

Stefano Schivo, Jetse Scholma, BrendWanders, Ricardo A. Urquidi Camacho,
Paul E. van der Vet, Marcel Karperien, Rom Langerak, Jaco van de Pol,
and Janine N. Post. 2013. Modelling biological pathway dynamics with
Timed Automata. IEEE Journal of Biomedical and Health Informatics 18,
3 (2013), 832–839. https://doi.org/10.1109/JBHI.2013.2292880

S. Schivo, J. Scholma, B. Wanders, R. A. Urquidi Camacho, P. E. van der
Vet, H. B. J. Karperien, R. Langerak, J. C. van de Pol, and J. N. Post.
2012. Modelling biological pathway dynamics with Timed Automata.
http://eprints.eemcs.utwente.nl/22597/. In 12th IC on Bioinformatics and
Bioengineering (BIBE 2012). IEEE Computer Society, 447–453.

J. Scholma, J. Kerkhofs, S. Schivo, R. Langerak, P. E. van der Vet,
H. B. J. Karperien, J. C. van de Pol, L. Geris, and J. N. Post.
2013. Mathematical modeling of signaling pathways in osteoarthri-
tis. http://eprints.eemcs.utwente.nl/23972/. In 2013 Osteoarthritis Re-
search Society International (OARSI) World Congress, Philadelphia, USA,
S. Lohmander (Ed.), Vol. 21, Supplement. Elsevier, Amsterdam, S123–S123.
https://doi.org/10.1016/j.joca.2013.02.259

J. Scholma, S. Schivo, J. Kerkhofs, R. Langerak, H. B. J. Karperien, J. C. van
de Pol, L. Geris, and J. N. Post. 2014. ECHO: the executable chondrocyte.
http://eprints.eemcs.utwente.nl/24845/. In Tissue Engineering & Regener-
ative Medicine International Society, European Chapter Meeting, Genova,
Italy, Vol. 8. Wiley, Malden, 54–54.

Jetse Scholma, Stefano Schivo, Ricardo A. Urquidi Camacho, Jaco van de
Pol, Marcel Karperien, and Janine N. Post. 2014. Biological networks 101:
Computational modeling for molecular biologists. Gene 533, 1 (2014),
379–384. https://doi.org/10.1016/j.gene.2013.10.010

UPPAAL website. 2018. www.uppaal.org. (2018).
Jasper van Rooijen. 2018. Sensitivity and Optimalisation of Uncertain Param-

eters in UPPAAL models. Master’s thesis. University of Twente, Enschede,
The Netherlands.

Actionable Feedback during Software Development
Delft University of Technology

The Netherlands

Sebastian Erdweg

My team works on programming tools that supply develop-
ers with actionable feedback during software development.
Feedback is actionable if it is relevant to the programmer’s
task, if the programmer can rely on its correctness, and if
it arrives in a timely manner. By providing actionable feed-
back, we protect developers against introducing performance
bottlenecks, unsafe code, security vulnerabilities, or specifi-
cation violations. Our feedback also influences development
tools such as compiler optimizations and refactorings. We
tackle this challenging research program in two focus areas:
incremental computing and practical correctness proofs.

1 Incremental computing
My team develops building blocks for incremental algorithms
that achieve high performance when reacting to a change
in their input. Rather than repeating the entire computa-
tion over the changed input, an incremental algorithm only
updates those parts of the previous result that are affected
by the input change. This way, incremental algorithms pro-
vide asymptotical speedups in theory and we have observed
multiple orders of magnitude speedups in practice.
Incremental algorithms are crucial for providing action-

able feedback because the feedback needs to be updated
after every code change the developer makes. Yet, existing
algorithms, such as the Java type checker in Eclipse JDT,
are one-off solutions that required years of engineering that
cannot be reproduced. We develop building blocks for in-
cremental computing and collect them in frameworks that
execute regular algorithms incrementally.
In the IncA project [13–15], we study algorithms for

incremental program analysis. The basic idea is to store
the syntax tree of programs in a relational database and to
run incremental Datalog queries over these relations. How-
ever, incremental solvers of Datalog are inherently limited
in expressiveness. In particular, they lack support for lat-
tices, which are ubiquitous in program analysis. We were the
first to discover techniques for incrementally solving lattice-
based Datalog queries and we have applied our techniques
to achieve order-of-magnitudes speedups when analyzing C,
Java, and Rust code.
In the PIE project (formerly pluto) [2, 8, 9], we develop

incremental build systems. Incremental build systems are
essential for fast, reproducible software builds and enable
short feedback cycles when they capture dependencies pre-
cisely and selectively execute build tasks efficiently. A much-
overlooked feature of build systems is the expressiveness of

the scripting language, which directly influences the main-
tainability of build scripts.We develop new incremental build
algorithms that allow build engineers to use a full-fledged
programming language and where task dependencies can be
discovered during building.

In theCoCo project [1, 10], we explore novel ways for co-
contextual reasoning about code and how that can be used
to achieve incrementality. Specifically, we are developing co-
contextual type checkers for functional and object-oriented
programming languages. A co-contextual type checker pro-
duces context requirements rather than reading context in-
formation as it traverses a syntax tree bottom-up. We have
mostly focused on applying this technique to incremental
type checking so far, yet applications to parallelization and
streaming seem promising.

2 Practical correctness proofs
Correctness proofs ensure algorithmic results are correct.
Conversely, incorrect feedback gives developers a false sense
of security that is not actuallywarranted by their code.We de-
velop theory and tools that simplify correctness proofs. Our
long-term goal is to enable analysis developers to prove cor-
rectness in little time, without requiring extensive training.
Provably correct analysis results will boost the confidence
of programmers when reacting to analysis feedback.
In the Sturdy project [6, 7], we explore techniques for

compositional correctness proofs. The key idea of compo-
sitional proofs is to decompose complex verification tasks
into much simpler ones. Developers then only need to prove
the simple tasks, from which overall algorithmic correctness
follows by construction. Key to our approach is to capture
the similarities between the specification and the implemen-
tation in a single shared program, parameterized over an
arrow-based interface. We have instantiated our technique
for program analyses and proved simple analyses sound with
modest effort. To better understand and support practical
scalability, we currently apply our framework to analyses of
Java and JavaScript, as well as to code generators.
In the Veritas project [3–5], we explore techniques for

automated verification of complex tasks. Specifically, we ex-
plore how existing off-the-shelve SMT solvers and first-order
theorem provers can be applied to prove domain-specific ver-
ification problems. The key idea is to translate such problems
into first-order logic in a way that existing provers can sup-
port. Due to the unpredictability of off-the-shelve solvers,

Sebastian Erdweg

this research is largely driven by empirical experiments that
indicate how such translation can be successful.
In the Soundx project [11, 12], we develop techniques

to guarantee the type safety of code generators. Code gen-
erators are hard to get right because they operate at the
meta-level, where programs are data. This makes it is easy to
generate code that does not type check, which in turn is hard
to debug for users since the type errors refer to generated
code. We develop automated techniques for ensuring that
code generators can only produce code that is well-typed.

References
[1] S. Erdweg, O. Bračevac, E. Kuci, M. Krebs, and M. Mezini. A co-

contextual formulation of type rules and its application to incremental
type checking. In Proceedings of Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), pages 880–897.
ACM, 2015.

[2] S. Erdweg, M. Lichter, and M. Weiel. A sound and optimal incremental
build system with dynamic dependencies. In Proceedings of Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 89–106. ACM, 2015.

[3] S. Grewe, S. Erdweg, P. Wittmann, and M. Mezini. Type systems
for the masses: Deriving soundness proofs and efficient checkers. In
Proceedings of Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software (Onward), pages 137–150. ACM, 2015.

[4] S. Grewe, S. Erdweg, A. Pacak, and M. Mezini. An infrastructure
for combining domain knowledge with automated theorem provers
(system description). In Proceedings of Conference on Principles and
Practice of Declarative Programming (PPDP). ACM, 2018.

[5] S. Grewe, S. Erdweg, A. Pacak, M. Raulf, and M. Mezini. Exploration of
language specifications by compilation to first-order logic (extended
version). Science of Computer Programming, 155, 2018.

[6] S. Keidel and S. Erdweg. Toward abstract interpretation of program
transformations. In International Workshop on Meta-Programming
Techniques and Reflection, pages 1–5. ACM, 2017.

[7] S. Keidel, C. B. Poulsen, and S. Erdweg. Compositional soundness
proofs of abstract interpreters. Proceedings of the ACM on Programming
Languages, 2(ICFP), 2018.

[8] G. Konat, S. Erdweg, and E. Visser. Scalable incremental building with
dynamic task dependencies. In Proceedings of International Conference
on Automated Software Engineering (ASE). ACM, 2018.

[9] G. Konat, M. J. Steindorfer, S. Erdweg, and E. Visser. PIE: A domain-
specific language for interactive software development pipelines. Art,
Science, and Engineering of Programming, 2(3), 2018.

[10] E. Kuci, S. Erdweg, O. Bračevac, A. Bejleri, and M. Mezini. A co-
contextual type checker for Featherweight Java. In Proceedings of
European Conference on Object-Oriented Programming (ECOOP), 2017.

[11] F. Lorenzen and S. Erdweg. Modular and automated type-soundness
verification for language extensions. In Proceedings of International
Conference on Functional Programming (ICFP), pages 331–342. ACM,
2013.

[12] F. Lorenzen and S. Erdweg. Sound type-dependent syntactic language
extension. In Proceedings of Symposium on Principles of Programming
Languages (POPL), pages 204–216. ACM, 2016.

[13] T. Szabó, S. Erdweg, and M. Völter. IncA: A DSL for the definition of in-
cremental program analyses. In Proceedings of International Conference
on Automated Software Engineering (ASE). ACM, 2016.

[14] T. Szabó, M. Völter, and S. Erdweg. IncAL: A DSL for incremental pro-
gram analysis with lattices. In International Workshop on Incremental
Computing (IC), 2017.

[15] T. Szabó, E. Kuci, M. Bijman, M. Mezini, and S. Erdweg. Incremental
overload resolution in object-oriented programming languages. In

International Workshop on Formal Techniques for Java-like Programs.
ACM, 2018.

DSLs for Protocols: Open Problems
Sung-Shik Jongmans

Department of Computer Science
Open University of the Netherlands

ssj@ou.nl

full program
specification

high-level
protocol impls.
high-level

protocol impls.
high-level

protocol impls.

low-level
protocol impls.
low-level

protocol impls.
low-level

protocol impls.
task impls.task impls.task impls.

manual

automatic

full program impl.

su
pp
le
m
en
ta
lD

SL
(h
ig
h
le
ve
l)

ba
se

G
PL

(lo
w
le
ve
l)

Figure 1. Approach

1 Introduction
With the advent of multicore processors, concurrent pro-
gramming has become an important skill for many to ac-
quire. However, concurrent programming remains difficult:
despite contemporary general-purpose languages (GPL) of-
fering higher-level abstractions on top of bare threads and
locks, developers continue to struggle with classical concur-
rency errors, such as deadlocks and data races [2].

A major challenge that developers of concurrent programs
face, pertains to the implementation of protocols (i.e., syn-
chronization/communication patterns) among tasks (i.e., se-
quential computations, run concurrently): although GPLs
offer concurrency primitives to implicitly enact global inter-
actions of protocols (e.g., a communication of an integer from
task T1 to T2) indirectly through local actions of tasks (e.g.,
T1 writes integer 5 to variable x, then releases to semaphore
s; concurrently,T2 blocks until it acquires from s, then reads
from x), GPLs lack linguistic support to explicitly enact in-
teractions, directly. Aggravated by the exponentially many,
seemingly nondeterministic, interleavings in which tasks
can be scheduled, purely action-centric protocol programming
techniques are hard to reason about and error-prone to use.
In recent years, interaction-centric protocol programming

techniques have been developed to overcome these and other
issues. The idea is that developers should continue to use an
existing GPL (e.g., Java, C, etc.) to implement tasks. But com-
plementary, developers should use a new domain-specific
language (DSL) to implement protocols. A separate code
generator can subsequently translate high-level protocol

implementations in the supplemental DSL to low-level proto-
col implementations in the base GPL; the full program thus
emerges in the base GPL and can be compiled/run using its
standard tools. Figure 1 illustrates this approach.
A fundamental strength of this approach is that it en-

forcesmodularity of protocol code, through the separation of
computations and synchronizations/communications. This
allows developers to program with procotol-tailored abstrac-
tions, exposed through the DSL; it enables different develop-
ers to implement tasks and protocols separately; it improves
ease of reuse and maintenance; and it better supports rea-
soning independently about tasks and protocols. Premier
examples of DSLs for protocols are Reo [1] and Scribble [8].

2 Example
Full program. To set the stage for presenting a number of
open problems in Sect. 3, imagine we need to implement a
Java programwith two tasks, Alice and Bob: Alice repeatedly
rolls a die and communicates the outcome to Bob; Bob repeat-
edly checks if the outcome equals some value n (unknown
to Alice); once Alice rolls n, the program terminates.

Tasks. To implement purely Alice and Bob, without the pro-
tocol between them, concurrency primitives are needed that
allow Alice and Bob to indicate just that they are ready to
engage in some interaction; in turn, the protocol implementa-
tion will decide which particular interaction ensues, beyond
Alice’s and Bob’s control. With Java as our base GPL, we will
use this API that offers such concurrency primitives:
interface Env {

Object in();
void out(Object o); }

interface Pr {
Env env(String name); }

• Env – Represents the environment of a task; tasks can
use methods in/out to receive/send values from/to their
environments, without knowing what exactly their en-
vironments consist of. Both methods are blocking: they
complete only once the environment is ready.
in/out have no arguments to indicate the intended sender/
receiver: only Env objects (i.e., protocol implementations)
control which values “flow” between which tasks.

• Pr – Represents a protocol P ; it is a container for envi-
ronments, one for every tasks participating in P .

We can now implement Alice and Bob as Java methods:

Sung-Shik Jongmans

void alice(Env e) {
Random r = new Random();
boolean b = false;
while (!b) {

e.out(r.nextInt(6));
b = (boolean)e.in(); } }

void bob(Env e, int n) {
boolean b = false;
while (!b) {

b = (int)e.in() == n;
out(b); } }

The Env objects passed to methods alice and bob are in-
stances of Env classes that are generated from a high-level
protocol implementation in the supplemental DSL. Essen-
tially, the Envs ensure alice and bob follow the protocol. For
instance, the Envs ensure that alice’s first out blocks until
bob’s first in is called (and vice versa); then, they transport
the integer; finally, they unblock alice and bob. None of this
logic is in alice and bob: it is fully encapsulated in the Envs.
The actual integration of the implementations of tasks

and protocols is done in a separate method main:
void main() {

Pr p = new AliceBobPr(); // generated
new Thread(() -> { alice(p.env("A")); }).start();
new Thread(() -> { bob(p.env("B")); }).start(); }

Protocol. For simplicity, let us use a representative toy sup-
plemental DSL, called Sequential Binary Communications
(SBC); its syntax is inspired by Scribble, while its formal se-
mantics is inspired by Reo. Let t range over value types, and
let n range over task names. SBC’s grammar looks as follows:

P ::= t from n1 to n2 | repeat { P } | P1; P2
• t from n1 to n2 – synchronous communication of a value
typed t from a task named n1 to a task named n2.

• repeat P – finite number (≥0) of iterations of P .
• P1; P2 – sequential composition of P1 and P2.

This code implements the protocol between Alice and Bob:
repeat { int from A to B; boolean from B to A }

In words, repeatedly, first Alice communicates an integer to
Bob, and then Bob communicates a boolean to Alice.

s1 s2

A _ B : int

B _ A : booleanThe semantics of SBC can be formal-
ized using automata over alphabets of
synchronous communications [5]. For
instance, the automaton for the code
above is shown here on the right. This automaton-based
formal semantics is instrumental in three activities:
• Generation of low-level code – Env classes generated for
an SBC term P essentially simulate P ’s automaton in an
event-driven fashion: whenever in/out is called on an
Env object (an event), it checks if this new in/out enables
a transition out of the current state. If so, the transition
is made, and a communication ensues; if not, the new
in/out remains pending until it can be completed as part
of the handling of a next event (cf. Reo [4]).

• Unit testing/verification of safety properties – A program
is (protocol-)safe iff “wrong” in/out calls never complete.
To establish safety, one needs to show that Env objects
for a protocol never enact interactions that violate some

specification. Assuming the Env objects faithfully simu-
late the protocol’s automaton, it suffices to show that this
automaton meets the protocol’s specification. This can
be done using model-checking (cf. Reo [7]).

• Integration testing/verification of liveness properties – A
program is (protocol-)live iff “right” in/out calls always
eventually complete. To establish liveness, one needs to
show every task always eventually calls in/out in con-
formance with the protocols it participates in (e.g., Alice
should first call out and then in; because, if she first calls
out and then in, the program deadlocks). This can be done
by extracting behavioral types from an automaton and
type-checking tasks against those types (cf. Scribble [3]).

3 Open Problems
1. How to formally model protocols in a more scalable way?

(New automaton models? Event structures? Step traces?)
This is a pivotal open problem: currently, the practical ap-
plicability of DSLs for protocols is limited by the fact the
automata of many realistic protocols grow exponentially
in the number of tasks. While techniques exist to mitigate
state explosion, transition explosion is still problematic.

2. How to optimize the performance of generated code with
provably correct model transformations, beyond [6]?

3. How to prove, instead of assume, that Env objects faith-
fully simulate the automaton for a protocol?

4. How to efficiently test safety when protocol models are
too large to exhaustively verify? (Model-based testing?)

5. How to reduce the invasiveness of establishing liveness?
(Static code analysis without type annotations?)

References
[1] Farhad Arbab. 2004. Reo: a channel-based coordination model for

component composition. Mathematical Structures in Computer Science
14, 3 (2004), 329–366.

[2] Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, and Hans
Hansson. 2017. Concurrency bugs in open source software: a case study.
J. Internet Services and Applications 8, 1 (2017), 4:1–4:15.

[3] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty
asynchronous session types. In POPL. ACM, 273–284.

[4] Sung-Shik Jongmans and Farhad Arbab. 2016. PrDK: Protocol Program-
ming with Automata. In TACAS (Lecture Notes in Computer Science),
Vol. 9636. Springer, 547–552.

[5] Sung-Shik Jongmans, Tobias Kappé, and Farhad Arbab. 2017. Con-
straint automata with memory cells and their composition. Sci. Comput.
Program. 146 (2017), 50–86.

[6] Sung-Shik Jongmans. 2016. Autamata-Theoretic Protocol Programming.
Ph.D. Dissertation. Leiden University.

[7] Natallia Kokash, Christian Krause, and Erik de Vink. 2012. Reo +mCRL2:
A framework for model-checking dataflow in service compositions.
Formal Asp. Comput. 24, 2 (2012), 187–216.

[8] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng.
2013. The Scribble Protocol Language. In TGC (Lecture Notes in Com-
puter Science), Vol. 8358. Springer, 22–41.

In Search for Scalable Correctness Assurance in
Virtual Realities

Wishnu Prasetya
Utrecht University
w.prasetya@uu.nl

One of the main research focuses at Utrecht University is
in advanced mediums of human and computer interactions.
One of such a medium is Virtual Reality (VR) which has
become popular, with various applications: entertainment,
education, training, marketing, and even in health care. Com-
pared to traditional User Interface, VR offers realism, smooth
interactions, and immersion, of which many applications can
benefit. Like any software though, we do want our virtual re-
alities to function correctly. In related short papers, authors
have addressed Utrecht University’s research in advanced
type checking [9], static analysis [5], and program synthesis.
These belong to the class of static approaches to correctness
assurance, along with e.g. program verification [2]. In this
short paper we will focus on a complementary approach.
Inevitably, real world software will have plenty of aspects
which cannot be verified statically using the afore mentioned
approaches. To complement them, we will look into a dy-
namic way of assuring correctness, in particular automated
testing. We define ’automated testing’ as an approach to ver-
ify a given formal specification ψ (capturing some desired
property) by generating actual executions and checking that
these executions satisfyψ . Producing just one execution is
usually not considered as adequate. Test adequacy is usually
expressed in terms of a coverage requirement, which can be
thought as a set of target predicates representing different
classes of similar executions. While simply producing an
execution is trivial, producing an execution that solves a par-
ticular coverage target is often hard (in general undecidable).

The challenge
Testing a virtual world poses an interesting challenge. Its in-
teraction space is huge. Furthermore, its virtue of smooth in-
teraction means a single interaction can be very fine grained,
e.g. moving just one pixel to the right, while on the other
hand there is always a whole spectrum of possible actions to
do, resulting in a combinatoric explosion in the interaction
space. Obviously, programs with large enough state space
will pose a challenge for manual testing, but in virtual worlds
this challenge is further aggravated to a new level. Even cre-
ating a single test case is laborious. For example, suppose
a new entity has been added into the virtual world and we
want to verify that it interacts correctly. Very often entities
cannot be tested independently because their behavior de-
pend on the virtual world context in which they are placed.
It is hard for testers to create this context without the help

of the visualization and other senses provided by virtual
world itself, which implies that the only practical way to
test them is by testing them in the virtual world itself. This
would require the tester to first navigate through the virtual
world to the place where the said entity resides. Multiplied
over multiple test cases, this overhead is really significant,
hence scalability is a real threat if we ever want to properly
test a virtual world, which matters e.g. if it is to be used for
something mission critical.

A virtual world is also inhabited with many dynamic enti-
ties. These are entities that can autonomously move around
or change their state (e.g. it may become at some point unin-
teractable). Some of them may even actively try to obstruct
the user, e.g. if they simulate enemy units in a combat train-
ing program. These not only further complicate the situation
for human testers, but they practicallymake the virtual world
non-deterministic. Although theoretically we can control ev-
ery random generator in a program, and even control its
internal concurrency, in practice this is just very hard to
engineer. The consequence of this is that the old trick of
recording test plays to replay them when we need to re-test
the virtual world does not work anymore, which implies that
testers will just have to toil manually again every time the
virtual world is updated or patched, and hence needs to be
re-tested.
So we turn to computers, seeking our salvation. But can

computers do all these things that usually require humans
to accomplish?

Where should we look?
Let’s first briefly consider where we currently stand in the
field of automated testing. Bounded model checking (BMC)
[1] has been shown to be feasible. A program can be thor-
oughly verified, up to a certain execution depth. However,
this is not likely to work on fine grained interaction space
of a VR, where the space immediately blows up after the
initial state. Many states that need verification would be just
too far way for BMC. Combinatoric testing [7] offers at least
an alternative perspective. The idea is to split the interac-
tion space into several dimensions the tester believe to be
relevant in influencing the target property ψ to test. Then
each dimension is partitioned into equivalence classes. To
testψ we exhaustively generate executions such that every
combination of the equivalence classes over all dimensions
is covered by at least one execution. Such abstract reduction

Wishnu Prasetya

would allow us to, in principle, and complementary to BMC,
reach far away states. Unfortunately, finding even one execu-
tion that satisfies a given coverage constraint is, as remarked
before, a hard problem. So, although combinatoric testing
suggests a promising position, it alone does not enlighten us
as to how to get to that position in the first place.

The last decade has also seen the advance of search based
testing [6] that treats the problem for solving a given cover-
age predicate as a search problem, for which there are various
algorithms we can try. The most popular one is probably
the family of evolutionary algorithms, e.g. as implemented
in the tool Evosuite [4] which has been very successful in
constantly winning unit testing tool competitions [8]. De-
spite being evolution-inspired, an evolutionary algorithm
still works by, to some degree randomly, trying out different
executions, and then applying mutation and cross over to
converge them towards solutions. The process is guided by
a so-called fitness function which is a metric expressing how
far we are from finding a solution. While such a process
works well at the unit testing level, it is unlikely to scale
up to deal with the huge interaction space of a VR. Fitness
functions would become far too abstract/rough to properly
capture the dynamic of such a space.

The direction that we have been investigating at Utrecht
University is to combine those automated testing approaches
with human like cognitive skills. Agents with such skills
can be deployed into a VR to simulate human testers to
autonomously test the VR. The underlying premise is that
with just enough of such skills the agents would be able
to get some grasp on the VR’s semantical structure, hence
becoming more effective in choosing the right interactions
rather than just brute-forcely or randomly trying all sorts of
interactions. We hypothesize thus that cognitive skills would
enable test agents to prune the search space into fragments
which are again tractable for traditional approaches.

A simple example is navigation skill, which we can add by
simply incorporating a path finding algorithm [3] into the
agents. This would enable the agents to go from one place
to another in the VR, without having to brute force the path
using BMC or an evolutionary algorithm.

The agentswill needmore than just navigation skill though.
A path may be blocked, for which specific interactions are
needed to clear it. In turn, this may requires the correspond-
ing entities to be in a certain state, which in turn requires
more interactions to trigger. Rather than just brute forcing
all sorts of possible interactions, the test agents need to make
educated guesses. Entities in a virtual world, and interactions
that we can do on them, represent concepts meaningful to
humans, e.g. building, door, vehicle. Interactions on a door
would be for example ’open’ and ’close’, and so on. Agents
would need to be able to learn and infer associations between
concepts, to at least make a guess which ones would be rele-
vant, and which ones can be ignored, towards solving some
goal at hand. We are not there yet in our research, but this

is the future direction that we want to go. At least, ’learn-
ing’ and ’inference’ are two themes which have been well
researched. The more specific research question for us would
be to find out which learning and inference paradigms suit
best for VR testing.

Further down the road, more challenges await: what kind
of cognitive skill is needed to deal with dynamic entities,
including those which are not friendly? And how about
collaboration? Many VRs allow multiple users, and hence
allowing us to deploy multiple agents. Can we exploit this?
For many VRs, user experience is very important. Bad re-
views from users can be detrimental for a VR’s reputation,
potentially wasting the millions USD invested into develop-
ing it. Can we extend the agents so that they can appraise
which general emotion the VR would invoke? Is it boring?
Is it too distressing?

Closing words
Virtual reality poses an interesting scientific challenge for
the formal method community. Here we have outlined how
it challenges the current state of the art of automated testing,
but this actually applies to other areas of formal method.
In automated testing we focuses on generating executions,
given specifications. But producing a formal specification of a
virtual world is not trivial either. What is the right paradigm
to formalize it? What can we do (or what should we trade
off) to make it scalable?

The tech-world does not remain still either —of course we
know that. The next kind of "reality" is already around the
corner: augmented reality. So, how do we deal with that...?

References
[1] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu, et al. Bounded

model checking. Advances in computers, 58(11):117–148, 2003.
[2] D. R. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In

International Workshop on Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, pages 108–128. Springer, 2004.

[3] X. Cui and H. Shi. A*-based pathfinding in modern computer games. In-
ternational Journal of Computer Science and Network Security, 11(1):125–
130, 2011.

[4] G. Fraser and A. Arcuri. Evosuite: automatic test suite generation for
object-oriented software. In SIGSOFT FSE, pages 416–419, 2011.

[5] J. Hage. The usability of type systems. In A Research Agenda for Formal
Methods in The Netherland. Utrecht University, 2018.

[6] P. McMinn. Search-based software test data generation: a survey. Soft-
ware testing, Verification and reliability, 14(2):105–156, 2004.

[7] C. Nie andH. Leung. A survey of combinatorial testing. ACMComputing
Surveys (CSUR), 43(2):11, 2011.

[8] U. Rueda, T. Vos, and I. S. W. B. Prasetya. Unit testing tool competition
– round three. In IEEE/ACM 8th International Workshop on Search-Based
Software Testing (SBST). IEEE, 2015.

[9] W. Swierstra. Programming with dependent types. In A Research
Agenda for Formal Methods in The Netherland. Utrecht University, 2018.

Programming with dependent types
Wouter Swierstra
Universiteit Utrecht
The Netherlands

w.s.swierstra@uu.nl

Computer programs manipulate data. This data comes in
many different shapes and sizes: the telephone numbers
stored in our smartphone; the salary calculations done in
Excel spreadsheets; or the customer addresses stored in a
database. Many modern programming languages use a type
system to classify data and rule out nonsensical calculations,
such as trying to multiply a customer’s telephone number
and address. A (static) type system rules out such calcula-
tions before a program is run. Indeed, Simon Peyton Jones
famously described static type systems as “the world’s most
successful application of formal methods.”
Yet not all developers are enamored of statically typed

languages. Some of the most common points of critique
include:

• Simply typed languages can only prevent simple errors,
such as mixing up the order of arguments passed to a
method. In reality, programs are full of rich properties
that cannot be enforced effectively by a type system.

• Requiring a program to be type correct before it can
be executed bogs down the development process. Pro-
grammers should not spend their time writing code,
rather than fixing type errors. Static types may help
ensure safety, but make programs inherently harder
to write.

• Not all type information may be known when a pro-
gram is first written. Code that needs to interface with
a database or other external data source may not know
the type of all data involved before its execution. Simi-
larly, some methods—such as printf or those using
C’s varargs—are notoriously difficult to type stati-
cally.

This note aims to illustrate how some of these limitations
may be tackled by embracing programming languages with
dependent types. In particular, it aims to show how current
research on such languages provides a novel perspective on
the benefits of statically typed programming—and formal
methods more generally.

Static types cannot. . .
There is a deep connection between types and mathemati-
cal logic known as the Curry-Howard correspondence.Simply
stated, this correspondence states that every type system
may be viewed as a logic. Every type in written in a type
system corresponds to a unique logical proposition; every
program corresponds to a unique proof. To illustrate this

point, consider the rules for modus ponens in logic and the
typing rule for function application:

p → q p
q

f : a → b x : a
f (x) : b

These rules are strikingly similar! The Curry-Howard corre-
spondence shows how this is no coincidence—this similarity
extends to richer logics and language constructs.

A common complaint about statically typed languages is
the lack of expressivity.While static type systems are certainly
no silver bullet, the properties that may be enforced by most
type systems of mainstream languages is very limited. The
‘logic’ underlying such type systems is an (embarrassingly
unsound) propositional logic in which you cannot express
any interesting properties. To say anythingmeaningful about
the behaviour of programs, we need quantifiers in our logic.
Viewed through the Curry-Howard lens, adding quan-

tifiers our logic amounts to shifting from a simply typed
programming language to one with dependent types. Per
Martin-Löf was one of the first to propose a single (depen-
dently typed) language to express both proof and computa-
tion. To illustrate the importance of quantification, consider
the following three type signatures:

f1 : List Int → List Int
f2 : ∀a .Order a → List a → List a
f3 : ∀a .Order a → ∀ (xs : List a) . ∃ ys : List a, Sorted xs ys

Judging from its type, the first function could do anything
from reversing the list to incrementing every element. The
type associated with f2 is much more restrictive: the para-
metric polymorphism—induced by the universal quantifier—
ensures that any elements in the output list must also occur
in the input.Crucially, the universal quantifier is restricted
to abstract over types in most languages. In contrast, the last
type signature uses dependent types to specify that for every
input list xs, the function must compute a new list, ys, that
must be the sorted permutation of xs.
Not all code has as clear a specification as sorting algo-

rithms. Nonetheless, all code has some (partial) specification
or invariant that programmers track in their head. Rather
than abandoning static typing altogether, wouldn’t it be bet-
ter to explore languages where these properties can be de-
scribed and enforced? Doing so offers programmers a spec-
trum of correctness: from basic code hygiene to full-blown
mechanised proofs of functional correctness.

“Computer says know”
A common perspective on static types states that the type-
correct programs are only a subset of all meaningful pro-
grams. A static type system polices the development process,
slapping the wrist of any careless developer that dares ad-
venture outside the subset of programs considered valid.

I would like to offer a slightly different perspective. Devel-
opers do not produce software bywriting random strings and
subsequently checking which ones happen to correspond to
meaningful programs. Instead, software design is a creative
intellectual activity: a program is constructed methodolog-
ically,breaking a large problem into smaller pieces. Once
the pieces are small enough, we can proceed to figure out
the inputs and outputs of each piece. Programmers should
write example inputs and outputs—turning these into tests—
before implementing the functions that solve the individual
problem pieces.

See how types fit naturally in this philosophy? Types form
a partial specification; type checking the signatures of the
individual pieces show how each individual function—once
it has been implemented—may be composed to solve the
original problem.
But types have much more to offer than such simple cor-

rectness properties. By starting to write down the types, the
code often follows naturally. Integrated Development Envi-
ronments (IDEs) such as Visual Studio use static type infor-
mation to help a programmer navigate a complex codebase.
Programmers who have worked with dependently typed
systems such as Agda and Idris, will know how most of the
thought goes into the careful design of the types of a function;
once the types are fixed, the program almost writes itself. The
programmer only need provide hints about which argument
to pattern match on or when to make a recursive call; the
IDE is often happy to use the static type information of the
values in scope to find any missing values automatically.

Going even further, research on dataype generic program-
ming has shown how we can generate new functions from
the structure of our data types, or even refactor functions
automatically exploiting structured changes to the types
involved.

The purpose of a static type system is not only to rule out
bad programs; a type provides information about the values
that inhabit it. Knowing the types provide a valuable clue
to a program’s construction. To cite Conor McBride it: “is a
type a lifebuoy or a lamp”?

Just-in-time static typing
How can static types help if the types of the data my program
manipulates are not all known before a program is run?
One of the key rules in a dependently typed programming
language is the conversion rule:

Γ ⊢ t : σ σ ≡β τ

Γ ⊢ t : τ

This rule states that types are equal if they evaluate to the
same value. This simple rule has profound consequences: by
mixing evaluation and type checking, it allows us to compute
new types on the fly. For example, a function like printf
is hard to assign a single static type, but the format string
passed as its first argument may be used to compute the types
of any remaining arguments that it expects.
There are many similar situations that simple statically

typed languages cannot handle well. When interfacing with
a database in a dependently typed language, for example,
we might ask for a description of certain tables, parse the
server’s response, and compute the corresponding types.
Even if these types are not know statically—we still have
the guarantee that the pieces of our program will behave
well when composed. Type providers, such as those imple-
mented by F#, show how computing new types provide a
welcome foothold when interfacing with foreign data. De-
pendently typed languages, that freely mix evaluation and
type checking, take these ideas one step further.

Looking ahead
Despite their promise, there is still much research and devel-
opment necessary before dependently typed languages can
expect more widespread adoption. This research ranges from
fundamental questions—such as finding a suitable definition
of equality—to more mundane engineering challenges.
Many beginners still experience a high barrier to entry

when learning to program with dependent types. Better
training material, more informative type error messages,
and more robust compiler implementations would all facil-
itate their more widespread adoption. With the richer de-
sign space that dependent types offer, beginners often find
themselves making the wrong design choice early on in the
development process. Categorising the design principles of
experienced users and facilitating the automatic refactoring
of typed programs would certainly help explore this richer
design space—and prevent beginners from painting them-
selves into a corner.

Static types cannot possibly solve all the problems in the
construction of modern software. But the field of program-
ming with dependent types, while based on fundamental
research almost a century old, addresses many of the limita-
tions of traditional static type systems, offering new perspec-
tives on the future of high-assurance program development.

