
What Constitutes a Musical Pattern?
Orestis Melkonian

Department of Information and Computing Sciences
Utrecht University
The Netherlands

melkon.or@gmail.com

Iris Yuping Ren
Department of Information and Computing Sciences

Utrecht University
The Netherlands

y.ren@uu.nl

Wouter Swierstra
Department of Information and Computing Sciences

Utrecht University
The Netherlands

w.s.swierstra@uu.nl

Anja Volk
Department of Information and Computing Sciences

Utrecht University
The Netherlands
a.volk@uu.nl

Abstract
There is a plethora of computational systems designed for
algorithmic discovery of musical patterns, ranging from ge-
ometrical methods to machine learning based approaches.
These algorithms often disagree on what constitutes a pat-
tern, mainly due to the lack of a broadly accepted definition
of musical patterns.

On the other side of the spectrum, human-annotated mu-
sical patterns also often do not reach a consensus, partly due
to the subjectivity of each individual expert, but also due to
the elusive definition of a musical pattern in general.

In this work, we propose a framework of music-theoretic
transformations, through which one can easily define pred-
icates which dictate when two musical patterns belong to a
particular equivalence class.We exploit simple notions from
category theory to assemble transformations composition-
ally, allowing us to define complex transformations from
simple and well-understood ones.

Additionally, we provide a prototype implementation of
our theoretical framework as an embedded domain-specific
language in Haskell and conduct a meta-analysis on several
algorithms submitted to a pattern extraction task of the the
Music Information Retrieval Evaluation eXchange (mirex)
over the previous years.

CCS Concepts • Information systems → Music re-
trieval; • Applied computing → Sound and music com-
puting; • Software and its engineering→Domain specific
languages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
FARM ’19, August 23, 2019, Berlin, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6811-7/19/08…$15.00
https://doi.org/10.1145/3331543.3342587

Keywords transformation, edit distance, musical patterns,
contravariance, evaluation, clustering

ACM Reference Format:
Orestis Melkonian, Iris Yuping Ren, Wouter Swierstra, and Anja
Volk. 2019. What Constitutes a Musical Pattern?. In Proceedings of
the 7th ACM SIGPLAN International Workshop on Functional Art,
Music, Modeling, and Design (FARM ’19), August 23, 2019, Berlin,
Germany. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3331543.3342587

1 Introduction
Musical patterns are hard to define. Patterns are ubiq-
uitous in music. Generated by composers, accented by per-
formers and perceived by listeners, musical patterns con-
tribute to a better understanding and smoother communica-
tion in music. For example, in an improvisation session or a
music theory classroom, one might hear descriptions such
as “This pattern here was repeated three times”. However,
in music theory and music information retrieval (mir), an
agreed-upon definition of “musical pattern” has been elu-
sive. One can argue that a musical pattern is “an excerpt
of special importance”, or “a salient fragment”, or “a promi-
nent unit”, etc. In addition, in different contexts of musical
corpora, experts use different terminologies such as “lick”,
“riff”, “leitmotif”, or “sequence”, to refer to these patterns in
music. This variability in the definition makes it difficult to
design and evaluate automated computational systems that
extract musical patterns.

Musical patterns are useful but hard to extract. Data-
driven algorithms and rule-based algorithms have been de-
signed to extract musical patterns. Nevertheless, a challenge
in automating musical pattern discovery is the subjectiv-
ity on when musical patterns are perceived and the ambi-
guity in music compositions [McFee et al. 2017; Ren et al.
2018b].This increases the complexity of formalising the pat-
tern discovery task, which contributes to a lack of annota-
tions datasets as well. The question is, therefore, how do we
leverage the limited data and theory to design and evaluate
a pattern discovery system?

95

https://doi.org/10.1145/3331543.3342587
https://doi.org/10.1145/3331543.3342587
https://doi.org/10.1145/3331543.3342587

FARM ’19, August 23, 2019, Berlin, Germany Orestis Melkonian, Iris Yuping Ren, Wouter Swierstra, and Anja Volk

mirex and datasets. In terms of evaluation, previous re-
search has addressed the challenge to a certain extent. Most
algorithms have been tested on unassociated datasets with
disparate metrics [Janssen et al. 2013]. One attempt to pro-
vide a robust benchmarking suite for algorithm evaluation
is the mirex Discovery of Repeated Themes & Sections task
initiated in 20141. In the task, a pattern is defined as a set of
time-pitch pairs that occurs at least twice in a piece of mu-
sic and the jku-pdd dataset was introduced [Collins 2013].
Pattern discovery algorithms submitted to mirex use differ-
ent models and methods from geometry [Collins et al. 2013;
Meredith 2015], information theory [Conklin 2010; Velarde
et al. 2016] and machine learning[Pesek et al. 2017]. Accord-
ing to the evaluation metrics in this task, the state-of-the-
art algorithms perform acceptably well in precision, recall,
and F1-scores, although they cannot reproduce the human-
annotated patterns yet. Another pattern annotation dataset
which has been used for evaluating the algorithms is the
mtc-ann Dutch Folk Song dataset [Van Kranenburg et al.
2016]. Using this dataset, human annotations have been
compared with algorithmically extracted patterns by their
performance in a classification task [Boot et al. 2016] show-
ing the annotated patterns perform better. Furthermore, a
large disagreement between annotated and computationally
extracted patterns has been shown in both the jku-pdd and
mtc-ann dataset in [Ren et al. 2018a, 2017].

Understanding musical pattern discovery algorithms.
In this paper, we encode computationally well-defined and
music theoretically relevant atomic transformations and
their compositions to investigate the output of pattern dis-
covery algorithms, human annotations of patterns and ran-
dom passages. This constitutes a first step into understand-
ing the differences between algorithms and human annota-
tions in terms of the underlying atomic transformations.

Contributions.
Executable Model We describe a framework for defining

transformations of musical patterns, utilising well-
known abstractions from category theory. We also
provide a Haskell implementation of the model, in
the form of an embedded domain-specific language
(DSL).

Pattern Analysis We use our framework to define several
music-theoretic pattern transformations, limiting our-
selves to only those that are well-established in music
theory. Nonetheless, we extend them with the notion
of approximation, so as to account for ad-hoc inser-
tion/removal of musical elements. We then analyse
both the jku-pdd and the mtc-ann datasets, by ex-
amining the patterns discovered by experts and state-
of-the-art algorithms alike.

1https://www.music-ir.org/mirex/wiki/2017:Discovery_of_Repeated_
Themes_%26_Sections

Pattern Discovery As a nice by-product to our transfor-
mational framework, our DSL can act as a minimal
query language for musical patterns. Therefore, we
can utilize our DSL to derive a (naive) pattern discov-
ery algorithm almost for free; a transformation writ-
ten in our DSL will now act as the query to search
against in a given music piece.

2 Musical Patterns and Modelling
Repetitions and variations. Musical patterns and varia-
tions are closely related. On one hand, variation of a musical
element consists of repeating it with modifications to one or
more of its attributes (e.g. pitch, duration). Conversely, pat-
terns can be defined as variations of an initial musical ele-
ment. Furthermore, variation can be local or global in music:
ornaments such as trills and turns are local, form and the-
matic variations are global.

Prototype and transformations. Independent of the vari-
ation, there must be some original material from which the
variations stem. We refer to these as the prototype patterns.
Each prototype pattern may be related to several pattern oc-
currences; typically, there is some transformation necessary
to map the prototype pattern to the pattern occurrence, ac-
counting for the variation amongst pattern occurrences.

Unsurprisingly, we model these transformations as func-
tions. For example, one simple transformation is chromatic
(real) transposition, λx → x + n, that transposes each
note by some pitch shift n. Using this transformation, we
could start with a short minor blues “lick” in F, such as
[Eb4,C4,Ab4, F3, F4], and allow transposition to all keys
by keeping the allowed pitch shifts below an octave (i.e.
0. . . 11 semitones), thus deriving a key-independent version
of the original lick. For instance, we can extract the same
lick in the key of G by applying f two times, which gives us
[F4,D4,Bb4,G3,G4]. It is natural to expect that chromatic
transposition is an equivalence relation, except for people
with absolute pitch.

3 Implementation in Haskell
In this section, we give an overview of the main techniques
we used to implement ourmeta-analytic framework andmo-
tivate the design choices we made along the way.

We strive to find a mathematically sound solution to our
problem, using first class functions to model musical trans-
formations. Although we chose to implement everything
in Haskell, we do not rely on any of Haskell’s advanced
type-level features (e.g. data kinds), thus any other strongly-
typed functional programming language would suffice. All
code is publicly available in a Github repository2.

2https://github.com/omelkonian/hs-pattrans

96

https://www.music-ir.org/mirex/wiki/2017:Discovery_of_Repeated_Themes_%26_Sections
https://www.music-ir.org/mirex/wiki/2017:Discovery_of_Repeated_Themes_%26_Sections
https://github.com/omelkonian/hs-pattrans

What Constitutes a Musical Pattern? FARM ’19, August 23, 2019, Berlin, Germany

3.1 Basic Music Datatypes
First of all, we need to define some basic music datatypes.
Time occurrences are represented as number of crochet
beats from the start of the song, whileMIDI values are rep-
resented as plain integers conforming to theMIDI standard3.
Several music-specific notions such as Scale and Deдree are
again represented by their arithmetic equivalents.

type Time = Double

type MIDI = Inteдer -- also represents intervals
type Deдree = Inteдer

type Scale = Map MIDI Deдree

Moving on to datatypes that correspond to data entities in
the datasets, a Note is a certain pitch occurring at a specific
point in time and a Pattern is a sequence of notes. Since we
do not currently support polyphony, we can treat a piece of
music as a single huge pattern.

data Note = Note

{ontime :: Time

,midi :: MIDI

} deriving Eq

type Pattern = [Note]

type MusicPiece = Pattern

The output of a pattern discovery algorithm is a set of pat-
tern groups, which have a prototype pattern and (possibly
many) occurrences of that pattern across the musical piece.
We also keep some metadata (such as to which piece of mu-
sic a pattern group belongs), which will be used later in vi-
sualization.

data PatternGroup = PatternGroup

{prototype :: Pattern

, occurences :: [Pattern]
,metadata :: Metadata

} deriving Eq

Lastly, the following properties of music elements will be
needed when we later define the actual transformations. We
will certainly require to retrieve different viewpoints [Con-
klin and Anagnostopoulou 2001] of a pattern (e.g. dura-
tions, pitches), as well as transform absolute values to rel-
ative ones. For instance, we might want to see the intervals
between a pattern’s pitch values, rather than the absolute
pitches in isolation.
toRelative :: Num a⇒ [a]→ [a]
toRelative = fmap (−) ◦ pairs
inverse :: Num a⇒ [a]→ [a]
inverse = fmap negate

basePitch :: Pattern → MIDI

basePitch = midi ◦ head
3 Here, we only consider the part of a MIDI value that represents pitch
number, ignoring other features such as velocity.

pitch, intervals :: Pattern → [MIDI]

pitch = fmap midi
intervals = toRelative ◦midi

durations, rhythm, normalRhythm :: Pattern → [Time]

durations = fmap ontime
rhythm = toRelative ◦ durations
normalRhythm = normalizeTime ◦ rhythm

where
normalizeTime (t0 : ts) = 1 :map (/t0) ts
normalizeTime [] = []

Note how we normalize time information; instead of look-
ing at absolute duration values, we care about the relevant
increase or decrease compared to the initial time value. This
will become useful when we define time-specific transfor-
mations.

3.2 Transformations
We now define music-specific transformations between pat-
terns, which form equivalence relations. In order to do so,
we start out with the design of a minimal combinator DSL,
which will help us further down the road.

The definitions of our transformations will essentially be
a predicate on two elements, that returns True when they
belong to the equivalence class in question and False other-
wise. Since we would like to reuse the same type for view-
points of a pattern (e.g. time) and possibly between differ-
ent types, we universally quantify over the types being com-
pared. We also provide a convenient infix notation to check
for equivalence, as well as a type alias for homogeneous
checkers of elements of the same type.

newtype Check a b = Check {unCheck :: a→ b→ Bool }
(⇐⇒) :: a→ b→ Check a b→ Bool

(x ⇐⇒ y) p = unCheck p x y

type HomCheck a = Check a a

The simplest possible comparison is that of exact equality
between elements of the same type, which can be defined
using the Eq typeclass.

-- e.g. ([1,2] ⇐⇒ [1,2]) equal
equal :: Eq a⇒ HomCheck a
equal = Check (≡)
In order to combine multiple checks in conjunction, we

must recognise themonoidal algebraic structure of checkers.
Note that Check can be seen as a Monoid in more than one
way, i.e. using either conjunction or disjunction. Here we
stick to the conjunctive version (note the use of ∧), since
we do not have any use-cases for disjunctive checkers yet. If
such a DSL construct is needed in the future, wewill provide
newtype wrappers and the programmer would then need
to manually annotate which monoid instance to use (when
one uses ⋄).

97

FARM ’19, August 23, 2019, Berlin, Germany Orestis Melkonian, Iris Yuping Ren, Wouter Swierstra, and Anja Volk

instance Monoid (Check a b) where
ε = Check $ λ → True

p ⋄ q = Check $ λx y → (x ⇐⇒ y) p
∧ (x ⇐⇒ y) q

In order to define more interesting pattern relations with
compositional operations likemap, we first make the obser-
vation that the type parameters (a and b in this case) occur
in a contravariant position, since they are arguments to a
function. Moreover, we observe that there are two different
arguments and we want a functorial action in both. As an
example of contravariance, assume you have a checker for
durations (i.e. HomCheck Time and you want to use that to
check equivalence of two patterns (i.e. HomCheck Pattern).
Hence, you need to have a function HomCheck Time →
HomCheck Pattern, but you cannot define it even if you
had a function Time → Pattern. What you, in fact, must
have in your hands is a function Pattern → Time (notice
the reversal in the argument order, aka contravariance).

With these observations, we arrive at the definition of a
contravariant bi-functor :

class ContravariantBi f unctor p where
contraBimap :: (c→ a)→ (d→ b)→ p a b→ p c d
contraBimap f g = contra1 f ◦ contra2 g

contra1 :: (c→ a)→ p a b→ p c b
contra1 f = contraBimap f id

contra2 :: (d→ b)→ p a b→ p a d
contra2 g = contraBimap id g

instance ContravariantBi f unctor Check where
contraBimap f g p = Check $ λx y→ (f x ⇐⇒ g y) p

We also define specialized infix variants of the contravari-
ant operations on checkers of equal types, where we modify
one or both of the arguments.

(›$‹) :: (b→ a)→ HomCheck a→ HomCheck b
f ›$‹ p = contraBimap f f p

(›$) :: (a→ a)→ HomCheck a→ HomCheck a
(›$) = contra1

($‹) :: (a→ a)→ HomCheck a→ HomCheck a
($‹) = contra2

Figure 1 depicts the associated contravariant operations di-
agramatically, where f :: c→ a and g :: d→ b. Furthermore,
Figure 2 shows the specific case of homogeneous checkers,
assuming f :: b→ a and η :: a→ a.

Check a b

Check c b Check c d Check a d

contra1 f
contraBimap f g

contra2 g

Figure 1. Contravariant operations on heterogeneous
checkers.

HomCheck a

HomCheck a HomCheck b HomCheck a

(η ›$)
(f ›$‹)

(η $‹)

Figure 2.Contravariant operations on homogeneous check-
ers.

As a first example usage of a contravariant checker, we
can define when a pattern is an exact repetition of another
later in the song:

exactRepetitionOf :: HomCheck Pattern

exactRepetitionOf = rhythm ›$‹ equal
⋄ pitch ›$‹ equal

3.3 Approximate Equality
Before we proceed on defining our transformations, let us
extend our checkers with the notion of approximation. We
do so by passing a floating point number p ∈ [0, 1], repre-
senting the approximation degree as a percentage.

type ApproxCheck a = Float → HomCheck a

(≈) :: ApproxCheck a→ Float → HomCheck a
approxChecker ≈ p = approxChecker p

Our little combinator DSL is now complete and we can
proceed with defining some useful checkers. First, we ex-
tend equality with approximation of percentage p, by also
allowing equality when:

1. At least p% of the prototype remains in the occur-
rence:

iдnored ⩽ (1 − p) ∗ N
2. At least p% of the occurrence appears in the proto-

type:
added ⩽ (1 − p) ∗M

98

What Constitutes a Musical Pattern? FARM ’19, August 23, 2019, Berlin, Germany

where N ,M are the lengths of the prototype and occurrence
respectively, added is the number of elements in the occur-
rence that do not appear in the pattern, iдnored is the num-
ber of prototype elements that were not deleted and delete
is an operation that respects the prototype order (unlike
Haskell’s \\ operator).

Note that this definition consitutes a particular form of
edit distance4, where we measure similarity of two list-like
values by the minimum amount of modifications required
to transform one into the other. This procedure, in fact, gen-
eralizes to any list we might wish to compare:

-- e.g. ([A,C,F,A,B] ⇐⇒ [A,C,G,A,B]) (eq≈ 0.8)
eq≈ :: Eq a⇒ ApproxCheck [a]
eq≈ p = Check $ λxs ys→

(ignored ⩽ (1 − p) ∗ length xs)
∧ (added ⩽ (1 − p) ∗ length ys)

where
(added, ignored) = del ys xs

del :: [a]→ [a]→ (Int , Int)

del ys [] = (length ys, 0)
del [] xs = (0, length xs)
del ys (x : xs)

| Just (ysL, ysR)← x ‘del1‘ ys
= (first (+length ysL) ‹$› del ysR xs)
‘min‘ (second (+1) ‹$› del ys xs)
| otherwise
= second (+1) ‹$› del ys xs

del1 :: a→ [a]→ Maybe ([a], [a])
-- try to delele and and return the surrounding lists

In the example illustrated in the comment above, we have
N = M = 5 and we have ignored the prototype note F and
added the occurrence note G (i.e. iдnored = 1 and added =
1). Thus we can conclude that these two patterns are 80%
equal, since the two required conditions are satisfied:

iдnored = 1 ⩽ 1 = (1 − 0.8) ∗ 5
added = 1 ⩽ 1 = (1 − 0.8) ∗ 5

The intuition behind the algorithm is rather simple; for each
element of the prototype:

1. Traverse the occurrence until you find the prototype
element.

2. If found, consider two cases:
a. Increase added by the number of bypassed elements

during the search.
b. Ignore it nonetheless, incrementing iдnored .

3. Otherwise, increment iдnored .
4. Continue with the rest of the prototype.

4https://en.wikipedia.org/wiki/Edit_distance

The worst-case time complexity of the algorithm above is
O(NM)where N ,M are the lengths of the prototype and oc-
currence respectively, since we would need to traverse the
whole occurrence for each element of the prototype. Never-
theless, we set a maximum look-ahead on the deletion pro-
cess to facilitate faster analyses, resulting in overall runtime
complexity of O(N), since we would perform O(1) compu-
tation for each of the N elements of the prototype5.

Attributes built from pairs of basic elements (e.g. rhythm
from durations, intervals from pitch) score rather badly on
the previous definition of approximate equality, since a sim-
ple insertion on the initial pattern would create a lot of dif-
ferences in the paired output. As a motivating example, as-
sume our prototype consists of the notes A and B and the
occurrence adds a passing note Bb in-between them. While
first-order approximate equality works well when compar-
ing their pitch, we get in trouble when comparing their
intervals; we have lost all similarity between them, since the
prototype has intervals [2] and the occurrence [1, 1].

In order to remedy this, we define a second-order approxi-
mate equality that is additionally allowed to merge consecu-
tive elements in the occurrence and match them to a single
entity of the prototype.

-- e.g. ([A,B,C,D,E] ⇐⇒ [A,Bb,B,D,E,F,F#])
-- (intervals >$< eq≈2 0.75)
eq≈2 :: (Ord a,Num a,Eq a)⇒ ApproxCheck [a]
eq≈2 p = . . .

Apart from the extension of del1 to allowmerging, the code
is identical to the first-order case.

In the example above, we ask whether the intervals of
these two patterns are 80% equal. For clarity, let us first
simplify the comparison by inlining the interval calculation,
where intervals are represented by number of semitones up-
ward:

([2, 1, 2, 2] ⇐⇒ [1, 1, 3, 2, 1, 1]) (eq≈2 ≈ 0.75)

Second-order approximate equality allows us to merge the
first two and the last two intervals of the occurrence, replac-
ing them with their sum:
([2, 1, 2, 2] ⇐⇒ [2, 3, 2, 2]) (eq≈2 ≈ 0.75)

Wenowhave only a single ignored interval in the prototype
and a single added interval in the occurrence, thus it is safe
to conclude that these (interval) patterns are 75% equal:

iдnored = 1 ⩽ 1.0 = (1 − 0.75) ∗ 4
added = 1 ⩽ 1.5 = (1 − 0.75) ∗ 6

We, furthermore, set a maximum threshold on the number
of consecutive elements we are allowed to accumulate, thus
inducing only a constant overhead to the previous time com-
plexity in the first-order case.
5 Note that the faster implementation is actually an under-approximation
of the proposed algorithm, i.e. there might be false negatives in the results.

99

https://en.wikipedia.org/wiki/Edit_distance

FARM ’19, August 23, 2019, Berlin, Germany Orestis Melkonian, Iris Yuping Ren, Wouter Swierstra, and Anja Volk

The first music-theoretic checker we introduce is known
as horizontal translation and is the repetition of a melody
later in time, i.e. their pitches and relative durations must
be (approximately) equal.

exactOf :: ApproxCheck Pattern

exactOf p = rhythm ›$‹ eq≈2 p
⋄ pitch ›$‹ eq≈ p

Similarly, we can define all the usual transformational
patterns in musicology, such as vertical translation (i.e.
real/chromatic transposition, tonal/diatonic transposition),
horizontal reflection (i.e. inversion), vertical reflection (i.e.
retrograde) and time scaling (i.e. diminution—speeding up,
augmentation—slowing down). A complete list can be found
at the end of this paper.

transpositionOf :: ApproxCheck Pattern

transpositionOf p = rhythm ›$‹ eq≈2 p
⋄ intervals ›$‹ eq≈2 p

inversionOf :: ApproxCheck Pattern

inversionOf p = basePitch ›$‹ equal
⋄ rhythm ›$‹ eq≈2 p
⋄ intervals ›$‹ (inverse $‹ eq≈2 p)

retrogradeOf :: ApproxCheck Pattern

retrogradeOf p = rhythm ›$‹ (reverse $‹ eq≈2 p)
⋄ pitch ›$‹ (reverse $‹ eq≈ p)

rotationOf :: ApproxCheck Pattern

rotationOf p = rhythm ›$‹ (reverse $‹ eq≈2 p)
⋄ intervals ›$‹ (reverse $‹ eq≈2 p)

augmentationOf :: ApproxCheck Pattern

augmentationOf p = normalRhythm ›$‹ eq≈2 p
⋄ pitch ›$‹ eq≈ p

An interesting case is that of tonal transposition, where
we are not transposing in absolute semitones but rather in
scale degrees, which could possibly change the pitch struc-
ture of a pattern. As an example, constructing a triad from
the first degree of C major results in a major triad (i.e. C-E-
G), but transposing to the second degree would result in a
minor triad (i.e. D-F-A).

This transformation is defined with respect to a given
scale, which we currently choose based on a simple heuris-
tic that considers the notes appearing in the prototype. We
guess the most “fitting” scale, with respect to the number of
prototype pitches that belong to the scale.

tonalTranspOf :: ApproxCheck Pattern

tonalTranspOf p =

rhythm ›$‹ eq≈2 p
⋄ Check $ λxs ys→

(xs ⇐⇒ ys)
(apply (guess xs) ›$‹ intervals ›$‹ eq≈2 p)

where
-- guess the scale that is the most ”fitting” to a pattern
guess :: Pattern → Scale

-- interpret a pattern with respect to a given scale
apply :: Scale → Pattern → Pattern

4 Music Data
For applying our model to actual data, we use the stan-
dard jku-pdd dataset and the mtc-ann Dutch Folk Song
dataset [Van Kranenburg et al. 2016]. The exceptionally
large number of annotated patterns mtc-ann contains
makes it a perfect candidate for a classification experiment.
In this section, we examine groups of patterns, random pas-
sages, and their features in this dataset.

Parsing the datasets. We use the Parsec library [Leijen
andMeijer 2001] to parse the datasets, converting the music
data from each dataset format to our own internal represen-
tation of musical elements. The parsing code is not of much
interest, so we refer the reader to the available source code.

Annotated patterns. During the making of mtc-ann,
three experts have been asked to annotate the prominent
patterns in each song which best classify the song into one
of 26 tune families. Tune family is a concept in ethnomu-
sicology that groups together tunes sharing the same an-
cestor in the process of oral transmission [Boot et al. 2016].
The dataset consists of 360 Dutch folk songs with 1657 anno-
tated pattern occurrences. In an annotation study on what
influences human judgements when categorising melodies
belonging to the same tune family, repeated patterns turned
out to play the most important role [Volk and Van Kranen-
burg 2012]. It is, therefore, reasonable to use repeated pat-
tern discovery algorithms on this dataset.

Patterns from algorithms. We use the six pattern dis-
covery algorithms and extract the patterns from the mtc-
ann dataset using the same setup as in [Boot et al. 2016;
Ren et al. 2017]. The extracted patterns from each algo-
rithm form a subgroup under the umbrella of the extracted
pattern group. The seven algorithms were submitted to
the mirex task during 2014-2017: siateccompress - tlp
(siap), siateccompress - tlf1 (siaf1), siateccompress -
tlr (siar) [Meredith 2015], vm & vm2 [Velarde et al.
2016], symchm (sc) [Pesek et al. 2017], and siarct-cfp
(siacfp) [Collins et al. 2013].

100

What Constitutes a Musical Pattern? FARM ’19, August 23, 2019, Berlin, Germany

We compare annotated and extracted patterns with ran-
domly sampled passages as a baseline in order to potentially
support or refute the significance of musical patterns. In
more detail, taking the annotated patterns from mtc-ann,
random passages are sampled with the following procedure:

1. For each annotated pattern, we find the correspond-
ing song where the annotation appears.

2. Find a random starting point and take an excerpt of
the same length as the pattern.

3. Repeat five times to prevent accidental results.

5 Results
5.1 Patterns Explained by Transformations
By giving a different approximation degree to each of our
transformations, we get a rich spectrum of pattern equiva-
lence classes. This allows to count how many occurrences
of the datasets belong in each such class.

For each pattern group of each expert/algorithm of each
song of each dataset, we start comparing against each of the
following transformations in-order:

exactOf→ transpositionOf→ tonalTranspositionOf
→ inversionOf → augmentationOf
→ retrogradeOf → rotationOf

We perform multiple passes by varying the approximation
degree amongst 100%, 80%, 60%, 40% and 20%. As a last step,
we combine the results from all pattern groups belonging to
the same dataset to get a better overview.

We visualize both individual and aggregated results as pie
charts with Chart6, a declarative library for generating 2D
charts and plots. Here, we display only the overall results of
the different datasets; for the complete set of analysis results
we refer the reader to a dedicated webpage7.

Figure 3 and Figure 4 show results from the jku-pdd
dataset; Figure 5, Figure 6 and Figure 7 show results from
the mtc-ann dataset. For better readability of the charts:
• Each color is assigned to a transformation and its ap-

proximation. For example, “exact” repetitions are col-
ored rose; “exact” repetitions up to 80%, 60%, 40%, and
20% approximation are assigned with the rose color,
too. Similarly, the blue parts are the “transposed”, the
normal/chromatic transposition. The tonal transposi-
tions, “tonalTransped”, are in the red regions. The pat-
tern occurrence relations that cannot be accounted for
by the transformation are black.
• Recall that our passes start with “exact” repetitions,

then “transposition”, and other transformations with
approximation: we ordered them counterclockwise in
the pie chart.

6https://hackage.haskell.org/package/Chart
7https://omelkonian.github.io/hs-pattrans/charts.html

Figure 3. jku-pdd: transformations in expert annotations.
“Exact” repetition has the largest proportion in comparison
to other transformations. All pattern occurrence relations
can be accounted for by a few categories of transformations
and approximation up to 40%. The composition of the pie
chart is very different from the algorithmic counterpart (Fig-
ure 4).

Figure 3 depicts the results for the expert annotations
on jku-pdd. It is evident that our transformations are in
sync with the mindset of the music expert, since we cover
half of them by strict transformations and then gradually
cover the rest of the spectrum by approximation. This is
not the case for the algorithmic output on the same dataset
in Figure 4, where only a small fragment of the pattern
groups can be explained with strict transformations and,
even at the presence of loose approximation, we do not
get a satisfiable cover. In both cases though, a handful of
transformation types dominate, namely exact repetition and
tonal/chromatic transposition.

Figures 5 and 6 provide the same statistics for mtc-ann.
In comparison to the classical one, we discern a bit more
variety in the types of patterns that appear (e.g. augmenta-
tion). This difference of transformations between different
datasets might have stemmed from the spontaneous process
of oral transmission, which is usually how folk songs are re-
tained.This is very different from classical music, which has
precise notations and undergoes a well-thought-out process
of composing. Another potential reason for the difference is
that there are much more patterns were annotated in mtc-
ann than in jku-pdd. More investigations are needed for
investigating the causes.

Despite the differences in what kind of transformations
are there in two different datasets, the same general trends
appear: a much more coherent perception of musical pat-
tern in the expert annotations, in contrast to the freedom
the algorithms allow.

101

https://hackage.haskell.org/package/Chart
https://omelkonian.github.io/hs-pattrans/charts.html

FARM ’19, August 23, 2019, Berlin, Germany Orestis Melkonian, Iris Yuping Ren, Wouter Swierstra, and Anja Volk

Figure 4. jku-pdd: transformations in algorithmic output.
Instead of having the “exact” repetition being in the domi-
nant position as in Figure 3, there is a variety of transfor-
mations: the algorithms discover a more diverse set of pat-
terns than expert annotations. A large proportion of pattern
occurrence relation cannot be explained by any transforma-
tion we considered (“other” as colored in black).

Here, we also include a randomized sample of the origi-
nal dataset (Figure 7), to verify that random patterns do not
pass through our transformation checker. Fortunately, we
see a minuscule percentage of strict transformations and a
general domination of low-approximation transformations
such as 20% and 40%, which is reasonable since 0% approx-
imation is valid for any set of patterns. Curiously, when
comparing the “other” category (the black wedges, which
consist of unmatched occurrences using transformation and
approximation), we see that the proportion is less than the
algorithmic counterpart but more than the expert annota-
tions. This reminds us that, not only annotations are well-
related by transformations, also the random parts from the
corpus can be linked with each other, given that we allow
for approximation; and there are more relations that are not
explainable by our model in the algorithmic output than in
the random excerpts in the corpus.

5.2 Pattern Querying and Discovery
While the checkers definedwere initially designed to handle
the meta-analysis of existing pattern discovery algorithms,
it turns out that one gets a pattern query language for free!

Given a prototype in a song and a pattern checker (i.e.
HomCheck Pattern), we keep a sliding window having the
same size as the prototype and check the query against all
such occurrences. The implementation is trivial, as shown
below:

typeWindowSize = Int

type Query a = (HomCheck a, a)

Figure 5. mtc-ann: transformations in expert annotations.
Similar to the expert annotations in jku-pdd (Figure 3), “ex-
act” repetition is the dominant element in the pie chart.
However, in this dataset, we have a more diverse range of
transformations. A small portion of the patterns cannot be
accounted for by any transformation we considered (“other”
as colored in black).

Figure 6. mtc-ann: transformations in algorithmic output.
Similar to the algorithmic output in jku-pdd (Figure 4), we
have a variety of transformations. There is also a matching
trend from both jku-pdd and mtc-ann between the expert
annotations and the algorithmic output: the algorithms dis-
cover a more diverse set of patterns and the transformation
we considered are less capable of covering their occurrence
relations.

query :: Query Pattern → MusicPiece → [Pattern]

query (checker, prototype) =
filter (λp→ (prototype ⇐⇒ p) checker)

102

What Constitutes a Musical Pattern? FARM ’19, August 23, 2019, Berlin, Germany

Figure 7. mtc-ann: transformations in randomized sam-
ples. This baseline demonstrates that the proportions of
transformations in expert annotations and algorithmic out-
put have different traits than the random samples. Please
see more analysis in text.

◦ slide (length prototype)
where
slide ::WindowSize → [a]→ [[a]]
slide n xs = [take n (drop d xs)

| d← [0 . . (length xs − n ‘max‘ 0)]]

We also provide a user-friendly interface, where the user
specifies the transformation to check in a song from the
database with respect to a certain prototype pattern. Then,
the sliding window algorithm extracts all occurrences that
satisfy the given checker to MIDI files.

data UserQuery a = ToPattern a⇒ Check Pattern :@ a

class ToPattern a where
toPattern :: a→ MusicPiece → Pattern

(??) :: ToPattern a⇒ Sonд → UserQuery a→ IO ()

Notice thatUserQuery is polymorphic over any type that is
an instance of theToPattern typeclass, i.e. types that, given
a particular song, can designate a musical pattern.

One example of such a type is a pair of time points, indi-
cating start and end time points in the song, as illustrated
in the following example query:

instance ToPattern (Time,Time) where
toPattern (startT, endT) =
takeWhile ((⩽ endT) ◦ ontime)
◦ dropWhile ((< startT) ◦ ontime)

testQuery :: IO ()

testQuery = ‘‘bach” ?? (transpositionOf ≈ 0.8) :@ (21, 28)

A more flexible alternative is to immediately provide a
piece of music, in which case we use the Euterpea Haskell
library that provides a concise musical DSL [Hudak and
Quick 2018]. In fact, we piggyback on Euterpea’s MIDI ex-
port functionality to produce the extracted patterns after
discovery.

instance ToMusic1 a⇒ ToPattern (Music a) where
toPattern = musicToPattern
-- converts a Euterpea music value to our own datatype

testQuery2 :: IO ()

testQuery2 = ‘‘bach” ?? (transpositionOf ≈ 0.8)

:@ line [c 4 qn, e 4 hn, g 4 qn]

Time complexity. Although the proposed algorithm has a
naive cubic time complexity and is significantly limited to
checking patterns of fixed size, we estimate to perform rea-
sonably well in practice since the size of the query N will
usually be much smaller than the size of the whole music
piece M .

First, note that all transformations mentioned in this pa-
per run in quadratic time, since they consist of linear pre-
processing steps which transform the musical data in some
way, followed by the quadratic approximation algorithm.

In the case of the pattern discovery algorithm, we always
check patterns of equal length N , so each individual check
runs in O(N 2). Moreover, we would need to perform O(M)
such checks in the average case via the sliding window
method. Hence, the worst-case time complexity is O(M3).

Alas, the expected input size of a query will normally be a
simple musical pattern of small constant size. Consequently,
wewould need to performO(M) checks, but each onewould
run in constantO(1) time, resulting in an overall time com-
plexity of O(M).

6 Conclusion
We have presented an expressive DSL to describe (mono-
phonic) music-theoretic transformations, based on simple
notions of category theory, namely monoids and contravari-
ant functors. One of the significant benefits of this approach
is its compositionality, meaning we can express complex
transformations in terms of simpler ones.

The most important such ‘base’ transformation is the
generic notion of approximate equality of lists, that we in-
stantiate for a multitude of music types. We, furthermore,
generalise this approximation for musical elements that
arise from pairing, moving to a second-order notion of
equality that is allowed to combine consecutive elements.
We propose a complete quadratic algorithm to perform this

103

FARM ’19, August 23, 2019, Berlin, Germany Orestis Melkonian, Iris Yuping Ren, Wouter Swierstra, and Anja Volk

approximation, but also provide a linear variant which is
faster under-approximation that we use to produce our re-
sults.

Using our transformational framework, we run an analy-
sis of two well-established pattern datasets of classical and
folk music, respectively. Since the focus of this paper is on
the design and implementation of the framework itself, we
only present a general overview of the transformations that
algorithms and experts tend to detect.

We further analyse the results of this paper to acquire
detailed transformation profiles for each algorithm and the
expert annotations, by checking the relative usage of each
type of transformation for each set of outputs. These pro-
files provide the means to further compare algorithmic out-
put against expert annotations, but also a classification of
the design space of pattern discovery algorithms, helping
us identify key design choices and opportunities to explore
new points in this space. For instance, we are able to clas-
sify different discovery algorithms according to their trans-
formational profile with reasonable accuracy.

As a final contribution, we present a pattern discovery
algorithm that allows us to use our transformation defini-
tions as queries to a given musical piece. Although it suffers
from a naive cubic running time complexity, it proves use-
ful in practice with queries of small size. Since the DSL is
embedded in Haskell, we can re-use existing music libraries
in tandem with our framework, as exemplified in our use of
Euterpea musical expressions as queries for pattern discov-
ery.

Future work. One severe limitation of our current solu-
tion is that we are limited to analysing monophonic mu-
sic, but it would certainly be interesting to see how our ap-
proach scales with polyphony. Although we could easily in-
corporate polyphonic pieces by taking simultaneous voices
as separate melodic movements, we believe that we would
need to consider other types of patterns to get satisfying re-
sults. An intuitive step towards this direction would be to
model the Neo-Riemannian theory of harmonic transforma-
tions [Cohn 1997] using our DSL, possibly extending it to
accommodate phenomena we have not anticipated yet.

Glossary
Weprovide a list of musical transformations and the descrip-
tion we used in this paper (following the format of “full
name (short name if it appears in pie chart): description us-
ing music terms—further explanation”):
• Exact repetition (exact): repeat an occurrencewith exactly

the same musical events—horizontal translation, transpo-
sition in time.
• Real/Chromatic transposition (transposed): move pitches

by a fixed number—vertical translation.
• Tonal/Diatonic transposition (tonalTransped): move

pitches in scale degree (major mode only in producing

the result of this paper; future work will extend it to
other modes)—vertical translation.
• Inversion: change the direction of pitch intervals—

horizontal reflection (real/chromatic transposition only in
producing the result of this paper, future work will extend
it to tonal/diatonic including different modes).
• Retrograde: mirror pitches and durations backwards—

vertical reflection.
• Augmentation (augmented): lengthen durations—time

scaling, slowing down.
• Diminution: shorten durations—time scaling, speeding

up.
• Rotation: change the direction of pitch intervals and mir-

ror note durations backwards—an example composition
of transformations, different from a retrograde-inversion
in its different first note.

References
Peter Boot, Anja Volk, and W Bas de Haas. 2016. Evaluating the role of

repeated patterns in folk song classification and compression. Journal
of New Music Research 45, 3 (2016), 223–238.

Richard Cohn. 1997. Neo-riemannian operations, parsimonious trichords,
and their” tonnetz” representations. Journal of MusicTheory 41, 1 (1997),
1–66.

Tom Collins. 2013. Discovery of repeated themes and sections. Retrieved
4th May, http://www. musicir. org/mirex/wiki/2013: Discovery of Repeated
Themes & Sections (2013).

Tom Collins, Andreas Arzt, Sebastian Flossmann, and Gerhard Widmer.
2013. SIARCT-CFP: Improving Precision and the Discovery of Inexact
Musical Patterns in Point-Set Representations.. In ISMIR. 549–554.

Darrell Conklin. 2010. Discovery of distinctive patterns inmusic. Intelligent
Data Analysis 14, 5 (2010), 547–554.

Darrell Conklin and Christina Anagnostopoulou. 2001. Representation and
Discovery of Multiple Viewpoint Patterns.. In ICMC. Citeseer, 479–485.

Paul Hudak and Donya Quick. 2018. The Haskell School of Music: From
signals to Symphonies. Cambridge University Press.

Berit Janssen, W Bas De Haas, Anja Volk, and Peter van Kranenburg. 2013.
Finding repeated patterns in music: state of knowledge, challenges, per-
spectives. In International Symposium on Computer Music Modeling and
Retrieval. Springer, 277–297.

Daan Leijen and Erik Meijer. 2001. Parsec: Direct style monadic parser
combinators for the real world. (2001).

Brian McFee, Oriol Nieto, Morwaread M. Farbood, and Juan Pablo Bello.
2017. Evaluating Hierarchical Structure in Music Annotations. Frontiers
in Psychology 8 (2017), 1337. https://doi.org/10.3389/fpsyg.2017.01337

David Meredith. 2015. Music analysis and point-set compression. Journal
of New Music Research 44, 3 (2015), 245–270.

Matevž Pesek, Aleš Leonardis, and Matija Marolt. 2017. SymCHM—An
Unsupervised Approach for Pattern Discovery in Symbolic Music with
a Compositional Hierarchical Model. Applied Sciences 7, 11 (2017), 1135.

Iris Yuping Ren, Hendrik Vincent Koops, Dimitrios Bountouridis, Anja
Volk, Wouter Swierstra, and Remco C Veltkamp. 2018a. Feature anal-
ysis of repeated patterns in dutch folk songs using principal component
analysis. FMA 14, 5 (2018), 86.

Iris Yuping Ren, Hendrik Vincent Koops, Anja Volk, and Wouter Swierstra.
2018b. Investigating Musical Pattern Ambiguity in a Human Annotated
Dataset. The Proceedings of the 15th International Conference on Music
Perception and Cognition and the 10th triennial conference of the European
Society for the Cognitive Sciences of Music (2018), 361–367.

104

https://doi.org/10.3389/fpsyg.2017.01337

What Constitutes a Musical Pattern? FARM ’19, August 23, 2019, Berlin, Germany

Iris Yuping Ren, Vincent Koops, Anja Volk, and Wouter Swierstra. 2017.
In Search Of The Consensus Among Musical Pattern Discovery Algo-
rithms. Proceedings of the International Society for Music Information
Retrieval (2017).

Peter van Kranenburg, Berit Janssen, and Anja Volk. 2016. The Meertens
Tune Collections: The Annotated Corpus (MTC-ANN) versions 1.1 and
2.0. 1.

Gissel Velarde, DavidMeredith, and TillmanWeyde. 2016. A wavelet-based
approach to pattern discovery in melodies. In Computational Music
Analysis. Springer, 303–333.

Anja Volk and Peter van Kranenburg. 2012. Melodic similarity among folk
songs: An annotation study on similarity-based categorization in music.
Musicae Scientiae 16, 3 (2012), 317–339.

105

	Abstract
	1 Introduction
	2 Musical Patterns and Modelling
	3 Implementation in Haskell
	3.1 Basic Music Datatypes
	3.2 Transformations
	3.3 Approximate Equality

	4 Music Data
	5 Results
	5.1 Patterns Explained by Transformations
	5.2 Pattern Querying and Discovery

	6 Conclusion
	References

