
ZU064-05-FPR main June 6, 2019 13:22

Under consideration for publication in J. Functional Programming 1

F U N C T I O N A L P E A R L

Heterogeneous random-access lists

Wouter Swierstra
Utrecht University

(e-mail: w.s.swierstra@@uu.nl)

1 Introduction

Writing an evaluator for the simply typed lambda calculus is a classic example of a depen-
dently typed program that appears in numerous tutorials (McBride, 2004; Norell, 2009;
Norell, 2013; Abel, 2016). The central idea is to represent the well-typed lambda terms
over some universe U using an inductive family:

Ctx = List U

data Ref : Ctx → U → Set where
Top : Ref (s :: ctx) s
Pop : Ref ctx s → Ref (t :: ctx) s

data Term : Ctx → U → Set where
App : Term Γ (s ⇒ t) → Term Γ s → Term Γ t
Lam : Term (s :: Γ) t → Term Γ (s ⇒ t)
Var : Ref Γ s → Term Γ s

When writing the evaluator, the type indices ensure that we can reuse the host language’s
lambdas and application, rather than having to define substitution and β -reduction our-
selves:

data Env : Ctx → Set where
Nil : Env Nil
Cons : Val u → Env ctx → Env (u :: ctx)

eval : Term Γ s → Env Γ → Val s
eval (App t1 t2) env = (eval t1 env) (eval t2 env)
eval (Lam body) env = λ x → eval body (Cons x env)
eval (Var i) env = lookup env i

This evaluator, however, is not particularly efficient. In particular, the environment is rep-
resented as a heterogeneous list of values with linear time lookup. This pearl explores how
to write such an interpreter using a more efficient data structure, namely random-access
lists. The key challenge is to choose indices judiciously, ensuring the resulting evaluator is
equally simple and does not rely on additional lemmas or type coercions.



ZU064-05-FPR main June 6, 2019 13:22

2 W. Swierstra

2 Binary random-access lists

Before trying to define an efficient data structure storing heterogeneous values, we will
first consider the simpler homogeneous case. In this section, we will start by writing an
Agda implementation of homogeneous binary random-access lists (Okasaki, 1999). We
will then define a heterogeneous version, as required by our evaluator, using the homoge-
neous version—much as the heterogeneous environments Env are indexed by a (homoge-
neous) list of types.

To achieve logarithmic lookup times, we need to shift from linear lists to binary trees.
If we assume that we only have to store 2n elements we could use a perfect binary tree of
depth n:

data Tree (a : Set) : N → Set where
Leaf : a → Tree a Zero
Node : Tree a n → Tree a n → Tree a (Succ n)

To define a lookup function, we need to consider how to designate a position it the tree.
One way to do so, is using a vector of length n, providing direction at every internal node:

data Dir : Set where
Left : Dir
Right : Dir

lookup : Tree a n → Vec Dir n → a
lookup (Node l r) (Cons Left xs) = lookup l xs
lookup (Node l r) (Cons Right xs) = lookup r xs
lookup (Leaf x) Nil = x

Note that the index n is shared by both the depth of the tree and the length of the vector,
ensuring that our lookup function is total: we do not need to provide cases for the Node-Nil
or Leaf-Cons constructor combinations. Throughout this paper, code in each section is in
a separate module, allowing function names such as lookup to be reused liberally. Only
when necessary, will we use qualified names.

Although our lookup function is now logarithmic, we can only store a fixed number of
elements in this tree. In particular, there is no way to add new elements—as is required by
our interpreter. Furthermore, we may want to store a number of elements that is not equal
to a power of two. Fortunately, any natural number can be written as a sum of powers of
two—and we can use this insight to define a better data structure.

Binary arithmetic

Before doing so, however, we will need two auxiliary definitions: a data type Bin repre-
senting little-endian binary numbers; and a function bsucc that computes the successor of
a binary number.

data Bin : Set where
End : Bin
One : Bin → Bin
Zero : Bin → Bin



ZU064-05-FPR main June 6, 2019 13:22

Functional pearl 3

bsucc : Bin → Bin
bsucc End = One End
bsucc (One b) = Zero (bsucc b)
bsucc (Zero b) = One b

Note that this simple definition provides different representations of the same number—but
this will not be a problem in our setting.

Random-access lists

We now turn our attention to defining a suitable structure for storing an arbitrary number
of elements. The key insight used by Okasaki’s random-access lists is that if we want to
store n elements efficiently, the binary representation of n tells us how to organise these
elements over a series of perfectly balanced binary trees. For example, we can store seven
elements in three perfect trees of increasing depth:

n = 0 n = 1 n = 2

To store fewer elements, we can leave out any of these trees. For example, we might use
the first and last trees to store five elements. The binary representation of the number of
elements determines which trees must be present and which trees must be omitted.

We can make this precise in the following data type for random-access lists:

data RAL (a : Set) : (n : N) → Bin → Set where
Nil : RAL a n End
Cons1 : Tree a n → RAL a (Succ n) b → RAL a n (One b)
Cons0 : RAL a (Succ n) b → RAL a n (Zero b)

A value of type RAL a n b consists of a series of perfectly balanced binary trees of increas-
ing depth. The Nil constructor corresponds to an empty list of trees; the other constructors
extend the current binary number with a One or Zero respectively. In the prior case, we also
have a tree of depth n; in either case, we increment the depth of the trees in the remainder
of the random-access list.

It is worth highlighting the choice of indices here. These random-access lists are indexed
by the current depth, n, and the binary representation of the number of elements they store.
The depth n will typically be Zero initially, but is incremented in along every Cons node.
The binary number used as an index completely determines the constructors used.

How do we designate a position in such a random-access list? We mimic the usual well-
typed references used in the introduction:

data Pos : (n : N) → (b : Bin) → Set where
Here : Vec Dir n → Pos n (One b)
There0 : Pos (Succ n) b → Pos n (Zero b)
There1 : Pos (Succ n) b → Pos n (One b)



ZU064-05-FPR main June 6, 2019 13:22

4 W. Swierstra

Given a vector of directions, we can navigate to a leaf in the tree at the head of our
random-access list, if it exists. Otherwise, there are two constructors, There0 and There1,
to designate a position further down the list. Using both these definitions, we can define a
total lookup function:

lookup : (ral : RAL a n b) → Pos n b → a
lookup (Cons1 t ral) (Here path) = Tree.lookup t path
lookup (Cons0 ral) (There0 i) = lookup ral i
lookup (Cons1 ral) (There1 i) = lookup ral i

Crucially, as the random-access list and position share the same depth n and binary number
b, we can rule out having to search the empty random-access list.

In contrast to perfectly balanced binary trees, we can add a single element to a random-
access list. To do so, we begin by defining the more general consTree function, that adds a
tree of depth n to a random-access list.

consTree : Tree a n → RAL a n b → RAL a n (bsucc b)
consTree t Nil = Cons1 t Nil
consTree t (Cons1 t’ r) = Cons0 (consTree (Node t t’) r)
consTree t (Cons0 r) = Cons1 t r

Unsurprisingly, this function closely follows the successor operation on binary numbers. It
searches for the first occurrence of a Cons0 constructor, accumulating any subtrees found
in a Cons1 constructor along the way. We can add a single element to a random-access list
by calling consTree with an initial tree storing the single element to be inserted:

cons : a → RAL a Zero b → RAL a Zero (bsucc b)
cons x r = consTree (Leaf x) r

Although we have an extensible data structure that supports logarithmic lookup time, we
can only store elements of a single type. Using these random-access lists, however, we can
define a heterogeneous alternative.

3 Heterogeneous random-access lists

In this section, we will show how to adapt our previous definitions, allowing them to store
heterogeneous elements. For every data type definition in the previous, we will give a
heterogeneous version indexed by a (homogeneous) structure storing the type information.
For example, we can define a heterogeneous perfect binary tree as follows:

data HTree : Tree U n → Set where
Leaf : Val u → HTree (Leaf u)
Node : HTree us → HTree vs → HTree (Node us vs)

Just as the environment from the introduction was indexed by a list of types, we can index
these heterogeneous trees by a tree of types, that determine the types of the values stored
in the leaves. Here we assume that the function Val : U → Set maps the codes from the
universe U to the corresponding types.



ZU064-05-FPR main June 6, 2019 13:22

Functional pearl 5

Rather than use vectors as we did previously, we now introduce a separate data type to
describe a path through a heterogeneous tree, navigating to a particular value of type U:

data TreePath : Tree U n → U → Set where
Here : TreePath (Leaf u) u
Left : TreePath us u → TreePath (Node us vs) u
Right : TreePath vs u → TreePath (Node us vs) u

Once again, we can define the desired lookup function by induction over the tree path:

lookup : HTree ut → TreePath ut u → Val u

The definition is identical to the one we have seen previously; the only difference in the
type signature, as the value that is returned may vary depending on the position in the tree.

Similarly, we can revisit random-acces lists and present a heterogeneous version, in-
dexed by its homogeneous counterpart:

data HRAL : RAL U n b → Set where
Nil : HRAL Nil
Cons1 : HTree t → HRAL ral → HRAL (Cons1 t ral)
Cons0 : HRAL ral → HRAL (Cons0 ral)

The type of positions now tracks the type of the designated value:

data Pos : RAL U n b → U → Set where
Here : TreePath t u → Pos (Cons1 t ral) u
There0 : Pos ral u → Pos (Cons0 ral) u
There1 : Pos ral u → Pos (Cons1 t ral) u

The lookup function traverses the list of perfect trees until it can use use the lookup function
on perfect binary trees:

lookup : HRAL ral → Pos ral u → Val u
lookup (Cons1 t hral) (Here tp) = HTree.lookup t tp
lookup (Cons0 hral) (There0 p) = lookup hral p
lookup (Cons1 x hral) (There1 p) = lookup hral p

Finally, the definition of cons and consTree are readily adapted to the heterogeneous
setting:

consTree : HTree t → HRAL ral → HRAL (RAL.consTree t ral)
consTree t Nil = Cons1 t Nil
consTree t (Cons1 t’ hral) = Cons0 (consTree (Node t t’) hral)
consTree t (Cons0 hral) = Cons1 t hral

cons : (x : Val u) → HRAL ral → HRAL (RAL.cons u ral)
cons x r = consTree (Leaf x) r

The only interesting change here is in the type signature. The result of cons function uses
the cons operation on homogeneous random-access lists defined in the previous section.



ZU064-05-FPR main June 6, 2019 13:22

6 W. Swierstra

4 An alternative evaluator

Finally, we can write a variation of our original evaluator. We begin by defining functions
that calculate the binary number associated with a (linear) context, and convert a context
to a random-access list:

sizeBin : Ctx → Bin
sizeBin Nil = End
sizeBin (x :: ctx) = bsucc (sizeBin ctx)

makeRAL : (ctx : Ctx) → RAL.RAL U Zero (sizeBin ctx)
makeRAL Nil = RAL.Nil
makeRAL (x :: ctx) = RAL.cons x (makeRAL ctx)

Next we will define two functions, pop and top, to refer to the first element of a random-
access list and tail of a random-access list respectively:

pop : Pos ral s → Pos (RAL.cons t ral) s

top : Pos (RAL.cons x ral) x

The definitions of these functions require several auxiliary definitions to manipulate the
binary trees involved. Using these definitions, however, it is entirely straightforward to
convert a position in a linear list to one in the corresponding random-access list:

toPos : Ref ctx s → Pos (makeRAL ctx) s
toPos Top = top
toPos (Pop ref) = pop (toPos ref)

We now generalize the lambda terms from the introduction, abstracting over the choice
of how to represent variables:

data Term (var : Ctx → U → Set) : Ctx → U → Set where
App : Term var Γ (s ⇒ t) → Term var Γ s → Term var Γ t
Lam : Term var (s :: Γ) t → Term var Γ (s ⇒ t)
Var : var Γ s → Term var Γ s

By choosing to use the linear references, Ref, from the introduction to represent variables,
we can redefine the original evaluator.

evalRef : Term Ref Γ u → Env Γ → Val u

Alternatively, we can write an evaluator that uses our heterogeneous random-access lists
and the corresponding positions:

P : Ctx → U → Set
P ctx u = Pos (makeRAL ctx) u

evalPos : Term P Γ u → HRAL (makeRAL Γ) → Val u
evalPos (App t1 t2) env = (evalPos t1 env) (evalPos t2 env)
evalPos (Lam body) env = λ x → evalPos body (HRAL.cons x env)
evalPos (Var i) env = HRAL.lookup env i



ZU064-05-FPR main June 6, 2019 13:22

Functional pearl 7

Crucially, the definition does not require type coercions or any additional proofs to type
check. Can we prove these two evaluators are equal? To relate them, we need to relate the
random-access lists and linear environments the previous evaluator used:

toEnv : Env Γ → HRAL (makeRAL Γ)

toEnv Nil = Nil
toEnv (Cons x env) = cons x (toEnv env)

We can show that the toEnv and toPos relate the lookup in our linear environments and
random-access lists.

lookupLemma : (env : Env Γ) → (x : Ref Γ s) →
Intro.lookup env x ≡ HRAL.lookup (toEnv env) (toPos x)

The proof relies on a pair of auxiliary lemmas, relating the top and pop functions to the
lookup of our heterogeneous random-access lists:

lookupPop : (p : Pos ctx s) → lookup env p ≡ lookup (cons y env) (pop p)
lookupTop : x ≡ lookup (cons x env) top

Furthermore, we can map one choice of variable representation to another by defining:

mapTerm : (forall {u} {Γ} → A u Γ → B u Γ) → Term A Γ s → Term B Γ s

Finally, we can prove that, assuming functional extensionality, our two evaluators produce
identical results:

correct : (t : Term Ref Γ s) (env : Env Γ) →
evalRef t env ≡ evalPos (mapTerm toPos t) (toEnv env)

The proof itself, using our lookupLemma, is only three lines long.

Acknowledgements I would like to thank Doaitse Swierstra for suggesting this problem.
The Software Technology Reading Club provided valuable advice on an earlier draft of
this paper.

References

Abel, Andreal. (2016). Agda tutorial. 13th International Symposium, FLOPS 2016, Kochi, Japan,
March 4-6, 2016, Proceedings. Springer.

McBride, Conor. (2004). Epigram: Practical programming with dependent types. Pages 130–170 of:
International School on Advanced Functional Programming. Springer.

Norell, Ulf. (2009). Dependently typed programming in agda. Berlin, Heidelberg: Springer Berlin
Heidelberg. Pages 230–266.

Norell, Ulf. (2013). Interactive programming with dependent types. Pages 1–2 of: Proceedings of
the 18th ACM SIGPLAN International Conference on Functional Programming. ICFP ’13. New
York, NY, USA: ACM.

Okasaki, Chris. (1999). Purely functional data structures. Cambridge University Press.


