DE GRUYTER

Open Computer Science 2018; 1(11):1-32

Research Article

Open Access

Joseph Eremondi*, Wouter Swierstra, and Jurriaan Hage
A Framework for Improving Error Messages in
Dependently Typed Languages

https://doi.org/DOI
Received ..; revised ..; accepted ..

Abstract: Dependently typed programming languages pro-
vide a powerful tool for establishing code correctness. How-
ever, it can be hard for newcomers to learn how to employ
the advanced type system of such languages effectively. For
simply-typed languages, several techniques have been de-
vised to generate helpful error messages and suggestions for
the programmer. We adapt these techniques to dependently
typed languages, to facilitate their more widespread adop-
tion. In particular, we modify a higher order unification
algorithm that is used to resolve and typecheck implicit
arguments. We augment this algorithm with replay graphs,
allowing for a global heuristic analysis of a unification
problem-set, error-tolerant typing, which allows typecheck-
ing to continue after errors are found, and counter-factual
unification, which makes error messages less affected by the
order in which types are checked. A formalization of our al-
gorithm is presented with an outline of its correctness. We
implement replay graphs, and compare the generated error
messages to those from existing languages, highlighting the

improvements we achieve.

Keywords: higher order unification, type error diagnosis,

counter-factual typing, type inference

1 Introduction

Dependent types enable developers to enforce rich prop-
erties of their programs statically. Through the Curry-
Howard Correspondence, a dependent type system provides
the full power of higher-order logic for proving program
correctness.
Notwithstanding, dependent types have not seen
widespread adoption. This may be in part due to their ex-
perimental nature, as they are still an active subject of
research. The type systems that allow them to provide

so many guarantees also enforce a very strict type dis-

*Corresponding author: Joseph Eremondi, University of British
Columbia, E-mail: jeremond@cs.ubc.ca

Wouter Swierstra, Jurriaan Hage, Utrecht University, E-mail:
{w.s.swierstra, j.hage}Quu.nl

cipline when programming, and this complexity leads to
more complex error messages being reported to the pro-
grammer. Thus, a large amount of development time is
spent responding to error messages, diagnosing errors, and
repairing them.

For beginning programmers, these type errors can be
a daunting barrier to entry, particularly when the error
messages that the compiler provides are uninformative or
confusing. Empirical evidence suggests that difficulty read-
ing error messages is correlated with difficulty completing
programming tasks [1]. Generating helpful error messages
has been well studied for conventional functional languages
like Haskell and ML, through projects such as the Helium
Haskell compiler [2-4] and counter-factual typing [5]. How-
ever, the topic has been largely unexplored for dependent
types.

In this work, we take the first steps towards improving
error messages in a dependently-typed language. We focus
on a higher order unification algorithm, which is a key part
of a checker for dependent types. Taking inspiration from
techniques for Haskell-style languages, we provide a rep-
resentation that allows the entire unification problem-set
to be considered simultaneously, allowing for heuristics to
diagnose error causes and suggest hints to the programmer
as to how they can be repaired. Our complete contributions

include:

— An overview of problems with current dependently-
typed error messages (Section 2).

— A new type of constraint graph, called a replay graph,
which allows for global heuristic analysis of a unifica-
tion problem, while accounting for the dependencies
inherent to dependent typing (Section 6.2).

— A strategy for error-tolerance, allowing typechecking
to continue even after an error is found (Section 6.4).

— The theory behind counter-factual unification, which,
when a solution for a variable is found, proceeds by
solving the unification problem both with and without
the solution, allowing for multiple conflicting solutions
to be regarded as equally valid (Section 7).

— The integration of these techniques into an existing
unification algorithm, with proofs that they do not af-

fect correctness (Sections 6.5 and 7.5).

2 = Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

— An implementation of type graphs and error tolerance
in a simple dependently typed language, with a qual-
itative comparison of the generated error messages to
those from existing languages (Section 8). Our imple-
mentation is able to generate repair hints and identify

the true cause of the error in many cases.

The focus of this work is on developing a general
framework in which heuristics can generate error messages,
rather than developing the heuristics themselves. However,
even with a small set of heuristics, we are able to provide

helpful error messages for several classes of errors.

2 Error Reporting: Principles and
Status Quo

To begin, we highlight the goals of error-message gen-
eration by providing classes of unsatisfactory error mes-
sages, along with simple examples of ill-typed programs
in dependently-typed languages generating such messages.
We choose examples from Agda [6] and Idris [7], two (rel-
atively) popular dependently-typed languages that rely
heavily on unification. We favour these languages over ones
such as Coq, since they use a relatively direct style of pro-
gramming, as opposed to using tactics to automate proof
generation. To keep our presentation clear, we take some
liberties, abbreviating syntax and reformatting messages in
minor ways. A box is used to highlight the part of the code
which the message identifies as faulty.

In Section 8, we show the cases in which we are able to
improve upon the error messages given by Agda and Idris,
establishing that unhelpful messages are not inherent to

dependent types.

2.1 Error Location and Cause

The main goal of a (type) error message is to inform the
user which code they must change in order for the pro-
gram to be well typed. Part of this involves error-message
location, reporting one or more source-code locations as a
possible cause of an error. When multiple source locations
are relevant to the error, we wish to report all locations
that provide the programmer with information necessary
to make a repair. A simple strategy for this is to report all
locations involved with an error [8]. Alternatively, heuris-
tics can guess the ideal location, as in Helium [2, 3] and
ShErrLoc [9].

DE GRUYTER

Additionally, we would like error messages to indicate
the cause of the error: the specific mistake made, whose cor-
rection will cause the program to typecheck. This typically
consists of a high-level, natural language message given to
the programmer. Even better is to suggest a repair, giving
not only the problem in the code, but the change that must
be made to correct it. Helium generates such messages us-

ing heuristic analysis [3].

2.1.1 Muiltiple Error Locations

the The
vecFoldr is a dependently-typed version of the clas-

Consider following Agda code. function
sic foldr: it iteratively applies a function over a list, but
the return type of this function may depend on the number
of elements processed so far. This allows us to iterate over
a vector (i.e. a list with its length indexed in its type),
and ensure that the returning list’s length is related to
the original length in some particular way. The function
doubleHead takes a number and a list, and uses cons
to append double that number to the head of the list.
Finally, the code shows an application of vecFoldr,
folding doubleHead over a list of booleans. Since the type
of list elements, the list length, and the type we are return-
ing are all explicit arguments to vecFoldr, the program-
mer will often wish to omit these. To do so, they write _
to indicate that the compiler should infer the value of that
particular argument. However, in this example, when we
try to fold doubleHead over a list containing booleans,

instead of numbers, we get a type error.

vecFoldr :

(a : Set) => (b : N => Set) -=> (n : N) —>

(m : N) =>a ->bm->Db (suc m)) —>

b 0 —>

Vec a n —>

b n
doubleHead : (i : N) => N => vec N i -> vVec N (suc
— i)

doubleHead _ h t = (h + h) : t

myList : Vec Bool 1

vec N 1
myVal = vecFoldr _ _ _

myVal :

doubleHead []

n myList has type

The reported message locates the error at myList,
which is partially correct, since it is an argument of the
wrong type. However, it is missing crucial information,
namely that we are expecting a number because of the type

of doubleHead. Thus, both locations are relevant to the

DE GRUYTER

error. This cause is hidden by the fact that this constraint
is carried through the unification variables, induced by the
implicit arguments of vecFoldr.

Our framework, conversely, generates the following

message:

_ doubleHead at

In this message, two conflicting locations are identi-
fied, and the user is directed both to myList, and to the
application of vecFoldR to doubleHead.

2.1.2 Repair Hints

In addition to highlighting all relevant locations in the
code, we wish for error messages to describe the cause of
the error, and to hint at how to fix it. The heuristics we
provide are particularly good at identifying the cause of an
error and reporting a hint for how to fix it. Consider the
following code snippet, where arguments to a polymorphic

function are given in the wrong order.

myFun : (a : Set) -> a -=> N -> N

myList :

List N

myApp

ist has type N

Again, the user is told that the type is wrong, but not
why it is wrong. Our heuristics instead generate the follow-
ing message, which not only reports the error, but gives its
cause (arguments in the wrong order) and a possible repair

(rearranging the arguments).

We give this example in more detail, along with several

more examples of improvements we achieve, in Section 8.

2.2 Left-to-right Bias

Depending on the order a program is traversed in a type-
inference algorithm, bias can be introduced. Unification

variables are generated for expressions, and may be as-

Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

-_3

signed a value as the algorithm progresses. If the algorithm
attempts to assign another type to the same variable, that
type will be marked as incorrect, even if it is the desired
value and the initial value was wrong. The order in which
the AST is traversed determines which type is assigned to
the expression, and which type is viewed as incorrect.

This kind of bias interferes with the goals of error mes-
sage generation, since both the assignment of an error loca-
tion, and the reported error cause, depend on the order in
which unifications are performed, as opposed to the actual
location or cause. This type of bias is particularly problem-
atic when implicit arguments are introduced and types are
inferred, since annotations are not present to express the
programmer’s intent.

Consider the following Agda code, with corresponding

€rrors:

myZipWith : {A B : Set} -> ((A x A) -> B) —-> List A ->
— List A -> List B

myvVall =

myZipWith projl (1 ::

[1) (IIIEI :

e expression tri

false :: [])

has type N

(true :: false ::

The correct type is assumed to be the type of the first
element of the list, even though switching the types of ei-
ther list will remove the error. What’s more, the reported
errors do not change if type annotations are added! We can

see a similar bias in Idris:

myZipWith : {A B : Set} -> ((A x A) -> B) -> List A —>
— List A -> List B

n : Nat

myVall : Nat

myVall =

fst

1 Nat
length (myZipWith fst [True, False] [

myvVal2
myval2 =

Various approaches from the literature aid in reduc-
ing bias. The Helium compiler [2, 3] reduces bias through
constraint-based typechecking, and by representing a uni-
fication problem as a single graph, allowing for global anal-
ysis regardless of the order in which constraints are added.

Counter-factual typing [5] reduces bias by also finding the

4 = Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

solutions that would have been generated if that constraint
had never been added.

Bias introduces additional complexities specific to
dependently-typed languages: the ordering in which con-
straints are solved may affect not only which type is as-
sumed correct, but also which value of an index for a type-
family is assumed correct. Since evaluation occurs during
typechecking, the first value chosen as “correct” can affect
the result of evaluation, dramatically changing the types
involved.

Our contribution uses graph-based checking (Sec-
tion 6) to reduce bias. However, due to the complexities
of dependent types, not all bias can be eliminated with
graph-based checking. We present counter-factual typing
(Section 7) as a theoretical way to reduce bias, though our

implementation does not yet use this technique.

2.3 Other Unsatisfactory Messages

Here we present additional examples of unsatisfactory mes-
sages. Some fall into the categories described, but use ad-
vanced type features not modeled by our core calculus, and
others have messages whose deficiencies are not due to er-
ror location or bias. These problems will not be helped
by the techniques we present. However, this work is, to
the authors’ knowledge, the first examining the state of
dependently-typed error messages, so we catalogue them
here for the sake of completeness, hoping to inspire future

work.

2.3.1 Pattern Matching and Rewriting

Dependent pattern matching is a key feature in
dependently-typed languages, but is also a source of com-
plexity. With dependent pattern matching, the values
matched in the left-hand side influence the expected type
of the right-hand side. Additionally, matching on one argu-
ment to a function can imply specific values that the others
must take.

Here we give a flawed proof of symmetry of equality.
The program pattern matches the proof of x = y with
refl, its only possible value, and tries to return refl as
a proof that y = x. However, refl returns a proof that

T = x, causing a mismatch.

mysym : (A : Set) -> (xy : A) > x =y —>y =X
mysym A X y refl
--x I=y 1en checking t refl

DE GRUYTER

The error informs us that x != vy, but never tells us
why it is expected that the variables be equal, except per-
haps by indicating that refl is the error location. The
true cause of the error is that the pattern match must also
specify that x and y are equal, but the user is not informed

of this. This can be repaired using Agda’s dot patterns.

‘mysym A x .x refl = refl

The Idris equivalent faces a similar problem, and while
it provides more hints as to the cause, it unhelpfully reports

the function name as the location of the error.

mysym : (A : Type) -> (x : A) => (y : A)

-> X =y =>y =X

A x y Refl = Refl

The information given is similarly vague when we
rewrite goals using equality proofs. The following code con-
tains nilNeutralR, a proof that appending a list to the
empty list does not change it, and tries to show that ap-
pending the empty list does not change the length of a list.
It uses a rewrite, where an equality is replace simplify the

goal type. However, the equality must be flipped before

using it.

nilNeutralR : (xs : List Bool) — xs = xs ++ []
nillLengthR : (xs : List Bool) — length xs = length
— (xs ++ [1)

nillLengthR xs rewrite nilNeutralR xs = refl

-—w != w ++ i ing that
— the pat

The code can be fixed by using sym nilNeutralR
in place of nilNeutralR, but the error message gives no

hints that this repair would solve the problem.

2.3.2 Amechanicity

Another goal of error messages is to ensure that error mes-
sages are amechanical [10]: we want the reported messages
to avoid leaking internal details of the compiler, and to be
rooted in the provided source code.

For instance, many Agda error messages will refer to
intermediate metavariables generated by the unification al-
gorithm. Consider the error for the following code, which
includes metavariable names that never appear in its source

code.

DE GRUYTER

myPlus : (N x N) -> N
myval : N
myvVal = foldr (1]

hecking that the expression
N - B — _B

Uninformative messages also occur when a code snip-
pet contains a metavariable which does not have a unique
solution. Here, the messages given by Agda contain almost

no clues as to the underlying cause.

alwaysZero = natElim =] () (\ x
-—-_9 : N — 9 0 1

10
— (suc x), _13 : _9 (suc x)

Set, _1 990, _11 : _9 0, _12 : _9

Idris reports a similar message, though a type mis-

match is reported, as opposed to an unsolved metavariable:

alwaysZ : Nat -> Nat
alwaysZ = natElim [—] (2) \ x, v =>12)

t hand side of alwaysZ with

Similarly, if unification ever gets stuck, the user is pro-
vided with an unhelpful message, referring to the internal
numbers of unification problems, giving no indication of
why the problems are blocked. The following example was
adapted from an error encountered by an unfortunate user
on Reddit [11], who was faced with the internal details of

the unification solver while trying to write a simple proof.

A : Set

a : A

f: A -—>A

lem : a = f a

rl : {S : Set} (R : S — Set} {xy : S} - Rx — x =

— y — Ry
rl Rx refl = Rx

: A — Set)

— R a — R (f a)

on problem 26]

3 Background

To describe how to generate quality error messages for de-
pendent types, we first introduce some prerequisite con-

cepts. We assume familiarity with the basics of type the-

Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

- 5

ory and dependently typed languages, as well as with basic
concepts from graph theory, such as connected components.

3.1 Preliminaries

We focus on dependently-typed languages that combine
terms and types into a single syntactic category, with a
type of types, denoted Set.

We use the notation Yil to represent a sequence of
elements from whatever set X ranges over.

We denote the operation of substituting all free occur-
rences of z with Y in Z as [z & Y]Z. Here z may be a
program variable or metavariable, Y is a term, and Z may
be any structure that binds these, such as terms, types,
contexts, metacontexts, etc. We sometimes find it conve-
nient to combine substitution and evaluation to S-normal
n-long form into a single operation, denoted [z =g Y|Z.
This is conceptually similar to hereditary substitution [12].

If X is a term, context, etc. then we denote the set of
free program variables in X as FV(X), and the set of all
free and bound variables in X as vars(X). The set of free
metavariables in X is denoted by FMV(X).

For rewrite rules, e.g., reduction — and metacontext-
solving +, we use the symbol * (e.g. —*,—") to denote

the reflexive and transitive closure of these relations.

3.2 Definitional Equality

Throughout this paper, we will be searching for unifiers
that cause two terms to be equal. It’s important to note
that deciding extensional equality, whether two terms al-
ways behave the same way, is not possible. We instead
use definitional equality [13], denoted s =gs, t, which
asserts that two terms are identical up to B-reduction,
n-expansion, substitution of top-level definitions §, and

bound variable renaming.

3.3 Higher Order Unification

We define the higher-order unification problem for a pro-
gramming language as follows. We begin with a set V' =
{ag,...
following form:

, an } of metavariables, and a set of problems, of the

Vaey: Ty, ..o, a2 T.s:S=t:T
where FV(s,t,8,T,T1,...,T) C{z1,...,zx}
and FMV(s), FMV(t) CV

6 = Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

When it is clear to do so, we omit the types from our
notation for problems.

The goal of higher-order unification is to find an assign-
ment of closed terms tq, . .

., tn, to metavariables aq, ..., an,

such that for each problem:

and for every well-typed sequence of values v : TZ-Z7 we

have:

mn

[2 = vi] Jon = tn] s: 8 =gon [T B> vi] lan = tn] t: T
Additionally, solutions should satisfy:
[an = tn]ns =Bén [Cln = tn] T : Set

That is, we wish to find an assignment that causes both
sides of each equivalence to become well typed and defini-
tionally equal.

Higher-order unification is in general undecidable, and
for many instances there is no unique solution which gener-
alizes all other solutions. However, Miller [14] identified a
sub-problem which is decidable and admits most-general
unifiers: the pattern fragment, where metavariables can
only be applied to distinct bound variables [15]. Essentially,
the pattern fragment allows for higher-order constraints of
the form Vzq...zn. a0 x1... xpn = t, since these can be
solved by a:= Axy...xn.t.

Unification is used in dependently typed languages for
two main purposes. The first is dependent pattern match-
ing. Here, the type of the value being matched upon is
unified with the constructor’s return type, and the con-
structor’s argument types are unified with the types of the

matched variables. For example, when defining:

head : (v Vec A (Succ n)) =-> A

the constructor null has return type Vec A 0, so when
we pattern match on v, the case for null is omitted, since
we cannot unify Vec A 0 with Vec A (Succ n).
Conversely, the unification succeeds for the cons con-
structor. A detailed account is given by Norell [16].

In this work, however, we focus on a second use: uni-
fication of program metavariables. These can be used in
place of expressions, when there is only one possible value
the expression can have in order to typecheck correctly. In
Agda and Idris, metavariables are denoted with the under-
score character _. We we will likewise use this notation in
our example programs.

Program metavariables can be used in the implementa-
tion of implicit arguments, which allow the programmer to

call a function with metavariables automatically inserted

DE GRUYTER

for specific missing arguments. These are crucial for using
polymorphism without notational overhead in dependently
typed languages, since many use System-F style explicit
instantiation of type variables. For example, the identity
function has type (T": Set) — T' — T, and it must be first
applied to a type before it can be applied to a value, such
as in id Nat 0. To reduce the burden on the programmer,
the parameter 7" can be made implicit: at compile time
it is replaced with a metavariable, and its value is found

through unification.

4 The Base Language

To showcase our techniques for generating error messages,
we set the stage with a dependently typed core calculus,
and a conventional higher-order unification algorithm. A
noteworthy aspect of our presentation is that we use a sin-
gle relation to capture both typechecking and finding the
normal form of a term. Otherwise, the syntax and seman-
tics are fairly standard, and serve primarily to provide the
vocabulary with which we can describe our contributions

in later sections.

4.1 Syntax

The syntax for our language is presented in Figure 1. As
a dependently-typed language, types and terms inhabit a
single syntactic category. We have II S T for functions that,
when given an argument x of type S, return a value of type
T x. The pair type X S T is similar: if the first element is x
of type S, the second element has type T" x. Our language
features no explicit polymorphism, but the familiar type
VX.T[X] can be simulated using II Set (AX.T[X]). We
use S — T as a shorthand for IT S (Az.T) where z is not
free in T'.

Many presentations of dependent types use a form
II (z:S) T or (x:8) — T for the dependent function
type. Instead, function codomains and pair second-element
types are encoded as A-terms in our system, since this will
allow us to express equalities between them without worry-
ing about the specific bound names. The above type would
be represented as IT S (Az.T'), explicitly binding the argu-
ment value in a A. Our X types are represented similarly.

In our syntax, elimination of terms is represented us-
ing spine form [17]: where a sequence of eliminators is ap-
plied to a term. This gives us easy access to the head of
a sequence of applications, which will prove useful in our

unification algorithm. A neutral term is a spine term whose

DE GRUYTER

Syntax

Terms:
8,t,S,T := x (Program Variable)
| t: T (Type Annotation)
| Set (Type of types)
| toe (Elimination)
| masT (Function type)
| ST (Pair type)
| Az.t (Functions)
| (t1,t2) (Pairs)

Eliminators:

d,e = funElim targ (Function app.)

| T (Pair first proj.)
| mo (Pair second proj.)
Neutral Term Heads:
h= z (Variable head)
| a (Metavariable head)
Neutral Terms:
u, v, U,V = ...
| hee'

(Neutral elimination)

E:=0t:E|E: V|t E|E v|m E|mE
L E TV E[S E T|S V E|(Et)

Reduction Semantics: (phrased in traditional

notation)

(Az.s) t = [z = t]s
m1(s,t) = s
ma(s,t) =t

E[t] — E[t']

ift — ¢

Fig. 1: Base language: syntax and semantics

Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types == 7

head is a variable or metavariable, named as such because
they cannot be reduced. For readability, we will often write
applications and projections using the traditional notation.
For example, we write x - (funElim f,7m1) as w1 (f z) when
convenient. Similarly, we will be flexible with our notation,
sometimes using eliminators where a term is expected, such
as on both sides of a unification problem.

The set of values is very similar to the set of terms,
with the restriction that eliminators may only be applied
to variables or metavariables, that is, all spine terms must
be neutral terms.

In our implementation, we supported a few inductive
types, such as Nat, Eq, and Vec, with eliminators in place of
explicit recursion. While we omit these from our model for
brevity (as they do not significantly affect our results), we
will use them in our examples and evaluations, to provide

realistic examples of dependently-typed code.

4.1.1 Semantics

The semantics of our language, shown in Figure 1, match
those of a standard call-by-name lambda calculus. Func-
tion applications are evaluated through substitution, and
projections extract the relevant part from a pair. Context
rules allow for evaluation deep within terms. The impred-
icative assumption that Set : Set means that not all terms
have a normal form, but we nevertheless choose such a sys-
tem for the sake of simplicity. Solutions to this problem
include separating types from kinds [18], or a hierarchy of
universes [19]. Such solutions are orthogonal to the work

we present here.

4.1.2 Declarative Typing

In Figure 2, we define our language’s type system. In the
absence of metavariables, the type rules for our language
are fairly standard. They are not quite syntax directed, but
can easily be made so [20, 21].

We follow Loh et al [20] and use a bidirectional type
system, distinguishing type-synthesis judgments =, where
types are viewed as output, from type-checking judgments
<, where types are viewed as input. Similar to Gundry
[21], we use a single relation to define both the typing of
terms and their S-reduced, n-long normal forms. We write
I' =t~ v < T to denote that a term ¢ has normal form
v and checks against type T', with a similar definition for
synthesis. This allows for an easy formulation of defini-
tional equality. It will also prove useful when defining error-

tolerant typing (Section 6.4), since we can produce normal

8 = Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types DE GRUYTER

Declarative Typing

I'Ft~»v<«<T| tchecks against type T and has normal form v

I't~»v=T| tsynthesizes type T and has normal form v

'kFtwwu=S
I'F S~ U <« Set 'ES~»V < Set
(check) T'HT ~ U < Set (ann) FEs~wu<V (set)
F'Ft~su<T Fk(s:S)~»u=V I' - Set ~~ Set = Set
Tt =% mat =¥
z gl Vao-=*V ' wuesS Tu=*V
Nz)=T Nz:Sktx~wove=V’ . ko o<V
(var) (abs) (pair)
FFa~a=T Tkt~ Azv)<I1U V Tkt~ (u,0) <L 8T
TEFS~U=Set z¢T 'ES~U<«Set x¢T
) T,x:UFT x~»V < Set) Tx:UFT x~~»V < Set
(pi) (sigma)

TFIST~IU (Az.V) = Set TFX ST~ XU (Ax.V) = Set

FFs~he =0IST
TFt~~wue=S Tu—*V
[k st~ h-g' (funElim u) = V

(app-neutral)

TkswMu=0ST Trt~w~d <SS Tid "V [zuu v
I'kstwwov=V

(app-redex)

Tht~h-g'=%8T Thtwhe=S8ST Tu—=*V

(snd-neutral)

(fst-neutral)

F}—ﬂltWh~eﬁi771:>S F}—ﬂgtWheﬁiﬂng

'kt~ (u,v)=3 8T Pkt~ (u,v)=38ST Tu—="V
(fst-redex) (snd-redex)
'Emt~u=S8 I'tmt~v=V

t has type T'

'Ht~>u=T
'kt:T

'k s=gsyt:T| sandtare definitionally equal at type T'

'CFs~u<T ThkHtwu<sT
FFszggnt:T

(hastype)

(defeq)

Fig. 2: Declarative typing

DE GRUYTER

forms for terms where ill-typed subterms are replaced with
L. The complete rules are defined in Figure 2.

The (check) and (ann) rules are standard for bidirec-
tional systems: (check) allows us to check a term against
any type with the same normal form as its synthesized type,
and (ann) allows us to synthesize a type for an annotated
term, provided it checks against that type. The (set) rule
encodes impredicativity, and (var) simply looks up variable
types in the environment.

The (pi) and (sigma) rules perform kind checking: since
types and terms overlap, we must make sure that types do
not refer to ill-typed terms. We ensure that the codomains
of functions are in n-long form by substituting a fresh vari-
able for their argument, evaluating their bodies to a normal
form, and abstracting over the variable. We perform a sim-
ilar process for X types.

The (abs) and (pair) rules type introduction forms, but
are checking rules rather than synthesis rules, since we re-
quire information from annotations in order to type them.
As with (pi) and (sigma), we check abstractions by substi-
tuting a fresh variable in for the argument, checking the
body, and re-wrapping in a A to produce an n-long result.
To check a pair construction, we check its first element,
then compute the expected type of the second element by
substituting the value of the first into the function provided
by the X type, then evaluating. To make pairs n-long, we
evaluate the normal forms of the first and second elements
and produce the pair containing them as a normal form.

The elimination rules each come in two forms: one for
redexes, and one for neutral terms, although the rules dif-
fer only in the normal forms produced. To type an applica-
tion, we synthesize the function type, check the argument
against its expected type, and compute the return type by
substituting the argument value into the codomain type
and evaluating. Typing a pair’s first projection is trivial.
To type a second projection, we synthesize the type of the
pair, then instantiate with the value of the first projection.
To compute normal forms, we perform reduction in the re-
dex case, and add the eliminator to the spine in the neutral
case.

At the bottom of Figure 2, we provide two relations
for convenience. One is simply type checking that discards
normal forms. The second gives the meaning of definitional
equality: two terms are definitionally equal at a given type

if they check against that type with the same normal form.

4.1.3 Metavariables and Constraint Generation

To introduce metavariables into our language, we must first

store their typing information in metacontexts, defined in

Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

-_9

A= (Empty)
| Aa:T (Declaration)
| AP (Problem)
| a:=t:T (Solutions)
| 1 (Failure)

P = s:8=t:T (Equality Constraints)
| vI. P (Quantified Problems)

(meta) a:TeA
NAta~a=T

Fig. 3: Metacontext syntax and typing

Figure 3. These can contain declarations, where a metavari-
able’s name and type are given, problems, which constrain
two terms to be equal relative to a set of universally quan-
tified variables, and assignments, which give concrete so-
lutions for metavariables. Assignments are not generated
during typechecking, but will be created and used during
unification.

The addition of metavariables requires that each
declarative rule also take a metacontext A alongside the
telescope I'. However, these are always simply passed
through, except in the typing rule for metavariables. We
provide this rule, along with the syntax for metacontexts,
in Figure 3.

Once we add metavariables to our language, we require
global inference in order to typecheck our programs. Both
programs and types may contain metavariables that must
be solved in order to complete typechecking.

To check a program with metavariables, we follow the
standard approach for turning a typechecking algorithm
into a constraint-based one: each time a rule pattern-
matches on an input, we replace that with an equality con-
straint. Constraint-based typechecking take a metacontext
as input, and produces as output one that contains the con-
straints that must be satisfied for the program to be well
typed. This is then passed to a separate unification solv-
ing procedure. A full algorithm is provided by Norell [16],
ensuring type-safety through guarded constants.

10 = Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

5 Solving Higher Order
Unification: A Primer

The main contribution of this work is a series of modifica-
tions to higher-order unification which facilitate the gener-
ation of quality error messages. However, to discuss modifi-
cations, we must first give the intuition behind higher-order
unification. Here we present a higher-order unification al-
gorithm, which we refer to as the unmodified algorithm.
We highlight the intuition behind it, particularly the parts
that we will modify later on. The rules we present are based
on those created by Gundry and McBride [22]. We chose
this algorithm for its (relative) simplicity and for its ease
of implementation, as higher-order unification tends to be
complex and detail-heavy. Their algorithm is in turn based
on that of Abel and Pientka [15], which is somewhat cleaner

theoretically, but less easily implemented.

5.1 Occurrences

With unification, we will often use the following termi-
nology to describe the occurrences of terms, variables,
metavariables, etc. [15]. An occurrence is flezible if it occurs
as an argument to a metavariable, and is rigid otherwise. If
a variable occurs flexibly before a solution from unification
is applied, it may not occur at all after the solution is ap-
plied, if the metavariable solution is a function that ignores
its argument. We say that an occurrence is strong-rigid if it
is not an argument to a variable or metavariable, meaning

that no substitution can eliminate it.

5.2 Unification as Rewriting

Our algorithm is presented as a non-deterministic set of
rules for rewriting metacontexts, which can be seen in Fig-
ure 4. We write A — A’ if we can rewrite A into A’
in a single step, and use —* to represent the symmetric-
transitive closure of the rewrite relation. Details for making
the rewrite rules syntax directed, as well as a sample im-
plementation, are given by Gundry and McBride [22].
The algorithm we present is dynamic: when it encoun-
ters problems outside of the pattern fragment (as defined
in Section 3.3), it simply defers their solutions. Since other
problems may refer to the same metavariables, substituting
in their solutions may move other problems into the pattern
fragment. Because of this dynamic property, our algorithm
may become stuck if no failure has been encountered, but

no remaining problems are in the pattern fragment. We use

DE GRUYTER

the following terminology to refer to the different states a

metacontext can take.

Definition 1. We say that a metacontext A is solved if it
contains no problems. A metacontext is stuck if it is not
solved, but no progress can be made. A metacontext is said
to be final if it is solved, stuck, or L.

Our rules can be grouped into three broad categories:

— Solution Rules: When there is only one possible so-
lution ¢’ to a problem VI'.s : T =t : T containing a
metavariable «, then we rewrite it to be ov := ¢/ : T .
Similarly, reflexive equations can be deleted.

— Failure Rules: These rules identify problems that
have no solution, or that cannot possibly be moved
into the pattern fragment.

— Simplification Rules: These rules are used to ma-
nipulate individual problems or parts of the metacon-
text, progressing towards a form that can be handled
by the other rules. For example, metacontexts can be
permuted in dependency-respecting ways. Likewise, to
propagate our solutions, when « := t : T occurs in

a metacontext, we replace o with ¢ everywhere else.

Other rules perform type-directed manipulation of con-

text. For instance, problems comparing functions f, g

of Il-types use m-expansion to instead compare the

function bodies.

In Figure 4 we define the solution and failure rules, and
explain them in the following sections. Simplification rules
are critical for applying unification in a practical setting,
since they greatly increase the number of problems that
can be solved. However, their effect is orthogonal to our

changes, so we omit these rules.

5.2.1 Solution Rules

Rigid Equations

All expressions, other than spine forms with metavariable
heads, have rigid heads. The rigid head can be a program
variable at the head of a spine, or the II,¥ or Set type
constructors. We have a rigid-rigid matching when unifying
two terms with rigid heads.

To match two expressions with the same variable head,
we can generate equalities between their spines, as seen in
the (rigid-spine) rule. Similarly, matching two types with
the ¥ or II constructors generates matches between their
arguments. For example, Il o T = II 8 T’ is decomposed
intoa=8,T=T".

DE GRUYTER

Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

-_ 11

A A
Solution Rules
ANL.(¢:T) = ()
AV (I A B : Set) =
ANT. (X A B : Set) =

AVT. chfZ

Failure Rules
AVE. (s:T)=@t:T)— L
Ao :T,A ™l az; =t L

AN ady =t L

(IT S T :Set) — A,VI'. (A : Set) =
(X8 T :Set) — A,VI.(A: Set) =
= xeﬁ'l — AVL.d;=e;
Ao :T,A,Wl.a77 =t — A, A o= \7;
if Z;" is linear on FV(t), o & FMV(A’,
Ao :T®.T,A L. a7’ = o' — A A B . T, o := AD. BV : [1S. T
if 7;" agrees with 7;' on ¥ C ® and FV(T) C vars(¥)

if s and t have different rigid heads

if & occurs rigid-strong in ¢

if Vi) 7 V(@)

if T|AF T =g, T’ : Set and TAFt =g, T (reflexivity
(B:Set) A (B:A—Set) =(T:S5 — Set) (rigid-pi
(B:Set) A (B:A— Set) = (T:S — Set) (rigid-sigma
(rigid-spine
tt:T (inversion

t)and - |A, A F ATt T
(intersection)

(rigid-fail)
(occurs-check)

(prune-fail)

Fig. 4: Higher order unification, adapted from Gundry and McBride [22]

We use our notation flexibly, matching eliminators as
well as terms, performing similar decomposition with the

eliminator constructors as with term constructors.

Inversion and Intersection

A problem is in the pattern fragment if any elimination
with a metavariable head is applied to a spine of distinct
program variables. We make progress when one or both
sides of an equation are an elimination of this form, since
these equations have unique solutions.

A flez-rigid equation is one where one side of the equa-
tion is a spine-form term with a metavariable head. (Note
that the spine may be empty, for example, with constraints
of the form « = t). Similarly, a flez-flex equation is one
where both sides of the equation are spine-form terms with
a metavariable head.

To solve a flex-rigid equation az," = t, if z," is
a sequence of distinct bound variables (i.e. the problem
is in the pattern fragment), we generate a solution « :=
ATp".t. This process is known as inversion, and can be
seen in the (inversion) rule. Flex-flex equations with differ-
ent metavariable heads can be solved in the same way. If
the problem is not in the pattern fragment, we wait, hoping
that application of other rules will simplify it to be in the
pattern fragment.

A special case, however, occurs when our problem is
a - :Tl-i = «- Ei7 that is, both equations have the same

metavariable head. Here we instead solve by intersection:

a fresh metavariable 3 is declared, and we generate the
ALy ... Tp. 021 .. , 2k} =
{z; | z; = y;}. That is, the solution to such a problem can

solution «a := .z, where {z1,...
only refer to the variables shared by both sides of the equa-
tion: « is defined as a function which ignores all arguments
on which z; and y; disagree. This process is formalized in

the (intersection) rule.

5.2.2 Failure Rules

Rigid-Rigid mismatch

All constructors in our language are injective. Thus, if two
expressions have different rigid heads, they cannot be uni-
fied, and we fail with the (rigid-fail) rule. Note that injec-
tivity may not apply in univalent settings, where not all

constructors are injective [23].

Occurs-check Failure
When solving for a flex-rigid or flex-flex equation ag;l =t,
we must ensure there are no places where a occurs rigid-
strong in ¢. If such an occurrence exists, then there is no
finite term satisfying the equation, and we fail with the
(occurs-check) rule. We only fail for rigid strong occur-
rences since other occurrences may disappear when solu-
tions for other variables are found.

For example, there is no finite solution to a = II « 3,

and our occurs check would fail in this case.

12 = Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

Pruning
Before solving a flex-rigid or flex-flex equation, we prune
the equations. Similar to the occurs check, when solving
VI. o - €' = t, we need to ensure all variables in ¢ (which
are bound by the VI') also occur in the spine ?ii, since only
those variables can be incorporated into a solution for a.

If any are not in the spine, but are arguments to a
metavariable within ¢, we can wait, since future solutions
may make these disappear. In any other case, there can
be no solution, so we fail with the (prune-fail) rule. For
example, Vz,y. « z = y has no closed solution for «, since
«a may appear in contexts where y is not bound.

We present only the rules for when pruning fails, since
the rules where it succeeds are simplification rules. A com-

plete account of pruning is given by Abel and Pientka [15].

Type Checks

After a substitution has been applied, a problem VI'.s :
S =t : T may be solved, that is, s = ¢, and the (reflexiv-
ity) rule can be applied. However, to consider the problem
solved, S and T must also be equal, and the solution must
typecheck against T'. If this succeeds, the problem can be
removed from the metacontext. If this fails, then the prob-
lem is stuck. Note that the typechecking here occurs rela-
tive to the declarative system: we do not generate further
constraints when typechecking here. Likewise, if a problem
has no metavariables but its two sides are not equal, the
metacontext has no solution.

Our rewrite rules use these type checks as guards when
adding solutions or deleting reflexive equations, so it be-
comes stuck when failures are encountered. In Section 6.4

we show how to proceed despite these failures.

5.3 A Worked-Through Example

To give a concrete example of the above algorithm, we ap-
ply it to the constraints generated when typechecking the
code from Section 2.1.1. Suppose that, when typecheck-
ing, (1, B2, B3 are the names given to the respective values
omitted as _.

After typechecking (and applying trivial equalities),
the metacontext A = {Py, P», P3, Py, Ps, Ps, P7} is gener-
ated, where the problems P; ... P; are defined in Figure 5.

The unification algorithm proceeds as follows:

1. We apply (rigid-pi) to the metacontext, which decom-
poses P; into a; = Set and az = Aa....(b n). We
can apply (inversion) with an empty spine twice to

DE GRUYTER

solve the (trivial) equations. Our metacontext is now
{a1 :=Set,ag := (Aa....(bn)), Pa,..., Pr}.

2. The solutions from P; can be substituted forwards
in the metacontext (using the omitted simplification
rules), transforming the left-hand side of P> into :

IT (Nat — Set) Ab.
IT (Nat) An.
II(IT Nat Ai. 81 = b i — b (Succ) A
II(b 0) A _.
II(Vec 1 n) A_
(bn)
3. We can repeat the above two steps for P> and P3 to

obtain a3 := Nat — Set, ag := (Ab.... (b n)), as =
Nat, and

ag = An. 11
(IT Nat Ai. IT By A II B2 i\ _. B2 (Succ 7))
A_TI(B2 0) A_.

II(Vec B1 n) A_

(B2 n)

4. After substituting our solutions in P4, and once again
applying (rigid-pi), we finally obtain interesting equal-
ities:

(IT Nat Ai.IT By A_.II B2 i A_. B2 (Succi)) =
(IT Nat Ai.TI Nat A_.
IT(Vec Nat ¢)A . (Vec Nat (Succ 7)))

and
A_TIMBO) A _II(Vec B1 B3) A_.B2 B3 = «ar

The latter equation is solved trivially, but the first
requires further decomposition. Again, we can apply
(rigid-pi), to obtain Nat = Nat, which we can delete
with (reflexivity), and (after using a simplification rule

to m-expand):

Vi. MG A_II B2 i A _. B2 (Succ 7)) =
IT Nat A_.TI(Vec Nat ¢)A . (Vec Nat (Succ ?)))

We can then apply (rigid-pi) to obtain 7 := Nat,

the solution to the first underscore, along with (eta-

expanded)

V. IT B2 i A_. B2 (Succ 7)) =
II(Vec Nat ¢)A . (Vec Nat (Succ i)))

DE GRUYTER

Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types = 13

P

Py

Ps:

Py :

Ps:

Ps:

II o ag =

ag B =

ay B2 =

ag B3 =

(vecFoldr 132 B3 has a function type whose domain matches type of doubleHead)

a7 doubleHead =

(vecFoldr...doubleHead has a function type whose domain matches type of Nil Nat)

ag (Nil Nat) =

(vecFoldr...Nil Nat has a function type whose domain matches types of myList)

ag myList =

IT Set Xa.

IT (Nat — Set) Ab.

IT (Nat) An.

II(IT Nat Mi. Il a A_.TI(b3)A_. (b (Succi))) A_
II(b 0) A _.

II(Vecan) _.

(bn)

(vecFoldr has a function type)

II a3 a4

(vecFoldr 1 has a function type)

II as ag

(vecFoldr 1 B2 has a function type)

IT (IT Nat Aé.II Nat A_.II(Vec Nat)X . (Vec Nat (Succ 7))) ar

IT (Vec Nat 0) ag
IT (Vec Bool 1) ag

(Vec Nat 1)
(The return type of the entire application is Vec Nat 1)

Fig. 5: Metacontext from typechecking code of Section 2.1.1

14 = Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

Applying (rigid-pi) here now gives us two higher order

problems:
Vi. B2 i = (Vec Nat)
Vi. B2 (Succ i) = (Vec Nat (Succ 7))

However, both of these fall neatly into the pattern frag-
ment, so we can apply (inversion) with a spine ¢ to get
B2 := Ai. (Vec Nat 7). Applying this substitution allows

us to eliminate the second equation with (reflexivity).

5. Our new solutions for 81, a7 and B2 transform P5 into

II(Vec Nat 0) A_.II(Vec Nat 83) A_.Vec Nat 33 =
IT (Vec Nat 0) ag

‘We can solve this similarly as with Py, giving a reflexive
equality and ag := _.II(Vec Nat 83) A_.Vec Nat 33

6. On Pg, we get stuck (due to the type error in the
code). Applying all our solutions thus far, Pg becomes
IT (Vec Nat 83) = II (Vec Bool 1)ag. Repeated rigid de-
composition gives Nat = Bool and 83 = 1, but the first

equation cannot be simplified, and unification fails.

6 Replay Graphs for Message
Generation

Here, we describe one approach for dependently-typed er-
ror message generation. Specifically, we follow the approach
of the Helium Haskell Compiler [2—4], where a unification
problem is represented as a graph, with edges representing
equality. This format naturally captures the transitive na-
ture of equality using graph reachability. More importantly,
it represents the entire unification problem in a global, non-
linear way. Thus, instead of iteratively solving a problem
and reporting an error as soon as it is encountered, a set of
heuristics can be applied to diagnose the problem. These
heuristics can see the entire graph, and thus the context
surrounding an error. Additionally, they can try modifica-
tions on the graph, seeing which make it consistent, and
use this information to generate repair hints.

Many heuristics of Helium can be adapted to de-
pendent types with little modification. However, Helium’s
graph representation is too simple for dependent types, and
does not naturally capture the dynamic aspects of higher-
order unification.

In this section, we present our solution to this problem.

We give a modified unification algorithm that generates a

DE GRUYTER

replay graph, representing the steps unification took. In-
stead of generating solutions from the graph, we perform
unification as we normally would, but if an error is encoun-
tered, we refer to the graph, applying heuristics to generate
a message.

Additionally, since replay graphs capture any failures
during unification, they allow us to make our algorithm
error-tolerant. When a failure is encountered, we can safely
proceed as if it had not happened, since the failure is
recorded in the replay graph. We formalize this process

in Section 6.4.

6.1 Constraint Graphs for First-Order
Unification

We begin by explaining first-order unification, since our
higher-order replay graphs are easiest to understand in re-
lation to the constraint graphs that systems such as Helium
use for unification.

First, consider a set of equality constraints over
metavariables and atomic types. To represent such a pro-
gram graphically, we have nodes in our graph for each
atomic type or metavariable. For each constraint 77 = T,
we add an undirected edge between the nodes for 77 and T5.
Since reachability and equality are both transitive, we can
identify the solution for a metavariable as the atomic type
in its connected component. If two distinct atomic types
are in the same connected component, then no solution to
the constraint set exists.

To account for types involving type constructors, such
as — or List, we use directed structure edges. First, we
must establish how to construct a node for a complex type
T.IfTis X Sy

S1...5n, then we add a constructor application node to

... Sp for some type constructor X and types

our graph for T, an atomic constructor node for X, and the
nodes for each S;. The node for each S; is either its atomic
type or metavariable node, or its constructor application
node if it is a complex type. To reflect the structure of T,
we add a directed edge from T to X labeled ({, HEAD), and
a directed edge from X to T labeled (1, HEAD). Similarly,
we add an edge ({,ix) from T to S; and (1,ix) from S; to
T.

For instance, the type T' = T7 — T> would be repre-
sented as the following graph:

HEAD 2
1

@

DE GRUYTER
Specifically, the following edges would be generated:

(T7 7 \Irv HEAD)? (*)7 T7 T» HEAD)7
(Ta T17 \L? 1Arrow)7 (T17 T7 T? 1ArrOW)7
(T7 13,4, 2Arrow)7 (TZ, T, 1, 2Arrow)

As an intuition behind this notation, we imagine the
syntax tree for a term with the root at the top. The edges
labeled | represent moves down, from the root towards the
leaves, whereas edges labeled 1T are moves from the leaves
towards the root.

With a notion of how to represent complex terms as
graphs, the final detail is how to represent equalities be-
tween complex nodes. We can form paths between nodes
using both directed and undirected edges, but this in-
cludes too many paths. In our previous example, if we have
S1 — T1 connected to So — T5, we do not want a path
between S7 and T3, since that equality is not implied. In-

stead, we must consider which paths are equality paths.

Definition 2. The set of equality paths is defined induc-
tively:

— Any undirected path is an equality path.

— A path is also an equality path if it has the form

T;',(S,T,1,L), P,(T, S, 1, L), T}

where P is a smaller equality path, ﬁ/ and ﬁjj are
(possibly empty) undirected paths, S and T are nodes,
and L € {HEAD, 1x,2x,.. }

Essentially, moves along directed edges must be well nested,
with | preceding 1. This corresponds to our equality rules
for constructors: if two terms are equal, then they must
have equal constructors and equal arguments. If an equality
path connects two non-equal nodes for atomic types or type
constructors, then it is called an error-path. Labelling the
argument nodes with the constructor X ensures that we do
not have redundant equality paths between arguments of
terms with different heads, since there is already an error
path between the heads.

An alternate, but equivalent, way to think of an equal-
ity path is by implicit edges. Whenever there is a path
between two complex terms, there are implicit undirected
edges between their heads and corresponding arguments.

A set of unification constraints has a solution if and
only if two conditions hold. First, the graph for the con-
straint set must not contain any error paths. Secondly, no
metavariable can have a path to itself through a directed
edge, since this prohibits finite solutions. The second con-

dition is essentially an occurs-check.

Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

- 15

The advantage of this approach is that the graph pro-
vides a single representation of the entire unification prob-
lem. The various equalities can be considered simultane-
ously by heuristics, diagnosing the type error by select-
ing a set of undirected edges whose removal will eliminate
all error paths. The program points that induced the con-
straints for these edges are then presented as the cause of
the type error. Edges can be added or removed, so that
heuristics can search for specific changes that will repair
the graph. Moreover, the representation is unbiased: the
order in which constraints are emitted has no effect on the

final graph.

A First Order Example
Consider checking the Haskell application

(++) [1,2,3] [True] i.e. concatenating two lists us-
ing prefix notation. The function ++ has type [a] —>
[a]l] —> [a], so when typechecking the code, a is instan-

tiated with a fresh unification variable 3, and we get the

following constraints:

List 5 — List B8 — List 8 = al — az

((++) is a function)

List Int

(argument [1, 2, 3] matches function domain type)

a1 =

a2 = a3 — 04
((++) [1,2,3] is a function)
ag = List Bool

(argument [False] matches function domain type)

In Helium, this would be represented as the constraint
graph shown in Figure 6. The following error path between
Int and Bool is present:

(Int, List Int, T, 1 jst), (List Int, 1), (@1, 21 = @2, T, Larrow),
(a1 — ag, List B — List g — List 8),
(List 8 — List 8 — List 3, List 3,1, 1arrow)s
(List 8, 8,4, LList), (B, List 8,71, Liist),
(List B, List 8 — List 8,1, Larrow),
(List 8 — List 8, List 8 — List 8 — List 3, List 3,7, 2arrow)s
(List 8 — List 8 — List 8,21 — a2),
(a1 — a2, a2, 1, 2amow); (@2, a3 — aa),
(a3 — a4, a3, , Larow), (a3, List Bool),
(List Bool, Bool, |, 1 ;st)
Notice the nesting structure: to reach 38, we go

T 1List> T LArrows 4 LArrows + 1List, and to leave 3 we go
T 1List7T 2Arrowa T 1ArrOW7 \L 1Arrowa ~|/ 2Ar'rOW7 \L 1List-

16 = Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

DE GRUYTER

(List B — List 8 — List B

HEAD

HEAD

List Int

a1 — Q2

1 2

1
(Tst Boo)——@)

HEAD 1

Fig. 6: First-order Type Graph from checking (++) [1,2,3]

The intuition behind this path is as follow: the injec-
tivity of constructors means that if List 3 — List 8 —
List 8 = a1 — a2, then there are implied equalities (i.e.
implied edges) List 8 = a1 and List 8 — List 8 = ag. Since
a9 = a3 — oy, there are implied equalities List = ag

List Int
List Bool
through a1 = List 8 = a3. Finally, this implies the equal-

and List 8 = a4. Since there’s an edge a; =
and ag = List Bool, there’s a path List Int =

ity Int = Bool.

6.2 Replay Graphs for Higher-Order
Unification

In this section, we introduce a graph representation of
higher-order unification problem sets, which we call replay
graphs. We describe methods for generating them from con-
straints, as well as for analyzing them in order to diagnose
the likely cause of errors.

The first-order approach of Section 6.1 fails in a higher
order setting. Since we are performing unification on both
types and terms, we may have to unify terms involving
applications of non-injective functions to types and type
indices. The equality paths of first-order unification are
correct only because of the injectivity of constructors. For

example, the following equation holds:
(Az. Ay. Zero) Zero Zero = (Ax. \y.z) Zero (Succ Zero)

However, cannot conclude from this that

(Az. Ay. Zero) = (Az. \y. x), or that Succ Zero = Zero.
Likewise, the simplification rules of our unification al-

we

gorithm transform problems so that solutions can be found.
For example, n-expansion transforms unification of func-
tions into unification of their bodies, and decomposes con-
straints on dependent pairs to constraints on their com-
ponents. Similarly, when a solution for a metavariable is
found, the new value is substituted into terms of other
problems, which are then evaluated. Such operations do

not have an obvious graph-based counterpart.

[False]

To represent a higher order problem graphically, we
decompose it into a number of first-order equalities by
running higher-order unification and recording the sub-
problems and solutions that are generated. When an er-
ror is found and a message needs to be generated, the re-
play graph is analyzed to diagnose the cause of the error.
Thus, the graph can be ignored when finding solutions for
metavariables, but it can be a rich source of information
about unifications that have taken place whenever an error
message needs to be generated.

Because replay graphs rely on our unmodified unifica-
tion algorithm, they can exhibit some bias, as the order
in which unification problems are solved can still some-
what affect the error message output. Unlike with first or-
der problems, we cannot solve the problems in any order,
since problems outside of the pattern fragment can never
be solved until other solutions push them into the pattern
fragment. Such restrictions are inherent to dynamic unifica-
tion with dependent types, but we propose counter-factual
unification (Section 7) as a theoretical tool to explore all

orderings which do not cause unification to become stuck.

6.2.1 Graph Structure

Our graph structure is very similar to the first order ver-
sion, though enriched to allow for a unified type-term lan-
guage. At its core, our graph consists of a set of nodes,
which represent terms, and a set of edges between those
nodes, representing structural dependencies and equalities
between nodes. The specification for nodes and edges is
given in Figure 7(a).

Nodes

Our nodes come in four varieties. There is a single node for
each metavariable. Nodes for rigid heads are also present,
representing the injective constructors of our language,
such as Set, II or X. Additionally, a rigid head may be

DE GRUYTER Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types = 17
Vertices
V= e (Metavariable Node) .
V(t) =V | Term Vertices
| r (Rigid Head)
| App, (Rigid Head Application) V(t) =t iftis a rigid head
| Raw(t) (Raw Term node) V(i) =V ift—t
Rigid Heads V(@) =a
VILST) = Appr s 1
r == Set|II|X|funElim| 7y | 72 |2 V(S ST)=Apps 5 1
Edges V(funElim t) = Appgyngiim ¢
V(ae;') = Raw(ae;')
D =
T V(A z.t) = Raw(\ z.t)
L= HEAD | ¢ ;€ N
S V(5,1)) = Raw((s,1)
E = (V1,V2,D, L) (Applied term)
Equality Ed
‘ [Vl, V2] (duatity ge) (b) Term Vertices

(a) Replay Graphs: Syntax

E(t) = fjl Term Edges
E(t) =
EMST) =
EXEZST)=
E(funElim t) =
Eg(A) = €' | Metacontext Edges
Eg(1) =
Eg(Aya:T) =
Eg(Aya:=1t:T)=
Eg(A,(s:8)=@:T)) =
£g(ANVI.P) =
Geval(G,A) = G' | Evaluation Edges
geval(g: A) =

G u{v(s),

- if ¢t is a rigid head or metavariable

(Apprt s 7,11, 4, HEAD), (Appr1 s 7,5, 4, 1), (Apprt s 7, T 1, 2)
(IL, Appr; s 7, T, HEAD), (S, Appr; 5 7,1, 1), (T, Apprr 5 7,1, 2)
) (2)

) 2)

R)

(Apps 5 7, %,1, HEAD), (Apps s 7, 5,4, 1), (Apps 5 7, T, |,
(3, Appy 5 7,1, HEAD), (S, Appy 5 7, 1,1), (T, Apps 5 7, 1,
(APPfunElim ¢ funElim, L), (Appgyngiim +, V(1),
Eg(A)
Eg(A), E(subTms(t)), [V(a), V(¢)]
Eg(A),E(subTms(s, 1)), [V(s), V()]

Eg(A), Eg([l = T']P) where T NFV(G) = 0

V(a B t]s)] |a:=t:T € A, Raw(s) € G, € FMV(s)}

(c) Graph construction rules: edges

Fig. 7: Replay Graph Construction

18 = Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

a variable, since we cannot generally assume x = y for
free variables x,y in a term. Constructor application nodes
represent simple terms built from constructors, like IT S T'.

To account for the remaining, more complex terms,
such as lambdas or neutral terms, we have raw term nodes,
which simply store an entire term in a single node. These
act as placeholders, storing the term so we can perform
substitution and evaluation on it as we find solutions for
metavariables. They then provide a connection between a
term and its evaluation.

In our implementation, we allow for multiple nodes
representing the same term to be in our vertex set. This
ensures that unrelated program segments do not conflate
their errors. For instance, if there are two unrelated errors
involving the Set constructor, having a path between them
through a single Set constructor could result in a diagnosis

completely unrelated to the actual cause of the error.

Edges

Our edges come in the same two varieties as first-order
graphs. Undirected equality edges are written [u,v]. These
denote that the terms defined by two nodes should be
definitionally equal. Directed structure edges are written
(u,v,d, L), where D € {f,]}, and L is either HEAD or i,
for some rigid head r, denoting the children corresponding
to the rigid head and ith arguments of a complex term. For
example, the node for IT S T is an application node, with
J edges to II, S and T, labeled HEAD, 11, 217 respectively,

and corresponding 1 edges in the opposite direction.

6.2.2 Constructing Replay Graphs

As is standard, a graph G is simply a pair consisting of a
set of vertices, and a set of edges over those vertices. The
graph union G; UGy is simply the union of its vertex and
edge sets.

Overall, we wish to represent each equality encoun-
tered during unification in our graph. We add equality
edges in three cases: between the two terms of a unifi-
cation problem, between a metavariable and its solution,
and between a term and its evaluated form after applying
previous solutions.

The formal rules for constructing our graph are given
in Figure 7. We gradually build the graphs for a unification
run. First, we have the vertex V(t) for each subterm ¢, given
in Figure 7(b). Raw terms, rigid heads, and metavariables
have their own nodes, while terms with constructor heads
are given application nodes. Note that we are flexible with

our syntax, also assigning nodes to eliminators.

DE GRUYTER

The rules for generating edges are given in Figure 7(c).
To build the complete graph for term ¢, we compute its
vertex, and add the edges, denoted £(t), that represent
the structure for the term. This set is empty for metavari-
ables, rigid heads and raw terms, but contains the HEAD
and numbered argument edges for the complex term nodes
described in Section 6.1.

The graph for a metacontext A contains V(t) and £(t)
for each sub-term ¢ of A. Additionally, it contains undi-
rected equality edges for each equality and solution assign-
ment contained in A. We denote this graph as £g(A), ref-
erencing the graph G constructed so far so that we can
generate fresh variables.

When adding a constraint of the form VI'.C' to our
graph, we replace each variable in I" with a free, uncon-
strained variable, ensuring that the constraints are indeed
satisfied for any possible T'.

Finally, we have rules to construct the evaluation edges
for a metacontext A. These account for the fact that de-
pendent type checking must perform evaluation of terms.
When we have a solution « := ¢t in A, and « occurs in some
term s in A, we add an edge from s in its original raw form
to s after substituting ¢ for a and evaluating. These rules
are crucial for adapting type graphs to dependent types,
and make up for Helium’s lack of support for type-level
computation.

The connected components (via equality paths) of our
graph are called equivalence groups: any two terms in an
equivalence group should be equal after the appropriate

substitutions for metavariables are made.

Example: Metacontext Graphs
Figure 8(a) shows the graph for the metacontext:

A =q«:Set,7a =Eq00,?a = Eq (Succ 0) 0

(While the inductive types Eq and constructors 0, Succ are
not part of our calculus, we use them to provide more real-
istic examples.) The nodes consist of rigid heads for 0, Succ,
and Eq, a metavariable node «, and constructor application
nodes for Succ 0, Eq 0 0 and Eq (Succ 0) 0.

For term edges, we have directed edges from Eq 0 0 to
nodes for Eq, 0 and 0, labeled HEAD, 1g4 and 2g4 respec-
tively, with similar edges in place for Eq (Succ 0) 0 and
Succ 0.

Finally, we have the equality edges between « and the
two Eq terms. These edges, combined with the directed
edges, induce the following equality paths:

DE GRUYTER

Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

(a) Replay graph for {a = Eq 0 0, & = Eq (Succ 0) 0}. Dashed
edges are implied by equality paths, and the crossed-out edges are
a possible diagnosis.

(xxy) ad4d
initial sub/eval
Vdepend initial
_~’depends
. e
solution

Cx+y) ()\:py.:c—&-y) @

(b) Replay graph for {Vz,y.a z y =z + y,a 3 4 = 8}. Inver-
sion gives a := Azx.x + y, so « 3 4 gets an evaluation edge to 7.
The crossed-out edges are a possible diagnosis.

Fig. 8: Example replay graphs

Eq, (1,HEAD),Eq 00, «,

07 (T?lEq)7Eq 0 07 «,
O, (Tv 2Eq): Eq 0 07 «,

Eq (Succ 0) 0, (J,HEAD), Eq
Eq (Succ 0) 0, (4, 1gq), Succ 0
Eq (SUCC O) 07 (J/7 2Eq): 0

There is an error path between 0 and Succ 0. One possi-
ble diagnosis, denoted by the crossed out edges, is to delete
the edge between « and Eq (Succ 0) 0, thus deleting the
equality path between 0 and Succ 0. However, deleting the
edge between Eq 0 0 and « is an equally valid diagnosis,
and heuristics must be used to determine the one that is

the likely error cause.

Constructing the Complete Graph
Given the rules for constructing a graph for a metacontext,
we can construct the replay graph for an entire unification
run.

Suppose the unmodified unification algorithm, when
given initial metacontext Aj, rewrites it as the sequence
Ay — Ag — ... — Ay, where Ay is final. Then we can

define a series of graphs for each step as follows:

Go = 0,
Gi = Geval(Gi—1 UE(Gi—1, 1))

-— 19

That is, we build our final graph adding the edges from
each intermediate metacontext A;, then adding the edges
between terms and their evaluated forms after applying
solutions from A;.

We say that G,, is the replay graph of unification of Aj.
The graph begins empty, and then has nodes and structure
edges for all terms in A; added. Each time a new solution
is generated or a problem is decomposed by the unifica-
tion algorithm, the corresponding edges are generated, and
will be included in the final graph. This provides us with
a global overview of the constraints induced by the initial
metacontext, allowing us to use heuristics to diagnose er-

rors and recommend repairs.

6.2.3 Edge Dependencies

In a practical implementation, to facilitate message gen-
eration, we can keep a dependency tree of generated con-
straints. The sub-constraints of a rigid-rigid unification or
n-expansion P are dependent on P, and the definition
«a := t from solving a flex-rigid or flex-flex problem P is
dependent on P. Updates are dependent on their defini-
tions (which in turn may be dependent on other problems).
Thus, when an edge £ is diagnosed as the source of the er-
ror, we can locate the error at the original source-code that

induced the constraint.

Example: Evaluation Edges
Figure 8(b) shows a replay graph (with directed edges omit-
ted) for the following metacontext Aj:

«: Nat — Nat — Nat, Ve, y.azy=x+y,a34=38

Since « 3 4 = 8 is not in the pattern fragment, unification
begins by applying inversion on the first problem, yielding
a := Az y. x+y. We can then substitute this for a to obtain
the problem 3 + 4 = 8, which fails.

In our replay graph, the metacontext graph for A;
contains an equality edge between the raw terms a x y and
z + vy, and an equality edge between the raw term « 3 4
and the rigid head 8. The solution from inversion creates a
new metacontext with the edge between the metavariable
node a and the raw term Az y.z +y. We then use Geya) to
construct the evaluation edge from the raw term a 3 4 to
the rigid head 7.

This example shows how the raw term nodes act as
connectors in the graph, connecting the definition from the

initial problem set to the results of evaluation.

20 = Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

DE GRUYTER

(11

as (Nil Nat)

HEAD 1

T -.depends

" depends

(Vec Bool 1) ag)

1 2

G—=

(Ai.Vec Nat 7)

Fig. 9: Replay Graph for Error from Section 2.1.1

Example: Constraint Graph for Code

We return to the code from Section 2.1.1, describing how
a replay graph is constructed from the unification de-
scribed in Section 5.3. After solving Py, we have a path
from ag (Nil Nat) to II (Vec Bool 1) ag (i.e. Ps af-
ter substitutions). From solving Ps, we get soltuions for
ag and (2, which give us an edge from ag (Nil Nat) to
II(B2 B3) A_. B2 B3, and an edge from 2 B3 to Vec Nat (3.

After these update edges are added, we have an error
path between Nat and Bool. (Notice the nesting between
travelling up two 1 edges from Nat and down the two 1
edges from Bool).

To generate the error message from Section 2.1.1, we
look at the edpoints of the path, finding the equality edges
closest to each endpoint, and getting the source location
associated with each edge (by tracing dependencies back
to an initial edge). Hence, when identifying locations rel-
evant to the error, we can trace (81 B2,Vec Nat f83) to
the constraint generated when typechecking the applica-
__ doubleHead, and the edge into
IT (Vec Bool 1) from the type of myList in the context.

tion vecFoldr

6.3 Error Diagnosis and Heuristics

‘When unification solving is complete, we have a final replay
graph G. A constraint set is unsatisfiable if two incompati-
ble nodes are connected by an equality path: a sequence of
edges where moves up and down directed edges are prop-
erly nested (as defined in Section 6.1). A pair of nodes are
incompatible if they are distinct rigid heads, or if one is
a rigid head and one is a constructor application. Such a
path is called an error path.

A diagnosis for an error path is a set of edges which,
when removed, also deletes the error path. In order to deal

with the density of our graph, we implicitly remove all

edges from constraints dependent on C' when we remove
C'. This prevents error messages from containing informa-
tion about intermediate constraints which are not directly
found in the initial metacontext, and thus have a nebulous
source location. Figure 8 shows two replay graphs, along
with a possible diagnosis for each.

There are, of course, many possible diagnoses for an
unsatisfiable path. Knowing the correct diagnosis is not al-
ways possible, since in many cases this requires knowing the
programmer’s intention. As in Helium, we use two sorts of
heuristics for deciding which edges to blame. Avoid heuris-
tics mark certain edges unfit for removal. Voting heuristics,
conversely, assign votes to each edge. The edge which, after
running all heuristics, has the most votes and is not marked
unfit, will be removed. This process is repeated until the
two conflicting nodes are disconnected.

The heuristics we discuss here form a solid base for
diagnosis, but further research is necessary to develop more

refined heuristics.

Edge Information and Inserting Messages

Each edge, when generated, is paired with information
about its creation, location in the source code, etc. This in-
formation can be accessed by the heuristics, allowing them
to use this information when diagnosing the probable cause
of the error. The edge information is also accessed during
error message generation, so that the printed messages can
be as detailed as necessary.

When a heuristic is examining an edge, it can also
modify the stored information for that edge. Through this
mechanism, we can suggest fixes or provide other informa-
tion which was obtained during the global analysis of the
replay graph, enriching the textual errors presented to the

user.

DE GRUYTER

First Order Heuristics

Not all of the Helium heuristics are applicable to depen-
dent types. We outline here the heuristics from Helium [3],
along with some variants, which we included in our imple-
mentation.

Participation-ratio: Edges on multiple error paths
are more likely to be the cause of an error, so we avoid
those on few paths.

First-come first-blamed: When all else is equal, ties
are broken arbitrarily.

Permutation: If swapping two arguments to a func-
tion can repair the replay graph, the application edge is
blamed and the swap is recommended as a fix.

Application: The expected number of arguments for
a function is determined from a replay graph. Too many
are given if an an argument is given to a value without a IT
type, and too few when a value is used where a non-II type
is expected. Adding or removing arguments is suggested as
a possible fix.

Dependently-typed Heuristics

Some of the core Helium heuristics can be adapted to the
classes of errors which are specific to dependently-typed
languages.

One key difference from simple types is the presence
of type indices. While our core calculus has no inductive
types, most languages (including the one used in our im-
plementation) contain types which are indexed by values,
such as Eq x y, the type proofs that z and y are equal.

The Helium heuristics for permuting function argu-
ments and tuple elements can be adapted to permute type
indices: if permuting the indices of an indexed type removes
the error paths from the replay graph, we suggest a fix re-

arranging them to the user.

6.4 Error-Tolerant Typing

We now describe modifications we made in order to make
higher-order unification error-tolerant: that is, able to con-
tinue with unification even after an error has been encoun-
tered and it is known there is no solution for a certain
metavariable. Sometimes, the repair to a type error may
modify or delete code causing other errors, so we do not
want the programmer to only see the first error encoun-
tered, as it may be a symptom of a larger problem.

The core idea is to introduce an explicit error value into
our language. Thus, when a metavariable has no solution,

we simply assign it an error value and proceed normally.

Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

-_ 21

The modifications to our unification algorithm are de-
scribed below, with the full details in Figure 10. The error-
tolerant — rewrite relation is assumed to be identical to
— except for the changes we highlight. Notably, we never
have A1, allowing us to proceed even after errors are

discovered.

6.4.1 Rigid-rigid Mismatches

Any time a rigid-rigid conflict is encountered (i.e. mis-
matched constructors), unmodified unification throws an
error. Instead, we simply take no action, generating no fur-
ther subproblems from the given equation.

Because rigid-rigid expansion is defined in the exact
same way as derived edges in our replay graph, unmodi-
fied unification encounters a rigid-rigid error if and only if
two disjoint constructors are connected in our final replay
graph. We can continue as if the constraint were solved,
knowing that the error is reflected in the graph and will be
detected.

6.4.2 An Explicit Error Value

To model failure in other cases, we adopt the concept of the
explicit error, as presented by in counter-factual typing [5,
24].

We introduce the syntactic form L, which can be used
in place of values, heads, etc. As an implementation detail,
we annotate L with a string describing the context of fail-
ure, allowing us to recover useful information during error
message generation.

When we encounter a flex-rigid or flex-flex equation
with no solutions, such as in an occurs-check, we can assign
1 to the variable whose value we are trying to find, and
proceed with unification as if a value had been found.

Moreover, when a value fails to typecheck, when gener-
ating its normal form, we replace the ill-typed portion with
L. Replacing only the ill-typed portion of a term is made
easy through our unified typing and normalization relation.
By doing this, we prevent our algorithm from getting stuck
where the unmodified algorithm would.

The modified rules for this can be seen in Figure 10. As
presented, the rules are not syntax-directed, but in an im-
plementation we avoid the (bot-synth) rule unless no other
rules apply. Since any term can be typed with normal form
1, we add an extra condition to our definitional equality,

so that different ill-typed terms are not treated as equal.

22 == Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

DE GRUYTER

ASA’ | Error Tolerant Unification

These replace the corresponding rules from . All other rules from +— are present in unaltered form.

Aa:T, A, N.az7' = tS3A,AN o=t T

(inversion-errtol)

if 7;" is linear on FV(t),a ¢ FMV(A',t) and -|A, A"+ ATttt T

ANV (s:T) = (t: T)SA if s and ¢ have different rigid head symbols
Ao : T, A . axﬁi =t3A, A o= 1 : L if a occurs rigid-strong in t

AN ady = tSA, = 1 : L if

New and Replacement typing rules

(rigid-fail-errtol)
(fr-occurs-errtol)

FVrig’id(t) gZ FV(CT'L,L) (prune-fail-errtol)

We add a synthesis rule for 1, and an extra side-condition avoiding | in with well-typed terms and definitional equality.

I'bt~su<=T
u does not contain |

(bot-synth)

I'Fs~u<T
I'Ft~u<T
u does not contain |

hastype-errtol
DIAFt~ L= 1 (hastype-errtol)

(defeg-errtol)

'H¢t:T PEs=gspt:T

Fig. 10: Modified error-tolerant unification, typing and normal forms

6.5 Correctness of Replay Graphs and
Error-Tolerance

Here, we sketch the proof that the success or failure of
unification is not changed by our replay graph and error-
tolerant modifications.

We take as an assumption the correctness and unique-
ness of solutions from the unmodified unification algorithm.
That is, if Ay —=* Ap and Ay —* Ay, and Ay, and Ay, are
both final, then either A,, and A} are both solved contain-
ing equal solutions, or both represent failure (stuck or L).
Correctness for similar algorithms is sketched by Abel and
Pientka [15], Gundry and McBride [22].

First, we state our main result:

Theorem 1. Suppose Ay is a solved metacontext. Then
A1 =% Ay if and only if A—*Ayn with replay graph Gp

containing no error paths.

To prove the “only if” direction, we first establish that our
algorithm does not fail on satisfiable problems. The can be
proved using straightforward induction. Intuitively, the re-
sult holds because our algorithm’s modifications only arise

when unification fails.

Lemma 1. If A1 —* A, where Ay is not L, then
A Ay,

The final step in the “only if” direction is to prove that the
resulting graph never contains an error when unmodified

unification succeeds.

Lemma 2. Suppose A1 —* Ay and Alg*An with replay
graph G,,, where A is a successful solution to Ay. Let o
be the solution substitution implied by Ayn. Then, if V(s)
has a path to V(t), then o(s) =gsy o(t) : T for some type
T.

Proof. By strong induction on the length of the path.

If the path has length one, then it is a single edge E.
If the edge was added from a problem or a solution, then
the result follows from the correctness of unmodified unifi-
cation. Otherwise, the edge was added after a substitution
in a raw term, meaning the equality holds by definition.

The inductive step is easily achieved: we divide any
path of length n > 1 into a paths of length n — 1 and
1, apply our hypothesis to each sub-path, along with the
transitivity of =gs,.

O

Proving the “if” direction is slightly more involved, since
our algorithm does behave differently when errors are en-
countered. We instead prove the contrapositive: any time
the unmodified unification fails, the error tolerant algo-
rithm also fails. We prove separate lemmas for the cases
when unmodified produces L or gets stuck.

The unmodified algorithm produces L either by a
rigid-rigid mismatch, or by an occurs-check/pruning fail-
ure. Our algorithm records these errors in the graph, or by

assigning a variable 1, giving us the following lemma.

Lemma 3. Suppose A1 —* Ay, where Ay is L. Then
Alg*Ain with replay graph G,,, where one of the following
holds:

DE GRUYTER

— Gm contains an error path.

— A solution in Am contains L.

Finally, we must deal with the cases where unification fails
not by producing 1, but by reaching an unsolved state
where no other rules apply. This happens when a typing or
definitional-equality side-condition fails, or when no prob-
lems are in the pattern fragment. Since we produce a term
containing | when typechecking fails, we obtain the fol-
lowing lemma, which is the final piece needed to prove our

main result.

Lemma 4. Suppose A1 —* An, where Ay is stuck. Then
Alg*An with replay graph G, , where one of the following
holds:

— Gy, contains an error path

— A solution in Ay, contains L

— A 18 stuck

Additionally, these lemmas show that each specific error
found using ~ is also found using 5, since they behave

identically until immediately before — reaches .

7 Counter-Factual Unification

In the above sections, type graphs are used only to provide
replays of unification, and do not direct the unification pro-
cess. Thus, they still contain some bias: the order in which
we solve constraints can affect the results.

As a solution, we present counter-factual unification:
a modification to unification which seeks to reduce bias
by exploring solutions arising from subsets of the initial
constraint-set. The main idea is that, when we find a solu-
tion for a variable, we proceed with unification both with
the solution, and as if the solution had never been found.
This allows us to see conflicting potential solutions, with-
out being biased towards which one was generated first.

To accommodate this process with relative efficiency,
we utilize the choice calculus [25] for compact representa-
tion of multiple constraint sets, as well as the modifications
to unification needed for solving these. We then prove that
our modified algorithm halts, and produces equivalent re-
sults to unmodified unification.

Here, we provide the motivation and theory for
counter-factual dependently-typed unification. Our imple-
mentation does not yet utilize these techniques, but we
anticipate that future work will integrate them into the

implementation.

Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

-_— 23

aST

(a) Possible (partial) replay graph for

{VS, T.a ST=1ST,VS,T.ao S T = Set}. The solu-

tion a := AS T.II S T is only generated when we process the
edge from « to IT S T first, showing bias. « S T is on an error
path, but « is not, giving us little information for our heuristics
to guess its correct value.

(al S T) (ag S T) @
| |
(Se)(AS T.11 S T) (AS T.Set)

(b) If instead, we use different metavariables for our two con-
straints, with a separate constraint unifying them, we have the
two conflicting solutions on one error path.

Fig. 11: Bias and a counter-factual solution

7.1 Motivation

While there are several potential sources of bias, a par-
ticularly problematic one is in substitutions. The order in
which constraints are solved in dynamic higher-order uni-
fication matters, and when a potential value is found, it is
substituted into all other problems as the “actual” value,
and future conflicting values are seen as rigid errors.

The inability of type graphs to handle this case arises
from the need to unify arbitrary terms containing metavari-
ables, particularly those containing function applications.

Consider the following unsatisfiable constraint set,

whose replay graph is given in Figure 11:
{PL=VS,T.aST=I1ST, P,=VST. aST=Set}

In normal unification, if we solve P; first, we define o :=
AS T.I1 S T. We substitute the new value into P>, and after
evaluation, get I S T = Set. This update to the value of
a S T is recorded. However, in our type graph, our node
for a will only have an edge to AS T.11 S T. We have a
path from IT S T via o S T to Set, but the node for «
itself occurs on no error paths. We are never able to see
that \S T.Set is a potential solution for a.

The opposite problem happens if we begin with the
second constraint, exposing bias in our solving procedure.
Even with type-graphs, the order in which we solve con-
straints affects the error messages. Ideally, we want all con-
flicting values for a to be connected to it, so that we can
present them as possible solutions, or use heuristics to de-

termine which one is likely to be correct.

24 = Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

As a potential solution, suppose that we decomposed

the above constraint set into the following:

{PL=VS,T.ay ST=11 ST,

P, =VYST.ag ST = Set, szalzag}

As we can see in Figure 11, we now obtain an error path
containing both oy and as.

We formalize the intuition behind this procedure,
showing how to solve such problems. Specifically, we adapt
the ideas from counter-factual typing [5], which in turn is
based on the Choice Calculus [25]. These provide a method
to counteract bias by examining solutions that arise if we

had never given a variable its definition.

7.2 A Choice Calculus

7.2.1 Choice Operations and Terminology

In order to facilitate counter-factual solving, we need a
way to compactly represent multiple possible solutions to
a unification problem. To allow this, we augment our lan-
guage with a form for named choice expressions: t ::= ... |
C(t1,t2), where C is an identifier. If a term ¢ contains
choices C1q,...,Cnp, we say that these are the dimensions
of the term, denoted by dim(¢).

A choice is effectively a pair combined with a label.
However, the choice calculus is equipped with an equa-
tional theory that gives it meaning beyond that of simple
tuples. For example, and C(z,z) are equivalent expres-
sions. The named choices allow us to represent variations
efficiently within large expressions. For example, the ap-
plication C{(f 0 z1... n 2,f 1 21 ...
compactly represented as f C(0,1) z7 ...

Zn 3) can be more
zn C(2,3).

In order to avoid conflicts between solutions in different
choice dimensions, we qualify metavariables by the choices
inside which they occur [24]. A qualifier string ¢ is some
(possibly empty) sequence of qualifiers, each of which is
either CF (left) or CF (right), where C is the name of a
choice. We use t4 as shorthand for adding the qualifier g to
all metavariables in .

For each choice identifier C, we define left and right
projections, C;, and Cgr. These map every occurrence of
choice C' to their left or right sides, respectively, while
stripping metavariables of any C qualifiers. We allow these
projections to be applied to arbitrary terms, constraints,
and metacontexts, where all occurrences of a choice are re-
placed with the left or right variant respectively. Similarly,
we define a projection Factual which maps all choices to
their left-hand side.

DE GRUYTER

5,6, 8, T == ...|C(s,t)|aq
dye = ...|C{d,e)
E:=...|C(Et)|C(v,E)

q = |qC*|qC"

Cls,t) - Cler, eaeqt = Cls - ex,t-e2) &'
t-Cle1,ea)e; — hoist(C,t) - Cler, ea)e;
C(s,t) - eg;" — C(s,t) - hoist(C, e)e;"

MNAFag~ag=T
F|A|—achach:>CLT

(meta-qualL)

MNAFag~ag=T
F‘A}—OchR ~ QeoR =CrT

(meta-qualR)

LA C(s,t) ~ u < hoist(C,T)

h-hoist1
(ch-hoist1) LA C(s,t) »u<=T

A F hoist(C, t) ~ u < C(S,T)
LIAFt~u< C(S,T)

(ch-hoist2)

MNAFs~u= S5
MNAkrt~v=T

(ch-synth)
LA C(s,t) ~ Clu,v) = C(S,T)
FAFs~u<S
MNAFtwov<=T
(ch-check)

T|AF C(s,t) ~ C{u,v) < C(S,T)

Fig. 12: Choice syntax, semantics and typing

One final operation that we will make use of is hoisting.
This allows us to take a term containing multiple choices in
the same dimension, and lift them to the top level. When we
hoist a term ¢ with respect to choice C, denoted hoist(C,t)
we produce the term C(Cp, ¢,Cg t). Note that hoist, Cp,
Cr and Factual are operations in the metalanguage, rather
than constructs in the language itself.

For example, consider the following term:

t=C1{Ca(x,y),z)

The projection Cyy, t gives us Co(z,y), and Cip t
gives z. Similarly, Cap, t gives Ci(x,z), and Cag t gives
C1{y, z). To get the left side of all choices, we can write
Factual ¢ to obtain z. To bring C2 as the top level choice,
we use hoist(Ca,t) to obtain the equivalent expression

DE GRUYTER

C2(C1{x, z), C1(y, 2)). Hoisting C is a valid operation, but
returns ¢ unchanged since C' is already the top-level choice.

7.2.2 Semantics and Typing

The semantics and typing rules for choice are in Figure 12.
To apply an eliminator to a head, where both have a top-
level choice in dimension C, we simply return the choice
between applying the left eliminator to the left head and
the right eliminator to the right head. If only one of the
head and eliminator is a choice, or they are choices in dif-
ferent dimensions, we can hoist to move the same choice to
the top level.

The type rules work in much the same way. In (meta-
qualL) and (meta-qualR), we synthesize the type for a qual-
ified type variable by finding the type for the unqualified
variable, and projecting left or right according to the qual-
ifier tag. The remaining rules account for choices in types
and terms. There are two steps to checking. First, we must
ensure the term and the type we are checking it against
have the same top-level choice. We do this with (ch-hoist1)
and (ch-hoist2), using hoist to bring any nested choices to
the top-level. Then, to check a choice expression against a
choice type in (ch-check), we simply check each dimension
of the choice separately. To synthesize the type for a choice
expression, we synthesize a type for each dimension, then
pair these with the expression’s choice label.

Intuitively, choices represent the set of terms obtained
from all possible combinations of projections on each di-
mension. There are 2" constraints represented by a term
containing n distinct choice labels, assuming each choice
has two distinct variants. The counting is more complicated
when choice labels are nested, but a potentially exponential

set of values is in this way compactly represented.

7.3 Counter-Factual Solving

In Figure 13 we provide the definition for our counter-
factual unification rewrite relation, denoted by —. We as-
sume that all rules not explicitly listed are identical to .
The main idea of counter-factual solving is that when-
ever unmodified unification generates a substitution o := ¢,
we instead generate o := C(t, o), where C and o are fresh,
so that the solver can also proceed as if no value were ever
given to . We refer to t as the factual case, and to o as
the counter-factual case, since they present the solutions
for whether the constraint was or was not present.
Traditional counter-factual typing is defined as part of

the typing judgement. However, due to the complexities

Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

-_ 25

introduced by dependent types, we instead use choice only

during the unification process.

Defining Metavariables

When we find a solution « := ¢ in a problem P, we in-
stead generate C(tr, ') as a solution, where o is a fresh
metavariable. Here, tr is ¢ with the qualifier CL added
to all metavariables occurring within ¢. This ensures that,
if solutions to o’ contain metavariables in ¢, their solutions

will not conflict.

Solving Equations with Choice
An equation with a choice point represents a set of separate
equations, which we would like to solve separately, without
solutions to one equation affecting the others. This problem
is solved by considering qualified type variables as distinct
unless they are identical variables with identical qualifiers.
Solutions for qualified variables are generated, and the full
solution for variable a can be reconstructed from the quali-
fied solutions through completion [26], where it is assigned
a value whose choices correspond to the choices of each
qualified solution. However, our treatment of choices within
replay graphs means that we do not need to perform com-
pletion to generate error messages. We elaborate on this in
Section 7.4.

Solving equations involving choice can be achieved
The
C(s,t) = C(s',t') is easily solved by decomposition into

through manipulating those choices. equation
s =s',t =t. When only one side is a choice in dimension
C' at the top level, we can apply hoist, which will move any
occurrences of C' to the top level. If one side is a term t con-
taining no choices, hoist(C,t) produces C(t,t). Note that
we must hoist here, but we wish to hoist only when nec-
essary, since it can duplicate large parts of the term being
hoisted.

7.3.1 Performance

When we apply counter-factual solving, we see an expo-
nential explosion in the number of problems and the size of
the context, in what is already a potentially slow algorithm.
While the choice calculus helps keep this number smaller,
most choices will ultimately be pointless, as we will find
equal values for both sides of choice expressions.

A possible solution is as follows. When we split a con-
straint involving a choice, as described above, we mark
newly generated equations for the right-side of the choice
as pending on the failure of the left-hand side. Thus, if the

26 = Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

DE GRUYTER

Counter Factual Unification

We assume that all rules from are present, except for those that are replaced below.

New Rules

These rules work in addition to those for —.

ANT.Cls,t) : T=C(s' t') : T"SAND. s : T=s T V0.t :T=t:T
ANT.C(s,t) : T =t T'SAND.C(s, t) : T = hoist(C,t') : T’

Modified Rules

These rules replace their corresponding versions from

Ao T,A Wl a7 = tS5A,A o= C(t/CL,o/> :T
~\A,A/ =)\;Tii.t ~ T,
Ao TI®.T,A VL. oz’ = o ' SA, A, B I®. T if ;° matches ;' on ¥ C @,

if Z;" linear on FV(t), o ¢ FMV(A’ t),

(cf-decomp)
(cf-hoist)

(inversion-cf)
o FMV(A, A", C ¢dim(A,A")

(intersection-cf)

a:=C{\D. fV) L - TID. T, &') FV(T) C vars(¥),a’ € FMV(A, 8 : T1®.T),C ¢ dim(A, A")

Fig. 13: Counter-factual unification rules

unification problems involving the choice all succeed, we

never explore the counter-factual cases.

7.4 Counter-Factual Replay Graphs

The use of counter-factual typing helps generate potential
solutions for ill-typed metavariables. However, we still wish
to take advantage of the information available to us from
type graphs, and the heuristics for diagnosing error loca-
tions.

Our solution is simple: when we generate a definition
a = C(t,d’), we add an equality edge between o and o’.
For other occurrences of choice, we simply add an undi-
rected edge between the vertices for the two sides of the
choice. The intuition behind this is that, when a program is
well typed, both dimensions of a choice for a metavariable’s
solution should agree. Disagreements between the factual
and counter-factual cases become error paths in our pro-
gram.

Additionally, counter-factual solving can be used in a
repair heuristic. Whenever we define o := C(t, o), we have
an edge from « to ¢, and one from « to o’. If we remove the
edge from « to t (as well as its dependent edges), and the
new graph has fewer inconsistencies, then we can suggest
the value of o’ as a likely fix for the value of a.

7.4.1 Redundancy

Another practical issue with counter-factual unification is

that our type graphs are now redundant. Since the factual

case behaves as unmodified unification does, each error is
reflected twice in our type graph: once for the error in the
factual case, and once in the disagreement between the fac-
tual and counter-factual cases.

To avoid this redundancy, an implementation can
keep in its context the string of choice dimensions that
have been currently assumed. For example, when solving
C1{Co(T1,T2), T3) = S, we would store the string C;Co
when solving the equation T = S. Then, in our graph, we
make each generated edge dependent on the solution that
first introduced the choices stored in the context. With our
example above, if C; was a fresh choice generated by the
solution a := C1(S’,a’), and Cs from B := Co(S”,5'),
then the edge {7%,S} would be dependent on the edges
{a,S’} and {ﬁ,S”}.

The intuition behind this is that, when diagnosing an
error, if we delete an edge from the factual case of a solu-
tion, we should also delete the edges that were made under
the assumption that the factual case held. Each interme-
diate constraint will still be represented in the graph, but

only in the counter-factual case for the deleted edge.

7.5 Correctness

Here we establish the relationship between counter-factual
unification and our error-tolerant algorithm. Our main re-

sult is as follows:

Theorem 2. If Alg*Am and Alr—)\;Aln, where Am and
A are both final, then Am is solved if and only if A}, is.

DE GRUYTER

We first note that we can simulate error-tolerant unifica-
tion in our counter-factual system. This can be proved by
induction, utilizing the fact that the only modified rules
keep the original result in the left-hand side of the choice.
The counter-factual run may take more steps, since some

steps are required to decompose choices.

Lemma 5. If Alg*Am, then A[—FA%, where m < n
and Factual(A}) = Ap,.

Conversely, we can recover an error-tolerant run from any
counter-factual run. The proof is similar to Lemma 5,
with the added detail that the (unif-choice) rule produces
changes that are completely erased by Factual.

Lemma 6. If A{—FA’”, then A1;*Am, where m < n
and Factual(A)) = An,.

Finally we strengthen Theorem 2 to show that counter-
factual solving terminates whenever normal unification
does.

Theorem 3. If Alg*An, where Ay is solved or stuck,
then there exists some m such that Ai—*AlL,, where A},

is either solved or stuck.

Proof. Gundry and McBride [22] give an intuition that —
always progresses towards a solution, and we have shown
that +> will reach a solution or failure in finitely many
steps whenever — does. Thus, we assume a well-founded
ordering < such that if ASA’, then either A and A’ differ
only in permutations and symmetry, or A’ < A.

We define a new partial order [as the smallest partial

order where A’ C A when any of the following hold:

A< A (1)
Crp A" < Aand Cr A’ < A for some C 2)
A’ is A with a choice hoisted outwards (3)

The partial order [is well founded. In any descending
chain, the number of choice dimensions may increase only
if each underlying dimension is strictly descending with
respect to <. So the number of dimensions we can add in a
descending C chain is limited by the length of descending <
chains, which are always finite. Likewise, choices can only
be hoisted outwards finitely many times.

Finally, we show that if AS A/, then A’ C A, or they
are equal up to permutation and symmetry. This is imme-
diate for unmodified rules by (1). For (inversion-cf) and
(intersection-cf), we introduce a dimension C for our so-
lution, but replace a problem with its solution in each di-

mension, so our order is respected by (2). For (ch-decomp)

Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

_— 27

we are smaller by (1) because we decompose one problem
into two structurally smaller ones (C(s,t) is structurally
larger than both s and t). For (ch-hoist) we are smaller by
(3) because a choice is hoisted outwards.

O

8 Results and Discussion

In order to evaluate our techniques, we combined the im-
plementations of Helium, LambdaPi, and Gundry-McBride
Unification. A few Helium heuristics, such as the applica-
tion and permutation heuristics, were transferred to our
system, along with our index-permutation heuristic specific
to dependent types. The source code of the implementation
is publicly available [27].

We present some simple programs containing type er-
rors, and compare our generated error messages with those
from roughly equivalent programs in Agda and Idris. For
brevity, we omit the code for the Agda and Idris versions.

An issue with solving is that several errors are often
identified, where only one should be. For the sake of these
examples, we simplify the messages presented to a single
error, in order to highlight the repair heuristics of our sys-
tem. We discuss the system’s limitations in Section 8.2.

8.1 Results

8.1.1 Too Many Arguments

If we give a function too many arguments, we can give a
helpful hint informing the user of the expected number.
From the replay graph, we can look at the context of the
error and find the entire function type, seeing that it takes
three arguments. Both Agda and Idris only report the error
for the partially-applied function, and Agda does not even

warn the user that Nat is not a function type.

let myFun = (\ a x y => x) :: forall (a :: *) . a -> a
— -> a
let myApp = myFun _ 0 1 2

in type of myFun (0 :: Nat) (1 :: Nc

Agda: Nat should be a function type, but it isn't
when checking that Zero Zero are valid arguments to a
— function of type Nat

Idris: When checking right hand side of myApp with
— expected type Nat

When checking an application of function myFun:
Type mismatch between Nat (Type of Zero) and _ ->
— (Is Zero applied to too many arguments?)

28 = Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

8.1.2 Too Few Arguments

When too few arguments are given, our repair heuristics
are able to suggest both the types and positions of argu-
ments which must be added in order to create a well-typed
function call. This is done by repeatedly adding arguments
with metavariable types to the application in the replay
graph, stopping either when the type graph becomes con-
sistent, or when the return type is no longer an arrow type.
Agda and Idris only inform the user that the actual type of
the expression is a function type, describing its mismatch
with the result type.

Nat -> Nat -> Nat
Nat

let myFun =

(\ x y —> x)
let myApp = HH

(myFun 0)

Agda: Nat -> Nat !=< Nat of type Set

when checking that the expression myFun _
< type Nat

Idris: When checking right hand side of myApp with
— expected type Nat

Type mismatch between a -> a
— Nat (Expected type)

Zero has

(Type of myFun a _) and

8.1.3 Arguments in the Wrong Order

As with too few arguments, our repair heuristics can use
a similar procedure to try different permutations of argu-

ments, suggesting the one that is likely to resolve the error.

let myFun = (\ _ x y => vy) forall (a :: %) . a —>
— Nat -> Nat
let myApp = (myFun _ 0 (Nil Nat))
in oe of yFun _ (0 (Nil
- in the wrong order.

Agda and Idris report a mismatch, but provide no hint
that the arguments should be swapped.

Agda: Vec Nat Zero !=< Nat when checking that the

«— expression Nil Nat has type Nat

Idris: When checking right hand side of myApp with
— expected type Nat

When checking an application of

Type mismatch between Vec a Zero
— (Expected type)

function myFun:
(Type of []) and Nat

DE GRUYTER

8.1.4 Dependent Type Error

Here we show the error message arising from a classic,
dependent-type specific mistake: reversing the indices of
an Eq value. This example can be fixed by reversing the
type signature, or applying a proof of equality’s symmetry.

We are able to apply an isomorphism heuristic, a vari-
ant of the permutation heuristic that permutes dependent
type indices. This allows us to see that the two conflicting
types are isomorphic to one another, prompting the user
to rearrange them.

For brevity, we use plus in place of its body in our

error messages.

let plus =

natElim (\ _ -> Nat => Nat) (\' n ->n) (\ p rec
— n —=> Succ (rec n))

assume pNPlusO0isN forall n Nat Eq Nat (plus n

— 0) n
let succPlus = (\n —> pNPlus0isN (Succ n))
— n::Nat. Eq Nat (Succ n) (plus (Succ n) 0)

forall

type of

result

(plus

Agda and Idris report the mismatch but are unaware

that a swap would fix it.

Agda: plus n Zero != n of type Nat
when checking that the expression pNPlus0isN
— has type

Eg Nat (Succ n) (plus (Succ n) Zero)
Idris: When checking right hand side of succPlus with
— expected type
(n : Nat) -> Eg Nat (Succ n) (plus (Succ n)
When checking argument n to pNPlusOisN:
Type mismatch between

Succ (plus n Zero) (Inferred value)

and Succ n (Given value)

(Succ n)

Zero)

8.2 Limitations

While we are able to provide helpful hints in many cases,
the system is not without its flaws. Our results are promis-
ing, but the issues below will require solutions before our

techniques are ready for integration into a mainstream lan-

guage.

Error Redundancies

Our compiler sometimes reports the same message multi-
ple times. In particular, when reporting possible error loca-
tions, several constraints contributing the same conflicting

value are reported.

DE GRUYTER

Dependent Edges in Repair Heuristics

Our compiler uses replay graphs to generate derived edges
from initial constraints. However, many heuristics involve
removing and adding edges in the graph. While it is easy to
add implicit edges from constructor applications, the situ-
ation is complicated for dependent edges generated during
unification. When modifying the graph in a heuristic, re-
moving the edges for an initial edge deletion is simple, but
generating dependent edges when new edges are added is
not. Re-running unification may be too costly for practical
purposes. Because of this, some heuristics generate “false
positives,” where a suggestion is given that will not actu-
ally resolve the type errors, because dependent edges cause
inconsistencies that are not immediately apparent in the
graph. Some simple heuristics, such as disallowing identity
permutations as hint suggestions, help with these difficul-

ties.

Controlling Evaluation
The error messages our compiler generates are often long
and unwieldy. This is because Gundry and McBride’s im-
plementation, and hence ours, is aggressively strict in its
name lookup strategy. As a result, names are prematurely
replaced by their values. The examples above involving plus
would be much more readable if the actual printed used
plus in place of its body, as we present it.

The issue of lazy versus strict evaluation, and of choos-
ing when to replace identifiers by their values, seems crit-
ical for the generation of readable error messages, and we

suspect addressing this issue will be a project unto itself.

8.3 Future Work

In addition to resolving the above limitations, we highlight

a few more potential research topics.

Heuristics

We have presented a framework, which allows for the anal-
ysis of type-errors using heuristics on type graphs. While
we have adapted a few Helium heuristics to our framework,
there is room for heuristics specifically targeted at depen-
dent types. A Helium-style collection of heuristics could be
manually collected, or future work could incorporate the

Bayesian heuristics from SHErrLoc [28].

Empirical Evaluation
An important aspect of future work is to empirically eval-

uate the accuracy of our error messages, and the speed at

Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

-_— 29

which we can generate them. Such an evaluation was not
feasible for this work: dependently typed code is rare in
the wild, and that which is published generally contains
no type errors. On top of this, our implementation is for a
small core calculus, missing many features of real code.
One possible method of evaluation would be to instru-
ment Idris or Agda to record error messages, then to have a
class of students learning dependent types use the instru-
mented compiler. This would provide a reasonably large
sample of faulty code, while also providing the potential
for students to evaluate the usefulness of messages for be-

ginners.

Interactivity

Both Agda and Idris feature highly interactive editors,
where the programmer leaves holes in their code, and the
editor can manipulate code in type directed ways, such
as filling in holes or case-splitting variables. When code
is type-incorrect, the type graph could be used to suggest
hints not only in error messages, but interactively in the

editor.

Performance

Initially, performance is not a major concern: since depen-
dent types require annotations, each declaration can be
type-checked separately, so our techniques could be lim-
ited to the specific module, or even specific binding group,
that the programmer is currently writing.

That said, the unification algorithm which we adapted
was, according to the authors, not tuned for performance,
with much needless iteration through the context. A more
sophisticated algorithm could yield performance improve-
ments.

Switch combinators were developed for Helium [4]
to address the computational costs associated with type-
graph analysis. Possible future work could examine how

these could be adapted to our system.

Alternate Constraint Solvers

While our algorithm is based on Gundry and McBride’s
presentation of unification, there are several different
[15, 19]. Gundry-

McBride unification was ideal for exploratory research, but

higher order unification algorithms

other algorithms could be faster, or able to solve a wider
set of problems. The concepts we introduce, such as replay-
graphs and counter-factual solving, can likely be applied to

more sophisticated constraint solvers.

30 = Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

9 Related Work

9.1 Unification Algorithms

Huet [29] showed that higher order unification was unde-
cidable in general, but later provided a semi-decision proce-
dure for it [30]. The original pattern unification algorithm
was presented by Miller [14]. This was later extended by
Abel and Pientka [15] to accommodate dependent pairs
and records, as well as to be dynamic, allowing problems
outside the pattern fragment so long as they are eventually
removed by substitutions from solving variables. Gundry
and McBride [22] presented a version of unification tai-
lored towards a practical implementation. The algorithm
we present is a direct modification of theirs, along with the
version in the thesis of Gundry [21].

A unification algorithm for Coq has been developed to
account for universe polymorphism and overloading, as well
as to incorporate heuristics to solve some cases outside of
the pattern fragment [19]. In Agda, the pattern matching
and unification were modified to accommodate univalent
theories [31], and a new unification algorithm has been
added that models unifiers as dependently typed equiva-
lences [23, 32].

9.2 Error Message Improvement

Our contribution is a refinement of the first author’s Mas-
ter’s thesis [33]. To our knowledge, this was the first work
to specifically explore error message reporting for depen-
dent types. However, the topic has been studied extensively

for Hindley-Milner and Object-Oriented languages.

Reporting Strategies

Haack and Wells [8] introduce the concept of an error slice:
a set of program points which contribute to the error. This
was one of the first constraint-based methods for error re-
porting, and is based around the idea that multiple loca-
tions should be reported, since the true location of an error
can depend on the programmer’s desired semantics.

The idea of presenting multiple error locations is ex-
tended by Chen and Erwig [5] through a technique known
as counter-factual typing. In counter-factual typing, the
checker examines atomic expressions and determines what
type the expression would need to have in order for the
program to typecheck. This, in turn, was an extension
of the work on variational lambda calculus and error-

tolerance [24, 26]. The counter-factual unification and

DE GRUYTER

error-tolerant typing we present are an adaptation of this
work to dependent types.

Campora et al [34] present an alternate method of
achieving error tolerance through pattern-constrained judg-
ments. By introducing explicit typing patterns which spec-
ify in which dimensions two types agree, they are able to

remove the need for an explicit L type in their language.

Helium

Helium [2—4] is an alternate Haskell compiler, which aimed
to improve the quality of error messages, particularly for
beginners. At its core was a type-inference algorithm based
on the concept of constraint-generation, where constraints
are emitted, rather than having a single substitution gradu-
ally grow as in Algorithm W [35]. The various strategies for
solving these constraint sets can emulate classical inference
algorithms [36], as well as allowing for heuristic analysis. A
more advanced technique Helium used was the construction
of constraint graphs, creating a global representation of the
entire type inference problem to be heuristically analyzed.
Our replay graphs are a direct adaptation of Helium’s type
graphs, and our implementation draws heavily from the

public Helium code base [37].

Bias

Much of the work on error diagnosis seeks to avoid bias.
In Helium, type graph help avoid bias within a binding
group, but not between binding groups. Counter-factual
typing avoids the latter by making it possible to blame an
early binding group if a later binding group provides the
information to pinpoint the actual mistake, essentially by
not making us commit to a particular choice early on in the
program. The work by Pavlinovic et al [38] takes a different
approach which seems to scale much better: when a binding
group contains a type error, definitions within the same
module are inlined until the error location is not simply
the location of a particular identifier defined earlier. This
may mean that for that binding group the inference process
is re-run multiple times, but in practice, a few inlining steps

suffice.

SHErrLoc

An alternate approach to the constraint-based system of
Helium is implemented in SHErrLoc [28]. Its constraints
are over arbitrary partial orders, and is generic enough to
describe Hindley Milner typing, as well as information-flow
and data-flow analyses. Constraint solving uses context-free
reachability. This approach can typecheck more advanced
systems, such as typeclasses and GADTs [9]. However, it

DE GRUYTER

treats the axioms from type-level functions as pre-existing,
and it is thus ill-suited to languages with unified types and

terms and arbitrary type-level computations.

10 Conclusion

In this work, we have identified the challenges of adapting
known functional error-message generation to dependently-
typed languages. With replay graphs and counter-factual
solving, we have taken the first steps towards improving
error messages for dependent-types. Replay graphs were
implemented for a small language, and initial evaluation
showed that helpful hints could be generated for simple
examples.

While our approach has limitations, we have shown
that it is possible to use more advanced error generation
techniques with dependent types. By identifying possible
approaches, as well as challenges, for dependent type error
generation, we hope to provide a solid foundation for future

research on the ease of use of dependently-typed languages.

Acknowledgements

This work was supported in part by the Natural Sci-
ences and Engineering Research Council of Canada and
the Utrecht Excellence Scholarship.

References

[1] Barik, T., et al, Do developers read compiler error mes-
sages?, Proceedings of the 39th International Conference
on Software Engineering (Buenos Aires, Argentina), ICSE
'17, IEEE Press, Piscataway, NJ, USA, 2017, 575-585,
DOI:10.1109/I1CSE.2017.59

[2] Heeren, B., Hage, J., Swierstra, S. D., Constraint based type
inferencing in Helium, Immediate Applications of Constraint
Programming (ACP), 2003, 57, http://www.open.ou.nl/
bhr/ConstraintBased TI.html

[3] Hage, J., Heeren, B., Heuristics for type error discovery and
recovery, Proceedings of the 18th International Conference
on Implementation and Application of Functional Languages
(Budapest, Hungary), IFL'06, Springer-Verlag, Berlin, Hei-
delberg, 2007, 199-216, DOI:10.1007/978-3-540-74130-
5 12

[4] Heeren, B. J., Top quality type error messages, Ph.D. thesis,
Utrecht University, Utrecht, Netherlands, 2005, IPA Disser-
tation Series, https://dspace.library.uu.nl/handle/1874 /7297

[5] Chen, S., Erwig, M., Counter-factual typing for de-
bugging type errors, Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (San Diego, California, USA),

Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

- 31

POPL '14, ACM, New York, NY, USA, 2014, 583-594,
DOI:10.1145/2535838.2535863

Norell, U., Dependently typed programming in Agda, Pro-
ceedings of the 4th International Workshop on Types in
Language Design and Implementation (Savannah, GA,
USA), TLDI '09, ACM, New York, NY, USA, 2009, 1-2,
DOI:10.1145/1481861.1481862

Brady, E., Idris, a general-purpose dependently typed pro-
gramming language: design and implementation, Jour-

nal of Functional Programming, 2013, 23, 5, 552-593,
DOI:10.1017/5095679681300018X

Haack, C., Wells, J., Type error slicing in implicitly typed
higher-order languages, Science of Computer Programming,
2004, 50, 1-3, 189 — 224, DOI:10.1016/j.scico.2004.01.004,
Special Issue: 12th European Symposium on Programming
(ESOP 2003)

Zhang, D., Myers, A. C., Vytiniotis, D., Peyton-Jones,

S., SHErrLoc: a static holistic error locator, ACM

Trans. Program. Lang. Syst., 2017, 39, 4, 18:1-18:47,
DOI:10.1145/3121137

Yang, J., Michaelson, G., Trinder, P., Wells, J. B., Improved
type error reporting, Draft Proceedings of the 12th Interna-
tional Workshop on Implementation of Functional Languages
(unreviewed), http://www.macs.hw.ac.uk/~jbw/papers/
/u/GNULinuxProgrammer, /r/agda: Rx = x ==y — ry,
https://www.reddit.com/r/agda/comments/7lq44q/r x
x_y r_y/, 2016, accessed: 2018-06-14

Watkins, K., Cervesato, |., Pfenning, F., Walker, D., A
concurrent logical framework |: Judgments and prop-

erties, Technical Report CMU-CS-02-101, 2003, https:
//www.cs.cmu.edu/~fp/papers/CMU-CS-02-101.pdf
Martin-L&f, P., About models for intuitionistic type theories
and the notion of definitional equality, Proceedings of the
Third Scandinavian Logic Symposium (Uppsala, Sweden),
North-Holland Publishing Company, Amsterdam, Nether-
lands, Elsevier, New York, USA, 1975, Studies in Logic

and the Foundations of Mathematics, volume 82, 81 — 109,
DOI:10.1016/S0049-237X(08)70727-4

Miller, D., Unification under a mixed prefix, J. Symb.
Comput., 1992, 14, 4, 321-358, DOI:10.1016/0747-
7171(92)90011-R

Abel, A., Pientka, B., Higher-order dynamic pattern unifica-
tion for dependent types and records, Typed Lambda Calculi
and Applications, 10th International Conference (Novi Sad,
Serbia), Springer Berlin Heidelberg, Berlin, Heidelberg, 2011,
10-26, DOI:10.1007/978-3-642-21691-6 5

Norell, U., Towards a practical programming language based
on dependent type theory, Ph.D. thesis, Chalmers University
of Technology, Gothenburg, Sweden, 2007, http://www.cse.
chalmers.se/~ulfn/papers/thesis.pdf

Cervesato, |., Pfenning, F., A linear spine calculus, Jour-
nal of Logic and Computation, 2003, 13, 5, 639-688,
DOI:10.1093/logcom/13.5.639

Harper, R., Honsell, F., Plotkin, G., A framework

for defining logics, J. ACM, 1993, 40, 1, 143-184,
DOI:10.1145/138027.138060

Ziliani, B., Sozeau, M., A comprehensible guide to a new
unifier for CIC including universe polymorphism and over-
loading, Journal of Functional Programming, 2017, 27, el0,
DOI:10.1017/50956796817000028

http://dx.doi.org/10.1109/ICSE.2017.59
http://www.open.ou.nl/bhr/ConstraintBasedTI.html
http://www.open.ou.nl/bhr/ConstraintBasedTI.html
http://dx.doi.org/10.1007/978-3-540-74130-5_12
http://dx.doi.org/10.1007/978-3-540-74130-5_12
https://dspace.library.uu.nl/handle/1874/7297
http://dx.doi.org/10.1145/2535838.2535863
http://dx.doi.org/10.1145/1481861.1481862
http://dx.doi.org/10.1017/S095679681300018X
http://dx.doi.org/10.1016/j.scico.2004.01.004
http://dx.doi.org/10.1145/3121137
http://www.macs.hw.ac.uk/~jbw/papers/
https://www.reddit.com/r/agda/comments/7lq44q/r_x_x_y_r_y/
https://www.reddit.com/r/agda/comments/7lq44q/r_x_x_y_r_y/
https://www.cs.cmu.edu/~fp/papers/CMU-CS-02-101.pdf
https://www.cs.cmu.edu/~fp/papers/CMU-CS-02-101.pdf
http://dx.doi.org/10.1016/S0049-237X(08)70727-4
http://dx.doi.org/10.1016/0747-7171(92)90011-R
http://dx.doi.org/10.1016/0747-7171(92)90011-R
http://dx.doi.org/10.1007/978-3-642-21691-6_5
http://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
http://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
http://dx.doi.org/10.1093/logcom/13.5.639
http://dx.doi.org/10.1145/138027.138060
http://dx.doi.org/10.1017/S0956796817000028

32 = Eremondi, Swierstra and Hage, Improving Error Messages for Dependent Types

(20]

(21]

(22]

(23]

(24]

(25]

26]

(27]

(28]

(29]

(30]

(31]

(32]

33]

Léh, A., McBride, C., Swierstra, W., A tutorial implementa-
tion of a dependently typed lambda calculus, Fundam. Inf.,
2010, 102, 2, 177-207, DOI:10.3233/FI-2010-304

Gundry, A., Type inference, Haskell and dependent types,
Ph.D. thesis, University of Strathclyde, Glasgow, Scotland,
United Kingdom, 2013, http://adam.gundry.co.uk/pub/
thesis/thesis-2013-12-03.pdf

Gundry, A., McBride, C., A tutorial implementation of
dynamic pattern unification, Unpublished draft, http:
//adam.gundry.co.uk/pub/pattern-unify/pattern-unification-
2012-07-10.pdf, 2013

Cockx, J., Devriese, D., Proof-relevant unification: Depen-
dent pattern matching with only the axioms of your type
theory, Journal of Functional Programming, 2018, 28, el2,
DOI:10.1017/5095679681800014X

Chen, S., Erwig, M., Walkingshaw, E., An error-tolerant
type system for variational lambda calculus, Proceed-

ings of the 17th ACM SIGPLAN International Confer-

ence on Functional Programming (Copenhagen, Den-
mark), ICFP '12, ACM, New York, NY, USA, 2012, 29-40,
DOI:10.1145/2364527.2364535

Erwig, M., Walkingshaw, E., The choice calcu-

lus: A representation for software variation, ACM

Trans. Softw. Eng. Methodol., 2011, 21, 1, 6:1-6:27,
DOI:10.1145/2063239.2063245

Chen, S., Erwig, M., Walkingshaw, E., Extending type infer-
ence to variational programs, ACM Trans. Program. Lang.
Syst., 2014, 36, 1, 1:1-1:54, DOI:10.1145/2518190
Eremondi, J., Github repository: lambda-pi-constraint, tag
thesis-final, https://github.com/JoeyEremondi/lambda- pi-
constraint, 2016

Zhang, D., Myers, A. C., Vytiniotis, D., Peyton-Jones,

S., Diagnosing type errors with class, Proceedings of the
36th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (Portland, OR, USA),
PLDI 2015, ACM, New York, NY, USA, 2015, 12-21,
DOI:10.1145/2737924.2738009

Huet, G. P., The undecidability of unification in third or-
der logic, Information and Control, 1973, 22, 3, 257 — 267,
DOI:10.1016/S0019-9958(73)90301-X

Huet, G., A unification algorithm for typed A-calculus,
Theoretical Computer Science, 1975, 1, 1, 27 — 57,
DOI:10.1016/0304-3975(75)90011-0

Cockx, J., Devriese, D., Piessens, F., Pattern matching with-
out K, Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming (Gothenburg, Swe-
den), ICFP '14, ACM, New York, NY, USA, 2014, 257-268,
DOI:10.1145/2628136.2628139

Cockx, J., Devriese, D., Piessens, F., Unifiers as equiv-
alences: Proof-relevant unification of dependently typed
data, Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming (Nara, Japan),
ICFP 2016, ACM, New York, NY, USA, 2016, 270-283,
DOI:10.1145/2951913.2951917

Eremondi, J., Improving error messages for dependent
types with constraint-based unification, Master's thesis,
Utrecht University, Utrecht, Netherlands, 2016, https:
//dspace.library.uu.nl/handle/1874 /337692

(34]

(35]

(36]

37]

(38]

DE GRUYTER

Campora, J. P., Chen, S., Erwig, M., Walkingshaw, E., Mi-
grating gradual types, Proc. ACM Program. Lang., 2017, 2,
POPL, 15:1-15:29, DOI:10.1145/3158103

Milner, R., A theory of type polymorphism in programming,
Journal of Computer and System Sciences, 1978, 17, 3, 348
— 375, DOI:10.1016,/0022-0000(78)90014-4

Hage, J., Heeren, B., Strategies for solving constraints in
type and effect systems, Electron. Notes Theor. Comput.
Sci., 2009, 236, 163-183, DOI:10.1016/j.entcs.2009.03.021
Helium Team, Helium github repository, https://github.
com/Helium4Haskell/helium, 2017

Pavlinovic, Z., King, T., Wies, T., Practical SMT-based
type error localization, Proceedings of the 20th ACM SIG-
PLAN International Conference on Functional Programming
(Vancouver, BC, Canada), ICFP 2015, ACM, New York,
NY, USA, 2015, 412-423, DOI:10.1145/2784731.2784765

http://dx.doi.org/10.3233/FI-2010-304
http://adam.gundry.co.uk/pub/thesis/thesis-2013-12-03.pdf
http://adam.gundry.co.uk/pub/thesis/thesis-2013-12-03.pdf
http://adam.gundry.co.uk/pub/pattern-unify/pattern-unification-2012-07-10.pdf
http://adam.gundry.co.uk/pub/pattern-unify/pattern-unification-2012-07-10.pdf
http://adam.gundry.co.uk/pub/pattern-unify/pattern-unification-2012-07-10.pdf
http://dx.doi.org/10.1017/S095679681800014X
http://dx.doi.org/10.1145/2364527.2364535
http://dx.doi.org/10.1145/2063239.2063245
http://dx.doi.org/10.1145/2518190
https://github.com/JoeyEremondi/lambda-pi-constraint
https://github.com/JoeyEremondi/lambda-pi-constraint
http://dx.doi.org/10.1145/2737924.2738009
http://dx.doi.org/10.1016/S0019-9958(73)90301-X
http://dx.doi.org/10.1016/0304-3975(75)90011-0
http://dx.doi.org/10.1145/2628136.2628139
http://dx.doi.org/10.1145/2951913.2951917
https://dspace.library.uu.nl/handle/1874/337692
https://dspace.library.uu.nl/handle/1874/337692
http://dx.doi.org/10.1145/3158103
http://dx.doi.org/10.1016/0022-0000(78)90014-4
http://dx.doi.org/10.1016/j.entcs.2009.03.021
https://github.com/Helium4Haskell/helium
https://github.com/Helium4Haskell/helium
http://dx.doi.org/10.1145/2784731.2784765

	A Framework for Improving Error Messages in Dependently Typed Languages
	1 Introduction
	2 Error Reporting: Principles and Status Quo
	2.1 Error Location and Cause
	2.1.1 Multiple Error Locations
	2.1.2 Repair Hints

	2.2 Left-to-right Bias
	2.3 Other Unsatisfactory Messages
	2.3.1 Pattern Matching and Rewriting
	2.3.2 Amechanicity

	3 Background
	3.1 Preliminaries
	3.2 Definitional Equality
	3.3 Higher Order Unification

	4 The Base Language
	4.1 Syntax
	4.1.1 Semantics
	4.1.2 Declarative Typing
	4.1.3 Metavariables and Constraint Generation

	5 Solving Higher Order Unification: A Primer
	5.1 Occurrences
	5.2 Unification as Rewriting
	5.2.1 Solution Rules
	5.2.2 Failure Rules

	5.3 A Worked-Through Example

	6 Replay Graphs for Message Generation
	6.1 Constraint Graphs for First-Order Unification
	6.2 Replay Graphs for Higher-Order Unification
	6.2.1 Graph Structure
	6.2.2 Constructing Replay Graphs
	6.2.3 Edge Dependencies

	6.3 Error Diagnosis and Heuristics
	6.4 Error-Tolerant Typing
	6.4.1 Rigid-rigid Mismatches
	6.4.2 An Explicit Error Value

	6.5 Correctness of Replay Graphs and Error-Tolerance

	7 Counter-Factual Unification
	7.1 Motivation
	7.2 A Choice Calculus
	7.2.1 Choice Operations and Terminology
	7.2.2 Semantics and Typing

	7.3 Counter-Factual Solving
	7.3.1 Performance

	7.4 Counter-Factual Replay Graphs
	7.4.1 Redundancy

	7.5 Correctness

	8 Results and Discussion
	8.1 Results
	8.1.1 Too Many Arguments
	8.1.2 Too Few Arguments
	8.1.3 Arguments in the Wrong Order
	8.1.4 Dependent Type Error

	8.2 Limitations
	8.3 Future Work

	9 Related Work
	9.1 Unification Algorithms
	9.2 Error Message Improvement

	10 Conclusion

