
1

Generic Enumerations: Completely, Fairly
(Functional Pearl)

ANONYMOUS AUTHOR(S)

How can we enumerate the inhabitants of an algebraic data type? This pearl explores a datatype generic solu-
tion that works for a wide variety of types, including the regular types and indexed families. The enumerators
presented here are provably complete—they will eventually produce every value—and fair—they avoid bias
in the order of elements.

1 INTRODUCTION
To reduce the cost of formal verification, lightweight techniques—such as program testing—can
help catch some errors early. Property-based testing is one approach to software testing that has
been popularised by libraries such as QuickCheck [Claessen and Hughes 2000]. Property-based
testing libraries try to find counterexamples that falsify a property that is expected to hold by
passing automatically generated inputs to the programs being tested. If no counterexample can
be found, the property may not hold in general—but in practice many ‘obvious’ errors in the code
and its specification can be found in this fashion.

The central technology that underlies property-based testing libraries is the generation of suit-
able test values to serve as input to the programs being tested. This paper shows how to enumerate
all the values inhabiting a given data type. This enumeration is complete—it is guaranteed to pro-
duce every inhabitant eventually—and fair—producing results in a balanced fashion. The enumer-
ators we define here are data type generic, enumerating all the inhabitants of every regular data
type and indexed family. Finally, although efficiency is not our primary concern, we show how we
can exploit the recursive structure of our data types to avoid superfluous computation.

It is important to emphasise that this is not a new problem, or even a new idea. There is a
substantial body of work on generating random data and enumerating data types—some of which
we try to cover in the related work section of this paper; yet we feel the exposition here, showing
how the enumeration of indexed data families is a natural generalisation of the enumeration of
regular data types, is still worthwhile. We strive to keep the presentation simple and clean, while
still formally verifying the key properties enumerations support.

About this paper. All definitions and proofs shown or mentioned in this paper have been for-
malised in Agda [Norell 2009], although we have taken some notational liberties to improve the
presentation: we omit universally quantified implicits and universe levels. Although we use Agda
in this paper to present our ideas, we believe that they are applicable in other proof assistants us-
ing dependent types, such as Coq [Coq Development Team 2020], Idris [Brady 2013], F★ [Swamy
et al. 2016], or Lean [de Moura et al. 2015].

2 FAIR AND COMPLETE ENUMERATION
In this section, we will define the key types, combinators, and properties of enumerators that we
will use throughout this paper. What does it mean to enumerate the inhabitants of a type A? The
simplest definition might be some list of values of A:

Enumerator : Set → Set
Enumerator A = List A

2021. 2475-1421/2021/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

https://doi.org/

1:2 Anon.

Yet many recursive data types, such as trees or lists, have an infinite number of inhabitants. Hence
a (finite) list will not suffice; we could use a (potentially infinite) ‘co-list’ instead, but instead we
will choose a slightly different approach. The central type of this paper, Enumerator, is defined as
follows:

Enumerator : Set → Set → Set
Enumerator A B = List A → List B

We define an enumerator as a function from lists to lists. Given a list of structurally ‘smaller’ ingre-
dients of type A that we have already constructed, an enumerator builds a list containing ‘larger’
elements of type B. For the moment, however, we will not use argument list passed to an enumer-
ator until consider the enumeration of recursive data types (Section 2.3).

2.1 Enumerator Combinators
The simplest enumerators are the empty enumerator (producing no elements) and singleton enu-
merators (producing exactly one element):

∅ : Enumerator A B
∅ = const []

pure : B → Enumerator A B
pure x = const [x]

Both these enumerators ignore their parameter and immediately return a list.
Furthermore, enumerators are functorial in their second argument; we can define the required

operation (⟨$⟩) by mapping over the resulting list of values:

⟨$⟩ : (A → B) → Enumerator C A → Enumerator C B
f ⟨$⟩ e = map f ∘ e

Next, we would like to combine the elements produced by two enumerations using the following
choice operator:

⟨∣⟩ : (e₁ e₂ : Enumerator A B) → Enumerator A B

The obvious way to define this operation, is by appending the resulting lists:

(e₁ ⟨∣⟩ e₂) as = (e₁ as) ++ (e₂ as)

At this point, however, it is worth thinking about the properties that we expect this combinator
to satisfy. One important property is that each element produced by either e₁ or e₂ should also
occur in e₁ ⟨∣⟩ e₂. To reason about the elements produced by our enumerators, we will use the _∈_
relation, capturing when an element occurs somewhere in a list:

data _∈_ : A → List A → Set where
Here : x ∈ (x :: xs)
There : x ∈ xs → x ∈ (y :: xs)

It is easy to prove that the append operator on lists preserves this relation:

inl : x ∈ xs → x ∈ (xs ++ ys)
inr : y ∈ ys → y ∈ (xs ++ ys)

In practice, however, combining lists in this fashion is biased: all the elements of xs will appear in
the resulting enumeration before the first element of ys. What property can we use to rule out this
definition?

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

Generic Enumerations: Completely, Fairly 1:3

Fairness. To avoid this bias, we begin by defining an ordering on the elements of our enumerations.
To do so, we begin by mapping each position in a list to its corresponding natural number:

∣_∣ : x ∈ xs → Nat
∣ Here ∣ = Zero
∣ There p ∣ = Succ ∣ p ∣

Now we can compare two positions—not necessarily in the same list—by using the familiar order-
ing on their underlying natural numbers:

≺ : x ∈ xs → y ∈ ys → Set
p ≺ q = ∣ p ∣ < ∣ q ∣

Now that we have on order on positions, we can return to our original problem: formulating and
proving fairness of the choice operator. The inl and inr lemmas above prove that the ++ operation
does not discard elements; constructively, however, we can also regard them as functions that
compute where the elements of xs and ys will appear in the resulting list. Using our ordering on
positions, we can now use the inl and inr lemmas to formulate the following fairness properties:

(p : x ∈ xs) (q : y ∈ ys) → p ≺ q → inl p ≺ inr q
(p : x ∈ xs) (q : y ∈ ys) → p ≺ q → inr p ≺ inl q

The ++ operator satisfies the first property, but not the second: the first element of ys will come
after the last element of xs in xs ++ ys. For this reason, as the ++ operation does not respect the
order of elements, we consider it to be unfair.

Fair choice. So what is a fair notion of choice operator? Unsurprisingly, the solution is to draw
elements alternatingly from the two lists:

interleave : List A → List A → List A
interleave [] ys = ys
interleave (x :: xs) ys = x :: interleave ys xs

In contrast to the list append function, interleave is fair. To establish this, we begin by showing
that it does not discard elements:

interleave∈-left : (xs ys : List a) → x ∈ xs → x ∈ interleave xs ys
interleave∈-right : (xs ys : List a) → y ∈ ys → y ∈ interleave xs ys

In contrast to appending lists, however, interleaving lists is fair, as witnessed by a pair of lemmas
with the following types:

(p : x ∈ xs) (q : y ∈ ys) → p ≺ q → (interleave∈-left xs ys p) ≺ (interleave∈-right xs ys q)
(p : x ∈ xs) (q : y ∈ ys) → p ≺ q → (interleave∈-right xs ys p) ≺ (interleave∈-left xs ys q)

Using the interleave function, we can now define a fair choice operation on enumerators easily
enough:

⟨∣⟩ : (e₁ e₂ : Enumerator A B) → Enumerator A B
e₁ ⟨∣⟩ e₂ = 𝜆 as → interleave (e₁ as) (e₂ as)

We can use the choice operation to enumerate types that have more than one constructor, such as
the booleans:

bools : Enumerator A Bool
bools = pure false ⟨∣⟩ pure true

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:4 Anon.

2.2 Fairly applicative & fairly monadic
Next, we would like to show that these enumerators are applicative by defining the usual applica-
tive ⊛ operator:

⊛ : Enumerator C (A → B) → Enumerator C A → Enumerator C B

The ‘obvious’ definition of ⊛ uses the concatMap on the underlying lists:
(e₁ ⊛ e₂) ts = concatMap (λ f → map f (e₂ ts)) (e₁ ts)

However, just as we saw for ++, the concat function is not fair: it is biased towards elements that
occur in earlier lists. Recall that the concat function has the following type:

concat : List (List A) → List A

Where our previous fairness properties established that the order of elements in a list are preserved,
we now need to reason about (the order of) elements in lists-of-lists. To do so, we define the
following relation:

data _∈∈_ (x : A) (xss : List (List A)) : Set where
, : {xs : List A} → xs ∈ xss → x ∈ xs → x ∈∈ xss

That is, to establish that x : a occurs in xss : List (List a) we need to find an xs such that x ∈ xs and
xs ∈ xss. Using the comma as constructor enables us to write such proofs as (p , q), reminiscent
of the notation used to denote a point on the Cartesian plane.

The key idea behind our fair version of the applicative ⊛ operator is to traverse the list-of-lists
in column major order: beginning with all the first elements of the inner lists, before continuing
recursively. Or equivalently, we will transpose and then flatten the outer list. Doing so will re-
spect the order of the elements in the inner lists, ensuring that we select elements for the list of
enumerated values fairly.

Before defining the transpose function, we need an auxiliary definition:
zipCons : List A → List (List A) → List (List A)
zipCons [] yss = yss
zipCons (x :: xs) [] = map [_] (x :: xs)
zipCons (x :: xs) (ys :: yss) = (x :: ys) :: zipCons xs yss

The call zipCons xs xss function adds the i-th element of xs to the head of the i-th list in xss. We
need to take some care here to ensure that elements are not discarded if the length of the lists
differ. The following two lemmas ensure that zipCons does not discard elements:

zipCons∈ : ∀ x ∈ xs → x ∈∈ zipCons xs xss
zipCons∈∈ : ∀ x ∈∈ xss → x ∈∈ zipCons xs xss

Using zipCons, we can now define the transpose function directly:
transpose : List (List A) → List (List A)
transpose [] = []
transpose (xs :: xss) = zipCons xs (transpose xss)

As you would expect, transpose also does not discard elements:
transpose∈∈ : x ∈∈ xss → x ∈∈ transpose xss

Finally, we can use transpose to define a fair merge operation that begins by listing the first
elements of its constituent lists, followed by the second elements, and so forth:

merge : List (List A) → List A
merge xss = concat (transpose xss)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

Generic Enumerations: Completely, Fairly 1:5

Once again, the merge operation preserves the elements:
merge∈∈ : x ∈∈ xss → x ∈ merge xss
merge∈∈ h = concat∈∈ (transpose∈∈ h)

Furthermore, we can prove that the merge operation is fair in the following sense:
merge-fair : (p₁ : xs ∈ xss) (p₂ : x ∈ xs) (q₁ : ys ∈ xss) (q₂ : y ∈ ys) →

p₂ ≺ q₂ → merge∈∈ (p₁ , p₂) ≺ merge∈∈ (q₁ , q₂)

This proof of fairness relies on a characteristic property of transposition:
∣transpose∣ : (p₁ : xs ∈ xss) (p₂ : x ∈ xs) → ∣ p₂ ∣ ≡ ∣ fst (transpose∈∈ (p₁ , p₂)) ∣

In other words, the transpose function maps every element of the i-th column to a position in the
i-th row. The merge-fair lemma follows immediately from this property.

Using this merge operation, we can now finally give a fair definition of the applicative ⊛ oper-
ator for our enumerators:

⊛ : Enumerator C (A → B) → Enumerator C A → Enumerator C B
e₁ ⊛ e₂ = 𝜆 cs → merge (map (𝜆 f → map f (e₂ cs)) (e₁ cs))

This allows us to write enumerators in the familiar applicative style. For example, we can compute
the Cartesian product of elements generated by two enumerators as follows:

pairs : Enumerator C A → Enumerator C B → Enumerator C (A × B)
pairs e₁ e₂ = _,_ ⟨$⟩ e₁ ⊛ e₂

These enumerators are not only applicative, but also monadic:
≫= : Enumerator C A → (A → Enumerator C B) → Enumerator C B
(e₁ ≫= e₂) = 𝜆 cs → merge (map (λ x → e₂ x cs) (e₁ cs))

The monadic structure of enumerators is necessary to combine enumerators whose type may de-
pend on a previously generated element. Once we attempt to enumerate indexed families, the
monadic bind operation becomes essential. To illustrate this point, consider the following enumer-
ator for dependent pairs, also known as Σ-types:

sigmas : Enumerator C A → ((x : A) → Enumerator C (B x)) → Enumerator C (Σ A B)
sigmas e f = e ≫= λ x →

f x ≫= λ y →
pure (x , y)

Since the type enumerated by f is dependent on its argument, the value generated for the first
element of the pair, x, needs to be in scope to extract the corresponding enumerator. It is instructive
to compare this enumerator with the one for pairs we saw previously: in the dependent case, the
choice of the value for the first component influences the enumeration of the second component.

2.3 Recursive enumerators
How can we define an enumerator for a recursive type? This will be where we use the additional
argument passed to each enumerator. Consider the following data type for binary trees:

data Tree : Set where
Leaf : Tree
Node : Tree → Tree → Tree

If we naively try to compute the list of trees of a given size, we might use the applicative instance
for lists to write:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:6 Anon.

list-trees : Nat → List Tree
list-trees Zero = []
list-trees (Succ n) = [Leaf] ++ Node ⟨$⟩ list-trees n ⊛ list-trees n

In this way, a call to list-trees n will compute a list of trees with depth at most n. There is, however,
a problem with this definition: the two calls to trees n give rise to an exponentially slow function.
Fortunately, there is a well-known solution: we can pass the result of the previous recursive as an
argument to our enumerator, avoiding the superfluous recomputation.This is where our additional
list argument in the definition of the enumerator type will finally be used.

Firstly, we can define the following trivial enumerator, rec, that simply returns its argument list:

rec : Enumerator A A
rec = 𝜆 as → as

We can now use almost all the combinators we have seen so far to define a ‘recursive’ enumerator
for trees:

trees : Enumerator Tree Tree
trees = pure Leaf ⟨∣⟩ Node ⟨$⟩ rec ⊛ rec

Note that this enumerator is not really recursive: it simply defines a function List A → List A. By
iteratively applying this function to an initially empty list we can create lists of increasingly deep
trees. More generally, we can define the enumerate function that produces a finite list of elements
of type A from its argument enumerator:

enumerate : Enumerator A A → Nat → List A
enumerate e n = iterate n e []

where
iterate : Nat → (A → A) → A → A
iterate Zero f x = x
iterate (Succ n) f x = f (iterate n f x)

Crucially, we avoid unnecessary recursive calls in this style, as we saw in the list-trees function.
Here all the ‘smaller’ trees are passed as an argument to the trees function; the trees function
itself describes a single step in the generation process, assembling larger trees from the subtrees
in its argument list. Of course, there are other possible interpretations of an enumerator, such as
producing an infinite stream of increasingly long lists. For the purpose of this paper, however, we
will only concern ourselves with the enumerate function.

2.4 Enumerator completeness
The type of our enumerators does not guarantee anything about its behaviour. For example, the
following enumerator for the booleans is type correct, but wrong:

boolsWrong : Enumerator Bool Bool
boolsWrong = ∅

To rule out such definitions, we identify the key property that our enumerators must satisfy: com-
pleteness. An enumerator is complete when every possible value of a type will eventually be gen-
erated. In the remainder of this section, we will make this precise.

We begin by defining the following Occurs relation:

data Occurs (x : A) (e : Enumerator A A) : Set where
occurs : (n : Nat) → x ∈ enumerate e n → Occurs x e

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

Generic Enumerations: Completely, Fairly 1:7

When there is some natural number n such that x ∈ enumerate e n, we say that x occurs in the
enumerator e. An enumerator e is complete when each x : A occurs in e:

Complete : Enumerator A A → Set
Complete e = ∀ x → Occurs x e

To prove an enumerator e is Complete amounts to showing that for every value x : A, we will
eventually produce x in the list enumerator e n for large enough values of n.

To demonstrate how completeness proofs may help to weed out erroneous, but type-correct
definitions, we consider the completeness proof for the simple enumerator of the booleans, bools,
that we saw previously:

bools-complete : Complete bools
bools-complete false = occurs 1 (Here)
bools-complete true = occurs 1 (There Here)

On the other hand, it is not possible to construct a proof that boolsWrong is a complete enumerator;
a fortiori, we can prove that boolsWrong is not complete:

boolsWrong-not-complete : Complete boolsWrong → ⊥

In what follows, we will rarely write completeness proofs by hand, but rather define generic enu-
merators that are complete by construction.

3 GENERIC ENUMERATION OF REGULAR TYPES
In the previous section, we gave a handful of example of enumerator for booleans and trees. In this
section, we show to generalise these results and write a generic enumerator for a collection simple
algebraic data types; that is, we show how suitable enumerators can be generated by induction over
the structure of such types.

To achieve this, we will reify a collection of types as values of some universe U : Set. A universe
is accompanied by a semantics, ⟦_⟧, that interprets values inU as an Agda type. To define a generic
enumerator (approximately) amounts to defining a function:

enumerate : (u : U) → Enumerator ⟦ u ⟧ ⟦ u ⟧

To illustrate the general approach, we start by defining enumerators for the regular types before
moving on to a more complicated universe in the next section. Despite its simplicity, this universe
is able to describe many familiar, simple algebraic data types.

3.1 Regular types
The universe of regular types contains the empty type (zero), unit type (one), recursion (var) and
type constants (k), and is closed under products (⊗) and coproducts (⊕). We describe regular types
as values of the description type Desc:1

data Desc (P : Set → Set) : Set where
zero : Desc P
one : Desc P
var : Desc P
k : (S : Set) → {P S} → Desc P
⊗ : (D₁ D₂ : Desc P) → Desc P
⊕ : (D₁ D₂ : Desc P) → Desc P

1The Desc type, as presented here, is large as the constant constructor quanti�es over all types. While we
omit universe levels from the typeset version of this paper, it is easy to stratify this construction by only
allowing constants drawn from some smaller universe U : Set.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:8 Anon.

This definition is mostly standard. Descriptions have an extra parameter, P : Set → Set, that
describes what (if any) extra information needs to be recorded for the constants. In what follows,
we will use this to require information about how to enumerate the inhabitants of type constants
that appear in a description.

To write generic programs, we need to give an interpretation (or semantics) to descriptions. We
define the semantics of descriptions as a functor Set → Set in the usual fashion:

⟦_⟧ : Desc P → (Set → Set)
⟦ zero ⟧ X = ⊥
⟦ one ⟧ X = ⊤
⟦ var ⟧ X = X
⟦ k S ⟧ X = S
⟦ D₁ ⊗ D₂ ⟧ X = ⟦ D₁ ⟧ X × ⟦ D₂ ⟧ X
⟦ D₁ ⊕ D₂ ⟧ X = ⟦ D₁ ⟧ X ⊎ ⟦ D₂ ⟧ X

This definition is entirely standard. By taking the fix-point of these functors, we can model simple
recursive data types such trees and lists. The Fix data type ties the recursive knot:

data Fix (D : Desc P) : Set where
In : ⟦ D ⟧ (Fix D) → Fix D

By defining the Desc data type explicitly, allows us to define (generic) functions by pattern match-
ing on the constructors of Desc.

Example: Lists. As an example, we consider how to encode the List type as a value of Desc:
data List (A : Set) : Set where

[] : List A
:: : A → List A → List A

We choose the description ListD : Set → Desc such that Fix (ListD A) is isomorphic to List A:
ListD : Set → Desc (λ → ⊤)
ListD A = one ⊕ (k A ⊗ var)

The description ListD consists of a coproduct (or choice) of either one (representing the empty list,
[]), or a pair consisting of a constant value of type A, and a recursive position (corresponding to
::). We can describe the singleton list 0 :: [], for example, as a value of type Fix (ListD Nat):

consZeroNil = In (inj₂ (0 , In (inj₁ tt)))

3.2 A Generic Enumerator For Regular Types
We are now ready to define a generic enumerator for regular types. Down the line, this means that
we give a definition for an generic enumeration function, genumerate, with the following type:

genumerate : (D : Desc List) → Enumerator (Fix D) (Fix D)

Given any description D we will enumerate the recursive data types that can be built from this
description. Note that we expect a description, D : Desc List, that already stores a (finite) list of
all the constant types that occur in our descriptions.

We cannot define this genumerate function directly. In particular, because Desc is closed under
products and coproducts, we need to recurse over the description as we define its enumerator. To
do so, we must be careful to separate the description under consideration (D₁) from the description
that describes the type of recursive positions (D₂):

enumerateD : ∀ (D₁ D₂ : Desc List) → Enumerator (Fix D₂) (⟦ D₁ ⟧ (Fix D₂))

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

Generic Enumerations: Completely, Fairly 1:9

This is a common pattern when defining such generic functions—passing two descriptions to a
generic function: one representing the top-level description; whereas the other description is tra-
versed recursively.

The definition of this enumerateD function is now immediate, using all the auxiliary functions
defined in the previous section.

enumerateD : ∀ (D : Desc List) {D’ : Desc List} → Enumerator (Fix D’) (⟦ D ⟧ (Fix D’))
enumerateD zero = ∅
enumerateD one = pure tt
enumerateD (k A {as}) = const as
enumerateD var = rec
enumerateD (D₁ ⊕ D₂) = (inj₁ ⟨$⟩ enumerateD D₁) ⟨∣⟩ (inj₂ ⟨$⟩ enumerateD D₂)
enumerateD (D₁ ⊗ D₂) = pairs (enumerateD D₁) (enumerateD D₂)

For the sake of completeness, we briefly go through the individual cases one by one. As there are
no inhabitants of the empty type, we simply return the empty list in the case for zero. Similarly,
there is a single inhabitant of the unit type. In the case for onewe therefore return the singleton list
with the value tt. When we encounter a constant type A, we have an implicit argument as : List A.
We can simply return this list of values, ignoring the list of subtrees we receive as an additional
argument.

This leaves the three most interesting cases: recursive positions, coproducts and products. When
we encounter a recursive position designated by the var constructor, we return the list of ‘smaller’
values that we are passed as an argument. This is similar to how we generated subtrees for the
Node constructor in enumerator for binary trees in the previous section. In the case for coproducts,
D₁ ⊕ D₂, we make two recursive calls on both D₁ and D₂, map the injections inj₁ and inj₂ over
these results, and interleave the resulting values. Finally, in the case for products takes a Cartesian
product of the two recursive calls. The pairs function that computes this Cartesian product is
defined in Section 2.

Using the enumerateD function, we can now write our generic enumerator as follows:
genumerate : (D : Desc List) → Enumerator (Fix D) (Fix D)
genumerate D = 𝜆 ts → map In (enumerateD D ts)

This function simply calls the enumerateD function with the description D. This will result in a
list of values of type ⟦ D ⟧ (Fix D); mapping the In constructor over this list of values produces
the desired List (Fix D).

Example: enumerating lists. To illustrate our generic enumerator in action, we can revisit the
description of lists we saw previously. We begin by defining the following description for lists of
a given type A:

ListD : {A : Set} → List A → Desc List
ListD {A} as = one ⊕ (k A {as} ⊗ var)

The ListD function requires an argument as : List A, enumerating the elements of A. We can use
this description to enumerate all lists up to some length as follows:

lists : {A : Set} → (xs : List A) → Nat → List (Fix (ListD xs))
lists xs = enumerate (genumerate (ListD xs))

For example, the following expression enumerates all lists consisting of at most three constructors,
containing the characters ’a’ and ’b’:

lists (’a’ :: (’b’ :: [])) 3

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:10 Anon.

This example illustrates most of the constructors of our Desc type. In particular, we can use the
enumerators for constant types to generate primitive values such as characters, that have no asso-
ciated data type declaration.

Completeness. We now briefly sketch the completeness proof, establishing that our generic enu-
merators will eventually produce every possible value.

To prove our generic enumerators are complete, amounts to showing that for all x : Fix D
there is an n : Nat such that x ∈ enumerate (genumerate D) n. It should not come as a surprise
that the required number n corresponds to the number of times we need to unroll the fixed-point
to produce x. We refer to this number as the depth of a given tree; it can be readily computed as
follows:

mutual
depthD : (D : Desc P) → {D’ : Desc P} → ⟦ D ⟧ (Fix D’) → Nat
depthD zero = 0
depthD one = 0
depthD (k) = 0
depthD var x = depth x
depthD (D₁ ⊕ D₂) (inj₁ x) = depthD D₁ x
depthD (D₁ ⊕ D₂) (inj₂ y) = depthD D₂ y
depthD (D₁ ⊗ D₂) (x , y) = max (depthD D₁ x) (depthD D₂ y)
depth : (D : Desc P) → Fix D → Nat
depth D (In x) = Succ (depthD D x)

To prove that some x : Fix D is indeed in the corresponding enumerator requires some thought.
We need a careful recursive argument: in particular, the depth of a pair returns themaximum depth
of its elements. As a result, we need to use strong induction to show that our generic enumerator
is complete, i.e. we can formulate and prove the following property:

completeD : (D : Desc List) (x : ⟦ D ⟧ (Fix D’)) (xs : List (Fix D’)) →
((y : (Fix D’)) → depth y ≤ depthR D x → y ∈ xs) →
x ∈ enumerateD D xs

Informally, this property states that x is guaranteed to occur in the the generic enumerator built
from the list of values xs, provided each subtree y that xmay contain already occurs in xs.The proof
itself follows from the key property of our enumerator combinators that we showed in Section 2:
they never discard elements.

Next, we can define the corresponding top-level proof that calls the completeD lemma, while
passing itself recursively to prove the completeness of any recursive calls:

complete : ∀ (D : Desc List) (x : Fix D) (n : Nat) → depth x ≤ n →
x ∈ enumerate (genumerate D) n

Finally, we can use this lemma to establish that all our generic enumerators are complete:

genumerateComplete : (D : Desc List) → Complete (genumerate D)

We have chosen to ignore constant types in this proof sketch. To complete the proof, we need to
extend the completeD lemma with a further assumption that the lists of elements associated with
the constant types that occur in D exhaustively enumerate all possible constants. Nonetheless, the
proof terms for complete and completeD are fairly straightforward—once these definitions are
fixed—spanning about twenty lines of proof and using a handful of auxiliary lemmas.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

Generic Enumerations: Completely, Fairly 1:11

4 GENERIC ENUMERATORS FOR INDEXED FAMILIES
While regular types are fairly straightforward to enumerate, the enumeration of indexed types is
more of a challenge. To tackle this problem, we need to shift from our universe of regular types to
one capable of describing indexed data types.

4.1 Universe Definition
The universe of indexed descriptions describes a wide collection of indexed data types. We closely
follow the exposition byDagand [Dagand 2013], but similar constructions are ubiquitous in generic
programming with indexed families [Benke et al. 2003; Chapman et al. 2010; Dagand and McBride
2012]. Where previously we constructed the codes regular types directly as a value in Desc P, we
need to generalise this to handle indexed families of types. To do so, we introduce the following
type constructor:

Func : (Set → Set) → Set → Set
Func P I = I → IDesc P I

The type I corresponds to the index set. For example, vectors are indexed by a natural number. To
describe such indexed families, we define a function Func P I that computes the indexed descrip-
tion for each possible value i : I.

The type of codes, IDesc, is similar to the codes for regular types that we saw previously:

data IDesc (P : Set → Set) (I : Set) : Set where
zero : IDesc P I
one : IDesc P I
var : (i : I) → IDesc P I
⊕ : (D₁ D₂ : IDesc P I) → IDesc P I
⊗ : (D₁ D₂ : IDesc P I) → IDesc P I
‘Σ : (S : Set) → {P S} →

(S → IDesc P I) → IDesc P I

The IDesc data type has constructors for the empty type (zero), unit type (one), the recursive posi-
tions (var) and is closed under products (⊗) and coproducts (⊕). Note that the recursive positions
now contain further index information: the var constructor takes a value i : I as its argument.
We use this value to designate the index associated with each recursive position. Finally, indexed
descriptions are closed under dependent products (‘Σ), consisting of a constant type S and a de-
scription depending on S. We again include an extra parameter P : Set → Set to allow for extra
information to be stored about the constant type stored in the first component of a dependent
pair. We shall see examples of these indexed description shortly, but first we need to assign them
semantics.

The associated semantics, ⟦_⟧, interprets a code with index type I to a function (I → Set) → Set.
The argument function, I → Set, is used to assign semantics to the recursive positions:

⟦_⟧ : IDesc P I → (I → Set) → Set
⟦ one ⟧ X = ⊤
⟦ zero ⟧ X = ⊥
⟦ var i ⟧ X = X i
⟦ D₁ ⊗ D₂ ⟧ X = ⟦ D₁ ⟧ X × ⟦ D₂ ⟧ X
⟦ D₁ ⊕ D₂ ⟧ X = ⟦ D₁ ⟧ X ⊎ ⟦ D₂ ⟧ X
⟦ ‘Σ S f ⟧ X = Σ S λ s → ⟦ f s ⟧ X

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:12 Anon.

Finally, we use the data type Fix to tie the recursive knot and take the least fix-point of indexed
descriptions:

data Fix {P : Set → Set} (φ : Func P I) (i : I) : Set where
In : ⟦ φ i ⟧ (Fix φ) → Fix φ i

Example: Vectors. As an example, we consider the familiar example of a dependent type, namely
vectors:

data Vec (A : Set) : Nat → Set where
[] : Vec A Zero
:: : A → Vec A n → Vec A (Succ n)

A value of type Vec A n is only inhabited by lists of length n. We can describe Vec as follows:

VecF : Set → Func (λ → ⊤) Nat
VecF Zero = one
VecF A (Succ n) = ‘Σ A (λ → var n)

We choose the indexed description VecF carefully such that Fix (VecF A) n is isomorphic to
Vec A n. Rather than modelling the choice between the constructors [] and :: as a coproduct, we
use the fact that there is only one constructor of Vec available for each constructor of the index,
returning one (corresponding to []) if the length is Zero, and a pair consisting of a value of type
A and a recursive position with index n (corresponding to ::) if the index is of the form Succ n.
Of course, the lack of coproducts in this description is specific to vectors: each index is associated
with a single constructor.

4.2 A generic enumerator for indexed types
The generic enumerator for regular types is straightforward, once we defined the types and combi-
nators for defining enumerators. In this section, we show how it can be extended to an enumerator
for the indexed descriptions.

First, we revisit our type of enumerators. Rather than pass in a list of ‘smaller values’ as we did
previously, we need to account for the additional index information. In particular, we are no longer
passed a single list, but rather a function that maps each index i : I to a list of smaller values:

IEnumerator : { I : Set} → (I → Set) → Set → Set
IEnumerator { I} A B = ((i : I) → List (A i)) → List B

While we could also let the result type B depend on I, we will refrain from doing so—we will not
need this additional generality. The semantics of our indexed descriptions ⟦_⟧ simply returns a
Set—hence it suffices to generate a simple list of values. Note that these indexed enumerators are
strictly more general than the simple Enumerator type from the introduction. Instantiating the
index set to the unit type, yields a type that is isomorphic to the original enumerators defined
in Section 2. Throughout the remainder of this section, we will use the familiar combinators for
writing enumerators—even if we should strictly speaking provide alternative versions with the
same definition, but a more general (indexed) type.

The generic enumerator once again consists of two parts: the first pattern matches on its argu-
ment description; the second is used to recurse back to the top-level description being enumerated.
The first part, ienumerateD, produces a list of values of type ⟦ D ⟧ (Fix φ), given a description
D and interpretation of the recursive positions, φ. The definition is reassuringly familiar, as most
cases follow the same structure as we saw for the regular types.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

Generic Enumerations: Completely, Fairly 1:13

ienumerateD : (desc : IDesc List I) → IEnumerator (Fix φ) (⟦ desc ⟧ (Fix φ))
ienumerateD zero = ∅
ienumerateD one = pure [tt]
ienumerateD (D₁ ⊗ D₂) = pairs (ienumerateD D₁) (ienumerateD D₂)
ienumerateD (D₁ ⊗ D₂) = (inj₁ ⟨$⟩ enumerateD D₁) ⟨∣⟩ (inj₂ ⟨$⟩ enumerateD D₂)
ienumerateD (var i) = 𝜆 rec → rec i
ienumerateD (‘Σ S {e} f) = e ≫= 𝜆 s →

ienumerateD (f s) ≫= 𝜆 x →
return (s , x)

Thefirst four cases should be familiar: the empty type, the unit type, products and coproducts were
all covered previously. When we encounter a recursive subtree, var i, we once again use the list of
smaller values we are passed. Rather than return the list directly, as we did for regular types, we
return the list of values at index i. Finally, in the case for dependent pairs, ‘Σ, we use the (implicit)
enumerator, e, stored in the constructor to produce a value of type S; the second component, is
then produced using a recursive call to the enumeratorD function using f s as the new description
to enumerate.

The top-level generic igenumerate invokes ienumerateD, instantiating the indexed description
with φ i:

igenumerate : ∀ φ i → IEnumerator (Fix φ) (Fix φ i)
igenumerate φ i = In ⟨$⟩ ienumerateD (φ i) φ

Finally, we adapt the previous definition of our enumerate function to iteratively apply our enu-
merators a fixed number of times:

ienumerate : ((i : I) → IEnumerator A (A i)) → (i : I) → Nat → List (A i)
ienumerate f i Zero = []
ienumerate f i (Succ n) = f i (λ i → ienumerate f i n)

Proving completeness
One pleasant property of our development is that many definitions and proofs on the universe of
regular types can be easily extended to indexed families. Just as we defined the depth function
on regular types, the idepth function counts the number of times the (indexed) functor must be
unrolled to produce a given value:

idepthD : (D : IDesc P I) → ⟦ D ⟧ (Fix φ) → Nat
idepth : ∀ Fix φ i → Nat

With these definitions in place, we can once again proceed to define the key lemma, icompleteD,
by induction on the indexed description D:

icompleteD : (D : IDesc List I) (x : ⟦ D ⟧ (Fix φ)) (xsi : (i : I) → List (Fix φ i)) →
(∀ i → (y : Fix φ i) → idepth y < idepthD D x → y ∈ xsi i) →
x ∈ ienumerateD D xsi

The general structure of this proof is the same as we saw for the regular universe, completeD.
There are a few differences worth pointing out. Instead of receiving a list of ‘smaller’ values that
have previously been constructed, we are passed a function xsi : (i : I) → List (Fix φ i),
that computes a list of values for each possible index. The stronger induction hypothesis in the
penultimate argument guarantees that any y : Fix φ i will appear in the list associated with the
index i. Each cases of this proof closely follows its regular counterpart. The base case for one is
trivial; the cases for products and coproducts relies on the completeness of the pairs and interleave

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:14 Anon.

combinators; in the case for recursive subtrees, we use our induction hypothesis. If D is a depen-
dent pair, however, the proof is slightly more challenging. Recall that ‘Σ correspond to dependent
products—we can mimic the completeness proof for pairs, though we have to prove new auxiliary
lemmas that establish well-behavedness of the sigmas combinator. To prove completeness, we do
require completeness of the enumerator for the set S that is used by the dependent product—just
as we did for constants in the universe of regular types.

Finally, we can provide a suitable top-level completeness statement. The type of this statement
is daunting at first, but captures the same style of recursion as we saw for the complete lemma in
the previous section:

icomplete : ∀ (φ : I → IDesc List I) (i : I) (x : Fix φ i) (n : Nat) →
idepth x ≤ n → x ∈ ienumerate (igenumerate φ) n i

Its proof is analogous: pattern matching on the In constructor and calling the icompleteD lemma
sketched above. Once again, this proof sketch does not explicitly mention the constant types that
appear in an indexed description, such as the type S that occurs in the ‘Σ constructor. To handle
these, we require an additional argument explicitly assuming that the lists stored for these values
are also complete.

5 CASE STUDY: ENUMERATING LAMBDA TERMS
In this section, we show how the enumerators we have defined can be applied to enumerate well-
typed lambda terms. While this problem is well-studied [Fetscher et al. 2015; Palka et al. 2011;
Tarau 2015; Yakushev and Jeuring 2009], our goal is not to write a novel or particularly efficient
enumerator, but rather to illustrate how such an enumerator follows automatically from the defi-
nitions we have seen so far.

Let us first take a look at how to encode well-typed λ-terms as an indexed data type. Terms are
indexed by a context and a type (Type). Types can be either a function (⇒) or the base type (ι):

data Type : Set where
⇒ : Type → Type → Type
ι : Type

Ctx = List Type

Wecan thenwrite the followingwell-known intrinsically-typed abstract syntax type for the simply-
typed λ-calculus:

data Term : Ctx → Type → Set where
Var : σ ∈ Γ → Term Γ σ
Abs : Term (σ :: Γ) τ → Term Γ (σ ⇒ τ)
App : Term Γ (σ ⇒ τ) → Term Γ σ → Term Γ τ

The definition of Term is carefully chosen so that it is only inhabited by well-formed terms. Terms
are not only indexed by their type, but also by a context. To reflect this in the indexed descrip-
tion we will build for Term, we simply uncurry its type declaration, choosing the product type
Ctx × Type the index of our descriptions.

5.1 A description of well typed terms
To enumerate these well-typed terms, we need to represent them using the (indexed) descriptions
we have defined previously. We will write descriptions for the each of the constructors of Term
individually, before combining them into a single indexed description.

We start with an enumerator for membership proofs, which are used by the Var constructor.
We could use our generic enumerator for indexed families—but we will begin by showing how

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

Generic Enumerations: Completely, Fairly 1:15

to define such an indexed enumerator by hand using a decision procedure type-eq? : (σ τ :
Type) → Dec (σ ≡ τ), that determines when two types are equal:

elems : (Γ : Ctx) (σ : Type) → Enumerator A (σ ∈ Γ)
elems [] σ = ∅
elems (τ :: Γ) σ with type-eq? σ τ
… | yes refl = pure Here ⟨∣⟩ There ⟨$⟩ elems Γ σ
… | no neq = There ⟨$⟩ elems Γ σ

Essentially, this function finds all the occurrences of a type σ in the context Γ.
Additionally, we will need to enumerate the types of the simply typed lambda calculus. To see

this, consider the App constructor of the Term data type. The type of the functions argument, σ
in our definition, is (implicitly) bound—to use the App constructor to generate new terms, we will
need to choose a suitable value for σ. To define this enumerator, we will the generic enumerator for
regular types. To do so, we need to define a description corresponding to the types of our simply
typed lambda calculus:

TypeD : Desc List
TypeD = one ⊕ (var ⊗ var)

This is the description as we saw for binary trees in Section 2. To get our hands on an enumer-
ator for Type data type, we need to do a bit more work. Firstly, we observe that for any pair of
isomorphic types A and B, we can convert an enumerator of on A to one on B:

≃enum : A ≃ B → Enumerator A A → Enumerator B B

Using this, we can insight we can convert the generic enumerator TypeD to an enumerator for
Type, rather than Fix TypeD:

types : Enumerator Type Type
types = ≃enum type-iso (genumerate TypeD)

Here type-iso witnesses the isomorphism, Fix TypeD ≃ Type, between Type and its description
as a regular type. In this style, we can recover enumerators for user-defined data types from the
generic enumerators that are derived automatically.

We are now ready to define an indexed description for Term, starting with the Var constructor.
Variables require a proof that some type σ can be found in the context Γ, so we need an enumerator
that enumerates these proofs for any combination of context and type. Using elems, we can write
the description corresponding to the Var constructor using a dependent pair. Since we do not need
to store any additional information, the second component of the Σ is simply the unit type, one:

varD : Ctx → Type → IDesc (𝜆 A → Enumerator A A) (Ctx × Type)
varD Γ σ = ‘Σ (σ ∈ Γ) {elems Γ σ} λ → one

This example shows how to combine a hand-written enumerator (elems) in one that follows from
the structure of our types.The choice of the additional information P stored in the IDesc description
here is an enumerator of type Enumerator A A, for each type A that appears as the first component
of a ‘Σ constructor.

Next, we consider the constructor Abs. It produces a term of type Term Γ (σ ⇒ τ); its argument,
the function body, has type Term (σ :: Γ) τ. Given a context Γ, domain σ and codomain τ, we simply
recurse with the right choice of indices:

absD : Ctx → Type → IDesc (𝜆 A → Enumerator A A) (Ctx × Type)
absD Γ (σ ⇒ τ) = var (σ :: Γ , τ)
absD Γ ι = zero

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:16 Anon.

In the case when the desired type index is the base type, however, we cannot use the Abs construc-
tor. Hence we return (the description of) the empty type ⊥.

Function application presents an additional challenge. The constructor App takes two recursive
argument, one of the form Term Γ (σ ⇒ τ) and one of the form Term Γ σ, producing a term with
type τ.The choice of argument type σ, however, is not determined by the index type of the resulting
application (τ). Since we define descriptions by induction over the index, we need to choose the
argument type σ first, using a dependent pair. Once we have chosen σ, the other components of
the application follow from two recursive calls to our enumerator:

appD : Ctx → Type → IDesc (𝜆 A → Enumerator A A) (Ctx × Type)
appD Γ τ = ‘Σ Type { types} (λ σ → var (Γ , (σ ⇒ τ)) ⊗ var (Γ , τ))

Just as we included the elems enumerator in the constructor for variables, here we use the types
enumerator to enumerate the elements of the first component of our Σ-type. From these pieces,
we create a description for well typed λ-terms as follows:

TermF : Func (𝜆 A → Enumerator A A) (Ctx × Type)
TermF (Γ , τ) = varD Γ τ ⊕ appD Γ τ ⊕ absD Γ τ

We define TermF as a coproduct of three descriptions; the description associated with each indi-
vidual constructor that we defined previously is passed the context Γ and index type τ.

By structuring the description this way, we use the fact that TermF computes an appropriate
description from every index. For this reason it is not necessary to introduce explicitly equalities
to describe the decomposition of the index type when invoking absD. In general we can derive
such an “equality-free” descriptions for any indexed type where only constructors or variables
occur in the index. For dependent types where the indices may contain arbitrary (non-injective)
functions, however, this is no longer the case.

This generic enumerator, however, is not particularly efficient. The key inefficiency arises from
the types enumerator that produces values of type Type. Fortunately, however, we can experi-
ment freely with alternative enumerators, for instance by starting with listing types that appear
in the context—which are more readily inhabited using the Var constructor.There is no magic here:
generating well-typed lambda terms remains a hard problem. Crucially, however, the generic defi-
nitionsmake clear which parts of the generation can be donemechanically andwhich parts require
further creativity. In particular, it is the enumerators stored in the ‘Σ that can be used to steer the
enumeration procedure.

6 DISCUSSION
6.1 Related work
There is a large body of related work on property-based testing, data type generic programming,
and data type enumeration.

The original work on QuickCheck [Claessen and Hughes 2000] has generated a great deal of
research in the area of property-based testing. The test data generation that we propose here,
however, is not random, but more inspired by similar libraries based on exhaustive enumeration
of values such as SmallCheck [Runciman et al. 2008]. Both SmallCheck andQuickCheck have been
ported to numerous different languages since their original publication.

More recently, ideas from such property-based testing tools have started to emerge in the con-
text of proof assistants. Previous work by Dybjer et al. [2005] and Haiyan [2007] explores the
uniform random generation of indexed families in Agda. Work by Bulwahn [2012a,b] shows how
to enumerate the inhabitants of a syntactic subset of Isabelle. A more recent notable example, is
the work on QuickChick [Coq Development Team 2020; Dénès et al. 2014; Paraskevopoulou et al.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

Generic Enumerations: Completely, Fairly 1:17

2015] that ports QuickCheck to the Coq proof assistant. The uniform generation of indexed fam-
ilies is not at all easy. As a result, the random generation algorithm used in QuickChick is more
complex than the straightforward enumerators presented here. Each of these papers identifies a
notion of completeness (sometimes referred to as surjectivity) and fairness (or uniformity in the
case of random distributions). In a way, one of the key insights this paper provides is the simplicity
of the definitions, showing that enumerating indexed families is only slightly more difficult than
regular types. In a sense, the approach we take here is similar in spirit to LeanCheck [Braquehais
2017], that strives to define enumerators using a minimal set of combinators.

Similarly, there is a large body of work on randomly generating constrained data [Claessen et al.
2015] and inductive families [Lampropoulos et al. 2018]. Yakushev and Jeuring [2009] consider a
similar problem in the context of Haskell, showing howGADTs can be enumerated by representing
them using spine views [Hinze et al. 2006], extended with a form of existential quantification. They
demonstrate that their approach is powerful enough to enumerate well-typed lambda terms. Their
approach is, however, restricted to those invariants that can be expressed using a GADT, rather
than the indexed families covered in this paper.

6.2 Further work
Performance. When writing these enumerators, we have not focused on performance. Repeatedly
appending lists can quickly become a performance bottleneck. This might, in part, be possible to
address using the difference list representation during enumeration [Hughes 1986]—but there are
plenty of other opportunities for optimisations, such as fusing the repeated map operations over
intermediate lists. Finally, Duregård et al. [2012] have shown how caching the intermediate sizes
of the enumerated sub-terms can drastically improve performance when arbitrarily sampling from
the enumeration. It would be interesting to attempt to extend their techniques to the (indexed) data
types studied here, where wemay be able to show how another iteration of our generic enumerator
grows the (indexed) list of values generated in a predictable fashion.

Fairness. The ‘column major’ traversal of a list of enumerated values is certainly less biased than
their concatenation. Although we use the merge operation to define hand-written enumerators in
applicative style, the generic enumerators only rely on the enumerators for pairs and sigma types.
Yet for these specific combinators, one might imagine a ‘diagonal‘ traversal of the enumerated
values gives a more even spread. New et al. [2017] give a more thorough treatment of fairness,
especially aimed at the fair enumeration of (potentially) infinite lists. In our setting, however, we
restrict ourselves to finite approximations of infinite lists, which makes things a bit simpler. We
use dependent types extensively in this presentation: although our fairness definition relies on the
comparison of natural numbers under the hood, we need to prove the completeness lemmas to
even formulate the desired fairness properties. Furthermore, we can avoid some spurious cases by
only ever comparing valid positions in a list, x ∈ xs, as opposed to any pair of natural numbers.

Automation. As our case study shows, there is still quite some overhead involved in manually
writing the descriptions corresponding to a user-defined data type. Using Agda’s reflection and
metaprogramming facilities [Van Der Walt and Swierstra 2012], it should be possible to automate
the derivation descriptions for data types, and their isomorphism converting between the two
representations. By also using Agda’s instance search [Devriese and Piessens 2011], we can then
automatically generate enumerators for user-defined data types.

Specification discovery and tactics. A surprising application of property-based testing is the auto-
matic generation of specifications. QuickSpec [Claessen et al. 2010] is one such tool that, based on
QuickCheck. Given a set of functions, QuickSpec automatically generates collection of candidate

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

1:18 Anon.

equalities. This collection of equations is then iteratively refined by checking them against ran-
domly generated inputs produced byQuickCheck, and removing those equations that are falsified.
TheHipSpec tool [Claessen et al. 2012] takes these ideas one step further, by automatically proving
the generated equalities.

Given these enumerators of indexed families, however, we can do even better. Tools such as
QuickSpec only ever find equalities between terms—but oftentimes, we are more interested in prov-
ing that some inductive relation is inhabited. For example, given an insert function and isSorted
predicate, one might imagine generating the following statement:

∀ x xs → isSorted xs → isSorted (insert x xs)

Testing such suitable candidate theorems requires the ability to generate arbitrary indexed fami-
lies, which QuickSpec cannot do. One potential application area of these results is the automatic
generation and testing of such statements.

Another potential application of these enumerators is in proof automation. Given a proof goal
encoded as an indexed description, we try to generate an inhabitant by calling our enumerator. One
might imagine extending this idea further, allowing the user to provide certain hypotheses that
may be used in the enumeration. In this way, we can write our own version of Coq’s constructor
tactic that can be easily configured to restrict the search depth, constructors used, or hypotheses
available.

Conclusion
We have shown how both regular data types and indexed families can be enumerated generically.
We have sketched the proof of completeness for both these generic enumerators, guaranteeing that
they eventually produce every possible inhabitant of every type; the enumerators we write in this
style use combinators that we have shown to be fair. Using these definitions, we have shown how
to write an enumerator for the terms of the simply-typed λ-calculus. Many of the pieces presented
here have already been studied elsewhere, but we feel that the uniform presentation of our generic
enumerators and the simplicity of our definitions and proofs, provides value beyond the sum of
its parts.

REFERENCES
Marcin Benke, Peter Dybjer, and Patrik Jansson. 2003. Universes for Generic Programs and Proofs in Dependent Type

Theory. Nord. J. Comput. 10, 4 (2003), 265–289.
Edwin C. Brady. 2013. Idris: general purpose programming with dependent types. In Proceedings of the 7th Workshop on

Programming languages meets program verification, PLPV 2013, Rome, Italy, January 22, 2013, MatthewMight, David Van
Horn, Andreas Abel, and Tim Sheard (Eds.). ACM, 1–2. https://doi.org/10.1145/2428116.2428118

Rudy Matela Braquehais. 2017. Tools for discovery, refinement and generalization of functional properties by enumerative
testing. Ph.D. Dissertation. University of York, UK. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.731590

Lukas Bulwahn. 2012a. The new quickcheck for Isabelle. In International Conference on Certified Programs and Proofs.
Springer, 92–108.

Lukas Bulwahn. 2012b. Smart testing of functional programs in Isabelle. In International Conference on Logic for Program-
ming Artificial Intelligence and Reasoning. Springer, 153–167.

James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris. 2010. The gentle art of levitation. In Proceeding
of the 15th ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA,
September 27-29, 2010, Paul Hudak and Stephanie Weirich (Eds.). ACM, 3–14. https://doi.org/10.1145/1863543.1863547

Koen Claessen, Jonas Duregård, and Michal H. Palka. 2015. Generating constrained random data with uniform distribution.
J. Funct. Program. 25 (2015). https://doi.org/10.1017/S0956796815000143

Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In Pro-
ceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal, Canada,
September 18-21, 2000, Martin Odersky and Philip Wadler (Eds.). ACM, 268–279. https://doi.org/10.1145/351240.351266

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

https://doi.org/10.1145/2428116.2428118
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.731590
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1017/S0956796815000143
https://doi.org/10.1145/351240.351266

Generic Enumerations: Completely, Fairly 1:19

Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. 2012. HipSpec: Automating Inductive Proofs of
Program Properties.. In ATx/WInG@ IJCAR. 16–25.

Koen Claessen, Nicholas Smallbone, and John Hughes. 2010. QuickSpec: Guessing Formal Specifications Using Testing. In
Tests and Proofs - 4th International Conference, TAP@TOOLS 2010, Málaga, Spain, July 1-2, 2010. Proceedings (Lecture Notes
in Computer Science), Gordon Fraser and Angelo Gargantini (Eds.), Vol. 6143. Springer, 6–21. https://doi.org/10.1007/978-
3-642-13977-2_3

Coq Development Team. 2020. The Coq Proof Assistant Reference Manual. Available at https://coq.inria.fr/doc/.
Pierre-Évariste Dagand. 2013. A cosmology of datatypes : reusability and dependent types. Ph.D. Dissertation. University of

Strathclyde, Glasgow, UK. http://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22713
Pierre-Évariste Dagand and Conor McBride. 2012. Transporting functions across ornaments. In ACM SIGPLAN Interna-

tional Conference on Functional Programming, ICFP’12, Copenhagen, Denmark, September 9-15, 2012, PeterThiemann and
Robby Bruce Findler (Eds.). ACM, 103–114. https://doi.org/10.1145/2364527.2364544

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean
Theorem Prover (System Description). In Automated Deduction - CADE-25 - 25th International Conference on Automated
Deduction, Berlin, Germany, August 1-7, 2015, Proceedings (Lecture Notes in Computer Science), Amy P. Felty and Aart
Middeldorp (Eds.), Vol. 9195. Springer, 378–388. https://doi.org/10.1007/978-3-319-21401-6_26

Maxime Dénès, , Cătălin Hriţcu, Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C Pierce. 2014. QuickChick:
Property-based testing for Coq. In The Coq Workshop.

Dominique Devriese and Frank Piessens. 2011. On the bright side of type classes: instance arguments in Agda. In Proceeding
of the 16th ACM SIGPLAN international conference on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-
21, 2011, Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy (Eds.). ACM, 143–155. https://doi.org/10.1145/
2034773.2034796

Jonas Duregård, Patrik Jansson, and Meng Wang. 2012. Feat: functional enumeration of algebraic types. In Proceedings of
the 5th ACM SIGPLAN Symposium on Haskell, Haskell 2012, Copenhagen, Denmark, 13 September 2012, Janis Voigtländer
(Ed.). ACM, 61–72. https://doi.org/10.1145/2364506.2364515

Peter Dybjer, Qiao Haiyan, andMakoto Takeyama. 2005. RandomGenerators for Dependent Types. InTheoretical Aspects of
Computing - ICTAC 2004, Zhiming Liu and Keijiro Araki (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 341–355.

Burke Fetscher, Koen Claessen, Michal H. Palka, John Hughes, and Robert Bruce Findler. 2015. Making Random Judgments:
Automatically Generating Well-Typed Terms from the Definition of a Type-System. In Programming Languages and
Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences onTheory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes in Computer Science), Jan
Vitek (Ed.), Vol. 9032. Springer, 383–405. https://doi.org/10.1007/978-3-662-46669-8_16

Qiao Haiyan. 2007. Testing and Proving Distributed Algorithms in Constructive Type Theory. In Tests and Proofs - 1st
International Conference, TAP 2007, Zurich, Switzerland, February 12-13, 2007. Revised Papers (Lecture Notes in Computer
Science), Yuri Gurevich and Bertrand Meyer (Eds.), Vol. 4454. Springer, 79–94. https://doi.org/10.1007/978-3-540-73770-
4_5

Ralf Hinze, Andres Löh, and Bruno C. d. S. Oliveira. 2006. ”Scrap Your Boilerplate” Reloaded. In Functional and Logic
Programming, 8th International Symposium, FLOPS 2006, Fuji-Susono, Japan, April 24-26, 2006, Proceedings (Lecture Notes
in Computer Science), Masami Hagiya and Philip Wadler (Eds.), Vol. 3945. Springer, 13–29. https://doi.org/10.1007/
11737414_3

R. John Muir Hughes. 1986. A novel representation of lists and its application to the function “reverse”. Information
processing letters 22, 3 (1986), 141–144. https://doi.org/{10.1016/0020-0190(86)90059-1}

Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. 2018. Generating good generators for inductive
relations. Proc. ACM Program. Lang. 2, POPL (2018), 45:1–45:30. https://doi.org/10.1145/3158133

Max S. New, Burke Fetscher, Robert Bruce Findler, and Jay McCarthy. 2017. Fair enumeration combinators. Journal of
Functional Programming 27 (2017), e19. https://doi.org/10.1017/S0956796817000107

Ulf Norell. 2009. Dependently typed programming in Agda. In Proceedings of TLDI’09: 2009 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, Savannah, GA, USA, January 24, 2009, Andrew Kennedy
and Amal Ahmed (Eds.). ACM, 1–2. https://doi.org/10.1145/1481861.1481862

Michal H. Palka, Koen Claessen, Alejandro Russo, and John Hughes. 2011. Testing an optimising compiler by generating
random lambda terms. In Proceedings of the 6th InternationalWorkshop on Automation of Software Test, AST 2011,Waikiki,
Honolulu, HI, USA, May 23-24, 2011, Antonia Bertolino, Howard Foster, and J. Jenny Li (Eds.). ACM, 91–97. https://doi.
org/10.1145/1982595.1982615

Zoe Paraskevopoulou, Cătălin Hriţcu, Maxime Dénès, Leonidas Lampropoulos, and Benjamin C Pierce. 2015. Foundational
property-based testing. In International Conference on Interactive Theorem Proving. Springer, 325–343.

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. Smallcheck and lazy smallcheck: automatic exhaustive
testing for small values. In Proceedings of the 1st ACM SIGPLAN Symposium on Haskell, Haskell 2008, Victoria, BC, Canada,

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

https://doi.org/10.1007/978-3-642-13977-2_3
https://doi.org/10.1007/978-3-642-13977-2_3
https://coq.inria.fr/doc/
http://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22713
https://doi.org/10.1145/2364527.2364544
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1145/2034773.2034796
https://doi.org/10.1145/2034773.2034796
https://doi.org/10.1145/2364506.2364515
https://doi.org/10.1007/978-3-662-46669-8_16
https://doi.org/10.1007/978-3-540-73770-4_5
https://doi.org/10.1007/978-3-540-73770-4_5
https://doi.org/10.1007/11737414_3
https://doi.org/10.1007/11737414_3
https://doi.org/{10.1016/0020-0190(86)90059-1}
https://doi.org/10.1145/3158133
https://doi.org/10.1017/S0956796817000107
https://doi.org/10.1145/1481861.1481862
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.1145/1982595.1982615

1:20 Anon.

25 September 2008, Andy Gill (Ed.). ACM, 37–48. https://doi.org/10.1145/1411286.1411292
Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bhar-

gavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue, and Santiago Zanella Béguelin.
2016. Dependent types and multi-monadic effects in F. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík
and Rupak Majumdar (Eds.). ACM, 256–270. https://doi.org/10.1145/2837614.2837655

Paul Tarau. 2015. On Type-directed Generation of Lambda Terms. In Proceedings of the Technical Communications of the
31st International Conference on Logic Programming (ICLP 2015), Cork, Ireland, August 31 - September 4, 2015 (CEUR
Workshop Proceedings), Marina De Vos, Thomas Eiter, Yuliya Lierler, and Francesca Toni (Eds.), Vol. 1433. CEUR-WS.org.
http://ceur-ws.org/Vol-1433/tc_12.pdf

Paul Van Der Walt and Wouter Swierstra. 2012. Engineering proof by reflection in Agda. In Symposium on Implementation
and Application of Functional Languages. Springer, 157–173.

Alexey Rodriguez Yakushev and Johan Jeuring. 2009. Enumerating Well-Typed Terms Generically. In Approaches and Ap-
plications of Inductive Programming, Third International Workshop, AAIP 2009, Edinburgh, UK, September 4, 2009. Revised
Papers (Lecture Notes in Computer Science), Ute Schmid, Emanuel Kitzelmann, and Rinus Plasmeijer (Eds.), Vol. 5812.
Springer, 93–116. https://doi.org/10.1007/978-3-642-11931-6_5

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2021.

https://doi.org/10.1145/1411286.1411292
https://doi.org/10.1145/2837614.2837655
http://ceur-ws.org/Vol-1433/tc_12.pdf
https://doi.org/10.1007/978-3-642-11931-6_5

	Abstract
	1 Introduction
	2 Fair and complete enumeration
	2.1 Enumerator Combinators
	2.2 Fairly applicative & fairly monadic
	2.3 Recursive enumerators
	2.4 Enumerator completeness

	3 Generic enumeration of regular types
	3.1 Regular types
	3.2 A Generic Enumerator For Regular Types

	4 Generic Enumerators for Indexed Families
	4.1 Universe Definition
	4.2 A generic enumerator for indexed types

	5 Case study: enumerating lambda terms
	5.1 A description of well typed terms

	6 Discussion
	6.1 Related work
	6.2 Further work

	References

