
Translation Certification for Smart Contracts
Extended Abstract

Jacco Krijnen
j.o.g.krijnen@uu.nl
Utrecht University

Manuel M. T. Chakravarty
manuel.chakravarty@iohk.io

IOHK

Gabriele Keller
g.k.keller@uu.nl
Utrecht University

Wouter Swierstra
w.s.swierstra@uu.nl
Utrecht University

1 Introduction
Compiler correctness is an old problem that has received
renewed interest in the context of smart contracts — that is,
compiled code on public blockchains, such as Ethereum or
Cardano, that often controls significant amounts of finan-
cial assets and can no longer be updated once it has been
committed to the blockchain. Bugs in smart contracts are
a significant problem in practice [1]. Recent work has also
established that smart contract language compilers can ex-
acerbate this problem [8, Section 3] (in this case, the Vyper
compiler). More specifically, the authors report (a) that they
did find bugs in the Vyper compiler that compromised smart
contract security and (b) that they performed verification on
generated code, because they were wary of compiler bugs.

Hence, to support reasoning about smart contract source
code, we need to get a handle on the correctness of smart
contract compilers. On top of that, we do also need a verifi-
able link between the source code and its compiled code to
prevent code substitution attacks.
Why? Because blockchain users typically engage with

contracts that have already been deployed as compiled code
by another party. Before committing financial resources to
such a contract, they need to check (a) that the compiled
code did indeed originate from the provided source code
and (b) that the compiler did not introduce any security
bugs. While compiler verification helps with Point (b), it
does not directly address Point (a). In contrast, a certifying
compiler [7] squarely addresses both points as it generates a
certificate of correct compilation together with the compiled
code. For a smart contract user, such a certificate serves as
a verifiable link between compiled code and its source as
well as assurance that the compilation process preserved the
source code semantics.
Hence, compiled code certification perfectly meets the

requirements of smart contracts; additionally, it is also easier
to realise for existing smart contract compilers that have not
been developed with verification in mind. They are typically
the product of constantly changing open-source projects,
where the compiler developers do not have the expertise to

TyDe ’21, 2021-08-22, online
2021.

keep a correctness proof of the compiler up to date during
the continuous evolution of the compiler. It appears more
plausible that we can retrofit and maintain a certifier for an
existing compiler than to verify such a compiler and keep the
proof of correctness up-to-date, while the compiler evolves —
at least, if we can realise the certification engine with a grey
box approach,where the certifier matches the general outline,
but not all of the implementation details of the compiler.
In this paper, we are reporting on our ongoing effort to

develop a certification engine for the on-chain code com-
piler of the Plutus smart contract system1 for the Cardano
blockchain.2 The Plutus Tx compiler compiles a subset of
Haskell to Plutus Core, a variant of System F𝜇𝜔 [3]. The Plutus
Core code is committed to the Cardano blockchain, constitut-
ing the definitive reference to any deployed smart contract.
Plutus Core programs are pure, self-contained functions

(i.e., they do not link to other code) and are passed informa-
tion about the validated transaction, such as the time range
during which it will be included in the blockchain. Programs
are run in an interpreter with call-by-value semantics, during
the transaction validation phase of the blockchain.
The Plutus Tx compiler is implemented as a plugin for

the widely-used, industrial-strength GHC Haskell compiler,
combining large parts of the GHC’s compilation pipeline
with custom translation steps to generate Plutus Core. In
this context, it seems infeasible to apply full-scale compiler
verification à la CompCert [6]. We will therefore outline how
we develop a certification engine that, using Coq, generates
a proof object, a compilation certificate, asserting the validity
of a Plutus Core program with respect to a given Plutus Tx
source contract. In addition to asserting the correct transla-
tion of this one program, the compilation certificate serves
as a verifiable link between source and generated code.

2 Chaining translation relations
We use a transitive chain of translation relations 𝑅𝑖 as wit-
nesses of the correct translation of a source AST 𝑡1 to a target
code AST 𝑡𝑛 via intermediate forms 𝑡𝑖 . To this end, we dump

1https://github.com/input-output-hk/plutus/
2http://cardano.org is, at the time of writing, the 4th largest public
blockchain by market capitalisation.

https://github.com/input-output-hk/plutus/
http://cardano.org


TyDe ’21, 2021-08-22, online Krijnen et al.

all the ASTs 𝑡1, . . . , 𝑡𝑛 of the compiler that we certify. The
ASTs and translation relations together with the compiler
passes 𝑓𝑖 are depicted in Figure 1, where the grey section
represents the compiler transforming one tree into another.
The orange section displays the translation relations 𝑅𝑖 , and
the blue section represents correctness proofs of the transla-
tion relations on the basis of the semantics of the underlying
intermediate languages.
We have implemented this approach for a range of con-

crete intermediate languages of the Plutus Tx compiler, but
we illustrate it here using only a simply-typed lambda calcu-
lus extended with non-recursive let-bindings.

2.1 Characterising a transformation
To assert the correctness of a single compiler stage 𝑓𝑖 , we
begin by defining a translation relation 𝑅𝑖 on a pair of source
and target terms 𝑡𝑖 and 𝑡𝑖+1, respectively. In other words, we
consider 𝑓𝑖 correct if

𝑓𝑖 (𝑡𝑖 ) = 𝑡𝑖+1 implies 𝑅𝑖 (𝑡𝑖 , 𝑡𝑖+1).
As a concrete example, consider inlining in the simply-

typed lambda calculus with non-recursive let-bindings. We

Figure 1. Architecture for a single compiler pass. The grey
area represents the compiler, orange and blue represent the
certification component in Coq

(𝑥, 𝑡 ′) ∈ Γ Γ ⊢ 𝑡 ′ ⊲ 𝑡
Γ ⊢ 𝑥 ⊲ 𝑡

[Inline-Var]

Γ ⊢ 𝑡1 ⊲ 𝑡 ′1 (𝑥, 𝑡1), Γ ⊢ 𝑡2 ⊲ 𝑡 ′2
Γ ⊢ let 𝑥 = 𝑡1 in 𝑡2 ⊲ let 𝑥 = 𝑡 ′1 in 𝑡 ′2

[Inline-Let]

Γ ⊢ 𝑡1 ⊲ 𝑡 ′1 Γ ⊢ 𝑡2 ⊲ 𝑡 ′2
Γ ⊢ 𝑡1 𝑡2 ⊲ 𝑡 ′1 𝑡 ′2

[Cong-App]

Γ ⊢ 𝑥 ⊲ 𝑥
[Cong-Var]

Γ ⊢ 𝑡1 ⊲ 𝑡 ′1
Γ ⊢ 𝜆𝑥 .𝑡1 ⊲ 𝜆𝑥.𝑡 ′1

[Cong-Abs]

Figure 2. Characterisation of an inliner

can characterise an inlining relation as in Figure 2. Here,
Γ ⊢ 𝑠 ⊲ 𝑡 asserts that 𝑠 can be translated into 𝑡 given an envi-
ronment Γ of let-bound terms. According to Rule [Inline-Var]
the variable 𝑥 may be replaced by 𝑡 when the pair (𝑥, 𝑡 ′) oc-
curs in Γ and 𝑡 ′ can be translated to 𝑡 , accounting for repeated
inlining. The rest are congruence rules, where Rule [Inline-
Let] also extends the environment Γ. We have omitted details
about handling variable capture for the sake of simplifity.
Crucially, these rules do not prescribe which variable oc-

currences should be inlined, since the [Inline-Var] and [Cong-
Var] rules overlap. This choice may rely on a complex set of
heuristics internal to the compiler. Instead, we merely define
a relation capturing the possible ways in which the compiler
may behave. This allows for a certification engine that is
robust with respect to changes in the compiler.

2.2 Proof search
Given a translation relation 𝑅𝑖 characterising one compiler
stage, we need a search procedure to prove (automatically)
whether any two terms 𝑡𝑖 and 𝑡𝑖+1 = 𝑓𝑖 (𝑡𝑖 ), produced by a
run of the compiler, are related as 𝑅𝑖 (𝑡𝑖 , 𝑡𝑖+1). Automating
this process typically proceeds in three steps:

1. We write proofs for specific compilations by hand us-
ing Coq’s tactics. For simple relations, like the inline
example sketched above, a proof can often be found
with a handful of tactics such as auto or constructor.
This is particularly useful for debugging the design of
our relations describing compiler passes. The draw-
back of this approach is, however, that it is difficult to
reason about the proof search from within Coq and it
quickly becomes slow for large terms.

2. Once we have some degree of confidence in the defined
relations, we invest in writing decision procedures of
type forall (t1 t2 : Term), option (R t1 t2).
These procedures can still produce large proof terms
and need not always succeed in constructing a proof,
but they form a useful intermediate step towards full-
on proof by reflection.

3. Finally, we write a boolean decision procedure in the
style of ssreflect [4], Term -> Term -> Bool, together
with a soundness proof stating that it will only return
truewhen two terms are related through 𝑅𝑖 . Verifying
such boolean functions for complex compilation passes
is non-trivial, hence we only invest this time and effort
once we have a reasonable degree of confidence that
the relation we have defined accurately describes a
given compiler pass.

Occasionally, the compiler may do more than one trans-
formation in a single pass. For example, the inlining phase
of the Plutus Tx compiler additionally performs dead code
elimination, removing dead bindings that have been inlined
exhaustively. Once we have modeled the individual transfor-
mations, we represent such complex passes using relational



Translation Certification for Smart Contracts TyDe ’21, 2021-08-22, online

composition, ∃𝑡2.𝑅1 (𝑡1, 𝑡2) ∧ 𝑅2 (𝑡2, 𝑡3). To construct a proof
relating two terms then amounts to also finding an interme-
diate term, 𝑡2, that witnesses the composite transformation.

2.3 Semantics preservation
We can verify the correctness properties for each transla-
tion relation 𝑅𝑖 separately and to varying degrees of fidelity.
In the simplest case, this could be asserting the preserva-
tion of a program’s static semantics, such as a proof of type
preservation. On the other end of the spectrum, we might
demonstrate that the semantics of the translated term is a
refinement of the original term’s full dynamic semantics.

In Figure 1, we characterise 𝑅𝑖 ’s correctness properties in
the blue area by way of refinement relations ∼𝑖 on the se-
mantic objects J𝑡𝑖K𝑖 of ASTs 𝑡𝑖 . We can do that independently
and incrementally for each step in the translation. In fact,
even without any formal proof about the semantics, man-
ual inspection of a translation relation may already improve
confidence into the correctness of a translation step. After
all, the translation relation may be considered an implicit
specification of this compiler pass’ admissible behaviour.

2.4 Certificate generation
A compilation certificate includes the entire set of ASTs
𝑡1, . . . , 𝑡𝑛 together with the proof objects witnessing the trans-
lation relations 𝑅𝑖 for these ASTs. In addition, it includes the
instantiated proofs of the refinement relation to produce a
single proof object.
This certificate together with the source code and com-

piled code can then be independently checked by a trusted
proof checker, such as the Coq kernel [2]. The proof itself
can be inspected to confirm it proves the right theorem. One
can then be confident that the compiled program is a faithful
translation of the original source code.

3 Preliminary results
We have begun to apply this approach with initial success to
the Plutus Tx compiler, which compiles a Haskell subset into
Plutus Core, a flavour of System F𝜇𝜔 with a well-defined se-
mantics [3]. The compiler consists of twomain parts: the first
one reuses various stages of GHC to compile the Haskell sub-
set to GHC Core — GHC’s principal intermediate language.
The second part compiles GHC Core to Plutus Core. As Plu-
tus Core is strict and doesn’t directly support datatypes,
both parts are quite complex. Moreover, both consist of a
significant number of successive transformation steps.
So far, we have focused our certification effort on the

second part, which is implemented as a GHC plugin trans-
lating GHC Core to PIR (Plutus Intermediate Representation)
and then PIR in a number of steps, including inlining, dead
code elimination and datatype encodings [5], to Plutus Core.
We have now developed translation relations for the entire
process from PIR to Plutus Core in Coq.

In our experience, specifying the translation steps with re-
lations is vastly simpler than the logic and analyses required
to implement them in the compiler. For example, characteris-
ing dead code elimination requires a simple condition on the
free variables, whereas the implementation of such a pass
needs to maintain a dependency graph.

Moreover, this grey box approach, where we characterise
the individual transformation steps by translation relations,
without detailing how these steps are implemented in the
compiler is proving helpful. After all, the Plutus Tx compiler
is being further developed and maintained by a development
team at IOHK, largely independently of our certification
effort. To pick an example, our translation relation for the in-
liner admits any valid inlining. Improvements of the compiler
heuristics to produce more efficient programs by being selec-
tive about what precisely to inline don’t affect the inliner’s
translation relation, and hence, don’t affect the certifier.

It is worth mentioning that Plutus Tx is a whole-program
compiler : all code that will be run is known at compile-time
and this fact can be used for more precise program analyses
than most other compilers. We therefore expect that its opti-
misation passes will be subject to change and may include
more more aggressive optimisation strategies.
In summary, the advantages that we are seeing with this

approach so far are thus:

• Incremental development: we can develop the transla-
tion relation for each phase together with the corre-
sponding search procedures and its metatheory sepa-
rately. Furthermore, with just the translation relation
and its search procedure (and without the metathe-
ory), we already have got an implicit specification of
the admissible outputs of that compilation step. This
provides a first, independent assurance of the correct-
ness of one phase. Hence, we could choose to only
invest in working out the details of the metatheory for
particular critical or difficult transformation steps.

• Robust architecture: as illustrated with the example
of the inliner above, the certifier is independent of
many specifics of the compiler implementation. Hence,
many refactorings and performance improvements of
existing passes should not have any effect on the proof
infrastructure.

We have implemented the necessary relations and proof
searches for some small programs, so that we can recognise
their compilation from PIR up until their final form in Plutus
Core. These programs implement simple contracts such as
a time lock. Not all compiler transformations are covered
in their full generality yet. For example, programs defining
(mutually) recursive datatypes are not yet recognised dur-
ing their encoding. We have started the verification of key
components of the translation and are investigating different
ways to scale up the proof search for larger programs.



TyDe ’21, 2021-08-22, online Krijnen et al.

References
[1] N. Atzei, M. Bartoletti, and T. Cimoli. 2017. A Survey of Attacks on

Ethereum Smart Contracts (SoK). In Principles of Security and Trust
(POST 2017) (LNCS), Vol. 10204.

[2] Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and
program development: Coq’Art: the calculus of inductive constructions.
Springer Science & Business Media.

[3] J. Chapman, R. Kireev, C. Nester, and P. Wadler. 2019. System F in Agda,
for Fun and Profit. In Mathematics of Program Construction (MPC 2019)
(LNCS), Vol. 11825.

[4] Georges Gonthier and Roux Stéphane Le. 2009. An Ssreflect Tutorial.
Ph.D. Dissertation. INRIA.

[5] Michael Peyton Jones, Vasilis Gkoumas, Roman Kireev, Kenneth
MacKenzie, Chad Nester, and Philip Wadler. 2019. Unraveling recursion:
compiling an IR with recursion to System F. In International Conference
on Mathematics of Program Construction. Springer, 414–443.

[6] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer,
Markus Pister, and Christian Ferdinand. 2016. CompCert-a formally
verified optimizing compiler. In ERTS 2016: Embedded Real Time Software
and Systems, 8th European Congress.

[7] George C. Necula and Peter Lee. 2004. The Design and Implementation
of a Certifying Compiler. SIGPLAN Not. 39, 4 (April 2004), 612–625.

[8] D. Park, Y. Zhang, and G. Rosu. 2020. End-to-End Formal Verification
of Ethereum 2.0 Deposit Smart Contract. In Computer Aided Verification
(CAV 2020) (LNCS), Vol. 12224.


	1 Introduction
	2 Chaining translation relations
	2.1 Characterising a transformation
	2.2 Proof search
	2.3 Semantics preservation
	2.4 Certificate generation

	3 Preliminary results
	References

