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Abstract. Compiler correctness is an old problem, but with the emer-
gence of smart contracts on blockchains that problem presents itself in
a new light. Smart contracts are self-contained pieces of software that
control (valuable) assets in an adversarial environment; once commit-
ted to the blockchain, these smart contracts cannot be modified. Smart
contracts are typically developed in a high-level contract language and
compiled to low-level virtual machine code before being committed to the
blockchain. For a smart contract user to trust a given piece of low-level
code on the blockchain, they must convince themselves that (a) they are
in possession of the matching source code and (b) that the compiler has
correctly translated the source code to the given low-level code.
Classic approaches to compiler correctness tackle the second point. We
argue that translation certification also squarely addresses the first. We
describe the proof architecture of a novel translation certification frame-
work, implemented in Coq, for a functional smart contract language. We
demonstrate that we can model the compilation pipeline as a sequence of
translation relations that facilitate a modular verification methodology
and are robust in the face of an evolving compiler implementation.

1 Introduction

Compiler correctness is an old problem that has received renewed interest in
the context of smart contracts — that is, compiled code on public blockchains,
such as Ethereum or Cardano. This code often controls a significant amount of
financial assets, must operate under adversarial conditions, and can no longer be
updated once it has been committed to the blockchain. Bugs in smart contracts
are a significant problem in practice [5]. Recent work has also established that
smart contract language compilers can exacerbate this problem [23, Section 3] (in
this case, the Vyper compiler). More specifically, the authors report (a) that they
did find bugs in the Vyper compiler that compromised smart contract security
and (b) that they performed verification on generated low-level code, because
they were wary of compiler bugs.

Hence, to support reasoning about smart contract source code, we need to
get a handle on the correctness of smart contract compilers. On top of that, we
do also need a verifiable link between the source code and its compiled code
to prevent code substitution attacks, where an adversary presents the user with
source code that doesn’t match the low-level code committed on-chain.

In this paper, we are reporting on our ongoing effort to develop a certification
engine for the open-source on-chain code compiler of the Plutus smart contract
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system1 for the Cardano blockchain.2 Specifically, we make the following contri-
butions:

– We describe a novel architecture for a translation certifier based on trans-
lation relations, which enables us to generate translation certificates—proof
objects that relate the source code to the resulting compiled code and es-
tablish the correctness of the translation (Section 2).

– We provide formal definitions for the transformation passes that step-by-step
translate PIR (Plutus Intermediate Representation) to PLC (Plutus Core)
and briefly discuss the challenges associated with the certification of each of
these passes (Section 3).

– We present a taxonomy of existing approaches to compiler correctness and
discuss the importance of generating translation certificates in the domain
of smart contracts (Section 4).

We also evaluate how our approach to incremental certification copes with changes
to the compiler, which is being developed in an independent open source project.
Finally, we discuss related work in Section 5 and future work in Section 6.

2 The Architecture of the Certifier

On-chain code in the Plutus smart contract system is written in a subset of
Haskell called Plutus Tx. The Plutus Tx compiler is implemented as a plugin
for the widely-used, industrial-strength GHC Haskell compiler, combining large
parts of the GHC’s compilation pipeline with custom translation steps to gener-
ate Plutus Core. In this context, it seems infeasible to apply full-scale compiler
verification à la CompCert [18]. We will therefore outline the design of a certi-
fication engine that, using the Coq proof assistant, generates a proof object, a
translation certificate, asserting the validity of a Plutus Core program with re-
spect to a given Plutus Tx source contract. In addition to asserting the correct
translation of this one program, the translation certificate serves as a verifiable
link between source and generated code.

We model the compiler as a composition of pure functions that transform
one abstract syntax tree into another. Figure 1 illustrates the architecture for a
single transformation, where the gray area marks the compiler implementation as
a function fi : ASTi → ASTi+1. We use a family of types ASTi to illustrate that
the representation of the abstract syntax might change after each transformation.

To support certification, the compiler outputs each intermediate tree ti, so
that we can parse these in our Coq implementation of the certifier. Within Coq,
we define a high-level specification of each pass. We call this specification a
translation relation: a binary relation on abstract syntax trees that specifies the
intended behaviour of the compiler pass. The orange area in Figure 1 displays

1 https://developers.cardano.org/docs/smart-contracts/plutus/
2 http://cardano.org is, at the time of writing, the 5th largest public blockchain by

market capitalisation.
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Fig. 1. Architecture for a single compiler pass. The grey area represents the compiler,
orange and blue represent the certification component in Coq.

the translation relation Ri of pass i, where the vertical dashed line indicates that
Ri(ti, ti+1) holds. To establish this, we define a search procedure that, given two
subsequent trees produced by the compiler, can construct a derivation relating
the two.

The translation relation is purely syntactic—it does not assert anything
about the correctness of the compiler—but rather specifies the behaviour of
a particular compiler pass. To verify that the compilation preserves language se-
mantics requires an additional proof, the blue area in Figure 1, that establishes
that any two terms related by Ri have the same semantics.

We have implemented this approach for a range of concrete passes of the
Plutus Tx compiler. To illustrate our approach in this section, we will use an
untyped lambda calculus, extended with non-recursive let-bindings.

t ::= x | λx. t | t t | let x = t in t

In the following section, we will extend this to a lambda calculus that is closer
to the intermediate language used by the Plutus Tx compiler.

2.1 Characterising a transformation

To assert the correctness of a single compiler stage fi, we begin by defining a
translation relation Ri on a pair of source and target terms ti and ti+1, respec-
tively. This relation characterises the admissible translations of that compiler
stage. That is, for all ti, ti+1, we have fi(ti) = ti+1 implies Ri(ti, ti+1).

As a concrete example, consider an inlining pass. We have characterised this
as an inductively defined relation in Figure 2. Here, Γ ` s . t asserts that pro-
gram s can be translated into t given an environment Γ of let-bound variables,
paired with their definition. According to Rule [Inline-Var] the variable x may
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Γ(x) = t′ Γ ` t′ . t
Γ ` x . t [Inline-Var]

Γ ` t1 . t′1 (x, t1), Γ ` t2 . t′2
Γ ` let x = t1 in t2 . let x = t′1 in t′2

[Inline-Let]

Γ ` t1 . t′1 Γ ` t2 . t′2
Γ ` t1 t2 . t′1 t′2

[Cong-App]

Γ ` x . x [Cong-Var]

Γ ` t1 . t′1
Γ ` λx.t1 . λx.t′1

[Cong-Abs]

Fig. 2. Characterisation of an inliner

be replaced by t when the pair (x, t′) can be looked up in Γ and t′ can be trans-
lated to t, accounting for repeated inlining. The remaining rules are congruence
rules, where Rule [Inline-Let] also extends the environment Γ . We omitted de-
tails about handling variable capture to keep the presentation simple: hence, we
assume that variable names are globally unique.

Crucially, these rules do not prescribe which variable occurrences should be
inlined, since the [Inline-Var] and [Cong-Var] rules overlap. The choice in the
implementation of the pass may rely on a complex set of heuristics internal to
the compiler. Instead, we merely define a relation capturing the possible ways
in which the compiler may behave. This allows for a certification engine that is
robust with respect to changes in the compiler, such as the particular heuristics
used to decide when to replace a variable with its definition or not.

We can now encode the relation as an indexed algebraic datatype in Coq, as
shown in Figure 3. Here, we use a de Bruijn representation for variables. The
environment is extended at both Inl_Lam and Inl_Let, shifting any previous
references in the old environment.

2.2 Proof search

After defining a translation relation Ri characterising one compiler stage, we
now define a search procedure to construct a proof that for two particular terms
ti and ti+1, produced by a run of the compiler, the relation Ri(ti, ti+1) holds.
To find and implement such a search procedure, we generally follow these steps:

1. We write proofs for specific compilations by hand using Coq’s tactics. For
simple relations, like the inline example sketched above, a proof can often
be found with a handful of tactics such as auto or constructor. This is
particularly useful for debugging the design of our relations describing com-
piler passes. The drawback of this approach is, however, that it is difficult to
reason when such proof search may fail. Furthermore, proofs written using
such tactics quickly become slow for large terms.
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Inductive Inline : Env -> Term -> Term -> Type :=

| Inl_Lam : forall {env s t},

Inline (LambdaBound :: shiftEnv env) s t ->

Inline env (Lam s) (Lam t)

| Inl_App : forall {env s sx t tx},

Inline env s t -> Inline env sx tx ->

Inline env (App s sx) (App t tx)

| Inl_Let : forall {env s t s' t'},

Inline env s s' ->

Inline (LetBound s :: shiftEnv env) t t' ->

Inline env (Let s t) (Let s' t')

| Inl_Var : forall {env n},

Inline env (Var n) (Var n)

| Inl_Inl : forall {env n t},

nth_error env n = Some (LetBound t) ->

Inline env (Var n) t

Fig. 3. Characterisation of an inliner in Coq

2. Once we are sufficiently confident that a relation accurately captures admis-
sible compiler behaviour, we write a decision procedure of the form forall

(t1 t2 : Term), option (R t1 t2). These procedures can still produce
large proof terms and may not always successfully construct a proof, but
they form a useful intermediate step towards full-on proof by reflection.

3. Finally, we write a boolean decision procedure in the style of ssreflect [15] of
type Term -> Term -> Bool, together with a soundness proof stating that
it will only return true when two terms are related through Ri. Verifying
such boolean functions for complex compilation passes is non-trivial; hence,
we only invest the effort once we have a reasonable degree of confidence that
the relation we have defined accurately describes a given compiler pass.

2.3 Semantics preservation

Given the relational specification of each individual compiler pass, we can now
establish the correctness properties for each pass. In the simplest case, this could
be asserting the preservation of a program’s static semantics, i.e., a proof of type
preservation. On the other end of the spectrum, we can demonstrate that the
translated term is is semantically equivalent to the original program. Proving
such properties for Plutus, however, requires advanced techniques such as step-
indexed logical relations [2], which go beyond the scope of the current paper.

In Figure 1, we denote Ri’s correctness properties in the blue area by means
of an abstract binary relation ∼i on the semantic objects JtiKi of ASTs ti. In the
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case of static semantics, we can choose typing derivations as semantic objects,
and (for most passes) relate these by simply comparing types syntactically.

We can construct these proofs independently and incrementally for each step
in the translation. In fact, even without any formal proof about the semantics,
manual inspection of a translation relation may already provide some degree of
confidence that the translation step is correct. After all, the translation relation
asserts the specification of this compiler pass’ admissible behaviour.

2.4 Certificate generation

A complete translation certificate includes the entire set of ASTs t1, . . . , tn to-
gether with the proof objects witnessing the translation relations Ri for these
ASTs. In addition, it includes the instantiated proofs of the refinement relation
to produce a single proof object.

This certificate together with the source and compiled code can be indepen-
dently checked by a trusted proof checker, such as the Coq kernel [8]. The proof
itself can be inspected to confirm it proves the right theorem. One can then be
confident that the compiled program is a faithful translation of the source code.

3 Translation Relations of the Plutus Tx Compiler

The Plutus Tx compiler translates a subset of Haskell to Plutus Core, a variant of
System Fµω [12]. The Plutus Core code is committed to the Cardano blockchain,
constituting the definitive reference to any deployed smart contract.

Plutus Core programs are pure, self-contained functions (i.e., they do not
link to other code) and are passed a representation of the transaction whose
validation they contribute to. The programs are run by an interpreter during
the transaction validation phase of the blockchain.

The Plutus Tx compiler itself is implemented as a core-to-core pass plugin [13]
in the GHC compiler pipeline. On a high level, the compiler comprises three
steps:

1. The parsing, type-checking and desugaring phase of GHC are reused to ob-
tain a GHC Core program.

2. An large subset of GHC Core is transformed into an intermediate language
named Plutus Intermediate Representation (PIR). All referred definitions
are included so that the program is self-contained.

3. The PIR program is then transformed and compiled down into Plutus Core

The certification effort reported here focuses on Step 3, which consists of several
optimisation passes and translation steps. PIR is a superset of the Plutus Core
language: it adds several conveniences, such as user-defined datatypes, strict and
non-strict let-bindings that may be (mutually) recursive. The compilation steps
translate these constructs into simpler language constructs.

In Figure 4 we present a simplified version of the PIR syntax, where we omit
some constructs for the sake of presentation. The full PIR language specification
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t ::= x | λ(x : τ). t | t t variable, lambda, function application

| Λ(α : κ). t | t {τ} type abstraction, type application

| letsr x = t in t term bindings

| data T α = Ci τi with x in t datatype binding

r ::= rec | nonrec recursion type of binding

s ::= strict | nonstrict strictness of binding

τ ::= . . . types

Fig. 4. Simplified PIR

has been formalised elsewhere [12, 16]. In particular, we ignore the fact that in
PIR, let-bindings may contain a group of (mutually recursive) bindings. Simi-
larly, we do not include mutually-recursive datatypes. Furthermore, we omit the
syntax of types, and the term-level witnesses of iso-recursive types. We occasion-
ally omit type annotations, when they are not relevant.

We introduce the individual compiler passes that the Plutus compiler per-
forms using the following Haskell program to illustrate their behaviour:

-- | Either a specific end date, or "never".

data EndDate = Fixed Integer | Never

pastEnd :: EndDate -> Integer -> Bool

pastEnd end current =

let inlineMe = False

in case end of

Fixed n -> (let floatMe = if current `greaterThanEqInteger` 0

then n else 0 in floatMe) `lessThanEqInteger` current

Never -> inlineMe

This program is a basic implementation of a timelock, a contract that states
that funds may be moved after a certain date, or not at all. It contains a few
contrived bindings (inlineMe and floatMe) that will be useful to illustrate some
transformations. After the program is desugared to GHC Core, it is converted
to a term in PIR that corresponds to the following Simplified PIR term:

data Bool = True | False with Bool_match in

data Unit = Unit with Unit_match in

let nonrec strict lessThanEqInteger = ... in

data EndDate = Fixed Integer | Never with EndDate_match in

\(end : EndDate).

\(current : Integer).

let nonrec nonstrict inlineMe = False in
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EndDate_match end

(\unit n -> lessThanEqInteger

(let nonrect nonstrict floatMe =

Bool_match (greaterThanEqInteger current 0)

(\unit -> n) (\unit -> 0)

Unit

in floatMe)

current)

(\unit -> inlineMe)

Unit

Note that case distinction of a type T is encoded as the application of a pattern
match function T_match, which is introduced as part of a data definition. Fur-
thermore, branches of a case distinction are delayed by abstracting over a unit
value, since PIR is a strict language.

Next we will discuss the compiler passes, we have included each intermediate
form of the above program with some commentary in Appendix A.

3.1 Variable Renaming

The renaming pass transforms a program into an α-equivalent program, with
globally unique names. The correctness of some subsequent transformations
depends on this property. We can express this pass as a translation relation
∆ ` t .α t′, stating that under the renaming environment ∆ (consisting of pairs
of variables), t is renamed to t′. The environment ∆ records all variables that
are in scope in t, paired with their corresponding name in t′.

The case for lambda abstractions is defined as follows:

(x, y),∆ ` t .α t′ {z | (z, y) ∈ ∆} ∩ FV (t) = ∅
∆ ` λx.t .α λy.t′

[Rename-Abs]

The [Rename-Abs] rule states that a lambda-bound variable may be renamed
at its binding-site, when t and t′ are related under the extended environment.
Additionally, the new name y should not capture any free variable that is also
renamed to y. Very similar rules can be stated for other binding constructs such
as let. Note that the variables x and y may be equal, in which case no renaming
was performed.

The variable case simply follows from the environment ∆:

(x, y) ∈ ∆
[Rename-Var]

∆ ` x .α y

3.2 Inlining

The rules of the translation relation for inlining in PIR are similar to those in Sec-
tion 2.1. However, the Plutus Tx compiler does more than just inlining let-bound
definitions. It also performs dead-code elimination (removing those let-bindings



Translation Certification for Smart Contracts 9

that have been inlined exhaustively) and it renames variables to ensure the global
uniqueness of bound variables, also known as the Barendregt-convention. This
introduces a problem for our certification approach, as we cannot observe and
dump the intermediate ASTs, since the transformations are fused into a single
pass in the compiler.

We solve this by modeling the individual transformations, composing them
using relational composition, ∃t2.R1(t1, t2)∧R2(t2, t3). To construct a proof relat-
ing two terms, then amounts to also finding the intermediate term, t2 witnessing
the composite transformation. To simplify the search of this intermediate AST,
we adjust the compiler to emit supporting information about the performed pass;
in this case, a list of the eliminated variables. If the compiler emits incorrect in-
formation, we may fail to construct a certificate, but we will never produce an
incorrect certificate.

3.3 Let-floating

During let-floating, let-bindings can be moved upwards in the program. This
may save unnecessarily repeated computation and makes the generated code
more readable. The Plutus compiler constructs a dependency graph to maintain
a correct ordering when multiple definitions are floated. For the translation re-
lation, we first consider the interaction of a let expression with its parent node
in the AST. For example, consider the case of a lambda with a non-strict let

directly under it:

x /∈ FV (t1) x 6= y t1 .let t′1 t2 .let t′2
[Float-Let-Lam]

λx.letnonstrictr y = t1 in t2
.let

letnonstrictr y = t′1 in λx.t′2

This rule states that a non-strict let-binding may float up past a lambda, if the
bound term does not reference the lambda-bound variable. Furthermore, we re-
quire x 6= y, to avoid variable capture in t2. This rule does not apply to strict

let-bindings, as floating them outside a lambda might change termination be-
haviour of the program. Similar rules then express when a let may float upwards
past the other language constructs. Most of these are much simpler, only binding
constructs pose additional constraints on scoping and strictness. Since the com-
piler pass may float lets more than just one step up, we define the translation
relation as the transitive closure of .let. Note that we do not need to maintain a
dependency graph in the certifier, but only need to assert that transformations
do not break dependencies.

3.4 Dead-code elimination

By means of a live variable analysis, the compiler determines which let-bound
definitions are unused. This is mainly useful for definitions that are introduced
by other compiler passes. Since PIR is a strict language, however, the compiler
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can only eliminate those bindings for which it can determine they have no side-
effects. For example, a let-bound expression that is unused but diverges cannot
be removed, as that could change the termination behaviour of the program.

The analysis in the compiler is not as straightforward as counting occurences.
Even a let-bound variable that does occur in the code, may be dead-code, if it
is only used in other dead bindings. This is also known as strongly live variable
analysis [14]. We define a translation relation t .dce t

′ that captures dead code
elimination. The crucial rule is for let-bindings.

t2 .dce t
′
2 x /∈ FV (t′2)

let nonstrict
r x = t1 in t2 .dce t′2

[DCE-Let-nonstrict]

Note that the condition x /∈ FV (t′2) mentions the resulting body of the let t′2.
This is justified since the rules of .dce can remove bindings only, but cannot
change any other language constructs. This illustrates how succinct we can de-
scribe the specification of a complex compiler pass.

In practice, the Plutus compiler also eliminates some strict bindings that
obviously do not diverge, such as values.

3.5 Encoding of non-strict bindings

The PIR language allows both for strict and non-strict let-bindings, but Plutus
Core does not. The thunking transformation is used to obtain semantic equivalent
definitions which use a strict let-binding. We define the rules as a relation Γ `
t .() t

′, where Γ records for every bound variable whether it was bound strictly
or non-strictly. The rule for a non-strict binding site is:

Γ ` t1 .() t′1
(x, nonstrict), Γ ` t2 .() t′2 y /∈ FV (t1)

[Thunk-Let-nonstrict]
let nonstrict

nonrec x = t1 in t2
.()

let strict
nonrec x = λunit. t′1 in t′2

This rule states that a right hand side is thunked by introducing a lambda
abstraction that expects a trivial unit value as its argument.

The rules for other variable binders extend Γ . The rule for a recursive let-
binding also extends the environment under which t1 is transformed. Finally, we
also replace the occurrences of nonstrict variables, adding an application to the
unit value, thereby forcing evaluation.

(x, nonstrict) ∈ Γ
[Thunk-Var]

∆ ` x .() x ()

3.6 Encoding of recursive bindings

The Plutus compiler translates (mutually) recursive let-bindings in non-recursive
ones using fixpoint combinators. Here we only consider the rule for individual
recursive lets in simplified PIR:
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t1 .µ t′1 t2 .µ t′2 y /∈ FV (t1)
[EncRec-Let]

let s
rec x = t1 in t2

.µ

let strict
nonrec fix = ... in let s

nonrec x = fix (λx. t′1) in t′2

This rule relates recursive bindings to non-recursive ones, and expects an explicit
definition of the fixpoint operator as well. Since PIR has no primitive construct
for term-level fix-points, the compiler generates a definition fix . Note that fix is
defined in a non-recursive let, its construction relies on recursive types [16].

The actual transformation for PIR is much more involved, since mutually
recursive binding groups require a more involved fixpoint combinator of which
the definition depends on the size of the group.

3.7 Encoding of datatypes

Datatype definitions are encoded using lambda and type abstractions according
to the Scott encoding [1]. To show the idea of the rather general .data translation
relation, we show a rule specialised to the Maybe datatype.

t .data t′
[Scott-Maybe]

data Maybe α = Just α | Nothing with maybe in t
.data

(ΛMaybe.λJust.λNothing.λmaybe. t′) τMaybe tJust tNothing tmaybe

The [Scott-Maybe] rule relates the datatype definition to a term that abstracts
over the type Maybe, its constructors Just and Nothing and the matching
function maybe, which are each lambda encoded. For the exact definitions of
τMaybe, tJust, tNothing and tmaybe we refer to the general formalisation of PIR [16].

3.8 Encoding of non-recursive bindings

A non-recursive let-binding is simply compiled into a β redex:

t1 .β t′1 t2 .β t′2
let strict

nonrec x = t1 in t2 .β (λx. t′2) t′1
[Redex-Let]

Note that at this point in the compiler pipeline, let strict
nonrec is the only type of

let-binding that can still occur.

4 Evaluation

In this section, we evaluate our approach to proof engineering for an indepen-
dently developed, constantly evolving compiler under the application constraints
imposed by smart contracts.
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4.1 Compilers and correctness

The standard approach to compiler correctness is full compiler verification: a
proof that asserts that the compiler is correct as it demonstrates that, for any
valid source program, the translation produces a semantically equivalent target
program. Examples of this approach include the CompCert [18] and CakeML [17]
projects, showing that (with significant effort) it is possible to verify a compiler
end-to-end. To do so, the compiler is typically implemented in a language suitable
for verification, such as the Coq proof assistant or the HOL theorem prover.

In contrast, the technique that we propose for the Plutus compiler is based
on translation validation [24]. Instead of asserting an entire compiler correct,
translation validation establishes the correctness of individual compiler runs.

A statement of full compiler correctness is, of course, the stronger of the
two statements. Translation validation may fail to assert the correctness of some
compiler runs; either because the compiler did not produce correct code or be-
cause the translation certifier is incomplete. In exchange for being the weaker
property, translation validation is potentially (1) less costly to realise, (2) easier
to retrofit to an existing compiler, and (3) more robust in the face of changes to
the compiler.

The idea of proof-carrying code [20] is closely related to translation validation,
shifting the focus to compiled programs, rather than the compiler itself. A pro-
gram is distributed together with a proof of a property such as memory or type
safety. Such a proof excludes certain classes of bugs and gives direct evidence
to the users of such a program, who may independently check the proof before
running it. Our certification effort, while related, differs in that we keep proof
and program separate and in that we are interested in full semantic correctness
and not just certain properties like memory and type safety.

4.2 Certificates and smart contracts

Smart contracts often manage significant amounts of financial and other assets.
Before a user engages with such a contract, which has been committed to the
blockchain as compiled code, they may want to inspect the source code to assert
that it behaves as they expect. In order to be able to rely on that inspection,
they need to know without doubt that (1) they are looking at the correct source
code and (2) that the source code has been compiled correctly.

While a verified smart contract compiler addresses the second point, it doesn’t
help with the first without an infrastructure of reproducibility. In contrast, a
certifying compiler [21] that generates an independently verifiable certificate of
correct translation, squarely addresses both points. By verifying a smart con-
tract’s translation certificate, a smart contract user can convince themselves that
they are in possession of the matching source code and that this was correctly
compiled to the code committed to the blockchain.
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4.3 Engineering considerations

Incremental verification. The certifier architecture outlined in this paper
allows for an incremental approach to verification: during the development of
the certification engine, each individual step in the process increases our overall
confidence in the compiler’s correctness, even if we have not yet completed the
end-to-end verification of the compiler pipeline.

By defining only the translation relations, we have an independent formal
specification of the compiler’s behaviour. This makes it easier to reason infor-
mally and to spot potential mistakes or problems with the implementation.

Implementing the decision procedures for translation relations ties the im-
plementation to the specification: we can show on a per-compilation basis that a
pass is sound with respect to its specification as a translation relation. Further-
more, we can test and debug translation relations by automatically constructing
evidence for various input programs.

Finally, by proving semantics preservation of a translation relation, we gain
full confidence in the corresponding pass for compiler runs that abide by that
translation relation.

Agility. The Plutus Tx compiler is developed independently of our certification
effort. Moreover, it depends on large parts of a large code base — namely, that
of the Glasgow Haskell Compiler (GHC). In addition, both GHC and the Plu-
tus Tx-specific parts evolve on a constant basis; for example, to improve code
optimisation or to fix bugs.

In that context, full verification appears an insurmountable task and a proof
on the basis of the compiler source code would constantly have to adapt to the
evolving compiler source. Hence, the architecture of our certification engine is
based on a grey box approach, where the certifier matches the general outline
(such as the phases of the compiler pipeline), but not all of the implementation
details of the compiler. For example, our translation relation for the inliner
admits any valid inlining. Improvements of the compiler heuristics to produce
more efficient programs by being selective about what precisely to inline don’t
affect the inliner’s translation relation, and hence, don’t affect the certifier.

Trusted Computing Base (TCB). The fact that the Plutus Tx compiler
is not implemented in a proof assistant, but in Haskell complicates direct com-
piler verification. It might be possible to use a tool like hs-to-coq [26], which
translates a subset of Haskell into Coq’s Gallina and has been used for proving
various properties about Haskell code [10]. However, given that those tools of-
ten only cover language subsets, it is not clear that they are applicable. More
importantly, such an approach would increase the size of the trusted computing
base (TCB), as the translation from Haskell into Coq’s Gallina is not verified.
Similarly, extraction-based approaches suffer from the same problem if the ex-
traction itself is not verified, although there are projects like CertiCoq [3] that
try to address that issue.
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In any case, our architecture has a small TCB. We directly relate the source
and target programs, taking the compiler out of the equation. Trusting a trans-
lation certificate comes down to trusting the Coq kernel that checks the proof,
the theorem with its supporting definitions and soundness of the interpreter with
respect to the formalised semantics. Of course, these components are part of the
TCB of a verified compiler too. This aspect also motivated our choice of Coq
over other languages such as Agda, due to its relatively small and mature kernel.

5 Related Work

Ethereum was the first blockchain to popularise use of smart contracts, written
in the Solidity programming language. Solidity is an imperative programming
language that is compiled to EVM bytecode, which runs on a stack machine op-
erating on persistent mutable state. The DAO vulnerability [11] has underlined
the importance of formal verification of smart contracts. Notably, a verifica-
tion framework has been presented [9] for reasoning about embedded Solidity
programs in F*. The work includes a decompiler to convert EVM bytecode, gen-
erated by a compiler, into Solidity programs in F*. The authors propose that
correctness of compilation can be shown by proving equivalence of the embedded
source and (decompiled) target program using relational reasoning [6]. However,
this would involve a manual proof effort on a per-program basis, and relies on
the F* semantics since the embeddings are shallow. Furthermore, components
such as the decompiler are not formally verified, adding to the size of the TCB.

The translation validation technique has been used for the verification of a
particular critical Ethereum smart contract [23] using the K framework. The
work demonstrates how translation validation can succesfully be applied to con-
struct proofs about the low-level EVM bytecode by mostly reasoning on the
(much more understandable) source code. The actual refinement proof is still
constructed manually, however.

The Tezos blockchain also uses a stack-like language, called Michelson. The
Mi-Cho-Coq framework [7] formalises the language and supports reasoning with
a weakest precondition logic. There is ongoing work for developing a certified
compiler in Coq for the Albert intermediate language, intended as a target lan-
guage for certified compilers of higher-level languages. This differs from our ap-
proach as it requires the compiler to be implemented in the proof assistant.

ConCert is a smart contract verification framework in Coq [4]. It enables for-
mal reasoning about the source code of a smart contracts, defined in a different
(functional) language. The programs are translated and shallowly embedded in
Coq’s Gallina. Interestingly, the translation is proven sound, in contrast with
approaches such as hs-to-coq [26], since it is implemented using Coq’s metapro-
gramming and reasoning facility MetaCoq [25].

The Cogent certifying compiler [22] has shown that it is possible to use trans-
lation validation for lowering the cost of functional verification of low-level code:
a program can be written and reasoned about in a high-level functional lan-
guage, which is compiled down to C. The generated certificate then proves a
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refinement relation, capable of transporting the verification results to the cor-
responding C code. The situation is different from ours: the Cogent compiler
goes through a range of languages with different semantic models and uses the
forward-simulation technique as a consequence. In contrast, we are working with
variations of lambda calculi that have similar semantics, allowing us to use logical
relations and translation relations.

In their Coq framework [19], Li and Appel use a similar technique for speci-
fying compiler passes as inductive relations in Coq. Their tool reduces the effort
of implementing program transformations and corresponding correctness proofs.
The tool is able to generate large parts of an implementation together with a
partial soundess proof with respect to those relations. The approach is used to
implement parts of the CertiCoq backend.

6 Further work

The Plutus Tx compiler translates a Haskell subset into Plutus Core. The com-
piler consists of two main parts: the first one reuses various stages of GHC to
compile the Haskell subset to GHC Core — GHC’s principal intermediate lan-
guage. The second part compiles GHC Core to Plutus Core. As Plutus Core
is strict and doesn’t directly support datatypes, both parts are quite complex.
Moreover, both consist of a significant number of successive transformation steps.

In this paper, we focused on the certification effort covering the second part
of that pipeline; specifically, the translation from PIR to Plutus Core. We de-
veloped translation relations for all passes described in Section 3, such that we
can, for example, relate previously described timelock example in PIR to its
final form in Plutus Core. For some of these passes, such as inlining, we have
implemented a verified decision procedure, but most of the evidence is generated
semi-automatically by using Coq tactics. We have not yet covered all transfor-
mations in their full generality; for example, we do not cover (mutually) recursive
datatypes yet. We have also started the semantic verification of key passes of
the translation and are investigating different ways to improve the efficiency of
proof search for larger programs.

Our next steps comprise the following: (1) filling in the remaining gaps in
translation relations (such as covering mutually recursive datatypes); (2) com-
plete all decision procedures; (3) drive the semantic verification forward; and (4)
develop techniques to further automate our approach and improve the efficiency
of the certifier.

The first three steps pose a significant amount of work, but we do not expect
major new conceptual questions or obstacles. This is different for Step (4), where
we anticipate the need for further research work. This includes more composi-
tional definitions of the translation relations, such that we can generate at least
part of the decision procedures (semi-)automatically. Moreover, we already per-
ceive efficiency to be a bottleneck and we plan to work on optimising the proof
search. Finally, we plan to apply our approach to the first part of the Plutus Tx
compiler (Haskell subset to GHC Core).
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A Compiler dumps for the timelock program

In this appendix we show step-by-step how the timelock example in section 3 is transformed by the
passes in the Plutus compiler. These programs were obtained by running the Plutus compiler on
the Haskell source code program, after modifying the Plutus pretty-printer to output a bit more
compact presentation. We ocassionally omit some sub-terms to improve readability (indicated as
...).

A.1 Original PIR Term

The Plutus compiler converts the GHC Core program into the following PIR program. Note
that variables in PIR are represented as pairs of names and unique integers. The name is only
maintained for readability, whereas the integers are used for actual program transformations. We
pretty-print the integer in subscript after the name.

The conversion includes definitions for all the built-in types and functions that may be used in
PIR program, since the program has to be self-contained. Starting from line 34 we can recognise
the timelock example. Note that Haskell’s lazy case expression has been translated to a call to
EndDate_match, where the case branches have been “thunked” by abstracting over a unit value.
This thunking prevents the (strict) function application of EndDate_match from evaluating all
the branches.

1 let nonrec type ByteString0 = ... in

2 let nonrec data Bool11 = True13 : ... | False14 : ... with Bool_match12 in

3 let nonrec strict verifySignature57 = ... in

4 let nonrec type String2 = ... in

5 let nonrec data Unit60 = Unit62 : ... with Unit_match61 in

6 let nonrec strict trace70 = ... in

7 let nonrec type Integer1 = ... in

8 let nonrec strict takeByteString5 = ... in

9 let nonrec strict subtractInteger27 = ... in

10 let nonrec strict sha3_8 = ... in

11 let nonrec strict sha2_7 = ... in

12 let nonrec strict remainderInteger32 = ... in

13 let nonrec strict quotientInteger31 = ... in

14 let nonrec strict multiplyInteger28 = ... in

15 let nonrec strict modInteger30 = ... in

16 let nonrec strict lessThanInteger44 = ... in

17 let nonrec strict lessThanEqInteger48 = ... in

18 let nonrec strict lessThanByteString20 = ... in

19 let nonrec strict greaterThanInteger36 = ... in

20 let nonrec strict greaterThanEqInteger40 = ... in

21 let nonrec strict greaterThanByteString24 = ... in

22 let nonrec strict error64 = ... in

23 let nonrec strict equalsInteger52 = ... in

24 let nonrec strict equalsByteString16 = ... in

25 let nonrec strict emptyString66 = ... in
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26 let nonrec strict emptyByteString25 = ... in

27 let nonrec strict dropByteString6 = ... in

28 let nonrec strict divideInteger29 = ... in

29 let nonrec strict concatenate4 = ... in

30 let nonrec type Char3 = ... in

31 let nonrec strict charToString67 = ... in

32 let nonrec strict appendString65 = ... in

33 let nonrec strict addInteger26 = ... in

34 let nonrec data EndDate71 = Fixed73 : ... | Never74 : ... with EndDate_match72 in

35 λds75 : EndDate71 .

36 λds76 : Integer .

37 let nonrec nonstrict inlineMe77 = False in

38 let nonrec nonstrict wild78 = ... in

39 (((EndDate_match72 ds75 { Unit60 -> Bool11 }) (λn79 : Integer .

40 λthunk84 : Unit60 .

41 (lessThanEqInteger48 (let nonrec nonstrict floatMe83 = ... in

42 floatMe83)) ds76)) (λthunk85 : Unit60 .

43 inlineMe77)) Unit62

A.2 Renaming

The first pass does a global renaming to ensure each variable is in fact globally unique. Note
that the integers of all bound variables are indeed renamed compared to the previous version of
the program.

1 let nonrec type ByteString86 = ... in

2 let nonrec data Bool87 = True88 : ... | False89 : ... with Bool_match90 in

3 let nonrec strict verifySignature91 = ... in

4 let nonrec type String96 = ... in

5 let nonrec data Unit97 = Unit98 : ... with Unit_match99 in

6 let nonrec strict trace100 = ... in

7 let nonrec type Integer103 = ... in

8 let nonrec strict takeByteString104 = ... in

9 let nonrec strict subtractInteger105 = ... in

10 let nonrec strict sha3_106 = ... in

11 let nonrec strict sha2_107 = ... in

12 let nonrec strict remainderInteger108 = ... in

13 let nonrec strict quotientInteger109 = ... in

14 let nonrec strict multiplyInteger110 = ... in

15 let nonrec strict modInteger111 = ... in

16 let nonrec strict lessThanInteger112 = ... in

17 let nonrec strict lessThanEqInteger116 = ... in

18 let nonrec strict lessThanByteString120 = ... in

19 let nonrec strict greaterThanInteger124 = ... in

20 let nonrec strict greaterThanEqInteger128 = ... in

21 let nonrec strict greaterThanByteString132 = ... in
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22 let nonrec strict error136 = ... in

23 let nonrec strict equalsInteger140 = ... in

24 let nonrec strict equalsByteString144 = ... in

25 let nonrec strict emptyString148 = ... in

26 let nonrec strict emptyByteString149 = ... in

27 let nonrec strict dropByteString150 = ... in

28 let nonrec strict divideInteger151 = ... in

29 let nonrec strict concatenate152 = ... in

30 let nonrec type Char153 = ... in

31 let nonrec strict charToString154 = ... in

32 let nonrec strict appendString155 = ... in

33 let nonrec strict addInteger156 = ... in

34 let nonrec data EndDate157 = Fixed158 : ... | Never159 : ... with EndDate_match160 in

35 λds161 : EndDate157 .

36 λds162 : Integer .

37 let nonrec nonstrict inlineMe163 = False in

38 let nonrec nonstrict wild164 = ... in

39 (((EndDate_match160 ds161 { Unit97 -> Bool87 }) (λn165 : Integer .

40 λthunk166 : Unit97 .

41 (lessThanEqInteger116 (let nonrec nonstrict floatMe167 = ... in

42 floatMe167)) ds162)) (λthunk171 : Unit97 .

43 inlineMe163)) Unit98

A.3 Dead Code Elimination

In this pass, the compiler cleans up the unused definitions that were present after the GHC core
translation.

1 let nonrec data Bool1 = True2 : ... | False3 : ... with Bool_match4 in

2 let nonrec data Unit11 = Unit12 : ... with Unit_match13 in

3 let nonrec strict lessThanEqInteger30 = ... in

4 let nonrec strict greaterThanEqInteger42 = ... in

5 let nonrec data EndDate71 = Fixed72 : ... | Never73 : ... with EndDate_match74 in

6 λds75 : EndDate71 .

7 λds76 : Integer .

8 let nonrec nonstrict inlineMe77 = False in

9 (((EndDate_match74 ds75 { Unit11 -> Bool1 }) (λn79 : Integer .

10 λthunk80 : Unit11 .

11 (lessThanEqInteger30 (let nonrec nonstrict floatMe81 = ... in

12 floatMe81)) ds76)) (λthunk85 : Unit11 .

13 inlineMe77)) Unit12

A.4 Inlining

The compiler performs an inlining pass and decides to inline the let-bound definition inlineMe

on line 8 in Section A.3. This results in the following program, where the let-binding has been
eliminated and the inlined definition (False) can be seen on line 12.
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1 let nonrec data Bool1 = True2 : ... | False3 : ... with Bool_match4 in

2 let nonrec data Unit11 = Unit12 : ... with Unit_match13 in

3 let nonrec strict lessThanEqInteger30 = ... in

4 let nonrec strict greaterThanEqInteger42 = ... in

5 let nonrec data EndDate71 = Fixed72 : ... | Never73 : ... with EndDate_match74 in

6 λds75 : EndDate71 .

7 λds76 : Integer .

8 (((EndDate_match74 ds75 { Unit11 -> Bool1 }) (λn79 : Integer .

9 λthunk80 : Unit11 .

10 (lessThanEqInteger30 (let nonrec nonstrict floatMe81 = ... in

11 floatMe81)) ds76)) (λthunk85 : Unit11 .

12 False3)) Unit12

A.5 Thunking recursive definitions

The next pass thunks recursive term bindings (similar to the encoding of non-strict let bindings
in Section A.7), to make sure that they are of a function type and work well with the fixpoint
combinator that is introduced in a later pass (Section A.9). Since this program does not include
any recursive term bindings, the result is unchanged.

A.6 Let-floating

Next, the Plutus compiler decides to float a let-bound definition. In this run, the floatMe def-
inition is moved outside of the first argument of lessThanEqInteger, as can be seen on line
10. Additionally, this pass performs merging of adjacent let definitions into a single let with a
group of bindings, printed on line 1. We did not mention this transformation in Section 3.3, since
simplified PIR has no binding groups. The order of these definitions has also changed, but this
is fine as long as no dependencies are broken. We use a translation relation that is reminiscent
of the one in Sectionsub:let-float, but for bindings only.

1 let nonrec data Bool1 = True2 : ... | False3 : ... with Bool_match4;

2 strict greaterThanEqInteger42 = ...;

3 data Unit11 = Unit12 : ... with Unit_match13;

4 data EndDate71 = Fixed72 : ... | Never73 : ... with EndDate_match74;

5 strict lessThanEqInteger30 = ... in

6 λds75 : EndDate71 .

7 λds76 : Integer .

8 (((EndDate_match74 ds75 { Unit11 -> Bool1 }) (λn79 : Integer .

9 λthunk80 : Unit11 .

10 let nonrec nonstrict floatMe81 = ... in

11 (lessThanEqInteger30 floatMe81) ds76)) (λthunk85 : Unit11 .

12 False3)) Unit12
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A.7 Encoding of non-strict let bindings

The non-strict binding on line 10 is transformed in a strict binding by thunking. From the type
we can see that the Plutus compiler actually abstracts over the Scott-encoded version of a unit
value. The occurrence is applied to a unit value on line 11.

1 let nonrec data Bool1 = True2 : ... | False3 : ... with Bool_match4;

2 strict greaterThanEqInteger42 = ...;

3 data Unit11 = Unit12 : ... with Unit_match13;

4 data EndDate71 = Fixed72 : ... | Never73 : ... with EndDate_match74;

5 strict lessThanEqInteger30 = ... in

6 λds75 : EndDate71 .

7 λds76 : Integer .

8 (((EndDate_match74 ds75 { Unit11 -> Bool1 }) (λn79 : Integer .

9 λthunk80 : Unit11 .

10 let nonrec strict floatMe81 = λarg207 : ∀a0 : *.a0 -> a0 . ... in

11 (lessThanEqInteger30 (floatMe81 (Λa0 : *.

12 λx1 : a0 .

13 x1))) ds76)) (λthunk85 : Unit11 .

14 False3)) Unit12

A.8 Encoding of datatypes

Next, the three datatype definitions are Scott encoded. For example, the Bool datatype with its
constructors and matching function are bound on line 1 to 4, and the corresponding definitions
are found as arguments on line 40 for Bool, line 41-44 for True, line 45-48 for False and line
49-50 for Bool_match.

1 (((ΛBool1 : *.

2 λTrue2 : Bool1 .

3 λFalse3 : Bool1 .

4 λBool_match4 : Bool1 -> (∀a221 : *.a221 -> (a221 -> a221)) .

5 let nonrec strict greaterThanEqInteger42 = ... in

6 ((ΛUnit11 : *.

7 λUnit12 : Unit11 .

8 λUnit_match13 : Unit11 -> (∀a217 : *.a217 -> a217) .

9 (((ΛEndDate71 : *.

10 λFixed72 : Integer -> EndDate71 .

11 λNever73 : EndDate71 .

12 λEndDate_match74 : EndDate71 -> (∀a208 : *.(Integer -> a208) -> (a208 -> a208)) .

13 let nonrec strict lessThanEqInteger30 = ... in

14 λds75 : EndDate71 .

15 λds76 : Integer .

16 (((EndDate_match74 ds75 { Unit11 -> Bool1 }) (λn79 : Integer .

17 λthunk80 : Unit11 .

18 let nonrec strict floatMe81 = ... in
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19 (lessThanEqInteger30 (floatMe81 (Λa0 : *.

20 λx1 : a0 .

21 x1))) ds76)) (λthunk85 : Unit11 .

22 False3)) Unit12 { ∀a208 : *.(Integer -> a208) -> (a208 -> a208) })

23 (λarg_0212 : Integer .

24 Λa209 : *.

25 λcase_Fixed210 : Integer -> a209 .

26 λcase_Never211 : a209 .

27 case_Fixed210 arg_0212))

28 (Λa213 : *.

29 λcase_Fixed214 : Integer -> a213 .

30 λcase_Never215 : a213 .

31 case_Never215))

32 (λx216 : ∀a208 : *.(Integer -> a208) -> (a208 -> a208) .

33 x216)

34 { ∀a217 : *.a217 -> a217 })

35 (Λa218 : *.

36 λcase_Unit219 : a218 .

37 case_Unit219))

38 (λx220 : ∀a217 : *.a217 -> a217 .

39 x220)

40 { ∀a221 : *.a221 -> (a221 -> a221) })

41 (Λa222 : *.

42 λcase_True223 : a222 .

43 λcase_False224 : a222 .

44 case_True223))

45 (Λa225 : *.

46 λcase_True226 : a225 .

47 λcase_False227 : a225 .

48 case_False227))

49 (λx228 : ∀a221 : *.a221 -> (a221 -> a221) .

50 x228)

A.9 Recursive let bindings, inlining and dead-code elimination

The next three passes encode recursive term-bindings, and perform another round of inlining and
dead code elimination. In this example program however, they have no effect and the program
does not change.

A.10 Non-recursive let bindings

The final pass encodes non-recursive let bindings as a beta-redex. The floatMe binding in Section
A.8 line 18 can be recognised below on line 18, where it is now lambda-bound, and line 43 where
the definition is provided as an argument.
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1 (((ΛBool0 : *.

2 λTrue1 : Bool0 .

3 λFalse2 : Bool0 .

4 λBool_match3 : Bool0 -> (∀a4 : *.a4 -> (a4 -> a4)) .

5 (λgreaterThanEqInteger5 : Integer -> (Integer -> Bool0) .

6 ((ΛUnit9 : *.

7 λUnit10 : Unit9 .

8 λUnit_match11 : Unit9 -> (∀a12 : *.a12 -> a12) .

9 (((ΛEndDate13 : *.

10 λFixed14 : Integer -> EndDate13 .

11 λNever15 : EndDate13 .

12 λEndDate_match16 : EndDate13 -> (∀a17 : *.(Integer -> a17) -> (a17 -> a17)) .

13 (λlessThanEqInteger18 : Integer -> (Integer -> Bool0) .

14 λds22 : EndDate13 .

15 λds23 : Integer .

16 (((EndDate_match16 ds22 { Unit9 -> Bool0 }) (λn24 : Integer .

17 λthunk25 : Unit9 .

18 (λfloatMe26 : (∀a27 : *.a27 -> a27) -> Integer .

19 (lessThanEqInteger18 (floatMe26 (Λa32 : *.

20 λx33 : a32 .

21 x33))) ds23) (λarg28 : ∀a29 : *.a29 -> a29 .

22 (((Bool_match3 ((greaterThanEqInteger5 ds23) 0) { Unit9 -> Integer }) (λthunk30 : Unit9 .

23 n24)) (λthunk31 : Unit9 .

24 0)) Unit10))) (λthunk34 : Unit9 .

25 False2)) Unit10) (λarg19 : Integer .

26 λarg20 : Integer .

27 (λb21 : Bool .

28 (((ifThenElse { Bool0 }) b21) True1) False2) ((lessThanEqInteger arg19) arg20)) {...})

29 (λarg_036 : Integer .

30 Λa37 : *.

31 λcase_Fixed38 : Integer -> a37 .

32 λcase_Never39 : a37 .

33 case_Fixed38 arg_036)) (Λa40 : *.

34 λcase_Fixed41 : Integer -> a40 .

35 λcase_Never42 : a40 .

36 case_Never42)) (λx43 : ∀a44 : *.(Integer -> a44) -> (a44 -> a44) .

37 x43) { ∀a45 : *.a45 -> a45 }) (Λa46 : *.

38 λcase_Unit47 : a46 .

39 case_Unit47)) (λx48 : ∀a49 : *.a49 -> a49 .

40 x48)) (λarg6 : Integer .

41 λarg7 : Integer .

42 (λb8 : Bool .

43 (((ifThenElse { Bool0 }) b8) True1) False2) ((greaterThanEqInteger arg6) arg7)) {...})

44 (Λa51 : *.

45 λcase_True52 : a51 .
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46 λcase_False53 : a51 .

47 case_True52)) (Λa54 : *.

48 λcase_True55 : a54 .

49 λcase_False56 : a54 .

50 case_False56)) (λx57 : ∀a58 : *.a58 -> (a58 -> a58) .

51 x57)


