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ABSTRACT
The use of mechanized proofs for verification of programming
language metatheory is a well-established field of study, as is the
application of analogous results to the design of digital circuits.
Our interest resides in the use of dependent types to formalize
and verify circuit transformations. In this specific paper we focus
on the technology mapping step of the circuit design flow, which
can be seen as a well-typed substitution of syntax for (primitive)
semantics. We formalize the technology mapping refinement and
show that it indeed preserves state-transition semantics, since it is
compositional.
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1 INTRODUCTION
Like software, new hardware is rarely designed at once. Instead,
the path from a specification to an application-specific integrated
circuit is a long one, with several steps and with each step involving
many design decisions and trade-offs. One of these design steps
offering the greatest freedom is that of technology mapping—where
implementations are picked for the primitives used in the design of
the system until this point, and they are checked for compliance
with functional and non-functional requirements.

This paper aims to define a formal framework for describing
this process of technology mapping, as part of a bigger effort to
verify the digital circuit design process. To this goal, we define an
Embedded Domain-Specific Language (EDSL) in a host language
with dependent types (Agda), using the dependent types of the
host in order to guarantee type-safety properties of the circuits and
using Agda as a proof assistant to show preservation properties
related to technology mapping.

Starting from a high-level specification of a circuit in terms
of its input-output behaviour, designers may start implementing
parts of a circuit in terms of lower-level components, ultimately
mapping these components down to individual gates. In this paper
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we formalize this notion of refinement, as essentially the (well-
typed) substitution of syntax for semantics, where a high-level
primitive component specified only by its semantics is replaced by
an implementation, without changing the meaning of the overall
circuit. In particular, we make the following contributions:

• We present λπ-Ware, a typed domain-specific language for
the description, specification, simulation and synthesis of
digital circuits embedded in the dependently typed program-
ming language Agda. Crucially, we show how to use Agda’s
module system to parameterize λπ-Ware developments by
the choice of primitive gates used in circuit definitions, as
well as a base type carried over individual circuit wires.

• We define denotation semantics for the types and values that
flow over circuit wires as well as for circuits themselves. By
comparing semantics we can establish several refinement
relations: between circuit wire types, between circuit wire
values, between a gate and a circuit implementing it, between
two gate libraries, and finally between a given circuit and
a lower-level equivalent where each gate is mapped to an
implementation in terms of lower-level gates.

• The key proven fact in the development is that substituting
all primitive gates in a given circuit by respective implemen-
tations preserves semantics, as long as the implementation
of each gate satisfies its specification.

• Finally, we demonstrate this approach by means of a case
study, in which we describe the specification of a small
Arithmetic-Logic Unit (ALU), and then refine it step-by-step
using the relations and proofs developed in this paper. The
resulting low-level circuit is defined in terms of elementary
boolean gates.

The code of the hardware Domain-Specific Language (DSL)
and assorted examples can be found online at https://gitlab.com/
joaopizani/lambda1-hdl/tree/gate-refinement-paper.

2 SYNTAX OVERVIEW
Part of this work has been the creation of a Hardware Description
Language (HDL) based on the typed lambda calculus. This language,
λπ-Ware, is embedded into Agda [Norell 2007], a general-purpose
dependently-typed programming language and proof assistant.

In this section we give an overview of the syntax and types of
circuits described in λπ-Ware, by means of a running example of
simple arithmetic circuits. Given the widely known basis of the
language, our primary focus in this overview lies on the peculiar
features of λπ-Ware originating from the desire to implement its
terms in actual hardware.

https://gitlab.com/joaopizani/lambda1-hdl/tree/gate-refinement-paper
https://gitlab.com/joaopizani/lambda1-hdl/tree/gate-refinement-paper
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2.1 Universe of circuit types
The λπ-Ware language has well-typed circuits, done with the usual
Agda technique of parameterizing the datatype definition of the
EDSL with a type universe, representing those types that our circuits
may take as inputs or produce as outputs.

The syntax of circuit types is presented below:

data U (B : Set) : Set where
1 𝜄 : U B
_⊗_ _⊕_ : (σ τ : U B) → U B
vec : (τ : U B) (n : N) → U B

We parameterize the universe of circuit types by a Set (B) 1. As such
we allow for choosing what is the type of basic data flowing over
the wires: it could be booleans, numbers, or something else entirely
chosen by the hardware designer. A value of such base type B is
denoted by the iota (𝜄) constructor.

There is a code for the unit type (1) inU. Its presence is necessary
since it is frequently used as base case in the definitions of generic
recursive circuit combinators. Furthermore, circuit types comprise
binary products and coproducts, along with homogeneous fixed-
size vectors. 2. The arrow type is conspicuously missing, and in fact
this restriction will be mirrored in the term syntax of λπ-Ware.

We chose to restrict ourselves to a first-order term language be-
cause higher-order functions do not have an immediate translation
to hardware. More advanced techniques, like defunctionalisation,
could be used as a synthesis step but are outside the scope of this
study. Ultimately, this restriction is not so bad, because we can
always use abstraction in the host language (Agda), hence allowing
the user to write general definitions and avoid repeating themselves.

Keeping with our usage of a Simply-Typed Lambda Calculus
(STLC) variation to represent circuits, we describe a circuit’s inputs
as contexts, which are essentially lists of types. The empty context
is denoted by ε and the prepend operator by ⊳ 3.

For example, the list of input types for a ripple-carry adder of
width n can be written as follows, where Ctx Bool indicates a
context with Bool as base type in the universe:

inputsAddN : (n : N) → Ctx Bool
inputsAddN n = 𝜄 ⊳ vec 𝜄 n ⊳ vec 𝜄 n ⊳ ε

That is, a ripple-carry adder of width n has three inputs: one
carry-in bit and two bit vectors of size n each. As output for such an
adder we have a pair of the carry-out bit and the summed vector:

outputAddN : (n : N) → U Bool
outputAddN n = 𝜄 ⊗ vec 𝜄 n

Having seen how to describe the types that flow through circuit’s
wires and how to describe a given circuit’s output and input ports,
we now go on to describe the syntax of circuits themselves. We
carry on using adders as an example to illustrate the definitions.

1Notation: we denote base types by capital Latin letters B and C, with subscripts for
disambiguation.
2Notation: we denote circuit types by lower-case Greek letters towards the end of the
alphabet (σ, ρ, τ, υ, ν), with subscripts for disambiguation.
3Notation: we denote contexts by the upper-case Greek lettersΓ andΔ, with subscripts
for disambiguation.

2.2 Syntax of circuits
Our DSL for hardware is deeply-embedded in the host Agda, and
as such there is one core datatype modelling the syntax of circuits
in λπ-Ware, called λB. Following the usual deep embedding of the
STLC, the λB type is indexed by both the lambda term’s context
(inputs) and type (output). As such, our running example (n-bit
wide binary adder) has the following Agda type:

addN : (n : N) → λB (inputsAddN n) (outputAddN n)

Notice how addN is not a circuit, but a function defining a family
of circuits: for each value of n, it gives a corresponding circuit
(addN n). Now, let us introduce the constructors of the λB datatype,
and after that give the definition of addN.

The most straightforward constructors of λB are those for vari-
able binding, and they come from the usual (intrinsically-typed)
embedding of the STLC in Agda, with a few peculiarities.

data λB : (Γ : Ctx) (τ : U) → Set where
var : (i : Γ ∋ τ) → λB Γ τ
let′ : (x : λB Γ σ) (b : λB (σ ⊳ Γ) τ) → λB Γ τ
loop : (c : λB (σ ⊳ Γ) (σ ⊗ τ)) → λB Γ τ

The parameter of the var constructor (of type Γ ∋ τ) can be
thought of as an index into a context: it proves that there is an
element of type τ in context Γ, and at which position it lies. The
let′ constructor binds a term of type σ which becomes available for
use in the context of the body b.

Peculiarly, our DSL has a distinct and dedicated constructor for
looping (denoted loop), where one of the outputs of the computa-
tion (of type σ) is fed back again into the circuit. Due to the possible
presence of loops in circuits, we give terms of λB a state-transition
semantics, where loop is interpreted as a piece of memory contain-
ing state of type σ.

There are also the expected constructors for introduction and
elimination forms of products, coproducts and vectors (Nil, Cons,
Head, Tail). But we don’t further expand on them since there is
nothing specific to the hardware application.

Gate libraries. One critical piece of the puzzle is missing in the
syntax of λB, namely the atomic components that actually perform
computation in a circuit (with no further subparts). Instead of hav-
ing any fixed set of gates (AND, NOT, OR, etc.), we have the whole
development parameterized by a gate library G, through Agda’s
module system.

The single gate constructor (written ⟨_⟩) is what denotes the
choice of an appropriate gate to use in a certain place in a circuit’s
syntax.

⟨_⟩ : (g : gIx G) {p : Δ ⊇ gCtx g} → λB Δ (gOut g)

Notice how the parameter g of ⟨_⟩ can only come from one of
the gates in the library (gIx G), and that both the context (gCtx G g)
and the output type (gOut G g) depend on the gate chosen. These
functions are exactly what is packed into a record called a gate
library: 4

4Notation: we denote gate libraries by the upper-case Latin letters G, H, L. Gate indices
are values of type gIx G, and variables with such type are denoted by lower-case Latin
letters g, h, l. Subscripts are used for disambiguation.
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record Gates (B : Set) : Set1 where
field
gIx : Set
gCtx : (g : gIx) → Ctx B
gOut : (g : gIx) → U B

Gate input weakening. Finally, notice how the gate constructors
allow usage of a gate in a larger context, where more inputs than
strictly necessary are available. The argument p chooses which
inputs — among all available in contextΔ — to route to the gate.
Passing this weakening as implicit argument gives extra conve-
nience: Often the difference between a gate’s context and the larger
one in which it is inserted is obvious, and can be deduced via unifi-
cation.

Not only do we allow for the weakenings to be passed as argu-
ment of the gate constructors, but these are the only places where
weakenings can occur. This restriction makes more convenient the
comparison between the behaviour of a gate and of a given circuit
implementing it, as we will see on Section 4.

Running example. Having seen how to define a circuit’s syntax,
we can give further details on our running example: an n-bit wide
binary adder. The base type flowing over the wires is booleans
(Bool), and we use a gate library with 4 basic gates: 5

data B4Ix : Set where
AND OR NOT XOR : B4Ix

B4Ctx NOT = 𝜄 ⊳ ε

B4Ctx = 𝜄 ⊳ 𝜄 ⊳ ε -- AND, OR, XOR
B4 : Gates Bool
B4 = record {gIx = B4Ix

; gCtx = B4Ctx
; gOut = const 𝜄 } -- all gates have 1-bit output

The labels for the gates come simply from an enumeration type
(B4Ix), and we define appropriately the shapes and sizes of contexts
and outputs for each gate. In the following definitions, the circuit
type λB should be always understood to have been applied to a
module parameter B4 (the gate library for this running example).

ha : λB (𝜄 ⊳ 𝜄 ⊳ ε) (𝜄 {-cout -} ⊗ 𝜄 {-sum -} )
ha = ⟨ AND ⟩ , ⟨ XOR ⟩
fa : λB (𝜄 {-cin -} ⊳ 𝜄 ⊳ 𝜄 ⊳ ε) (𝜄 {-cout -} ⊗ 𝜄 {-sum -} )
fa = ⟨ OR ⟩ , part

where part = wkn ha { . . . }
addN : (n : N) → λB (inputsAddN n) (outputAddN n)
addN zero = var ix0 , nil
addN (suc n) = MapAcc-par {n} fa . . .

In the sketch of definitions above, a half-adder (ha) is used to
build a full-adder (fa), and the n-bit adder (addN) is built as an
accumulating map (MapAcc-par), essentially a row of n copies of
the fa circuit, side-by-side.

5Notation: We name both specific gates (not variables) and gate libraries in ALLCAPS
format.

3 SEMANTICS / SIMULATION
In this section we give semantics for all the language constructs
discussed so far, namely, circuit types, gates and finally, circuits
themselves, although we have simplified the presentation some-
what. In the full codebase of λπ-Ware we make the majority of
these definitions more general, expressing semantics as a catamor-
phism on circuits. This allows us to define semantics preservation
properties and congruence properties with respect to circuit trans-
formations in general. However, due to the focus of this paper on
simulation and in the interest of brevity, we give all types and defi-
nitions instantiated only to the case of simulation and remark along
the way where the definitions can be generalised further.

Before diving into the details of the simulation semantics, notice
that circuits in λπ-Ware are possibly sequential, that is, they may
contain loops. Thus we can’t simply map circuits to pure Agda
functions. Instead the simulation semantics will map each circuit
to a stateful function, in which a well-typed state value is threaded
through.

3.1 Semantics of types and input/output values
Given that our circuit DSL is (intrinsically) typed, we must first
establish semantics for circuit types, before doing so for circuits
themselves. In this paper we give special attention to simulation
semantics, as we want to discuss what happens when circuits are
executed and, as such, we choose to map types in our DSL to types
in the host language (Agda).

The simulation semantics for our types is called Val: it simply
maps each constructor of the universe datatype (U B) into its corre-
sponding Agda type. This is entirely straightforward: the 𝜄 construc-
tor is mapped to the base type B; the 1 type is mapped to Agda’s
unit type ⊤; etc.

Val : ∀ (τ : U B) → Set
Val 1 = ⊤
Val 𝜄 = B
Val (φ ⊗ ω) = Val φ × Val ω
. . .

With the semantics of circuit types at hand, we can define envi-
ronments next. Each environment represents a heterogeneous list of
values, indexed by a type context. Agda’s standard library provides
an implementation of this idea, Env, that we re-use here:

Ctx : Set → Set
Ctx B = List (U B)
Env : (U B → Set) → Ctx B → Set

In the simulation semantics, a context Γ denotes the listing of a
circuit’s input types, and thus an environment 𝛾 gives one possible
list of well-typed input values. In other words, an environment
(𝛾 : Env Val Γ) ensures by construction that each of its elements
v𝑘 has type Val τ𝑘 , where τ𝑘 is the corresponding element in Γ 6.

Z : (σ ⊳ Γ) ∋ σ
S : Γ ∋ τ→ (σ ⊳ Γ) ∋ τ

6Notation: we denote environments by lower-case Greek letters 𝛾 and 𝛿 , with sub-
scripts for disambiguation.
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The functions Z and S serve as pointers into a context, giving
evidence for the location of a given type in a given context. While
Z shows that the type is at the head of the list, the S (“successor”)
function gives the location for a type in the whole context, given
the location for it somewhere in the tail.

3.2 Semantics of gates
In our language, gates are leaves of the circuit’s Abstract Syntax
Tree (AST), representing atomic computation primitives. Thus, we
must give semantics to all gates in a circuit in order to give semantics
to the circuit itself. Furthermore, given our interest in comparing
the behaviour of a gate to that of an implementing circuit, it is
useful to make the types of semantics align as much as possible.

Syntactical information about gates used in a circuit is packed
in a gate library record. Aside from all the fields of Gates already
mentioned in Section 2.2, we also need a field gSt, which gives the
state type for each gate in the library. 7

record Gates (B : Set) : Set1 where
field gIx : Set

gCtx : (g : gIx) → Ctx B
gSt gOut : (g : gIx) → U B

All these functions from a gate library are necessary ingredients
for a gate library semantics, whose type is shown below:

gS : (G : Gates B) (g : gIx G)
→ Val (gSt g) → Env Val (gCtx g)
→ Val (gSt g) × Val (gOut g)
A gate library semantics maps a gate g in a library G to an Agda

function: such function takes current state and input environment
while returning next state and output. This type of simulation
function corresponds to a common model of digital circuits known
as Mealy machines.

We do not include the semantics as part of the gate library record,
as the same library may have different notions of semantics associ-
ated with it, such as simulation or circuit area.8.

One point we drive home further in the next sections is the
great similarity between the type of gate semantics and the type
of semantics for whole circuits. This is no coincidence, as we wish
to relate the behaviour of a gate to that of a circuit, and define
precisely when a circuit is said to implement such gate.

3.3 Semantics of circuits
Circuit state type. While the state of a gate is a black box and can

be anything in the type universe U B, the type of state for a circuit
follows the same structure as the circuit itself. The correspondence
between a circuit and the type of its state is enforced by indexing
the St datatype with the circuit c whose state is being represented.
The only constructor of Stwith notable “content” is the one defining
what is the state of a Loop, where the actual data storage happens:

data St {G : Gates B} : (c : λB[ G ] Γ τ) → Set where
s⟨_⟩ : ∀ {g} (sg : Val (gSt g)) → St ⟨ g ⟩

7Gate state: our circuits are stateful, and so are (possibly) the gates of which they are
made.
8Notation: we denote gate library semantics by upper-case Latin letters S and T, with
subscripts for disambiguation.

sLet : ∀ {x e} (sx : St x) (se : St e) → St (Let x e)
sLoop : ∀ { f} (si : Val σ) (sf : St f) → St (Loop f)
. . .

The key detail here is the argument si : Val σ in the sLoop constructor,
indicating that the state associated with a loop over σ consists of a
Val σ, together with any further state used in the loop’s body.

With all ingredients in hand, we can now express the semantics
of whole circuits in our DSL. The two parameters of the function
J_⊨_Ks are the library semantics S and circuit under evaluation c.
This evaluates the circuit for a step of state transition.

S : gS G
c : λB[ G ] Γ τ
J S ⊨ c Ks : St c → Env Val Γ→ St c × Val τ

As said in Section 3.2, the type for circuit semantics (J S ⊨ c Ks)
is very similar to the type of gate semantics (gS G g), with the
exception of the mismatch between gate state and circuit state
types. This mismatch means that when we want to compare the
behaviour of a gate and a circuit, we will need to convert between
the respective state values.

The simulation semantics for circuits is defined by simultaneous
pattern matching on both the circuit and state value, since the type
of state depends on the circuit. Definitions for the core clauses (first-
order STLC-like) are quite unsurprising, with the usual extension
and lookup of the environment in the clauses for variable binders
and variable reference, respectively.

J S ⊨ Let x b Ks (sLet sx sb) 𝛾 =

let sx′ , rx = J S ⊨ x Ks sx 𝛾
sb′ , rb = J S ⊨ b Ks sb (↦→ rx ⊳ 𝛾)

in (sLet sx′ sb′) , rb
J S ⊨ [ i ] Ks s 𝛾 = s , (lookup i 𝛾)
J S ⊨ Val v Ks (sVal .v) = (sVal v) , v
. . .

More interesting and relevant for technology mapping is the
evaluation of a gate (J S ⊨ ⟨ g ⟩ Ks), in which we use the gate
semantic function applied to index g. The gate itself takes an input
environment (𝛾 : Env Val Γ) potentially smaller than the one avail-
able at that gate’s position in the circuit (𝛿). The context inclusion
is described by gate constructor parameter p.

The Env⊇ (environment inclusion) helper function gives, from an
inclusion (p : Δ ⊇ Γ), a mapping that takes the larger environment
𝛿 and gives back only the smaller environment included in it by p.

Env⊇ : (p : Δ ⊇ Γ) → (Env Val Δ→ Env Val Γ)
J S ⊨ ⟨ g ⟩ {p} Ks s⟨ sg ⟩ 𝛾 = s⟨ sg′ ⟩ , v

where sg′ , v = (S g) sg (Env⊇ p 𝛾)

The clause for loops is handled similarly to the one for let, eval-
uating the body in an enlargened context, but instead of obtaining
the extra environment element from a bound term, it is assumed
to come from the previous clock cycle. Notice that in a Loop, the
body itself (f) may also be stateful (have loops), so we ensure that
the next state of the body is also included in the next state of the
whole Loop.
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J S ⊨ Loop f Ks (sLoop si sf) 𝛾 =

let sf′ , (si′ , rl) = J S ⊨ f Ks sf (↦→ si ⊳ 𝛾)
in (sLoop si′ sf′) , rl

Besides these core constructs, the semantics function of course
also handles the introduction and elimination forms for products,
coproducts and homogeneous fixed-size vectors. However, in the
interest of space, we omit these clauses here as their definitions are
largely unsurprising.

In the following sections we will discuss the notion of circuit
refinement, where each gate of a circuit is replaced by a correspond-
ing implementing circuit. Because the gate constructor of our AST
allows the gate to be used in a weakened context, when we want
to compare a circuit and a gate we must thus weaken the circuit.

The wkn function transforms a circuit taking a given input con-
textΓ into a circuit that takes a larger contextΔ, as long as evidence
of the inclusion (p : Δ ⊇ Γ) is provided. The definition consists of
just “pushing” the weakening down the AST nodes, until the leaves
(gates) are reached, when the given weakening is then combined
with whatever weakening is inherently part of that gate.

wkn : (p : Δ ⊇ Γ) (c : λB[ G ] Γ τ) → λB[ G ] Δ τ
wkn p (⟨_⟩ g {q}) = ⟨_⟩ g {comp⊇ q p}
wkn p ([_] i) = [_] (wknIx p i)
wkn p (Let x f) = Let (wkn p x) (wkn (I p) f)
. . .

sWkn : (p : Δ ⊇ Γ) {c : λB[ G ] Γ τ} (s : St c)
→ St (wkn p c)

Furthermore, in constructors involving variable binding (such as
Let), we take care to adapt the weakening accordingly as it is done
in the body of the binder. For any definition of circuit semantics, it
is expected that such semantics is preserved by weakening (wkn).
In particular, our simulation semantics satisfies such property, ex-
pressed as follows:

wkn-pres : (S : gS G) (c : λB[ G ] Γ τ) (s : St c)
(p : Δ ⊇ Γ) (𝛿 : Env Val Δ)

→ map× (sWkn p) id (J S ⊨ c Ks s (Env⊇ p 𝛿))
≡ J S ⊨ wkn p c Ks (sWkn p s) 𝛿

The proof derives from compositionality of the semantics and
proceeds just by congruence with each element of the algebra, thus
this property holds generally for any semantics expressed as a
(dependent) fold.

4 TECHNOLOGY MAPPING REFINEMENT
Technology mapping is a process of taking a circuit model defined
in terms of high-level primitives operating on high-level types, and
obtaining a lower-level circuit operating on lower-level types. We
are interested in showing that such transformation is semantics-
preserving (in particular with respect to the circuit’s input/output
behaviour). Finding the right definition of semantics preservation
is one of the key goals of this section.

As an example, imagine converting a high-level model of arith-
metic unit into a lower-level. The higher-level model has adders
and multipliers as primitives and operates on bounded naturals as
base type, while the primitives of the lower-level are simple logic

gates (AND, OR, NOT) and operate on single bits. The technology
mapping refinement involves a chain of relations, where each defi-
nition relies on previous ones. We illustrate each of the concepts
here by means of an example, before nailing down these precise
relations in the subsequent subsections.

Data concretisation converting a (high-level) type to its (low-
level) implementation, e.g., mapping bounded natural num-
bers into fixed width bitwords;

Gate implementation relating (high-level) primitives with
an implementation in terms of (low-level) gates, e.g., imple-
menting an adder in terms of only AND, OR, NOT;

Gate library refinement proving that such a gate implemen-
tation preserves semantics, e.g., bundling the implementa-
tion and correctness proof for each arithmetic gate (ADD,
MUL, etc.)

Circuit refinement replacing all the (high-level) primitives
in a circuit description with their (low-level) implementation,
e.g., substituting each occurrence of adders and multipliers
by a specific implementation using AND, OR, and NOT.

4.1 Data concretisation
Our notion of refinement not only substitutes atomic components
for detailed implementations (with subcomponents), but crucially
also allows these detailed implementations to operate over more
concrete data than the non-refined version.

In order to have well-typed value concretisation, we first con-
cretise types: a type in the universe U B is given and a new one in
universe U C is produced, where each occurrence of the base type
(leaf) is substituted by the given parameter ι′. The transformation
can also be done over a whole context of types.

⇓τ : (ι′ : U C) (τ : U B) → U C
⇓τ ι′ 1 = 1
⇓τ ι′ 𝜄 = ι′

. . .

⇓Γ : (ι′ : U C) (Γ : Ctx B) → Ctx C
⇓Γ ι′ = map (⇓τ ι′)

Except for the interesting leaf clause (𝜄), all others proceed sim-
ply by structural recursion. Having concretised circuit types and
contexts, we can then defined well-type concretisation for circuit
values and environments 9.

⇓t : {τ : U B} { ι′ : U C} (⇓ι : Val 𝜄 → Val ι′)
→ Val τ→ Val (⇓τ ι′ τ)

⇓t {τ = 𝜄 } ⇓ι t = ⇓ι t
⇓t {τ = σ ⊗ ρ} ⇓ι (x , y) = (⇓t ⇓ι x) , (⇓t ⇓ι y)
⇓t . . . = . . .

⇓γ : { ι′ : U C} (⇓ι : Val 𝜄 → Val ι′)
→ Env Val Γ→ Env Val (⇓Γ ι′ Γ)

⇓γ ⇓ι = mapAll (⇓t ⇓ι)
In the definition of ⇓t we highlight the clause where a real value

translation happens, as all other clauses consist simply of structural
recursion over the type τ.
9All concretisation functions are defined generally for any compositional semantics
(not only simulation).
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4.2 Gate implementation
When we talk about a circuit that implements a given gate, we are
saying that, with some adaptations, this circuit can be used instead
of that gate, i.e. we can substitute one for the other. The requirement
for this substitution to be correct is that the semantics of gate and
circuit are equivalent. Before showing all the details, let us have a
quick idea of what this equivalence means and what supporting
definitions are involved:

(⇓t ⇓ι) (proj2 (S g s 𝛾))
≡ proj2 (J T ⊨_Ks c (⇓gSt s) (⇓γ ⇓ι 𝛾))

For simplicity the excerpt above only concerns itself with output
values (hence the usage of proj2), while the full relation must also
take care of next states. On the left hand side, we run the gate g on
the state s and environment 𝛾 (using library semantics S), before
converting the result to a low-level type (⇓t); on the right hand
side, we convert the state s and environment 𝛾 to their low-level
representation, before feeding them to the low-level circuit c.

Here the function ⇓gStmaps each possible state value of a given
gate g (with type Val (gSt g)) into state values of a corresponing
circuit (with type St c).

⇓gSt : {g : gIx H} (ι´ : U C)
{c : λB[ L ] (⇓Γ ι´ (gCtx g)) (⇓τ ι´ (gOut g)) }
→ Val (gSt g) → St c

This function belongs to neither a gate nor a circuit on its own,
but rather is part of what defines the relation between gate and
circuit.

Having discussed concretisation for inputs, output and state, we
are now almost ready to look into the full type and definition of the
impBy relation between a gate and a circuit. As a last preparatory
step, let us look at the similarities and differences between the types
of semantic functions for gate and circuit. As always, our focus
rests on simulation but the concepts are generalizable:

(gS H) g
: Val (gSt g) → Env Val (gCtx g) → Val (gSt g) × Val (gOut g)

(J T ⊨_Ks) c
: St c → Env Val Γ → St c × Val τ

Here, (gS H) g gives the simulation function for a given gate,
picked from library H using index g. The semantics of a circuit
(J T ⊨_Ks c) is very similar, mapping an initial state and environ-
ment to a next state and output.

There are only two key differences between the two types above:
• The type of state for a circuit depends on the circuit itself;
• The circuit semantics relies on a semantics for the gate library
used (T : gS L).

The implementation relation between gate and circuit is called
impBy. Before looking into its definition, let us first unravel its
type, since it’s already quite involved:

impBy : (S : gS H) (T : gS L) (⇓ι : Val 𝜄 → Val ι′) (g : gIx H)
(c : λB[ L ] (⇓Γ ι′ (gCtx g)) (⇓τ ι′ (gOut g)))
(⇓gSt : Val (gSt g) → St c)
→ Set

Here we are dealing with two gate libraries: a higher-level one
(H, with base type B and semantics S), and a low-level one (L, with
base type C and semantics T) From library H we pick a certain gate
g, to form the claim that g is implemented by the circuit c.

The circuit’s context and output types are related to those of
gate g via the concretisation functions aforementioned. The choices
made for data concretisation are described by the parameters ι′
(implicit) and ⇓ι. Each occurrence of the leaf constructor 𝜄 in the
high level type is replaced by ι′, and ⇓ι tells how to map high-level
leaf values into low-level ones (semantic concretisation).

The last parameter, namely ⇓gSt, tells how to take a value of
state for the gate g and make it into a value of state for the circuit
(St c). Taking all the typing into account, the definition of impBy
can be intuitively to state that first running the gate g on high-level
inputs s and 𝛾 and then converting to the result to low-level outputs
is the same as converting the inputs first and then passing these to
the circuit c.

impBy S T ⇓ι g c ⇓gSt = ∀ s 𝛾 →
map× ⇓gSt (⇓t ⇓ι) (S g s 𝛾)
≡ J T ⊨_Ks c (⇓gSt s) (⇓γ ⇓ι 𝛾)

On the left-hand side of the equation, the low-level gate seman-
tics (S g) is applied to well-typed current state and environment
(S g s 𝛾 ), and the resulting pair of next state and output are con-
cretised. On the right-hand side, state and environment are first
concretised before being fed to the circuit. The circuit c is simulated
under the assumption of a low-level gate library semantics (T).

4.3 Gate library refinement
Commonly, the goal of technology mapping is to take a design
using a certain library of primitive gates, and turn it into a design
using “smaller” or “simpler” primitives.

If, for each gate g in some high-level library H, we have a circuit
that implements it using only gates from a lower-level library L,
then we can say there is a refinement relation between the two gate
libraries H and L.

record ⇓g (S : gS H) {L : Gates C} (T : gS L)
{ ι´ : U C} (⇓ι : Val 𝜄 → Val ι´)
(g : gIx H) : Set where

field
c : λB[ L ] (⇓Γ ι´ (gCtx g)) (⇓τ ι´ (gOut g))
⇓gSt : Val (gSt g) → St c
imp : (impBy S T ⇓ι) g c ⇓gSt

First we have a record ⇓gwhich packages all the implementation
details for one given gate: Such gate g from high-level library H
(with semantics S) is said to have an implementation in a lower-level
library L (with semantics T) whenever there is an appropriately-
typed circuit using primitives from L, and such a circuit is shown
to implement g. Furthermore, for each gate, the state concretisation
function must be given, telling how to map the gate’s state into an
appropriately-structured circuit state.

A library can be seen as a collection of gates, thus the refinement
of a gate library in terms of another is a function ⇓G returning the
implementation record for each gate.
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⇓G : (S : gS H) {L : Gates C} (T : gS L)
{ ι´ : U C} (⇓ι : Val 𝜄 → Val ι´) → Set

⇓G S T ⇓ι = λ g → ⇓g S T ⇓ι g

4.4 Circuit refinement
With the refinement of a whole gate library at hand, we can proceed
to refine the definition of a circuit by means of technology mapping.
In this operation, a circuit with gates coming from library H has
all its gates replaced by subcircuits whose gates in turn come from
library L. As all occurrences of the Gate constructor are affected,
the resulting circuit contains only gates from the new library L;
this property is expressed in the type of our technology mapping
function.

The ⇓c function performs this operation, by using a library re-
finement (li) giving the implementation details for each gate g in H.
Besides using a different library of gates, the resulting circuit also
has its input context and output type appropriately concretised.

⇓c : {S : gS H} {L : Gates C} {T : gS L}
{ ι′ : U C} {⇓ι : Val 𝜄 → Val ι′ } (li : ⇓G)
→ λB[ H ] Γ τ→ λB[ L ] (⇓Γ ι′ Γ) (⇓τ ι′ τ)

In principle, ⇓c replaces all occurrences of gates in H by those in
L. However, if desired, a partial refinement can be achieved using
a lower library which is a tagged union of H with the “actually
simpler” primitives, i.e. L = H ⊞ L0 10. In such case the refinement
is the identity for some gates (those in the image of the left injection),
while it maps some other gates to lower-level implementing circuits.

Almost all clauses in the definition of ⇓c proceed trivially by
induction, thus we focus on those clauses requiring additional lem-
mas. First the key clause for a gate (accompanied by weakening),
denoted ⟨ g ⟩ {p}.
⇓c { ι′ } li (⟨ g ⟩ {p}) = wkn (map⊇ (⇓τ ι′) p) ((li g) .c)

The heart of this definition replaces a gate g with its implemen-
tation as prescribed by the new gate library li. However, the gate
constructor has two parts: the choice of gate g and the selection of
its inputs, p. To ensure the corresponding inputs are still passed to
the low level circuit, we weaken the resulting circuit using (the low
level mapping determined by) p.

⇓c { ι′ } li [ i ] = [_] (map∋ (⇓τ ι′) i)

Refinement of a circuit’s state. By analogy to the gate refinement
for a circuit we can define the gate refinement for a circuit’s state.
This function (⇓s) converts a high-level circuit state to the state
associated with its low-level counterpart. It will be useful when
talking about semantic comparisons between high- and low-level
circuits.

⇓s : {S : gS H} {L : Gates C} {T : gS L}
{ ι′ : U C} {⇓ι : Val 𝜄 → Val ι′ } (li : ⇓G)
{c : λB[ H ] Γ τ} (s : St c) → St (⇓c li c)

⇓s li (s⟨ sg ⟩ {p}) = sWkn (map⊇ (⇓τ ι′) p) (((li ) .⇓gSt) sg)
⇓s li s[ ix ] = s[_] (map∋ (⇓τ ι′) ix)
⇓s li (sLoop si sf) = sLoop (⇓t ⇓ι si) (⇓s li sf)
10The _⊞_ function unites libraries via a tagged union of the index sets and wrapping
gCtx, gOut, gSt appropriately.

Again, in the clause for the state of a gate (s⟨ sg ⟩) we must use
the library implementation li for H, but now we utilise the ⇓gSt
field of the ⇓G record, giving the state concretisation for a given
gate. Furthermore, also in analogy to ⇓c, we must weaken this state,
which is done by sK.

The state concretisation for a given gate cannot be completely
defined by the gate’s type and type of its implementing circuit,
in other words, there are (possibly) multiple ways to concretise
the state of a gate with a certain implementing circuit in mind. As
such, the state concretisation is the hardware designer’s choice and
packed as a field in the ⇓G record.

The only other interesting clause in ⇓s is the one for the state of
a loop, sLoop, where value concretisation takes place through the
⇓t function.

5 SEMANTIC PRESERVATION
After having formalized the notion of technology mapping by
means of gate and data concretisation, we want to show that tech-
nology mapping preserves semantics. This is a key result of this
paper, establishing that our notion of technology mapping is sound.
In particular, we show here that this preservation property holds for
the state-transition simulation semantics. This section breaks down
the statement and proof of preservation in their most important
clauses and lemmas, and gives some applications of the general
property to useful specialized situations.

5.1 Preservation property statement
The preservation property can be informally thought of as a be-
havioural equivalence between the high-level and low-level (refined)
circuits, up to gate and data concretisation.

⇓c-pres : (li : ⇓G) (c : λB[ H ] Γ τ) (s : St c) (𝛾 : Env Val Γ)
→ map× (⇓s li) (⇓t ⇓ι) (J S ⊨ c Ks s 𝛾)

≡ J T ⊨ ⇓c li c Ks (⇓s li s) (⇓γ ⇓ι 𝛾)

Both key functions involved in this equality, namely the circuit
semantics itself (J_Ks) and the circuit refinement function (⇓c), are
defined by induction over the circuit structure. Therefore the proof
of ⇓c-pres proceeds by induction on the circuit (c : λB[ H ] Γ τ)
and state (s : St c). Matching on a case of λB also forces the
input/output types in certain ways, thus driving evaluation of the
data concretisation functions (⇓t, ⇓γ).

Since our simulation semantics returns a product of the next
state and output value, we need to prove the equality between two
products. We do this by proving the equality of both the first and
the second component separately.

⇓c-pres li c s 𝛾 = ×-≡,≡→≡ (⇓c-pres-st li c s 𝛾)
(⇓c-pres-out li c s 𝛾)

Thus we have reduced the soundness of our technology mapping
to two keep lemmas, establishing that the outputs and states are
preserved.

5.2 Proof sketch
Similarly to the proof of wkn-pres-out, the clauses in the proof
of ⇓c-pres-out can be split in two categories: those who are “sim-
ply inductive” and the “base cases”. The simply inductive clauses
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follow by induction and by congruence with each of the func-
tions in the algebra; For example, the semantics of Head involves
Data.Vector.Base.head, so (⇓c-pres-out li (Head xs) (sHead xs) 𝛾)
reduces to:

(⇓t ⇓ι) (head (proj2 (J S ⊨ xs Ks sxs 𝛾)))
≡ head (proj2 (J T ⊨ ⇓c li xs Ks (⇓s li sxs) (⇓γ ⇓ι 𝛾)))

Notice how the head function “pops out” of the subexpression
with the simulation semantics and sits between proj2 and the output
value concretisation (⇓t ⇓ι). Our goal is to rewrite the LHS by using
the inductive hypothesis, but to do that we now need an additional
commutativity lemma that swaps head and (⇓t ⇓ι) around.

⇓t-comm-head : (xs : Vec (Val τ) (suc n)) (⇓ι : Val 𝜄 → Val ι′)
→ (head ◦ ⇓t ⇓ι) xs ≡ (⇓t ⇓ι ◦ head) xs

The proof of this lemma follows just by definition of ⇓t and head
(non-empty xs). An analogous commutativity lemma is needed for
each of the algebra functions corresponding to each of the non-leaf
constructors of λB.

With this lemma in hand, all that is needed to finish off theHead
clause is congruence with head and induction. All other non-base
cases of ⇓c-pres-out and ⇓c-pres-st follow this same pattern.

trans (⇓t-comm-head ⇓ι (proj2 (J S ⊨ xs Ks sxs 𝛾)))
(cong head (⇓c-pres-Val li xs sxs 𝛾))

The “base cases” are the key to proving ⇓c-pres-out, and most
important of all is the case for the gate constructor (⟨_⟩):

⇓c-pres-out-Gate :
(li : ⇓G) (g : gIx H) (sg : Val (gSt H g)) (𝛾 : Env Val Γ)
→ (⇓t ⇓ι) (proj2 (J S ⊨ ⟨ g ⟩ Ks s⟨ sg ⟩) 𝛾))

≡ proj2 (J T ⊨ (⇓c li) ⟨ g ⟩ Ks (⇓s li s⟨ sg ⟩) (⇓γ ⇓ι 𝛾))

By applying the definitions of ⇓c, ⇓s and J_⊨_Ks to the case of
gate we arrive at a form of ⇓c-pres-out-Gate in which we can see
the opportunities to apply lemmas already at our disposal:

(⇓t ⇓ι) (proj2 (S g
sg
(Env⊇ q 𝛾)))

≡ proj2 (J T ⊨_Ks (wkn (map⊇ (⇓τ ι′) q) (li g .c))
(sWkn (map⊇ (⇓τ ι′) p) ((li .⇓gSt) sg))
(⇓γ ⇓ι 𝛾))

To solve this goal we will need of course the proof that gate g is
implemented by circuit (li g .c), which is packaged in the library
implementation record li. We will also need the wkn-pres lemmas
to deal with the circuit and state weakenings involved. Furthermore
we need a lemma that environment inclusion and environment con-
cretisation are commutative. This lemma (⇓γ-Env⊇-comm) derives
from the functoriality of ⇓γ (it’s implemented as a map).

⇓γ-Env⊇-comm :
(⇓ι : Val 𝜄 → Val ι′) (p : Δ ⊇ Γ) (𝛿 : Env Val Δ)
→ Env⊇ (map⊇ (⇓τ ι′) p) (⇓γ ⇓ι 𝛿) ≡ ⇓γ ⇓ι (Env⊇ p 𝛿)

6 CASE STUDY
In this section we describe the minimalist example of an ALU for a
simple processor. The goal is to illustrate the core ideas of refine-
ment by means of gate and data concretisation.

We start the design process by using a coarse-grained library
of gates (one for each operation in the ALU). Then we refine the
design by concretising it into a library of lower-level logic gates
(simple boolean logic).

6.1 High-level description
The high-level description of our example ALU consists of two
major subcomponents: a Logic Unit (LU) and an Arithmetic Unit
(AU). Each subcomponent works with its own gate library and base
type for the type universe. In this subsection we give an overview
of each subcomponent individually and what is necessary to “glue”
them together in order to make an ALU.

High-level types. The base type of the Logic Unit is simply booleans.
To avoid confusion between leaf types in universes with different
bases, we give each an unique alias: the leaf type of universeU Bool
is called B.

B : U Bool
B = 𝜄

The Arithmetic Unit subcomponent works with Fin n as base
type, that is, the set of naturals from 0 up-to-but-excluding n.

N𝑛 : U (Fin n)
N𝑛 = 𝜄

It does not denote a single base type but a family of base types,
one for each n. In light of this, all related definitions from here on
(of types, gates, circuits) are also generalized over n.

High-level gate syntax. The gate library is composed of two parts
that are united: the arithmetic part and the logic part. The logic
part is largely based on B4 as defined in Section 2.2, but each of
the gates performs bitwise logical operations over vectors instead
of single bits. We keep notation consistent by naming this library
B4𝑘 .

data B4𝑘 Ix : Set where
AND𝑘 OR𝑘 NOT𝑘 XOR𝑘 : B4𝑘 Ix

B4𝑘Ctx : ∀ k → U Bool
B4𝑘Ctx k NOT𝑘 = vec B k ⊳ ε -- NOT𝑘 is unary
B4𝑘Ctx k = vec B k ⊳ vec B k ⊳ ε -- others are binary
B4𝑘 : ∀ k → Gates Bool
B4𝑘 k = record {gIx = B4𝑘 Ix; gCtx = B4𝑘Ctx k

; gSt = const 1; gOut = const (vec B k) }

As basis for the arithmetic part of the ALU, we have the FIN gate
library, consisting of gates for performimg modular addition and
multiplication on bounded naturals.

data FINIx : Set where ADD MUL : FINIx
FIN : ∀ n → Gates (Fin n)
FIN n = record {gIx = FINIx; gCtx = const (N𝑛 ⊳ N𝑛 ⊳ ε)

; gSt = const 1; gOut = const N𝑛 ; }
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Now we wish to build the unified gate library of our ALU by
combining these two sublibraries (logic and arithmetic). To be able
to combine them, both need to work over the same base type. The
obvious alternative (which we choose) is to have Bool as base type.
This means the arithmetic gates in the new unified library will
have at the core the operations from FIN as above, but wrapped by
(de)coding between Fin 2 𝑘 and vec B k.

This is not a performance issue since the high-level model serves
only as specification and the low-level model is the one actually
interesting to synthesize “in silicon”. The whole point of technology
mapping will be to show that both approaches (high and low) are
equivalent:

Fin→W : Fin 2 𝑘 → vec B k
W→Fin : vec B k → Fin 2 𝑘

In order to unite the two libraries under a common base type, as
mentioned before, we first wrap the arithmetic gateswith (de)coding
so they can handle binary words. The result is a transformed arith-
metic gate library, with booleans as base type. Crucially, as is shown
later, the library semantics is transformed to apply the (de)coding
functions.

FIN𝑘 : ∀ k → Gates Bool
FIN𝑘 k = record {gIx = FINIx; gSt = const 1

; gCtx = const (vec B k ⊳ vec B k ⊳ ε)
; gOut = const (vec B k); }

With this wrapped version of the arithmetic unit at hand, we
can then build the total library by using the library union operator:

FINB4𝑘 : ∀ k → Gates Bool
FINB4𝑘 k = FIN𝑘 k ⊞ B4𝑘 k

A library FINB4𝑘 k has both of its subparts operating over the
same base type (vectors of booleans). Internally, however, the oper-
ations of the arithmetic part are performed over Fin 2 𝑘 , wrapped
by the required conversions.

High-level gate semantics. Having defined the syntax and types of
the higher-level description of our ALU, we nowmake the definition
complete by giving it its semantics. Firstly, the modular arithmetic
operations come straight out of Agda’s standard library:

addN mulN : Fin n → Fin n → Fin n

We then wrap these operations to make them match the exact
expected interface for each gate, and finally bundle the semantics
of each gate into a semantic function for the whole FIN library
(FINgS) 11.

specADD specMUL : Env Val (N𝑛 ⊳ N𝑛 ⊳ ε) → Val N𝑛

specADD (↦→ x ⊳ ↦→ y ⊳ ε) = addN x y
specMUL (↦→ x ⊳ ↦→ y ⊳ ε) = mulN x y

FINgS ADD = idState specADD
FINgS MUL = idState specMUL

The definitions of the specification functions for ADD and MUL
in the binary-coded FIN𝑘 librarymake use of specADD and specMUL

11The idState takes a combinational semantic function (i.e. one that takes no state) and
makes it into a semantic function that takes any state and passes it through untouched.

from the basic FIN library, butwrappedwith the appropriate (de)coding
functions.

specADD𝑘 specMUL𝑘 : Env Val (vec B k ⊳ vec B k ⊳ ε)
→ Val (vec B k)

specADD𝑘 = Fin→W ◦ specADD ◦ mapEnv W→Fin
specMUL𝑘 = Fin→W ◦ specMUL ◦ mapEnv W→Fin

FIN𝑘gS ADD = idState specADD𝑘

FIN𝑘gS MUL = idState specMUL𝑘

In the interest of space, we do not show here the semantics for
the gates in the B4𝑘 library, as they simply consist of application of
the corresponding logic functions (and, or, and so forth). Finally, the
semantics of the united gate library is the union of the semantics
for each library individually.

FINB4𝑘gS : gS (FINB4𝑘 k)
FINB4𝑘gS {k} = (FIN𝑘 {k}) gS⊞ (B4𝑘gS {k})

High-level ALU. With all the gates and their semantics under-
stood, let’s look at the definition of our minimal ALU as a whole. It
is composed of two parts: one arithmetical and one logical. Each
of these parts just consists of all the relevant gates, side-by-side,
along with multiplexing used to decide which operation to perform
on the inputs.

For convenience of exposition, we fix the word length to be 8
bits in this example. However, the definitions in the source code
are all parameterized by word length.

λb = λB[ B4𝑘 8 ]
W8 = vec B 8

LUcmd : U B -- LU: "Logic Unit"
LUcmd = 1 ⊕ 1 ⊕ 1 ⊕ 1

LU : λb (LUcmd ⊳ W8 ⊳ W8 ⊳ ε) W8
LU = Case⊕ #0 {-cmd -} of K2 ⟨ NOT ⟩ -- use only 2nd data in

or Case⊕ #0 of K1 ⟨ AND ⟩
or Case⊕ #0 of K1 ⟨ OR ⟩
or K1 ⟨ XOR ⟩
The Logic Unit takes two data inputs and a command input. The

command type is simply a tagged union of units, used to select the
relevant operation. A more complex command type could poten-
tially be used, but it may then require some sort of decoding unit,
so we go for the simple alternative since command decoding is not
this study’s focus.

We combine all the separate parts by cascading case analysis on
the command, with the detail that each subcircuit does not need
the command itself (thus the K1 in front), and the Not circuit in
particular only uses the second data input.

The definitions forming the Arithmetic Unit follow the same
general scheme, with appropriate command and data inputs:

λb = λB[ FIN𝑘 8 ]
AUcmd : U B -- AU: "Arithmetic Unit"
AUcmd = 1 ⊕ 1

AU : λb (AUcmd ⊳ W8 ⊳ W8 ⊳ ε) W8
AU = Case⊕ #0 of K1 ⟨ ADD ⟩

or K1 ⟨ MUL ⟩
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With both subunits (Arithmetic and Logic) at hand, we can glue
them together to form the ALU. The gate library is the joint library
mentioned before. Finally, there is a joint command input which is
a tagged union of either an LU or an AU command.

λb = λB[ FINB4𝑘 8 ]
ALUcmd : U B
ALUcmd = LUcmd ⊕ AUcmd

ALU : λb (ALUcmd ⊳ W8 ⊳ W8 ⊳ ε) W8
ALU = Case⊕ #0 of LU or AU

6.2 Low-level description
In the low-level description of our ALU case study, we implement
all primitive gates used in the high-level description in terms of
simpler gates.

It is not necessary, however, to perform data concretisation, since
both the high and the low-level descriptions use the same base type
(booleans). We made this choice for equal base types both in the
interest of simplicity, but also because it was convenient to unify
the high-level Logic and Arithmetic subunits.

Low-level gate syntax and Logic Unit. First we choose the library
of primitive gates to use in the low level description. Namely, we
conveniently use the B4 library already defined in Section 2.2, con-
taining NOT, AND, OR and XOR.

This choice is particularly convenient for the implementation of
the low-level Logic Unit. That is because the high-level specifica-
tions for the bitwise logical operations are just applying Vector.map
to each logical function. To make the low-level circuits that imple-
ment each gate, we use each appropriate gate from B4 and apply a
mapping circuit combinator.

λb = λB[ B4 ]
Not8 : λb (W8 ⊳ ε) W8
And8 Or8 Xor8 : λb (W8 ⊳ W8 ⊳ ε) W8

Not8 = Map-par ⟨ NOT ⟩
. . .

The Map-par combinator is defined generically by induction on
the size n of input/output vector type, and its definition has some
levels of indirection in the actual source code of λπ-Ware, but it can
be expressed directly just using the basic λB vector constructors
(Nil and Cons).

Low-level Arithmetic Unit. For the Arithmetic Unit, there is some
care needed to ensure that there is amatch between the input/output
types of high-level and low-level descriptions. Also we define the
implementing circuits carefully to make showing the equivalence
between specification and implementation not unnecessarily diffi-
cult.

Notice first that in the core of the high-level arithmetic gate
specifications (specADD, specMUL) there is a modulo operation,
that is, we are dealing with modular arithmetic. This is mostly for
convenience, since we wish the sizes of inputs and outputs of our
ALU to be uniform. Since we are dealing always with mod 2 𝑘 and
with natural numbers, we can perform the modulo by truncating to
k bits (eight in the ALU specifically).

AddN : λb (B ⊳ vec B k ⊳ vec B k ⊳ ε) (B ⊗ vec B n)
MulN : λb ( vec B k ⊳ vec B k ⊳ ε) ( vec B 2 k)
Snd : λb Γ (τ1 ⊗ τ2) → λb Γ τ2
Add8 Mul8 : λb (W8 ⊳ W8 ⊳ ε) W8
Add8 = Let (Con false) -- carry-in is zero

(Snd AddN) -- take second: ignore carry-out
Drop : ∀ k → λb Γ (vec τ (k + n)) → λb Γ (vec τ n)
Mul8 = Drop 8 MulN

In the case of addition, truncating to k bits means discarding
the carry-out bit, since normally adding two k-bit would result in a
k+1-bit output (k regular output bits plus carry). We reuse here the
ripple-carry adder AddN as it has been defined in Section 2.2.

The multiplication of two k-bit natural numbers results in a
number with up to 2 k bits. We then perform mod 2 𝑘 by simply
discarding the k most-significant digits of the result.

A possible performance improvement to the multiplier would be
to not even calculate the digits that are discarded, but we take the
“calculate then discard” approach for two reasons. First, because
it makes the proof of equivalence simpler. Furthermore, the gen-
eral multiplier is more reusable, and an equivalence between more
general and more efficient versions could be future work.

6.3 Refinement and semantic preservation
We now arrive at the core point of the case study: give a simple
example of how verified technology mapping can be applied in a
concrete circuit. In the previous subsections we gave an exposition
of a toy example ALU both in terms of a high-level specification
and a low-level implementation (with different primitive gates).
Now we focus on what are the remaining ingredients to apply
the semantic preservation theorem for technology mapping, and
conclude by applying said theorem.

In the previous section we gave one circuit in the low-level
corresponding to each gate in the high level, with matching types
and environments. We must now also prove that each such circuit
indeed implements the corresponding high-level gate.

Logic Unit gate implementation. We will show only one example
of such gate/circuit implementation proof for a Logic Unit gate, as
the others follow exactly the same pattern. First let us just look at
the statement of the implementation property for the AND𝑘 gate
and And8 circuit:

impBy B4𝑘gS B4gS id AND𝑘 And8 (const sAND8) =

∀ (s : Val (gSt AND𝑘 ) {-unit -} ) 𝛾 →
map× (const sAnd8) (⇓t id)

(B4𝑘gS AND𝑘 s 𝛾)
≡ J B4gS ⊨_Ks And8 (const sAnd8 s) (⇓γ id 𝛾)

There are two crucial characteristics of And8 that facilitate the
proof of the above statement:

• It is combinational, the state is irrelevant to correctness. So
the state concretisation function can simply be const sAnd8

• High and low-level base types are equal, so the function for
data concretisation is simply the identity
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The statement can be simplified by using the definitions of ⇓t
(⇓t id = id), const (const sAnd8 s = sAnd8) and ⇓γ (⇓γ id 𝛾 =

𝛾 ). Afterwards, the goal of equality between two pairs is split into
two subgoals, one for each projection.

sAnd8 ≡ proj1 (J B4gS ⊨ And8 Ks sAnd8 𝛾)
The state equality is simplest, since And8 is built from a com-

binational circuit combinator (Map-par), which passes the state
through unmodified. Thus the initial state is equal to the final state,
and is equal to the subgoal’s LHS.

proj2 (B4𝑘gS AND𝑘 s 𝛾)
≡ proj2 (J B4gS ⊨_Ks And8 sAnd8 𝛾)

The equality between the results (second projection) will ulti-
mately (within a few more reduction steps) come to rely on an
equivalence lemma which expresses essentially the specification of
the Map-par combinator.

proj2 (J S ⊨_Ks (Map-par f) (↦→ xs ⊳ 𝛾))
≡ map (λ x → proj2 (J S ⊨_Ks f (↦→ x ⊳ 𝛾))) xs

For conciseness we omit details of the initial state values above,
since the circuit built byMap-par just passes through (unmodified)
the state of each copy of f. The proof for this lemma proceeds
by induction on the vector size and structural induction on the
vector xs. The induction over n drives reduction via the semantics
ofMap-par on the LHS, while induction over xs drives reduction
via the definition of map on the RHS.

As all other LU bitwise operators are also defined viaMap-par,
the proof for each of them proceeds in an identical manner.

Arithmetic Unit gate implementation. In the case of the arithmetic
unit there are more subtle differences between the high-level spec-
ification and low-level implementation, thus the implementation
proof has more intermediate steps.

impBy FIN𝑘gS B4gS id ADD Add8 (const sAdd8) =

∀ (s : Val (gSt ADD) {-unit -} ) 𝛾 →
map× (const sAdd8) (⇓t id)

(FIN𝑘gS ADD s 𝛾)
≡ J B4gS ⊨_Ks Add8 (const sAdd8 s) (⇓γ id 𝛾)
The same simplification steps can be taken here as were taken

when discussing the implementation of AND𝑘 , namely involving
the definitions of ⇓γ, ⇓t and const. Also, the equality of pairs is
again split into a pair of equalities, one for each projection.

sAdd8 ≡ proj1 (J B4gS ⊨ Add8 Ks sAdd8 𝛾)
Again, the state equality subgoal is simple to solve for the same

reason as as in the LU cases: for a circuit built with combinational
combinators, the state does not matter (is passed through). However
the result equality subgoal has considerable subtleties to it.

proj2 (FIN𝑘gS ADD s 𝛾)
≡ proj2 (J B4gS ⊨_Ks Add8 sAdd8 𝛾)

First of all, there is the carry-out ignore wrapping that makes
Add8 out of AddN. Further reducing we will see that the subgoal
ultimately comes to rely on the behaviours of (on the RHS) an
accumulating map circuit combinator (MapAccL-par) and (on the
LHS) the specADD𝑘 function with its binary (de)coding wrappers.

addN : Fin 2 𝑘 → Fin 2 𝑘 → Fin 2 𝑘 {-special case n = 2𝑘 -}
specADD (↦→ x ⊳ ↦→ y ⊳ ε) = addN x y

J B4 ⊨ AddN k Ks . . . = J B4 ⊨ MapAccL-par {k} Add K . . .

specADD𝑘 . . . = Fin→W ◦ specADD ◦ mapEnv W→Fin

Notice howMapAccL-par is applied to input vector length k, and
that the type of addN is also specialized to the case where n = 2 𝑘 .
Thus to progress in this proof, induction over k is needed. The
MapAccL-par side of the equation will reduce in such a way that
allows quite direct application of the inductive hypothesis. To be
able to make progress in the specADD𝑘 side, we will need to split
a number of type Fin 2 ∗∗ (suc k), using properties of exponents
along the way.

2 ∗∗ (suc k) = 2 × 2 𝑘 = 2 𝑘 + 2 𝑘

splitFin : Fin (2 𝑘 + 2 𝑘 ) → Bool × Fin 2 𝑘

A number of type Fin (2 𝑘 + 2 𝑘 ) can be either smaller than 2 𝑘

or larger. The splitFin function returns the boolean of whether the
number is larger than 2 𝑘 , along with the remainder. In this way, it
essentially decodes one single bit of the number. Via this splitting of
Fin numbers, we are able to complete the proof.

Semantic preservation of ALU. With the semantic equivalence
proofs for each pair of high-level gate and corresponding imple-
menting circuit, we can apply the preservation theorem for the ALU
circuit as a whole. First we just build the library gate refinement
function ⇓A (for ALU), which bundles up the information about
how to implement each gate.

⇓A AND𝑘 = record {c = And8
; ⇓gSt = const sAnd8
; imp = impAnd8 }

⇓A OR𝑘 = record {c = Or8
; ⇓gSt = const sOr8
; imp = impOr8 }

. . .

Then we can finally apply the preservation theorem ⇓c-pres,
with an initial state sALU which is of the correct shape but is irrele-
vant for computational behaviour (since the ALU is combinational).
What we gain is the certainty that the whole low-level description
(after applying ⇓c) is a correct implementation of the high-level
model we used as specification, given that each of the gates is cor-
rect.

⇓c-pres ⇓A ALU sALU : (𝛾 : Env Val Γ)
→ map× (⇓s ⇓A) id

(J FINB4𝑘gS ⊨ ALU Ks sALU 𝛾)
≡ J B4gS ⊨ (⇓c ⇓A ALU) Ks (⇓s ⇓A sALU) (⇓γ id 𝛾)

This notion of correctness w.r.t. a higher-level circuit model is com-
plementary to the more common notion of correctness: correctness
of a circuit w.r.t. a host-language definition (Agda function). It is
part of a chain of reasoning where a designer starts with trustwor-
thy/verified Agda functions (maybe from a standard library) and
through successive steps of refinement can arrive at a circuit model
which they deem suitable for implementation in their underlying
hardware technology of choice (e.g. synthesizable VHDL).
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7 DISCUSSION
7.1 Related work
There is a rich tradition of using the functional programming par-
adigm to model digital circuits. Sheeran [2005] and Chen [2012]
both give a historical overview of the different approaches and
domain specific embedded languages that have been explored in
the last decades, including 𝜇FP [Sheeran 1984], Ruby [Brown and
Hutton 1994], Lava [Bjesse et al. 1999; Gill et al. 2009; Singh 2004],
Wired [Axelsson et al. 2005], Forsyde [Sander and Jantsch 2004],
Hawk [Launchbury et al. 1999; Matthews et al. 1998], and others.
These approaches typically embed a domain specific language for
hardware description in a strongly typed, general purpose func-
tional language such as Haskell—just as we have embedded our
DSL in Agda. One particularly interesting aspect of Lava is that
it enables users to define parametrised circuits, such as an adder
taking its width as an argument, and connection patterns, higher or-
der functions that capture recurring structures in hardware design.
When it comes to verification, however, this is typically done by
instantiating parametrised circuits and calling an automatic solver
on the result. In our approach, on the other hand, we can use our
host language, Agda, to establish inductively the correctness of
circuit generators—rather that verifying each instance separately.
Furthermore, we can exploit the carefuly construed compositional
structure of a circuit during verification, rather than only calling
an automated solver on the final design. Finally, the main focus of
this paper has been in formalising the technology mapping process
whereas Lava employs a fixed set of primitive circuits and boolean
types.

More recently, the work on Clash [Baaij 2015; ?] has started
to explore a new point in this design space. Where most existing
approaches use Haskell as a host language to embed circuits, Clash
instead generates hardware for (a fragment of) GHC’s core language
directly. This enables users to re-use many of the syntactic features,
such as pattern matching, that our DSL is lacking; on the other
hand, the focus of the work on Clash is very much defining circuits,
rather than their verification in a proof assistant.

There is a long tradition of verifying hardware using proof assis-
tants, in particular using Isabelle/HOL [Boulton et al. 1992; Melham
1993], where the higher order logic is used to model both circuits
and their specifications. The approach outlined in this paper, makes
essential use of dependent types to ensure that our circuits can
be executed safely—or more precisely, assigned a denotational se-
mantics as a Mealy machine. One important consequence of this,
is that it allows us to safely replace a (high level) circuit with its
(low level) implementation—precisely the property required for
safe technology. Similar shallow embeddings have been done in
proof assistants based on type theory before [Coupet-Grimal and
Jakubiec 2004; Paulin-Mohring 1995]. Work by Brady et al. [2007]
has shown how to record a circuit’s semantics in its type, allowing
for correct-by-construction circuit definitions. Unfortunately, this
work only considers combinational circuits (without state), rather
than the Mealy machines used in this paper.

Our approach is closest in spirit to other domain specific embed-
ded languages using dependent types, such as Coquet [Braibant
2011] and PiWare [Pizani Flor et al. 2016]. Both these languages,

however, focus exclusively on working at a single (low-level) of cir-
cuit design. The key innovation presented in this paper is parametris-
ing circuits by the types they process, allowing for the (gradual)
mapping from high specifications to (low level) implementatations.

7.2 Future work
Modular construction of gate libraries. In the case study we have

built our high-level library of primitive gates by uniting two smaller
libraries (arithmetic and logical). However, we had to work around
the requirement of using a single base type for both sub-libraries.

We are still investigating which, if any, fundamental changes to
the typing discipline, syntax and/or semantics of λπ-Waremay be re-
quired to allow combining these type-heterogeneous gate libraries.
Even though this question does not belong to the core of technology
mapping, such combined libraries with different types reflect the
modular design that often occurs in reality and would increase part
reuse. Our previous work on combining datatypes [Swierstra 2008]
suggests one direction to tackle this issue.

Congruence of refinement with circuit transformations. A property
of the technology mapping refinement that we wish to explore in
the future is that it should be compatible with compositional circuit
transformations. That means doing the transformation and then
refining should have the same semantic effect as first refining and
then applying a (modified) transformation on the lower level.

This could apply, for example, to the verified timing transforms
that we explored in previous work. We expect this property to hold
since the refinement’s proof of semantic preservation is mostly a
consequence of the compositionality of both the refinement function
and the used circuit semantics. Thus any compositional transfor-
mation would be compatible.

Variable binding. The representation of bound variables, using
well typed De Bruijn indices, is perfect for defining the semantics
of a circuit; writing larger circuits by hand, however, is far too cum-
bersome. We want to investigate how to add a more human friendly
frontend to our current implementation, for instance, exploiting
existing techniques for converting between different approaches
to variable binding [Atkey et al. 2009] or using Agda’s macros and
other metaprogramming features [Walt and Swierstra 2012].
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