
Calculating Datastructures

Ralf Hinze1 and Wouter Swierstra2

1 TU Kaiserslautern ralf-hinze@cs.uni-kl.de

2 Utrecht University w.s.swierstra@uu.nl

Abstract. Where do datastructures come from? This paper explores
how to systematically derive implementations of one-sided �exible arrays

from a simple reference implementation. Using the dependently typed
programming language Agda, each calculation constructs an isomorphic�
yet more e�cient�datastructure using only a handful of laws relating
types and arithmetic. Although these calculations do not generally pro-
duce novel datastructures they do give insight into how certain datas-
tructures arise and how di�erent implementations are related.

1 Introduction

There is a rich �eld of program calculation, deriving a program systematically
from its speci�cation. In this paper, we explore a slightly di�erent problem:
showing how e�cient datastructures can be derived from an ine�cient reference
implementation. In particular, we consider how to derive implementations of
one-sided �exible arrays, that o�er e�cient indexing without being limited to
store only a �xed number of elements. Although we do not claim to invent new
datastructures by means of our calculations, we can demystify the de�nitions of
familiar datastructures, providing a constructive rationalization identifying the
key design choices that are made.

In contrast to program calculation, relating a program and its speci�cation,
the calculation of datastructures requires relating two di�erent types. As it turns
out, we show how to calculate e�cient implementations that are isomorphic
to our reference implementation. These calculations rely exclusively on familiar
laws of types and arithmetic. Indeed, we have formalised these calculations in
the dependently typed programming language and proof assistant Agda. While
we present our derivations in quite some detail, we occassionally will refer to
the accompanying source code for a more complete account; while not provable
in the current type theory underlying Agda, we will occassionally assume the
axiom of functional extensionality.

After de�ning the interface of �exible arrays (Section 2), we will de�ne the
Peano natural numbers (Section 3), leading to the �rst functional reference im-
plementation of �exible arrays (Section 4). Starting from this reference imple-
mentation, we compute an isomorphic, yet ine�cient, datastructure (Section 5).
By shifting to a more e�cient (binary) number representation (Section 6), we
can de�ne a similar reference implementation (Section 7). Using this second
reference implementation, we once again compute an isomorphic datastructure
(Section 8)�but in this case several alternative choices exist (Sections 9 & 10).

2 Ralf Hinze and Wouter Swierstra

2 One-sided Flexible Arrays

Consider the following interface for one-sided �exible arrays:

N : Set
Array : N→ Set→ Set

lookup : Array n elem→ ({i : N | i< n}→ elem)
tabulate : ({i : N | i< n}→ elem)→Array n elem

nil : Array 0 elem
cons : elem→Array n elem→Array (1 + n) elem
head : Array (1 + n) elem→ elem
tail : Array (1 + n) elem→Array n elem

An array of type Array n elem stores n elements of type elem, for some natural
number n. For the moment, we leave the type of natural numbers abstract.
In what follows, we explore di�erent implementations of arrays by varying the
implementation of the natural number type.

We require �exible arrays to be isomorphic to functions from some �nite set
of indices to the elem type. The lookup function witnesses one direction of the
isomorphism, tabulate the other.

lookup (tabulate f) ≡ f (1a)

tabulate (lookup a) ≡ a (1b)

In what follows, we refer to functions with a �nite domain, that is functions of
the form {i : N | i< n}→ elem, as �nite maps.

In contrast to traditional �xed-size arrays, one-sided �exible arrays can be
extended at the front using the cons operation. Non-empty arrays can be shrunk
with tail, discarding the �rst element. The following properties specify the in-
terplay of indexing and the other operations that modify the size of the array.

lookup (cons x xs) 0 ≡ x (2a)

lookup (cons x xs) (1 + i) ≡ lookup xs i (2b)

head xs ≡ lookup xs 0 (2c)

lookup (tail xs) i ≡ lookup xs (1 + i) (2d)

To de�ne any implementation of this interface, we �rst need to settle on
the implementation of the natural number type. The most obvious choice is, of
course, Peano's representation.

3 Peano Numerals

To calculate an implementation of �exible arrays we proceed in two steps. First,
we �x an indexing scheme by de�ning a type of natural numbers below some
�xed, upper bound. Such an indexing scheme �xes the domain of our �nite maps,

Calculating Datastructures 3

{i | i< n} . Next, we calculate a more e�cient representation of �nite maps,
yielding a datastructure rather than a function. This section details the ideas
underlying the �rst step using the simplest representation of natural numbers;
in Section 5, we explore the second step.

3.1 Number Type

The datatype of Peano numerals describes the set of natural numbers as the
least set containing zero that is closed under a successor operation.

data Peano : Setwhere
zero : Peano
succ : Peano→ Peano

We use variable names such as k, m, and n to range over Peano numerals
and use the Arabic numerals to denote Peano constants, writing 3 rather than
succ (succ (succ zero)).

The operations doubling and incrementing natural numbers, needed in Sec-
tion 6.1, illustrate how to de�ne functions (by induction) in Agda.3

+1 +2 : Peano → Peano
n+1 = succ n
n+2 = succ (succ n)

·2 : Peano → Peano
zero ·2 = zero
succ n ·2 = succ (succ (n ·2))

The underscores indicate that all three functions are written post�x.

3.2 Index Type

Having �xed the number type, we move on to de�ne the type of valid indices in
an Array of size n. Here we have several alternatives, each with its own advan-
tages and disadvantages. The most obvious transcription of {i | i< n} uses a
dependent pair or Σ type to combine a natural number and a proof that it is
within bounds:

Index : Peano→ Set
Index n = Σ[i ∈ Peano] i< n

3 The single most important rule when reading Agda code is that only a space sepa-
rates lexemes. For example, +1 is a single lexeme denoting the successor function,
whereas n+ 1 is a sequence of three lexemes. In general, an Agda identi�er consists
of an arbitrary sequence of non-whitespace Unicode characters. There are only a few
exceptions to this rule: for example, parentheses, (and), and curly braces, { and },
must not form part of a name�for obvious reasons.

4 Ralf Hinze and Wouter Swierstra

Here < denotes the strict ordering on the naturals. While the de�nition is fairly
straightforward, it is somewhat cumbersome to use in practice as any compu-
tation on indices involves manipulations of proofs. Before discussing alternative
de�nitions, let us �rst explore some properties of the Index type.

Index-0 : Index (0) ∼=⊥
Index-1 : Index (1) ∼=>
Index-+ : Index (m+ n) ∼= (Index m] Index n)
Index-∗ : Index (m ∗ n) ∼= (Index m× Index n)
Index-↑ : Index (n ↑ m)∼= (Index m → Index n)

The formulas link arithmetic on numbers to operations on types, with the num-
ber 0 corresponding to the empty set (written ⊥ in Agda), 1 to a singleton set
(written >), addition to disjoint union (written]), multiplication to cartesian
product (written ×), and, �nally, exponentiation to the function space. We refer
to these laws as index transformations.

For example, the sum rule Index-+ is witnessed by a mapping between indices
for a pair of arrays and indices for a single array, as suggested below.

0 1 2 3 0 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8 9 10

More instructively, the product rule, Index-∗, is witnessed by a mapping between
indices for a two-dimensional array and indices for a one-dimensional array.

0

1

2

3

0 1 2 3 4 5 6

21 22 23 24 25 26 27

14 15 16 17 18 19 20

7 8 9 10 11 12 13

0 1 2 3 4 5 6 0

1

2

3

0 1 2 3 4 5 6

3 7 11 15 19 23 27

2 6 10 14 18 22 26

1 5 9 13 17 21 25

0 4 8 12 16 20 24

In general, there is not a single canonical witness for an index transformation.
The diagram on the left above exempli�es what is known as row-major order,
but there is also column-major order, shown on the right. For now, we choose
to ignore these speci�cs. However, when we start calculating datastructures the
choice of isomorphism becomes tremendously important, a point we return to
in Section 6.2.

Remark 1 (Categorical background). To provide some background, the type func-
tion Index is the object part of a functor from the preorder of natural numbers
to the category of �nite sets and total functions. (This is why the type is also
known as Fin or FinSet.) The action of the functor on arrows embeds Index m
into Index n, provided m4 n. In fact, the isomorphisms demonstrate that Index

Calculating Datastructures 5

is simultaneously a strong monoidal functor of type (N, 0,+) → (Set,⊥,]) and
a strong monoidal functor of type (N, 1, ·)→ (Set,>,×). ut

Returning to the issue of de�ning the Index type in Agda, we can use the
isomorphisms above to determine the index set by pattern matching on the
natural number n.

Index : Peano→ Set
Index (zero) = ⊥
Index (succ n) = >] Index n

The zero rule Index-0 determines that the Index (0) type is uninhabited; whereas
the rules for one and addition, Index-1 and Index-+, determine that Index (succ n)
contains one more element than Index n.

For reasons of readability, we turn the de�nition of Index into idiomatic Agda,
replacing the type function by an inductively de�ned indexed datatype.

data Index : Peano→ Setwhere
izero : Index (succ n)
isucc : Index n→ Index (succ n)

There are no constructors for Index zero, corresponding to the �rst equation
of Index, and two constructors for Index (succ n), corresponding to Index's sec-
ond equation. The constructor names are almost identical to those of Peano.
This is intentional: we want the constructors of Index to look and behave like
their namesakes. The only di�erence is that the former carry vital type infor-
mation about upper bounds. Reassuringly, all three de�nitions of index sets are
equivalent. The straightforward, but rather technical proofs can be found in the
accompanying material.

To illustrate working with indices, let us implement some index transforma-
tions that are needed later in Section 6.2.

·2+0 ·2+1 : Index n → Index (n ·2)
(izero) ·2+0 = izero
(isucc i) ·2+0 = isucc (isucc (i ·2+0))

(izero) ·2+1 = isucc izero
(isucc i) ·2+1 = isucc (isucc (i ·2+1))

The second operation combines doubling and increment. The �obvious� de�ni-
tion, i ·2+1 = isucc (i ·2+0) does not work, as the expression on the right-hand
side has type Index (n ·2 +1) and not Index (n ·2), as required. On plain naturals
we can separate doubling and increment; here we need to combine the opera-
tions to be able to establish precise upper bounds. We cannot expect Agda to
automatically replicate the hand-written proof:

i ≺ n ⇐⇒ i+ 1 4 n ⇐⇒ (i+ 1) · 2 4 n · 2 ⇐⇒ i · 2 + 1 ≺ n · 2 .

In general, since Index combines data and proof, index transformations require
more work than their vanilla counterparts on naturals.

Now that we have a precise understanding of the domain of our �nite maps,
we can start calculating an implementation of the interface speci�ed in Section 2.

6 Ralf Hinze and Wouter Swierstra

4 Functions as Datastructures

The simplest implementation of the Array type identi�es arrays and �nite maps:

Array : Peano→ Set→ Set
Array n elem = Index n→ elem

In this particular case, lookup and tabulate are manifest identities, rather than
isomorphisms.

lookup : Array n elem→ (Index n→ elem)
lookup a = a

tabulate : (Index n→ elem)→Array n elem
tabulate f = f

To complete this �implementation�, however, we still need to de�ne the remaining
operations: nil, cons, head, and tail. The empty array nil is the unique function
from the empty set, de�ned below using an absurd pattern, written (). For the
other functions, the speci�cation serves as the implementation, for example, (2a)
and (2b) form the de�nition of cons, given that lookup is implemented as the
identity function.

nil : Array zero elem
nil ()

cons : elem→Array n elem→Array (succ n) elem
cons x xs (izero) = x
cons x xs (isucc i) = xs i

head : Array (succ n) elem → elem
head xs = xs izero

tail : Array (succ n) elem → Array n elem
tail xs i = xs (isucc i)

The proofs that the �implementation� satis�es the speci�cation are conse-
quently trivial: all the speci�ed equivalences hold by de�nition.

While the �implementation� is exceptionally simple, it is also exceptionally
slow: the running time of lookup xs i is not only determined by the index i but also
by the number of operations used to build the array xs. For example, even though
tail (cons x xs) is extensionally equal to xs, each lookup takes two additional steps
as the index is �rst incremented by tail only to be subsequently decremented
by cons. In other words, the run-time behaviour of lookup is sensitive to how
the array has been constructed! To avoid this problem, we turn functions into
datastructures, using this �implementation� above as our starting point.

5 Lists also Known as Vectors

Do you remember the laws of exponents from secondary school?

X0 = 1 X1 = X XA+B = XA ·XB XA·B =
(
XB

)A

Calculating Datastructures 7

Quite amazingly, these equalities can be re-interpreted as isomorphisms between
types, where BA is the type of functions from A to B.

law-of-exponents-⊥ : (⊥→X) ∼=>
law-of-exponents-> : (>→X) ∼=X
law-of-exponents-] : (A] B→X) ∼= ((A→X)× (B→X))
law-of-exponents-× : (A× B→X)∼= (A→ (B→X))

If we apply these isomorphisms from left to right, perhaps repeatedly, we can
systematically eliminate function spaces. This process might be called defunc-
tionalization or triei�cation, except that the former term is already taken.

Some background is perhaps not amiss. A trie is also known as a digital
search tree. In a conventional search tree, the search path is determined on the
�y by comparing a given key against the sign posts stored in the inner nodes.
By contrast, in a digital search tree, the key is the search path. This idea is, of
course, not limited to searching. The point of this paper is that it applies equally
well to indexing: the index or position of an element within an array is a path
into the datastructure that represents the array.

Remark 2 (Categorical background). A lot more can be said about triei�cation:
Tab with Tab A = A → X is a contravariant functor, part of an adjoint
situation, sending left adjoints (initial objects ⊥, coproducts], initial algebras)
to right adjoints (terminal objects >, products ×, �nal coalgebras) [2, 13]. ut

That's enough words for the moment, calculemus! To trieify our type of �nite
maps,

trieify : ∀ elem → ∀ n → (Index n → elem)∼=Array n elem

we proceed by induction on the size of the array n. For the derivation, we use
Wim Feijen's proof format, which features explicit justi�cations for the calcu-
lational steps, written between angle brackets. For example, the �rst rewrite
below is justi�ed by an isomorphism between function spaces: dom∼=→∼= cod
applies the isomorphism dom to the domain of its function argument and cod to
its codomain. Note that in contrast to traditional pencil-and-paper proofs, the
justi�cation is an Agda term, and the Agda type-checker veri�es that this term
serves indeed as appropriate evidence for the step.

trieify elem zero =
proof

(Index zero → elem)
∼=〈 Index-zero∼=→∼=∼=-re�exive 〉
(⊥ → elem)
∼=〈 law-of-exponents-⊥ 〉
>
∼=〈 use-as-de�nition-of Array-zero 〉
Array zero elem

8 Ralf Hinze and Wouter Swierstra

The calculation suggests a de�ning equation: Array zero elem = >, which ex-
presses that there is exactly one array of size 0, namely the empty array. For
non empty arrays, the calculation is almost just as straightforward.

trieify elem (succ n) =
proof

(Index (succ n) → elem)
∼=〈 Index-succ∼=→∼=∼=-re�exive 〉
(>] Index n → elem)
∼=〈 law-of-exponents-] 〉
(> → elem)× (Index n → elem)
∼=〈 law-of-exponents->∼=×∼= trieify elem n 〉
elem×Array n elem
∼=〈 use-as-de�nition-of Array-succ 〉
Array (succ n) elem

The �nal isomorphism expresses that an array of size 1 + n consists of an element
followed by an array of size n. If we name the constructors appropriately, we
obtain the familiar datatype of lists, indexed by length. This indexed type is
also known as Vector.

variable elem : Set

data Array : Peano→ Set→ Setwhere
nil : Array zero elem
cons : elem→Array n elem→Array (succ n) elem

Observe that the constructors of the interface, nil and cons, are now implemented
by the constructors of the datatype.

If we extract the two components of the trieify isomorphism, we obtain the
following de�nitions of lookup and tabulate.4

lookup : Array n elem→ (Index n→ elem)
lookup (cons x xs) (izero) = x
lookup (cons x xs) (isucc i) = lookup xs i

tabulate : (Index n→ elem)→Array n elem
tabulate {zero} fm = nil
tabulate {succ n} fm = cons (fm izero) (tabulate (λ i→ fm (isucc i)))

Like trieify, both lookup and tabulate are de�ned by induction on the size. In the
case of lookup, the size information remains implicit as Agda is able to recreate
it from the explicit argument, namely, the argument list. For tabulate, no such
information is available. Hence, we need to match on the implicit argument
explicitly in its de�nition.

4 Unfortunately, Agda's extraction process is only semi-automatic, so we do not trust
the resulting code. The proofs that lookup and tabulate are inverses are, however,
entirely straightforward and can be found in the accompanying material.

Calculating Datastructures 9

The equations for head and tail are immediate consequences of the speci�ca-
tion.

head : Array (succ n) elem → elem
head (cons x xs) = x

tail : Array (succ n) elem → Array n elem
tail (cons x xs) = xs

Thanks to our reference implementation, see Section 4, the proof of correct-
ness is a breeze: we simply show that the �concrete� operations on vectors are
equivalent to their �speci�cation� on �nite maps. De�ning a shortcut for the
lookup function, J K, the proof obligations read as follows.

J nil K ≡ FM.nil (3a)

J cons x xs K ≡ FM.cons x J xs K (3b)

head xs ≡ FM.head J xs K (3c)

J tail xs K ≡ FM.tail J xs K (3d)

lookup xs ≡ FM.lookup J xs K (3e)

J tabulate f K ≡ FM.tabulate f (3f)

Here we have pre�xed the operations of the reference implementation of Section 4
by FM, short for `�nite map'. Recalling that FM.lookup and FM.tabulate are both
the identity function, Property (3e) means that lookup is indeed extensionally
equal to the implementation using �nite maps. Conversely, as (3f) shows, the
tabulate is the right-inverse of lookup, which is unique.

The vector implementation of arrays does not su�er from history-sensitivity,
tail (cons x xs) is now de�nitionally equal to xs, but thanks to the ivory tower
number type, it is still too slow to be useful in practice. The cure is pretty
obvious: we replace unary numbers by binary numbers�albeit with a twist.

6 Leibniz Numerals

Instead of working with Peano naturals, we could choose a di�erent implemen-
tation of the natural number type. In this section, we will explore one possible
implementation, Leibniz numbers, or binary numbers that have a unique repre-
sentation of every Peano natural number.

6.1 Number Type

A Leibniz numeral is given by a sequence of digits with the most signi�cant digit
on the left. A digit is either 1 or 2.

data Leibniz : Setwhere
0b : Leibniz
1 : Leibniz → Leibniz

10 Ralf Hinze and Wouter Swierstra

2 : Leibniz → Leibniz
Eau-de-Cologne = 0b 1 1 2 1 1 2 2 1 2 1 1 1

Agda's post�x syntax allows us to mimic standard notation for binary numbers:
the expression 0b 1 1 2 1 should be read as (((0b 1) 1) 2) 1.

To assign a meaning to a Leibniz numeral, we map it to a Peano numeral.

N J K : Leibniz → Peano
N J 0b K = 0
N J n 1 K = N J n K ·2 +1
N J n 2 K = N J n K ·2 +2

assert : N J Eau-de-Cologne K≡ 4711

For example, N J 0b 1 1 2 1 K normalizes to 17. The meaning function makes it
crystal clear that we implement a base-two positional number system, except
that the digits 1 and 2 are used, rather than 0 and 1.

Thanks to this twist we avoid the problem of leading zeros: every natu-
ral number enjoys a unique representation; the Leibniz number system is non-
redundant. Moreover, the meaning function establishes a one-to-one correspon-
dence between the two number systems: Leibniz∼= Peano. Speaking of number
conversion, the other direction of the isomorphism can be easily implemented
using the �pseudo-constructors� zero and succ.

zero : Leibniz
zero = 0b

succ : Leibniz→ Leibniz
succ (0b) = 0b 1
succ (n 1) = n 2
succ (n 2) = (succ n) 1 -- carry

The binary increment exhibits the typical recursion pattern: the least signi�cant
digit is incremented, unless it is maximal, in which case a carry is propagated
to the left. Using the meaning function it is straightforward to show that the
implementation is correct.

zero-correct : N J Leibniz.zero K≡ Peano.zero
succ-correct : N J Leibniz.succ n K≡ Peano.succ N J n K

The pre�x �pseudo� indicates that the operations zero and succ are not full-
�edged constructors: we cannot use them in patterns on the left-hand side of
de�nitions. To compensate for this, we additionally o�er a Peano view [18, 27].

data Peano-View : Leibniz→ Setwhere
as-zero : Peano-View zero
as-succ : (i : Leibniz) → Peano-View (succ i)

The view function itself illustrates the use of view patterns.

Calculating Datastructures 11

view : (n : Leibniz)→ Peano-View n
view (0b) = as-zero
view (n 1)with view n
... | as-zero = as-succ 0b
... | as-succ m = as-succ (m 2) -- borrow
view (n 2) = as-succ (n 1)

In a sense, view combines two functions: the test for zero and the predecessor
function, again following the typical recursion pattern: the least signi�cant digit
is decremented, unless it is minimal, in which case we borrow one from the left.

The semantics of such a view is de�ned by a mapping into the Peano numer-
als. The correctness criterion asserts that view does not change the value of its
argument.

V J K : Peano-View n→ Peano
V J as-zero K = 0
V J as-succ n K = N J n K +1
view-correct : V J view n K≡N J n K

Remark 3 (Agda). You may wonder why the type Peano-View is indexed by a
Leibniz numeral. Why not simply de�ne:

data Peano-View : Setwhere -- too simple-minded
as-zero : Peano-View
as-succ : Leibniz → Peano-View

In contrast to the simple, unindexed datatype above, our indexed view type keeps
track of the to-be-viewed value, which turns out to be vital for correctness proofs:
if view n yields as-succ m then we know that n de�nitionally equals succ m. The
constructors of the unindexed datatype do not maintain this important piece of
information, so the subsequent proofs do not go through. ut

As an intermediate summary, Leibniz numerals serve as a drop-in replace-
ment for Peano numerals: the pseudo-constructors replace zero and succ on the
right-hand side of equations; the view allows us to additionally replace them in
patterns on the left-hand side.

6.2 Index Type

Of course, we would like to use binary numbers for indices, as well. Therefore
we need to adapt the type of positions that speci�es the domain of our �nite
maps. The following derivation is based on the index transformations but, as we
have noted in Section 3, there are, in general, several options for the witnesses of
these transformations. In other words, we have to make some design decisions!
In particular, since we use a binary, positional number system we need to inject
life into the doubling isomorphism:

12 Ralf Hinze and Wouter Swierstra

Index-2·n∼=Index-n]Index-n : Index (n ·2)∼= Index n] Index n

There are two canonical choices, one based on appending and a second one based
on zipping or interleaving.

0
000

1
001

2
010

3
011

4
100

5
101

6
110

7
111

0 1 2 3 4 5 6 7

append halve

0
000

2
010

4
100

6
110

1
001

3
011

5
101

7
111

0 2 4 6
1 3 5 7

zip unzip

If the size is an exact power of two, halving separates the indices based on the
most signi�cant bit, whereas unzipping considers the least signi�cant bit. (As
an aside, do not be confused by the names: append, zip etc are index transfor-
mations, not operations on arrays.) Both choices are viable, however, we choose
to initially focus on the �rst alternative and return to the second in Section 12,
but only brie�y.

Zipping maps elements of the �rst summand to even indices and elements of
the second to odd indices.

zip : Index n] Index n → Index (n ·2)
zip (inj1 i) = i ·2+0 -- even
zip (inj2 i) = i ·2+1 -- odd

Its inverse amounts to division by 2 with the remainder specifying the summand
of the disjoint union.

unzip : Index (n ·2) → Index n] Index n
unzip {succ n} (izero) = inj1 izero -- even
unzip {succ n} (isucc izero) = inj2 izero -- odd
unzip {succ n} (isucc (isucc i))with unzip i
... | inj1 j = inj1 (isucc j)
... | inj2 k = inj2 (isucc k)

Given these prerequisites the calculation of

re-index : ∀ n → Peano.Index J n K∼= Leibniz.Index n

proceeds by induction on the structure of Leibniz numerals. For the base case,
there is little to do.

re-index (0b) =
proof

Peano.Index J 0b K
∼=〈 Peano.Index-zero 〉
⊥

Calculating Datastructures 13

∼=〈 use-as-de�nition-of Index-0 〉
Leibniz.Index 0b

The calculation for the �rst inductive case also works without any surprises.

re-index (n 1) =
proof

Peano.Index J n 1 K
∼=〈 Peano.Index-succ 〉
>] Peano.Index (J n K ·2)
∼=〈 ∼=-re�exive∼=]∼= Index-2·n∼=Index-n]Index-n 〉
>] Peano.Index J n K] Peano.Index J n K
∼=〈 ∼=-re�exive∼=]∼= (re-index n∼=]∼= re-index n) 〉
>] Leibniz.Index n] Leibniz.Index n
∼=〈 use-as-de�nition-of Index-1 〉
Leibniz.Index (n 1)

We plug in the de�nition of Peano.Index, apply the doubling isomorphism based
on zipping, and �nally invoke the induction hypothesis. The derivation for the
�nal case follows exactly the same pattern, except that we unfold the de�nition
of Peano.Index twice.

re-index (n 2) =
proof

Peano.Index J n 2 K
∼=〈 Peano.Index-succ 〉
>] Peano.Index (J n K ·2 +1)
∼=〈 ∼=-re�exive∼=]∼= Peano.Index-succ 〉
>] >] Peano.Index (J n K ·2)
∼=〈 ∼=-re�exive∼=]∼= (∼=-re�exive∼=]∼= Index-2·n∼=Index-n]Index-n) 〉
>] >] Peano.Index J n K] Peano.Index J n K
∼=〈 ∼=-re�exive∼=]∼= (∼=-re�exive∼=]∼= (re-index n∼=]∼= re-index n)) 〉
>] >] Leibniz.Index n] Leibniz.Index n
∼=〈 use-as-de�nition-of Index-2 〉
Leibniz.Index (n 2)

As usual, we introduce names for the summands of the disjoint unions, obtaining
the following index type for Leibniz numerals.

data Index : Leibniz→ Setwhere
0b1 : Index (n 1) -- >
11 : Index n→ Index (n 1) --] Index n
21 : Index n→ Index (n 1) --] Index n
0b2 : Index (n 2) -- >

14 Ralf Hinze and Wouter Swierstra

1b2 : Index (n 2) --] Index n
22 : Index n→ Index (n 2) --] Index n
32 : Index n→ Index (n 2) --] Index n

A couple of remarks are in order. The index attached to the constructor names
indicates the least signi�cant digit of the upper bound. The constructors 0b1
and 0b2 say: �Operationally we are alike, both representing the zeroth index.
However, we carry important type information, 0b1 lives below an odd upper
bound, whereas 0b2 is below an even bound.� The de�nition of the index set
is perhaps not quite what we expected as it amalgamates two di�erent number
systems: the by now familiar 1-2 system and a variant that employs 0 and 1 as
leading digits and 2 and 3 for non-leading digits.

Remark 4. As an aside, the 2-3 number system is also non-redundant. In general,
any binary system that uses the digits 0, . . . , a in the leading position and a+1
and a+2 for the other positions, enjoys the property that every natural number
has a unique representation. ut

To make the semantics of these indices precise, we extract the witness for the
reverse direction of the re-indexing isomorphism (using iz and is as shorthands
for izero and isucc on Peano indices).

I J K : Index n→ Peano.Index J n K
I J 0b1 K = iz
I J i 11 K = is (I J i K ·2+0)
I J i 21 K = is (I J i K ·2+1)
I J 0b2 K = iz
I J 1b2 K = is iz
I J i 22 K = is (is (I J i K ·2+0))
I J i 32 K = is (is (I J i K ·2+1))

Just as we saw in Section 3, the expressions n ·2+1 and is (n ·2+0) are quite
di�erent as they live below di�erent upper bounds: if j : Index a, then j ·2+1 :
Index (a ·2), whereas is (j ·2+0) : Index (a ·2 +1). These types carry just enough
information to avoid the infamous �index out of bounds� errors. While the de�-
nitions of Index and I J K may seem quite bulky at �rst glance, they encode an
essential invariant of the indices involved.

The same remark applies to the de�nition of izero and isucc.

izero : ∀ {n} → Index (succ n)
izero {0b} = 0b1
izero {n 1} = 0b2
izero {n 2} = 0b1

isucc : Index n→ Index (succ n)
isucc (0b1) = 1b2
isucc (i 11) = i 22
isucc (i 21) = i 32

Calculating Datastructures 15

isucc (0b2) = izero 11
isucc (1b2) = izero 21
isucc (i 22) = (isucc i) 11
isucc (i 32) = (isucc i) 21

The successor function maps an odd number to an even number, and vice versa,
correspondingly incrementing the upper bounds. Consequently, arguments and
results alternate between the two number systems. This is why isucc (i 22) yields
(isucc i) 11, rather than i 32. The recursion pattern is interesting: if the argument
is below an odd bound, isucc returns immediately; a recursive call is only made
for indices that live below an even upper bound. We return to this observation
in Section 8.

Using the meaning function we can establish the correctness of izero and
isucc.

izero-correct : I J izero {n} K≡ iz
isucc-correct : I J isucc i K≡ is I J i K

Both equations relate expressions of di�erent types, for example, I J isucc i K :
N J succ n K whereas is I J i K : N J n K +1. Fortunately, succ-correct tells us that
both types are propositionally equal.5

You may have noticed that this section replicates the structure of Section 6.1.
It remains to de�ne an appropriate view on Leibniz indices.

data Index-View : Index (succ n)→ Setwhere
as-izero : Index-View {n} izero
as-isucc : (i : Index n)→ Index-View (isucc i)

The type Index-View is implicitly parametrized by a Leibniz numeral n and
explicitly parametrized by a Leibniz index of type Index (succ n). The de�nition
of the view function merits careful study.

iview : {n : Leibniz}→ (i : Index (succ n))→ Index-View i
iview {0b} (0b1) = as-izero
iview {n 1} (0b2) = as-izero
iview {n 1} (1b2) = as-isucc 0b1
iview {n 1} (i 22) = as-isucc (i 11)
iview {n 1} (i 32) = as-isucc (i 21)
iview {n 2} (0b1) = as-izero
iview {n 2} (i 11)with iview i
... | as-izero = as-isucc 0b2
... | as-isucc j = as-isucc (j 22) -- borrow
iview {n 2} (i 21)with iview i

5 Agda actually complains about a type mismatch as the two types are not de�nition-
ally equal. This somewhat unfortunate situation can, however, be �xed with a hint
of extensionality, adding succ-correct to Agda's de�nitional equality.

16 Ralf Hinze and Wouter Swierstra

... | as-izero = as-isucc 1b2

... | as-isucc j = as-isucc (j 32) -- borrow

Recall that the Peano view combines the test for zero and the predecessor func-
tion. The same is true of iview, except that arguments and results additionally
alternate between the two number systems.

Finally, given the semantics of view patterns we can assert that iview does
not change the value of its argument.

W J K : ∀ {i : Index (succ n)} → Index-View i→ Peano.Index (J n K +1)
W J as-izero K = iz
W J as-isucc i K = is I J i K
iview-correct : (i : Index (succ n)) → W J iview i K≡I J i K

7 Functions as Datastructures

To showcase the use of our new gadgets we adapt the implementation of Section 4
to binary indices, setting Array n elem = Index n→ elem.

nil : Array 0b elem
nil ()

cons : elem→Array n elem→Array (succ n) elem
cons x xs iwith iview i
... | as-izero = x
... | as-isucc j = xs j

head : Array (succ n) elem → elem
head xs = xs izero

tail : Array (succ n) elem → Array n elem
tail xs i = xs (isucc i)

As in the Peano case, �functions as datastructures� serve as our reference imple-
mentation for datastructures based on Leibniz numerals. With this speci�cation
in place, we can now try to discover a corresponding datastructure.

8 One-two Trees

Turning to the heart of the matter, let us trieify the type of �nite maps based
on binary indices.

trieify : ∀ elem → ∀ n → (Index n → elem)∼=Array n elem

The strategy should be clear: as in Section 5, we eliminate the type of �nite
maps using the laws of exponents. The base case is identical to the one for lists.

Calculating Datastructures 17

trieify elem (0b) =
proof

(Index (0b) → elem)
∼=〈 Index-0∼=→∼=∼=-re�exive 〉
(⊥ → elem)
∼=〈 law-of-exponents-⊥ 〉
>
∼=〈 use-as-de�nition-of Array-0 〉
Array (0b) elem

The calculation for the inductive cases follows the same rhythm�we unfold the
de�nition of Index and apply the laws of exponents�except that we additionally
invoke the induction hypothesis.

trieify elem (n 1) =
proof

(Index (n 1) → elem)
∼=〈 Index-1∼=→∼=∼=-re�exive 〉
(>] Index n] Index n → elem)
∼=〈 ∼=-transitive law-of-exponents-] (law-of-exponents->∼=×∼= law-of-exponents-]) 〉
elem× (Index n → elem)× (Index n → elem)
∼=〈 (∼=-re�exive∼=×∼= (trieify elem n∼=×∼= trieify elem n)) 〉
elem×Array n elem×Array n elem
∼=〈 use-as-de�nition-of Array-1 〉
Array (n 1) elem

The �nal step in the isomorphism above expresses that an array of size n ·2 +1
consists of an element followed by two arrays of size n. The isomorphism for
arrays of size n ·2 +2 follows a similar pattern.

trieify elem (n 2) =
proof

(Index (n 2) → elem)
∼=〈 Index-2∼=→∼=∼=-re�exive 〉
(>]>] Index n] Index n → elem)
∼=〈 ∼=-transitive law-of-exponents-] (law-of-exponents->∼=×∼= law-of-exponents-]) 〉
elem× (>→ elem)× (Index n] Index n → elem)
∼=〈 ∼=-re�exive∼=×∼= (law-of-exponents->∼=×∼= law-of-exponents-]) 〉
elem× (elem× (Index n → elem)× (Index n → elem))
∼=〈 ∼=-re�exive∼=×∼= (∼=-re�exive∼=×∼= (trieify elem n∼=×∼= trieify elem n)) 〉
elem× elem×Array n elem×Array n elem
∼=〈 use-as-de�nition-of Array-2 〉
Array (n 2) elem

18 Ralf Hinze and Wouter Swierstra

An array of size n ·2 +2 consists of two elements followed by two arrays of size n.
All in all, we obtain the following datatype. Its elements are called one-two trees6

for want of a better name.

variable elem : Set

data Array : Leibniz→ Set→ Setwhere
Leaf : Array 0b elem
Node1 : elem→ Array n elem→Array n elem→Array (n 1) elem
Node2 : elem→ elem→Array n elem→Array n elem→Array (n 2) elem

As an aside, Agda like Haskell prefers curried data constructors over uncurried
ones. The following equivalent de�nition that uses pairs shows more clearly that
one-two trees are modelled after the 1-2 number system,

data Array′ : Leibniz→ Set→ Setwhere
Leaf : Array′ 0b elem
Node1 : elem 1→ (Array′ n elem) 2→Array′ (n 1) elem
Node2 : elem 2→ (Array′ n elem) 2→Array′ (n 2) elem

where A 1 = A and A 2 = A×A.

Turning to the operations on one-two trees, we �rst extract the witnesses
of the trieify isomorphism, obtaining human-readable de�nitions of lookup and
tabulate.

lookup : Array n elem→ (Index n→ elem)
lookup (Node1 x0 l r) (0b1) = x0
lookup (Node1 x0 l r) (i 11) = lookup l i
lookup (Node1 x0 l r) (i 21) = lookup r i
lookup (Node2 x0 x1 l r) (0b2) = x0
lookup (Node2 x0 x1 l r) (1b2) = x1
lookup (Node2 x0 x1 l r) (i 22) = lookup l i
lookup (Node2 x0 x1 l r) (i 32) = lookup r i

The implementation of lookup nicely illustrates the central idea of tries, where
the index serves as a path into the tree. The least signi�cant digit selects the node
component. If the component is a sub-tree, then lookup recurses. The diagrams
below visualize the indexing scheme.

one-node two-node

0

2 · i+ 22 · i+ 1

0 1

2 · i+ 32 · i+ 2

6 One-two trees are unconnected with 1-2 brother trees, an implementation of AVL
trees.

Calculating Datastructures 19

A one-node corresponds to the digit 1, a two-node corresponds to 2. Conversely,
the tabulate function computes the array corresponding to a given �nite map.

tabulate : (Index n→ elem)→Array n elem
tabulate {0b} f = Leaf
tabulate {n 1} f = Node1 (f 0b1) (tabulate (λ i→ f (i 11)))

(tabulate (λ i→ f (i 21)))
tabulate {n 2} f = Node2 (f 0b2) (f 1b2) (tabulate (λ i→ f (i 22)))

(tabulate (λ i→ f (i 32)))

For example, tabulate {0b 1 1 2 1} id yields the tree depicted below.

0

2 4

8

1612

6

1410

1 3

7

1511

5

139

A couple of remarks are in order. By de�nition, one-two trees are not only size-
balanced, they are also height-balanced�the height corresponds to the length
of the binary representation of the size. The binary decomposition of the size
fully determines the shape of the tree; all the nodes on one level have the same
�shape�; the digits determine this shape from bottom to top. In the example
above, 0b 1 1 2 1 implies that the nodes on the third level (from bottom to top)
are two-nodes, whereas the other nodes are one-nodes. There are 23 nodes on
the bottom level, witnessing the weight of the most signi�cant digit.

Turning to the size-changing operations, cons is based on the binary incre-
ment. Recall that succ alternates between odd and even numbers. Accordingly,
cons alternates between one- and two-nodes.

nil : Array zero elem
nil = Leaf

cons : elem→Array n elem→Array (succ n) elem
cons x0 (Leaf) = Node1 x0 Leaf Leaf
cons x0 (Node1 x1 l r) = Node2 x0 x1 l r
cons x0 (Node2 x1 x2 l r) = Node1 x0 (cons x1 l) (cons x2 r)

A one-node is turned into a two-node. Dually, a two-node becomes a one-node;
the two surplus elements are pushed into the two sub-trees. Observe that the
recursion pattern of succ dictates the recursion pattern of cons, that is, whether
we stop or recurse. The de�nition of isucc dictates the layout of the data. For
example, the �rst component of Node1 becomes the second component of Node2.
You may want to view a two-node as a small bu�er. Consing an element to
a one-node allocates the bu�er; consing a further element causes the bu�er to
over�ow.

20 Ralf Hinze and Wouter Swierstra

It is also possible to derive the implementation of cons from the speci�ca-
tion (2a)�(2b). However, as the argument is based on positions and the Index
type comprises seven constructors, the calculations are rather lengthy, but wholly
unsurprising, so they have been relegated to Appendix A.

Figure 1 shows a succession of one-two trees obtained by consing 4, 3, 2, 1,
and 0 (in this order) to tabulate {0b 1 2 2} (λ i → i+5). In every second step,
cons touches only the root node. However, every once in a while the entire tree
is rewritten, corresponding to a cascading carry. In Figure 1, this happens in
the �nal step when a tree of size 0b 2 2 2 is turned into a tree of size 0b 1 1 1 1.
Consequently, the worst-case running time of cons is Θ(n). However, like the

5 6

8 10

1412

7 9

1311

4

6

10 148 12

5

9 137 11

3 4

6

10 148 12

5

9 137 11

2

4 6

10 148 12

3 5

9 137 11

1 2

4 6

10 148 12

3 5

9 137 11

0

2

6

1410

4

128

1

5

139

3

117

Fig. 1. One-two trees of shape 0b 1 2 2 up to 0b 1 1 1 1.

binary increment, consing shows a more favourable behaviour if a sequence of
operations is taken into account: cons runs in Θ(log n) amortized time. This is
less favourable than succ, which runs in constant amortized time. The reason is
simple: for each carry succ makes one recursive call, whereas cons features two
calls so a carry propagation takes time proportional to the weight of the digit.
We return to this point in Section 10.

The operations head and tail basically undo the changes of cons.

head : Array (succ n) elem → elem
head {0b} (Node1 x0 l r) = x0

Calculating Datastructures 21

head {n 1} (Node2 x0 x1 l r) = x0
head {n 2} (Node1 x0 l r) = x0

tail : Array (succ n) elem → Array n elem
tail {0b} (Node1 x0 l r) = Leaf
tail {n 1} (Node2 x0 x1 l r) = Node1 x1 l r
tail {n 2} (Node1 x0 l r) = Node2 (head l) (head r) (tail l) (tail r)

As an attractive alternative to these operations we also introduce a list view,
analogous to the Peano view on binary numbers.

data List-View : Peano-View n → Set→ Setwhere
as-nil : List-View as-zero elem
as-cons : elem → Array n elem → List-View (as-succ n) elem

Observe that the list view is indexed by the Peano view. The view function itself
illustrates the use of view patterns.

list-view : {n : Leibniz}→Array n elem → List-View (view n) elem
list-view {n = 0b} (Leaf) = as-nil
list-view {n = n 1} (Node1 x0 l r)with view n | list-view l | list-view r
... | as-zero | as-nil | as-nil = as-cons x0 r
... | as-succ m | as-cons x1 l′ | as-cons x2 r′ = as-cons x0 (Node2 x1 x2 l

′ r′)
list-view {n = n 2} (Node2 x0 x1 l r) = as-cons x0 (Node1 x1 l r)

The �rst and the last equation are straightforward, in particular, removing an
element from a two-node yields a one-node. Following this logic, removing an
element from a one-node gives a zero-node�except that our datatype does not
feature this node type. Consequently, we need to borrow data from the sub-trees.
To this end, a view is simultaneously placed on the size and the two sub-trees�a
typical usage pattern.

The implementation of arrays using one-two trees can be shown correct with
respect to our reference implementation in Section 7. The steps are completely
analogous to the line of action in Section 5. The details are elided for reasons of
space.

Remark 5 (Haskell). It is instructive to translate the Agda code into a language
such as Haskell that does not support dependent types. The datatype de�nition
is almost the same, except that the size index is dropped.

data Array :: Type → Typewhere
Leaf :: Array elem
Node1 :: elem→ Array elem→Array elem→Array elem
Node2 :: elem→ elem→Array elem→Array elem→Array elem

If we represent the element of the index type by plain integers, then we need to
translate the index patterns. This can be done in a fairly straightforward manner
using guards and integer division.

22 Ralf Hinze and Wouter Swierstra

lookup :: Array elem → (Integer → elem)
lookup (Node1 x0 l r) i | i ≡ 0 = x0

| i `mod` 2 ≡ 1 = lookup l ((i - 1) `div` 2)
| i `mod` 2 ≡ 0 = lookup r ((i - 2) `div` 2)

lookup (Node2 x0 x1 l r) i | i ≡ 0 = x0
| i ≡ 1 = x1
| i `mod` 2 ≡ 0 = lookup l ((i - 2) `div` 2)
| i `mod` 2 ≡ 1 = lookup r ((i - 3) `div` 2)

A more sophisticated alternative is to replace each constructor of Index by a
pattern synonym [23].

As the interface considered in this paper is rather narrow, there is no need
to maintain the size of trees at run-time. However, if size information is needed,
it can be computed on the �y,

size :: Array elem → Integer
size (Leaf) = 0
size (Node1 x1 l r) = size l ∗ 2 + 1
size (Node2 x1 x2 l r) = size l ∗ 2 + 2

in logarithmic time. ut

9 Braun Trees

The derivation of the Leibniz index type in Section 6.2 and its associated trie
type in Section 8 are entirely straightforward. Too straightforward, perhaps?
This section and the next highlight the decision points and investigate alternative
designs.

9.1 Index Type, Revisited

The index type for Peano numerals enjoys an appealing property: its construc-
tors look and behave like their Peano namesakes, indicated by the isomorphisms:

Peano ∼= >] Peano Index (succ n) ∼= >] Index (n) .

The same cannot be said of Leibniz indices. The indices below an even bound
are based on 2-3 binary numbers, rather than the 1-2 system we started with.

Leibniz ∼= >] Leibniz] Leibniz Index (n 2) ∼= >]>] Index (n)] Index (n)

Can we re-work the isomorphism on the right so that it has the same shape as
the one on the left, with three constructors instead of four?

Let's calculate, revisiting the second inductive case.

re-index (n 2) =
proof

Calculating Datastructures 23

Peano.Index J n 2 K
∼=〈 ∼=-transitive Index-succ (∼=-re�exive∼=]∼= Index-succ) 〉
>] >] Peano.Index (J n K ·2)
∼=〈 ∼=-re�exive∼=]∼= (∼=-re�exive∼=]∼= Index-2·n∼=Index-n]Index-n) 〉
>] >] Peano.Index J n K] Peano.Index J n K

At this point, we have applied the induction hypothesis in the original derivation.
An alternative is to �rst join the second and third summands of the disjoint
union, applying the re-indexing law Index-succ backwards from right to left.

∼=〈 ∼=-re�exive∼=]∼=∼=-symmetric]-associative 〉
>] (>] Peano.Index J n K)] Peano.Index J n K
∼=〈 ∼=-re�exive∼=]∼= (∼=-symmetric Index-succ∼=]∼=∼=-re�exive) 〉
>] Peano.Index (Peano.succ J n K)] Peano.Index J n K
∼=〈 (∼=-re�exive∼=]∼= (∼=-congruence Peano.Index (symmetric succ-correct)∼=]∼=∼=-re�exive)) 〉
>] Peano.Index J Leibniz.succ n K] Peano.Index J n K
∼=〈 ∼=-re�exive∼=]∼= (re-index (succ n)∼=]∼= re-index n) 〉
>] Leibniz.Index (Leibniz.succ n)] Leibniz.Index n
∼=〈 use-as-de�nition-of Index-2 〉
Leibniz.Index (n 2)

Voilà! Naming the anonymous summands, we arrive at the following, alternative
index type for Leibniz numerals.

data Index : Leibniz→ Setwhere
0b1 : Index (n 1)
11 : Index n → Index (n 1)
21 : Index n → Index (n 1)
0b2 : Index (n 2)
12 : Index (succ n)→ Index (n 2)
22 : Index n → Index (n 2)

The datatype features two identical sets of constructors, one for indices below
an odd upper bound and a second for indices below an even upper bound.

Having changed the index type, we need to adapt the operations on indices.

izero : Index (succ n)
izero {0b} = 0b1
izero {n 1} = 0b2
izero {n 2} = 0b1

isucc : Index n→ Index (succ n)
isucc {n 1} (0b1) = izero 12
isucc {n 1} (i 11) = i 22
isucc {n 1} (i 21) = (isucc i) 12
isucc {n 2} (0b2) = izero 11
isucc {n 2} (i 12) = i 21
isucc {n 2} (i 22) = (isucc i) 11

24 Ralf Hinze and Wouter Swierstra

If we ignore the subscripts, the �rst three clauses of the successor function are
identical to the last three clauses. Operationally, the constructors 11 and 12 are
treated in exactly the same way. This is precisely what we have hoped for! (At
the risk of dwelling on the obvious, even though the de�nition of isucc seems
repetitive, it is not: the proofs relating the indices to their upper bounds are
quite di�erent.)

9.2 Trie Type, Revisited

The new index type gives rise to a new trie type. We only need to adapt the
triei�cation for the second inductive case: n 2. As in the original derivation, the
steps are entirely straightforward�nothing surprising here.

trieify elem (n 2) =
proof

(Index (n 2) → elem)
∼=〈 Index-2∼=→∼=∼=-re�exive 〉
(>] Index (succ n)] Index n → elem)
∼=〈 ∼=-transitive law-of-exponents-] (law-of-exponents->∼=×∼= law-of-exponents-]) 〉
elem× (Index (succ n) → elem)× (Index n → elem)
∼=〈 (∼=-re�exive∼=×∼= (trieify elem (succ n)∼=×∼= trieify elem n)) 〉
elem×Array (succ n) elem×Array n elem
∼=〈 use-as-de�nition-of Array-2 〉
Array (n 2) elem

We obtain the following type of tries, where the subscript attached to the node
constructors indicates the least signi�cant digit of the upper bound (1 or 2).

data Array : Leibniz→ Set→ Setwhere
Leaf : Array 0b elem
Node1 : elem→Array n elem→Array n elem→Array (n 1) elem
Node2 : elem→Array (succ n) elem→Array n elem→Array (n 2) elem

A moment's re�ection reveals that we have rediscovered Braun trees. Recall that
the size of a Braun tree determines its shape: a Braun tree of odd size (n 1)
consists of two sub-trees of the same size; in a Braun tree of even, non-zero
size (n 2) the left sub-tree is one element larger. As an aside, the property that
the size determines the shape is shared by all our implementations of �exible
arrays. It is a consequence of the fact that the container types are based on
non-redundant number systems.

Similar to one-two threes, erm, trees, Braun trees feature two constructors
for non-empty trees. However, in contrast to one-two trees, indexing is the same
for both constructors. This becomes apparent if we extract the witnesses from
the trieify ismorphism.

lookup : Array n elem→ (Index n→ elem)
lookup (Node1 x0 l r) (0b1) = x0

Calculating Datastructures 25

lookup (Node1 x0 l r) (i 11) = lookup l i
lookup (Node1 x0 l r) (i 21) = lookup r i
lookup (Node2 x0 l r) (0b2) = x0
lookup (Node2 x0 l r) (i 12) = lookup l i
lookup (Node2 x0 l r) (i 22) = lookup r i

We make the same observation as for the successor function: if we ignore the
subscripts, the �rst three clauses are identical to the last three clauses. In other
words, the same indexing scheme applies to both varieties of inner nodes:

inner node

0

2 · i+ 22 · i+ 1

The de�nition of tabulate is similarly repetitive.

tabulate : (Index n→ elem)→Array n elem
tabulate {0b} f = Leaf
tabulate {n 1} f = Node1 (f 0b1) (tabulate (λ i→ f (i 11))) (tabulate (λ i→ f (i 21)))
tabulate {n 2} f = Node2 (f 0b2) (tabulate (λ i→ f (i 12))) (tabulate (λ i→ f (i 22)))

For example, the call tabulate {0b 1 1 2 1} id yields the Braun tree shown below.

0

2

6

1410

4

128

16

1

5

139

3

117

15

Here we observe the e�ect of the re-indexing isomorphism based on zipping or
interleaving, see Section 6.2. Elements at odd positions are located in the left
sub-tree, elements at even, non-zero positions in the right sub-tree.

There is, however, one problem with this de�nition. The Node2 constructor
has two subtrees: one of size n, the other of size succ n. As a result, the (im-
plicit) Leibniz number passed implicitly to the tabulate function is not obviously
decreasing: one call is passed n; the other is passed succ n. While the latter
represents a smaller natural number, it is not a structurally smaller recursive
call. As a result, Agda rejects this de�nition as it stands. There is a reasonably
straightforward argument that we can make to guarantee termination�even if
the recursion is not structural, it is well-founded: each recursive call is performed
on a structurally smaller Peano number. In the remainder of this section, we will
ignore such termination issues.

26 Ralf Hinze and Wouter Swierstra

As before, the indexing scheme determines the implementation of the size-
changing operations.

nil : Array zero elem
nil = Leaf

cons : elem→Array n elem→Array (succ n) elem
cons x0 (Leaf) = Node1 x0 Leaf Leaf
cons x0 (Node1 x1 l r) = Node2 x0 (cons x1 r) l
cons x0 (Node2 x1 l r) = Node1 x0 (cons x1 r) l

head : Array (succ n) elem → elem
head {0b} (Node1 x0 l r) = x0
head {n 1} (Node2 x0 l r) = x0
head {n 2} (Node1 x0 l r) = x0

tail : Array (succ n) elem → Array n elem
tail {0b} (Node1 x0 l r) = Leaf
tail {n 1} (Node2 x0 l r) = Node1 (head l) r (tail l)
tail {n 2} (Node1 x0 l r) = Node2 (head l) r (tail l)

Consider the de�nition of cons. Both recursive calls of cons are applied to the
right sub-tree, additionally swapping left and right subtrees. Of course! Adding
an element to the front requires re-indexing: elements that were at even positions
before are now located at odd positions, and vice versa. Figure 2 shows cons in
action, replicating Figure 1 for Braun trees. Observe how the lowest level is
gradually populated with elements. Can you identify a pattern?

Both one-two trees and Braun trees are based on the 1-2 number system. To
illustrate how intimately the two datastructures are related, consider the e�ect
of two consecutive cons operations:

one-two trees:

cons a (cons b (Node1 c l r))

≡ { de�nition of cons }
cons a (Node2 b c l r)

≡ { de�nition of cons }
Node1 a (cons b l) (cons c r)

Braun trees:

cons a (cons b (Node1 c l r))

≡ { de�nition of cons }
cons a (Node2 b (cons c r) l)

≡ { de�nition of cons }
Node1 a (cons b l) (cons c r).

One-two trees may be characterized as lazy Braun trees: the �rst cons operation
is in a sense delayed with the data stored in a two-node. The next cons forces
the delayed call, issuing two recursive calls. By contrast, cons for Braun trees
recurses immediately, but makes only a single call. However, after two steps�
swapping the sub-trees twice�the net e�ect is the same. The strategy, lazy or
eager, determines the performance: cons for Braun trees has a worst-case running
time of Θ(log n), whereas cons for one-two trees achieves the logarithmic time
bound only in an amortized sense.

In this paper, we focus on one-sided �exible arrays. Braun trees are actually
more �exible (pun intended) as they also support extension at the rear�they

Calculating Datastructures 27

5

7

119

13

6

10

14

8

12

4

6

10

14

8

12

5

9

13

7

11

3

5

9

13

7

11

4

8

12

6

1410

2

4

8

12

6

1410

3

7

11

5

139

1

3

7

11

5

139

2

6

1410

4

128

0

2

6

1410

4

128

1

5

139

3

117

Fig. 2. Braun trees of shape 0b 1 2 2 up to 0b 1 1 1 1.

28 Ralf Hinze and Wouter Swierstra

implement two-sided �exible arrays. Through the lens of the interface, cons and
snoc7 are perfectly symmetric. However, due to the layout of the data, their
implementation for Braun trees is quite di�erent. If an element is attached to the
front, the positions, odd or even, of the original elements change: sub-trees must
be swapped. By contrast, if an element is added to the rear, nothing changes: the
sub-trees must stay in place. Depending on the size of the array, the position of
the new element is either located in the left or in the right sub-tree, see Figure 2.
Staring at the sequence of trees, the position of the last element, the number 14,
may appear slightly chaotic. Perhaps this is worth a closer look. Consider the
diagram on the left below. The numbers indicate the order in which the positions
on the lowest level are �lled.

a

c

g

7
111

3
011

e

5
101

1
001

b

f

6
110

2
010

d

4
100

0
000

a

c

g

7
111

6
110

e

5
101

4
100

b

f

3
011

2
010

d

1
001

0
000

By contrast, the diagram on the right displays the �standard�, left-to-right or-
dering. Comparing the diagrams, we observe that the positions of corresponding
nodes are bit-reversals of each other, for example, position 6 = (110)2 on the left
corresponds to 3 = (011)2 on the right. The reason is probably clear by now:
the layout of Braun trees is based on zipping (indexing LSB �rst), whereas the
�standard� layout is based on appending (indexing MSB �rst).

Turning to the implementation of snoc, the code is pretty straightforward
since the data constructors carry the required size information: if the original
size is odd, the element is added to the left sub-tree, if the size is even, it is
added to the right sub-tree.

snoc : Array n elem→ elem→Array (succ n) elem
snoc (Leaf) xn = Node1 xn Leaf Leaf
snoc (Node1 x0 l r) xn = Node2 x0 (snoc l xn) r
snoc (Node2 x0 l r) xn = Node1 x0 l (snoc r xn)

As the relative order of x0, l, r, and xn must not be changed, each equation is
actually forced upon us! (The power of dependent types is particularly tangible
if the code is developed interactively.)

The implementation of snoc shows that the cases for Node1 and Node2 are
not necessarily equal! This has consequences when porting the code to non-
dependently typed languages such as Haskell�depending on the interface ex-
plicit size information may or may not be necessary.

7 It is customary to call the extension at the rear snoc, which is cons written backwards.

Calculating Datastructures 29

Remark 6 (Haskell). Continuing the discussion of Remark 5, let us again trans-
late Agda into Haskell code. The implementation of snoc has demonstrated that
we cannot simply identify Node1 and Node2. For a Haskell implementation there
are at least three options:

� we identify the constructors Node1 and Node2 but maintain explicit size
information, either locally in each node or globally for the entire tree; or

� we identify the two constructors and recreate the size information on the
�y�this can be done in Θ(log2 n) time [20]; or

� we faithfully copy the Agda code at the cost of some code duplication. The
duplication of code can, however, be ameliorated using or-patterns.8

If we rather arbitrarily select the second option,

data Array :: Type → Typewhere
Leaf :: Array elem
Node :: elem→Array elem→Array elem→Array elem

the implementation of lookup is short and sweet,

lookup :: Array elem → (Integer → elem)
lookup (Node x0 l r) i | i ≡ 0 = x0

| i `mod` 2 ≡ 1 = lookup l ((i - 1) `div` 2)
| i `mod` 2 ≡ 0 = lookup r ((i - 2) `div` 2)

whereas the de�nition of snoc is more involved.

snoc :: Array a → a → Array a
snoc xs xn = put xs (size xs)
where put (Leaf) n = Node xn Leaf Leaf

put (Node a l r) n
| n `mod` 2 ≡ 1 = Node a (put l ((n - 1) `div` 2)) r
| n `mod` 2 ≡ 0 = Node a l (put r ((n - 2) `div` 2))

Unfortunately, the running time of snoc degrades to Θ(log2 n), as it is dominated
by the initial call to size. ut

10 Random-Access Lists

Both one-two trees and Braun trees are based on the binary 1-2 number system:
the types are tries for (two di�erent) index sets; the operations are based on
the arithmetic operations. Alas, as already noted, the operations on sequences
do not quite achieve the e�ciency of their arithmetic counterparts. While the
binary increment runs in constant time (in an amortized sense), consing takes
logarithmic time (amortized for one-two trees and worst-case for Braun trees).

8 Unfortunately, Haskell does not support or-patterns but they can be simulated using
view patterns and pattern synonyms.

30 Ralf Hinze and Wouter Swierstra

The culprit is easy to identify: the cons operation makes two recursive calls
for each carry (eagerly or lazily), whereas incr makes do with only one. There
are two recursive calls as we introduced two recursive sub-trees when we invoked
(an instance of) the sum law during trie�cation, see Section 8:

law-of-exponents-] : (A×2→X)∼= (A→X) 2

where A×2 = A]A and A 2 = A×A. The isomorphism states that a �nite
map whose domain has an even size can be represented by two maps whose
domains have half the size. If you know the laws of exponents by heart, then you
may realize that this is not the only option. Alternatively, we could replace the
�nite map by a single map that yields pairs. The formal property is a combination
of the product rule also known as currying, law-of-exponents-×, and the sum rule:

law-of-exponents-sq : (A×2→X)∼= (A→X 2)

Building on this isomorphism the triei�cation of the original index set of
Section 6.2 proceeds as follows.

trieify elem (n 1) =
proof

(Index (n 1) → elem)
∼=〈 Index-1∼=→∼=∼=-re�exive 〉
(>] (Index n×2) → elem)
∼=〈 law-of-exponents-] 〉
(>→ elem)× (Index n×2→ elem)
∼=〈 law-of-exponents->∼=×∼= law-of-exponents-sq 〉
elem× (Index n → elem 2)
∼=〈 ∼=-re�exive∼=×∼= trieify (elem 2) n 〉
elem×Array n (elem 2)
∼=〈 use-as-de�nition-of Array-1 〉
Array (n 1) elem

A similar calculation yieldsArray (n 2) elem∼= elem× elem×Array n (elem 2) for
the second inductive case.

All in all, we obtain the following datatype, which is known as the type of
binary, random-access lists.

data Array : Leibniz→ Set→ Setwhere
Nil : Array 0b elem
One : elem → Array n (elem× elem) → Array (n 1) elem
Two : elem → elem → Array n (elem× elem) → Array (n 2) elem

If we wish to emphasize that our new array type is modelled after the 1-2 system,
we might prefer the following equivalent de�nition:

data Array′ : Leibniz→ Set→ Setwhere
Nil : Array′ 0b elem

Calculating Datastructures 31

One : elem 1 → Array′ n (elem 2) → Array′ (n 1) elem
Two : elem 2 → Array′ n (elem 2) → Array′ (n 2) elem

where A 1 = A and A 2 = A×A.
Two remarks are in order. First, our binary numbers are written with the

most signi�cant digit on the left. For the array types above, we have reversed the
order of bits, as this corresponds to the predominant, left-to-right reading order.
Second, our �nal implementation of arrays is a so-called nested datatype [3],
where the element type changes at each level. Indeed, a random-access list can
be seen as a standard list, except that it contains an element, a pair of elements,
a pair of pairs of elements, and so forth. Nested datatypes are also known as
non-uniform datatypes [16] or non-regular datatypes [22].

The rest is probably routine by now. As usual, we extract the witnesses of
the trieify isomorphism, lookup and tabulate.

lookup : Array n elem→ (Index n→ elem)
lookup (One x0 xs) (0b1) = x0
lookup (One x0 xs) (i 11) = proj1 (lookup xs i)
lookup (One x0 xs) (i 21) = proj2 (lookup xs i)
lookup (Two x0 x1 xs) (0b2) = x0
lookup (Two x0 x1 xs) (1b2) = x1
lookup (Two x0 x1 xs) (i 22) = proj1 (lookup xs i)
lookup (Two x0 x1 xs) (i 32) = proj2 (lookup xs i)

tabulate : (Index n→ elem)→Array n elem
tabulate {0b} f = Nil
tabulate {n 1} f = One (f 0b1) (tabulate (λ i→ f (i 11) , f (i 21)))
tabulate {n 2} f = Two (f 0b2) (f 1b2) (tabulate (λ i→ f (i 22) , f (i 32)))

The call tabulate {0b 1 1 2 1} id yields the random-access list shown below.

1

161514131211109

1

8765

2

4321

1

0

Now the elements appear sequentially from left to right. But wait! Isn't our
indexing scheme based on interleaving rather than appending as set out in Sec-
tion 6.2? This is probably worth a closer look. Let us de�ne a variant of lookup
that takes its two arguments in reverse order and works on the primed variants
of our arrays, de�ned on the previous page.

access : Index n→Array′ n elem→ elem
access i t = lookup t i

32 Ralf Hinze and Wouter Swierstra

If we compare the implementation of access for one-two trees

access (i 11) (Node1 x0 xs) = access i (proj1 xs)

to the one for random-access lists,

access (i 11) (One x0 xs) = proj1 (access i xs)

we make an interesting observation. The two projection functions are composed
in a di�erent order: access i · proj1 versus proj1 · access i. Of course! This re�ects
the change in the organisation of data: we have replaced a pair of sub-trees
by a sub-tree of pairs. In more detail, the k-th tree of a random-access list
corresponds to the k-th level of a one-two tree. As the access order is reversed, the
corresponding sequences are bit-reversal permutations of each other. Consider,
for example, the lowest level: 9 13 11 15 10 14 12 16 (one-two tree) is the
bit-reversal permutation of 9 10 11 12 13 14 15 16 (random-access list).

It is time to reap the harvest. Since our new datastructure is list-like, cons
makes do with one recursive call.

cons : elem → Array n elem → Array (succ n) elem
cons x0 (Nil) = One x0 Nil
cons x0 (One x1 xs) = Two x0 x1 xs
cons x0 (Two x1 x2 xs) = One x0 (cons (x1 , x2) xs)

The implementation is truly modelled after the binary increment. This entails,
in particular, that cons runs in constant amortized time. Figure 3 shows cons in
action, mirroring Figures 1 and 2. The drawings nicely re�ect that a 2 of weight
2k is equivalent to a 1 of weight 2k+1, see �rst and third diagram.

If we �ip the equations for cons, we obtain implementations of head and tail.

head : Array (succ n) elem → elem
head {0b} (One x0 xs) = x0
head {n 1} (Two x0 x1 xs) = x0
head {n 2} (One x0 xs) = x0

tail : Array (succ n) elem → Array n elem
tail {0b} (One x0 xs) = Nil
tail {n 1} (Two x0 x1 xs) = One x1 xs
tail {n 2} (One x0 xs) = Two (proj1 (head xs)) (proj2 (head xs)) (tail xs)

Observe that we need to make the implicit size arguments explicit, so that Agda
is able to distinguish between a singleton array, �rst equation, and an array that
contains at least three elements, third equation. We leave the de�nition of a
suitable list view as the obligatory exercise to the reader (the solution can be
found in the accompanying material).

Remark 7 (Haskell). Translating the Agda code to Haskell poses little problems
as Haskell supports nested datatypes,

Calculating Datastructures 33

1

14131211

2

10987

2

65

2

1413121110987

1

65

1

4

2

1413121110987

1

65

2

43

2

1413121110987

2

6543

1

2

2

1413121110987

2

6543

2

21

1

1413121110987

1

6543

1

21

1

0

Fig. 3. Random-access lists of shape 0b 1 2 2 up to 0b 1 1 1 1.

34 Ralf Hinze and Wouter Swierstra

data Array :: Type → Typewhere
Nil :: Array elem
One :: elem→ Array (elem, elem)→Array elem
Two :: elem→ elem→Array (elem, elem)→Array elem

and the de�nition of recursive functions over them.

lookup :: Array elem → (Integer → elem)
lookup (One x0 xs) i | i ≡ 0 = x0

| i `mod` 2 ≡ 1 = fst (lookup xs ((i - 1) `div` 2))
| i `mod` 2 ≡ 0 = snd (lookup xs ((i - 2) `div` 2))

lookup (Two x0 x1 xs) i | i ≡ 0 = x0
| i ≡ 1 = x1
| i `mod` 2 ≡ 0 = fst (lookup xs ((i - 2) `div` 2))
| i `mod` 2 ≡ 1 = snd (lookup xs ((i - 3) `div` 2))

Note that the de�nition is not typable in a standard Hindley-Milner system as
the recursive call has type Array (elem, elem)→ (Integer→ (elem, elem)), which
is a substitution instance of the declared type. The target language must sup-
port polymorphic recursion [19]. As typability in this system is undecidable [8],
Haskell requires the programmer to provide an explicit type signature. ut

Random-access lists outperform one-two trees and Braun trees. But, all that
glitters is not gold: unlike their rival implementations, random-access lists do
not support a snoc operation, extending the end of an array. For this added
�exibility, we could �symmetrize� the design. The point of departure is a slightly
weird number system that features two least signi�cant digits, one at the front
and another one at the rear. Inventing some syntax, 1 〈 2 〈 0 〉 1 〉 1, for example,
represents 1 + 2 · (2 + 2 · 0 + 1) + 1 = 8. If we trieify a suitable index type based
on this number system, we obtain so-called �nger trees [14, 4]. But that's a story
to be told elsewhere.

11 Related work

We are, of course, not the �rst to observe the connection between number systems
and purely functional datastructures. This observation can be traced as far back
as early work by Okasaki [21] and Hinze [9, 11]. Indeed, Okasaki writes �data
structures that can be cast as numerical representations are surprisingly common,
but only rarely is the connection to a number system noted explicitly�. This paper
tries to provide a framework for making this connection explicit.

Nor are not the �rst to propose such a framework. McBride's work on orna-
ments describes how to embellish a data type with additional information�and
even how to transport functions over one data type to work on its ornamented
extension. Typical examples include showing how lists arise from decorating nat-
ural numbers with additional information; vectors arise from indexing lists with
their length. Ko and Gibbons [15] have shown how these ideas can be applied to

Calculating Datastructures 35

describe how binomial heaps arise as ornaments on binary numbers. Similarly,
binary random-access lists can be implemented systematically in Agda by index-
ing with a slight variaton of the binary numbers used in this paper [25]. Instead
of using the Leibniz numbers presented here, this construction uses a more tra-
ditional `list of bits' to represent binary numbers. The resulting representation
is no longer unique, leading to many di�erent representations of zero�and the
empty binary random access list accordingly. Without such unique a represen-
tation, the isomorphisms described in this paper do not hold.

The datastructures described in this paper are instances of so-calledNapierian
functors [7], more commonly know as representable functors. By design each of
our datastructures is isomorphic to a functor of the form P → A, for some
(�xed) type of positions P. Indeed, this is the key lookup-tabulate isomorphism
that we use to calculate the di�erent datastructures throughout this paper. Gib-
bons's work on Napierian functors was driven by describing APL and enforcing
size invariants in multiple dimensions. Although quad trees built from binary
numbers are brie�y mentioned, the di�erent datastructures that can be calcu-
lated using positions built from binary numbers remains largely unexplored.

Nor are we the �rst to explore type isomorphisms. DiCosmo gives an overview
of the �eld in his survey article [5]; Hinze and James have previously shown
how to adapt an equational reasoning style to type isomorphisms, using a few
principles from category theory. Recent work on homotopy type theory [26], where
isomorphic types are guaranteed to be equivalent, might facilitate some of the
derivations done in this paper, especially when establishing that operations such
as cons are respected across isomorphic implementations [17].

There is a great deal of literature on datatype generic tries [10, 12, 13]. These
tries exploit the same laws of exponentiation that we have used in this paper.
Typically, these tries are used for memoising computations, trading time for
space, whereas this paper uses the same laws in a novel context: the derivation
of datastructures. These datatype generic tries have appeared in the context
of dependent types when recognising languages [1, 6] and memoising computa-
tions [24]�but their usage is are novel in this context.

12 Conclusion

This paper has uncovered several well known datastructures in a new way. The
key technology�tries, number representations, and type isomorphisms�have
been known for decades, yet the connection between isomorphic implementa-
tions of datastructures has never been made this explicitly. In doing so, we open
the door for further derivations and exploration. The traditional 0-1 number
system for binary numbers, for example, will lead to a derivation of zero-one
trees, leaf-oriented Braun trees, or 0-1 random-access lists. Providing a generic
solution, however, where the shift in number representation automatically com-
putes new datastructures, remains a subject for further work. Similarly, we have
chosen to restrict ourselves to a single size dimension�an obvious question now

36 Ralf Hinze and Wouter Swierstra

arises how these results may be extended to handle matrices and richer nested
datastructures.

Acknowledgements

We would like to thank Markus Heinrich for our discussions in the early stages
of this work and his help in formalising several Agda proofs. Clare Martin and
Colin Runciman gave invaluable feedback on an early draft.

References

1. Abel, A.: Equational reasoning about formal languages in coalgebraic style (2016),
submitted to the CMCS 2016 special issue

2. Altenkirch, T.: Representations of �rst order function types as terminal coalge-
bras. In: Typed Lambda Calculi and Applications, TLCA 2001. Lecture Notes in
Computer Science, vol. 2044, pp. 62�78. Springer Berlin / Heidelberg (2001)

3. Bird, R., Meertens, L.: Nested datatypes. In: Jeuring, J. (ed.) Fourth International
Conference on Mathematics of Program Construction, MPC'98, Marstrand, Swe-
den. Lecture Notes in Computer Science, vol. 1422, pp. 52�67. Springer Berlin /
Heidelberg (June 1998)

4. Claessen, K.: Finger trees explained anew, and slightly simpli�ed (functional
pearl). In: Proceedings of the 13th ACM SIGPLAN International Sympo-
sium on Haskell. p. 31�38. Haskell 2020, Association for Computing Ma-
chinery, New York, NY, USA (2020). https://doi.org/10.1145/3406088.3409026,
https://doi.org/10.1145/3406088.3409026

5. Di Cosmo, R.: A short survey of isomorphisms of types. Mathematical structures
in computer science 15(5), 825�838 (2005)

6. Elliott, C.: Symbolic and automatic di�erentiation of languages. Proc.
ACM Program. Lang. 5(ICFP) (aug 2021). https://doi.org/10.1145/3473583,
https://doi.org/10.1145/3473583

7. Gibbons, J.: Aplicative programming with naperian functors. In: European Sym-
posium on Programming. pp. 556�583. Springer (2017)

8. Henglein, F.: Type inference with polymorphic recursion. ACM Transactions on
Programming Languages and Systems 15(2), 253�289 (April 1993)

9. Hinze, R.: Functional Pearl: Explaining binomial heaps. Journal of Functional Pro-
gramming 9(1), 93�104 (1999). https://doi.org/10.1017/S0956796899003317

10. Hinze, R.: Generalizing generalized tries. Journal of Functional Programming
10(4), 327�351 (2000). https://doi.org/10.1017/S0956796800003713

11. Hinze, R.: Manufacturing datatypes. Journal of Functional Programming 11(5),
493�524 (2001). https://doi.org/10.1017/S095679680100404X

12. Hinze, R.: Type fusion. In: Pavlovic, D., Johnson, M. (eds.) Thirteenth Interna-
tional Conference on Algebraic Methodology And Software Technology (AMAST
2010). Lecture Notes in Computer Science, vol. 6486, pp. 92�110. Springer Berlin
/ Heidelberg (2011). https://doi.org/10.1007/978-3-642-17796-5_6

13. Hinze, R.: Adjoint folds and unfolds�an extended study. Science of Computer Pro-
gramming 78(11), 2108�2159 (2013). https://doi.org/10.1016/j.scico.2012.07.011

14. Hinze, R., Paterson, R.: Finger trees: a simple general-purpose data
structure. Journal of Functional Programming 16(2), 197�217 (2006).
https://doi.org/10.1017/S0956796805005769

Calculating Datastructures 37

15. Ko, H.s., Gibbons, J.: Programming with ornaments. Journal of Functional Pro-
gramming 27 (2016). https://doi.org/10.1017/S0956796816000307

16. Kubiak, R., Hughes, J., Launchbury, J.: Implementing projection-based strictness
analysis. Tech. rep., Department of Computing Science, University of Glasgow
(1991)

17. Licata, D.: Abstract types with isomorphic types (2011),
https://homotopytypetheory.org/2012/11/12/abstract-types-with-isomorphic-
types/

18. McBride, C., McKinna, J.: The view from the left. Journal of functional program-
ming 14(1), 69�111 (2004)

19. Mycroft, A.: Polymorphic type schemes and recursive de�nitions. In: Paul, M.,
Robinet, B. (eds.) Proceedings of the International Symposium on Programming,
6th Colloquium, Toulouse, France. Lecture Notes in Computer Science, vol. 167,
pp. 217�228 (1984)

20. Okasaki, C.: Functional Pearl: Three algorithms on Braun trees. Journal of Func-
tional Programming 7(6), 661�666 (November 1997)

21. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press
(1998)

22. Paterson, R.: Control structures from types (April 1994),
ftp://santos.doc.ic.ac.uk/pub/papers/R.Paterson/folds.dvi.gz

23. Pickering, M., Érdi, G., Peyton Jones, S., Eisenberg, R.A.: Pattern synonyms. In:
Proceedings of the 9th International Symposium on Haskell. pp. 80�91 (2016)

24. van der Rest, C., Swierstra, W.: A completely unique account of enumeration
(2022), under review

25. Swierstra, W.: Heterogeneous binary random-access lists. Journal of Functional
Programming 30, e10 (2020). https://doi.org/10.1017/S0956796820000064

26. Univalent Foundations Program, T.: Homotopy Type Theory: Univalent Foun-
dations of Mathematics. https://homotopytypetheory.org/book, Institute for Ad-
vanced Study (2013)

27. Wadler, P.: Views: A way for pattern matching to cohabit with data abstraction.
In: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages. pp. 307�313 (1987)

38 Ralf Hinze and Wouter Swierstra

A Deriving Operations

The de�nition of cons for one-two trees can be systematically inferred using the
abstraction function J K = lookup that maps one-two trees to �nite maps. The
types dictate that cons applied to a one-node returns a two-node, so we need to
solve the equation

J cons x0 (Node1 x1 l r) K ≡ J Node2 x0′ x1′ l′ r′ K

in the unknowns x0
′, x1

′, l′, and r′. To determine the components of the two-
node, we conduct a case analysis on the indices, the arguments of the �nite maps.
The index i 22, for example, determines the third component, the left sub-tree.
The derivation works towards a situation where we can apply the speci�cation
of cons (2b).

proof

J cons x0 (Node1 x1 l r) K (i 22)
≡〈 by-de�nition 〉

J cons x0 (Node1 x1 l r) K (isucc (i 11))
≡〈 speci�cation-cons-isucc x1 (Node1 x1 l r) (i 11) (2b) 〉

J Node1 x1 l r K (i 11)
≡〈 by-de�nition 〉

J l K i

We may conclude that l′ ≡ l. The other cases are equally straightforward.
The equation for two-nodes

J cons x0 (Node2 x1 x2 l r) K ≡ J Node1 x0′ l′ r′ K

is more interesting to solve. Consider the index i′ 11 that determines the second
component, the left sub-tree of the one-node. We need to conduct a further case
distinction on i′. Otherwise, Agda is not able to �gure out the predecessor of
i′ 11, that the equation isucc i = i′ 11 uniquely determines i for a given i′. For
the case analysis we use a combined Peano view, on binary numbers and on
binary indices, dealing with the inductive case �rst.

with view n | iview i′

... | as-succ m | as-isucc i =
proof

J cons x0 (Node2 x1 x2 l r) K ((isucc i) 11)
≡〈 by-de�nition 〉

J cons x0 (Node2 x1 x2 l r) K (isucc (i 22))
≡〈 speci�cation-cons-isucc x0 (Node2 x1 x2 l r) (i 22) (2b) 〉

J Node2 x1 x2 l r K (i 22)
≡〈 by-de�nition 〉

J l K i

Calculating Datastructures 39

≡〈 symmetric (speci�cation-cons-isucc x1 l i) (2b) 〉
J cons x1 l K (isucc i)

We conclude that l′ ≡ cons x1 l. Again, the calculation is straightforward, except
that it is not clear why the �rst element of l′ has to be x1. The answer is simple,
the sub-case as-isucc �xes the tail of the sequence, its head is determined by the
base case as-izero. Actually, there are two base cases, featuring almost identical
calculations that only di�er in the type arguments. (The �problem� can be traced
back to the de�nition of izero, which is de�ned by case analysis on the size index).

... | as-zero | as-izero =
proof

J cons x0 (Node2 x1 x2 l r) K (izero {zero} 11)
≡〈 by-de�nition 〉

J cons x0 (Node2 x1 x2 l r) K (isucc {0b 2} (0b2))
≡〈 speci�cation-cons-isucc x0 (Node2 x1 x2 l r) 0b2 (2b) 〉

J Node2 x1 x2 l r K 0b2
≡〈 by-de�nition 〉
x1
≡〈 symmetric (speci�cation-cons-izero x1 l) (2a) 〉

J cons x1 l K (izero {zero})

... | as-succ m | as-izero =
proof

J cons x0 (Node2 x1 x2 l r) K (izero {succ m} 11)
≡〈 by-de�nition 〉

J cons x0 (Node2 x1 x2 l r) K (isucc {(succ m) 2} (0b2))
≡〈 speci�cation-cons-isucc x0 (Node2 x1 x2 l r) 0b2 (2b) 〉

J Node2 x1 x2 l r K 0b2
≡〈 by-de�nition 〉
x1
≡〈 symmetric (speci�cation-cons-izero x1 l) (2a) 〉

J cons x1 l K (izero {succ m})

The derivations con�rm that l′ ≡ cons x1 l.
On a �nal note, the steps �agged by-de�nition may be omitted as Agda is

able to con�rm the equalities automatically. But, of course, the equational proofs
are targetted at human readers. An after-the-fact proof that cons is correct is
actually a three-liner, plus a trivial three-liner for (2a) and a straightforward
seven-liner for (2b), but would be wholly unsuitable as a derivation.

