
Translation Certification for Smart Contracts

Jacco O.G. Krijnena,∗, Manuel M. T. Chakravartyb, Gabriele Kellera, Wouter
Swierstraa

aUtrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
bIOG Singapore Pte Ltd, 4 Battery Road, #25-01 Bank of China Building, Singapore

Abstract

Compiler correctness is an old problem, but with the emergence of smart con-
tracts on blockchains that problem presents itself in a new light. Smart contracts
are self-contained pieces of software that control (valuable) assets in an adver-
sarial environment; once committed to the blockchain, these smart contracts
cannot be modified. Smart contracts are typically developed in a high-level
contract language and compiled to low-level virtual machine code before being
committed to the blockchain. For a smart contract user to trust a given piece of
low-level code on the blockchain, they must convince themselves that (a) they
are in possession of the matching source code and (b) that the compiler has
correctly translated the source code to the given low-level code.

Classic approaches to compiler correctness tackle the second point. We ar-
gue that translation certification also squarely addresses the first. We describe
the proof architecture of a translation certification framework and demonstrate
how we can model the compilation pipeline as a sequence of translation rela-
tions. We give a detailed account of such relations for most passes of the Plutus
Tx compiler, which we formalised in Coq. This approach facilitates a modu-
lar verification methodology and is robust in the face of an evolving compiler
implementation.

Keywords: Compiler correctness, translation validation, Certified compilation,
smart contracts

1. Introduction

Compiler correctness is an old problem that has received renewed interest in
the context of smart contracts—that is, compiled code on public blockchains,
such as Ethereum or Cardano. This code often controls a significant amount of
financial assets, must operate under adversarial conditions, and can no longer be

∗Corresponding author
Email addresses: j.o.g.krijnen@uu.nl (Jacco O.G. Krijnen),

manuel.chakravarty@iohk.io (Manuel M. T. Chakravarty), g.k.keller@uu.nl (Gabriele
Keller), w.s.swierstra@uu.nl (Wouter Swierstra)

Preprint submitted to Science of Computer Programming November 30, 2022

updated once it has been committed to the blockchain. Bugs in smart contracts
are a significant problem in practice [5]. Recent work has also established that
smart contract language compilers can exacerbate this problem [28, Section 3],
in this case, the Vyper compiler. More specifically, the authors report (a) that
they did find bugs in the Vyper compiler that compromised smart contract
security and (b) that they performed verification on generated low-level code,
because they were wary of compiler bugs.

Hence, to support reasoning about smart contract source code, we need to
get a handle on the correctness of smart contract compilers. On top of that,
we do also need a verifiable link between the source code and its compiled code
to prevent code substitution attacks, where an adversary presents the user with
source code that doesn’t match the low-level code committed on-chain.

In our previous work [20], we have reported on our ongoing effort to develop
a certification engine for the open-source on-chain code compiler of the Plutus
smart contract system1 for the Cardano blockchain.2 In this paper, we formally
describe the specification of a significant part of the Plutus compiler, enabling
us to reason formally about its behaviour. In particular, this paper describes
two crucial aspects of our certification effort:

� We describe the architecture for a translation certifier based on transla-
tion relations, which allows us to generate translation certificates—proof
objects that relate the source code to the resulting compiled code and to
establish the correctness of the translation (Section 2).

� We provide formal definitions for the transformation passes that translate
Plutus Intermediate Representation (PIR) to step-by-step Plutus Core
(Section 3).

This paper elaborates on previous work [20] and makes the following novel
contributions:

� Instead of discussing a simplified subset of PIR, we now cover the complete
intermediate language and have modified the specification of the passes
accordingly in Section 3. This required us to deal with more involved
binding structures and types.

� We describe specifications of a few new compiler passes that were only
recently implemented in the compiler or were not included in the previous
work in Sections 3.3, 3.6, 3.7 and 3.8

� We provide an implementation of the translation relations in the Coq proof
assistant.

1https://developers.cardano.org/docs/smart-contracts/plutus/
2http://cardano.org is, at the time of writing, the 5th largest public blockchain by market

capitalisation.

2

https://developers.cardano.org/docs/smart-contracts/plutus/
http://cardano.org

Figure 1: Architecture for a single compiler pass. The grey area (left) represents the compiler,
orange (center) and blue (right) represent the certification component in Coq.

� We reflect on some practical proof engineering considerations that we en-
countered while implementing translation relations in the Coq proof as-
sistant in Section 4.4.

2. The Architecture of the Certifier

On-chain code in the Plutus smart contract system is written in a subset of
Haskell called Plutus Tx [18]. The Plutus Tx compiler is implemented as a plu-
gin for the widely-used, industrial-strength GHC Haskell compiler, combining
large parts of the GHC compilation pipeline with custom translation steps to
generate Plutus Core. Unfortunately, it is infeasible to apply full-scale compiler
verification à la CompCert [22], which was build from scratch with verification
in mind, on existing, complex software such as GHC. We will therefore outline
the design of a certification engine that, using the Coq proof assistant [6, 9],
generates a proof object, or a translation certificate, asserting the validity of
a Plutus Core program with respect to a given Plutus Tx source contract. In
addition to asserting the correct translation of this one program, the translation
certificate serves as a verifiable link between source and generated code.

We can view the compiler as a composition of pure functions that transform
one abstract syntax tree (AST) into another. Figure 1 illustrates our certifier
architecture for a single compiler pass, where the grey area represents the com-
piler implementation as series of functions f : ASTi → ASTi+1. We use a family
of types ASTi to illustrate that the representation of the abstract syntax might
change after each transformation.

To support certification, the compiler outputs each intermediate AST so
that we can parse these in our Coq implementation of the certifier. Within Coq,

3

we define a high-level specification of each pass. We call such a specification a
translation relation: a binary relation on abstract syntax trees that specifies the
possible behaviour of the compiler pass. The orange area in Figure 1 displays
the translation relation . of one pass, where the vertical dashed line indicates
that ti . ti+1 holds. To establish this, we define a decision procedure that, given
two subsequent trees produced by the compiler, can find a proof.

The translation relation is purely syntactic—it does not assert anything
about the correctness of the compiler—but rather specifies the behaviour of
a particular compiler pass. To verify that the compilation preserves language
semantics requires an additional proof, the blue area in Figure 1, that establishes
that any two terms related by . have the same semantics.

To illustrate our approach in this section, we will use an untyped lambda
calculus, extended with non-recursive let-bindings.

t ::= x | λx. t | t t | let x = t in t

In Section 3, we will consider full PIR (Plutus Intermediate Representation),
which is a typed lambda calculus with many extensions.

2.1. Characterising a transformation

To assert the correctness of a single compiler pass f : ASTi → ASTi+1,
we begin by defining a translation relation . on a pair of terms ti and ti+1

which we call the “pre-term” and “post-term”, respectively. This relation should
syntactically characterise the admissible translations of that compiler stage, but
it may be more general. In other words, . should include the graph of f .

As a concrete example, consider an inlining pass. We have characterised
this as an inductively defined relation in Figure 2. Here, Γ ` s . t asserts that
program s can be translated into t given an environment Γ of let-bound variables,
paired with their definition. According to Rule [Inline-Var1] the variable x
may be replaced by t′ when the pair (x, t) can be looked up in Γ and t can
be translated to t′, accounting for repeated inlining. The remaining rules are
congruence rules, where Rule [Inline-Let] also extends the environment Γ. We
omitted details about handling variable capture to keep the presentation simple:
hence, we assume that variable names are globally unique.

Crucially, these rules do not prescribe which variable occurrences should be
inlined, since the [Inline-Var1] and [Inline-Var2] rules overlap. The implementa-
tion of the pass may rely on a complex set of heuristics internal to the compiler.
Instead, we merely define a relation capturing the possible ways in which the
compiler may behave. This allows for a certification engine that is robust with
respect to changes in the compiler, such as the particular heuristics used to
decide whether to replace a variable with its definition or not.

We can then encode the relation · ` ·. · in Coq as an inductive type Inline,
which is indexed by an environment and two ASTs, as shown in Figure 3. This
inductive type is a straightforward encoding of the rules of Figure 2: we define
exactly one constructor per rule, and Γ is implemented as a cons-list.

These inductive types implement the translation relation: its inhabitants are
proof derivations which will be a key ingredient of a compilation certificate.

4

Γ(x) = t Γ ` t . t′
[Inline-Var1]

Γ ` x . t′

[Inline-Var2]
Γ ` x . x

Γ ` t1 . t′1 (x, t1),Γ ` t2 . t′2
[Inline-Let]

Γ ` let x = t1 in t2 . let x = t′1 in t′2

Γ ` t1 . t′1 Γ ` t2 . t′2
[Inline-App]

Γ ` t1 t2 . t′1 t′2
Γ ` t1 . t′1

[Inline-Lam]
Γ ` λx.t1 . λx.t′1

Figure 2: Characterisation of an inliner

Inductive Inline (Γ : list (string * term)) : term -> term -> Type :=

| Inline_Var_1 : forall {x t t'},

In (x, t) Γ ->

Inline Γ t t' ->

Inline Γ (Var x) t

| Inline_Var_2 : forall {x},

Inline Γ (Var x) (Var x)

| Inline_Let : forall {x s t s' t'},

Inline Γ s s' ->

Inline ((x, s) :: Γ) t t' ->

Inline Γ (Let x s t) (Let x s' t')

| Inline_Lam : forall {x t t'},

Inline Γ t t' ->

Inline Γ (Lam x t) (Lam x t')

| Inline_App : forall {s t s' t'},

Inline Γ s s' ->

Inline Γ t t' ->

Inline Γ (App s t) (App s' t')

.

Figure 3: Characterisation of an inliner in Coq

5

2.2. Decidability of translation relations

After defining a translation relation . for a single compiler pass, we need a
way to construct a proof that ti . ti+1 holds, for two particular terms ti and
ti+1, produced by a run of the compiler.

We typically start by writing some derivation trees by hand for simple compi-
lations using Coq’s tactics. For straightforward relations, like the inline example
sketched above, a proof can often be found with a handful of tactics such as
auto or constructor. This is particularly useful as a simple way of testing
the design of our relations. The drawback of this approach is, however, that
it is difficult to reason when such a proof search may succeed or fail, or even
terminate. Furthermore, the proof search quickly becomes slow for bigger ASTs
and may result in large proof terms.

To address these issues, we write a semi-decision procedure in the style of
ssreflect [17] of type

decide_inliner : term -> term -> bool

together with a proof

sound : ∀ t t′. decide inliner t t′ = true→ t . t′

which states that the decision procedure is sound with respect to the transla-
tion relation. Proofs can then be constructed with the proof term sound t t'

eq_refl.

2.3. Verification

Given the relational specification . of a compiler pass, we can now establish
correctness properties of this pass. In the simplest case, this could be asserting
the preservation of types. On the other end of the spectrum, we can demonstrate
that related terms are semantically equivalent.

In Figure 1, we denote such correctness properties of . in the blue area by
means of an abstract binary relation ∼ on semantic objects J·K of ASTs ti. In
the case of static semantics, we choose typing derivations as semantic objects,
and (for most passes) syntactic equivalence of the types. The theorem then has
the following form:

preserves : ti . ti+1 → (Γ ` ti : τ)→ (Γ ` ti+1 : τ ′) ∧ τ = τ ′

In the case of semantic equivalence, we define a logical relation for contextual
equivalence [2], based on a big-step operational semantics of PIR. In this case,
the semantic objects are (well-typed) terms, related by contextual equivalence:
running any one-hole context with either of these terms embedded in it will
result in equivalent termination behaviour. Note that such a proof requires well-
typed terms, therefore relying on the aforementioned property of preservation
of types.

Writing these proofs can be done independently and gradually (e.g. preser-
vation of types first and contextual equivalence second) for each translation

6

relation of the compiler pipeline. In fact, even without any formal verification
of the translation relation, we can still provide some degree of confidence about
the correctness of a compilation: one can inspect the (relatively concise) rules
of a translation relation and run a decision procedure to confirm the terms
of the compilation are related by it. After all, the translation relation is an
independent specification of the admissible behaviour of the compiler pass.

This verification effort of translation relations is ongoing work and goes
beyond the scope of this paper.

2.4. Certificate generation

This leads us to sketching the design of the certifier that generates certificates
(or verifiable links) between the Plutus Intermediate Representation (PIR) and
and the generated Plutus Core (PLC) target code. A certificate is a Coq proof
script that is generated during the compilation of the code. First, it includes
all intermediate ASTs t1, . . . , tn, which the compiler emitted. Second, we relate
every two subsequent ASTs in the appropriate translation relation ti . ti+1, by
using the corresponding decision procedure and its soundness proof. Finally, we
can include verification results: ideally this constitutes contextual equivalence
proofs for each pass, which by transitivity show the semantic equivalence of
source and target program.

Such a certificate can then be distributed alongside source code, giving the
means for anyone to check it without having to trust the provider of the source
code: they can inspect the involved ASTs, the translation relations and the
theorems. Above all, the script can be run in the Coq kernel [9], to check the
validity of the proofs. One can then be confident that the compiled code of the
program is a faithful translation of the source code.

3. Translation Relations of the Plutus Tx Compiler

The Plutus Tx compiler translates Plutus Tx (a subset of Haskell) to Plutus
Core, a variant of System Fµω [13]. A hash of the Plutus Core code is committed
to the Cardano blockchain, constituting the definitive reference to any deployed
smart contract.

The Plutus Tx compiler reuses parts of the GHC infrastructure and imple-
ments its custom passes by installing a core-to-core pass plugin [15] in the GHC
compiler pipeline. On a high level, the compiler comprises three steps:

1. The parsing, type-checking and desugaring phases of GHC are reused to
translate a surface-level Haskell program into a GHC Core program.

2. A large subset of GHC Core is directly translated into an intermediate lan-
guage named Plutus Intermediate Representation (PIR). These languages
are similar and both based on System F, with some extensions. Addition-
ally, the definitions of all referenced functions and types are included as
local definitions so that the program is self-contained.

3. The PIR program is then transformed and compiled down into Plutus
Core.

7

terms t, u ::= x variable
λx : T.t lambda abstraction
t t function application
ΛX :: K.t type abstraction
t {T} type application
wrap T U t wrap
unwrap t unwrap
builtin f built-in functions
constant k constant values
error T error

let [rec] b in t let

bindings b ::= x : T = t strict term binding

∼x : T = t non-strict term binding

X :: K = T type binding

data X (Y :: K) = c with x datatype binding

constructors c ::= x (T)

types T,U ::= X type variable
T → U arrow type
∀X :: K.T universal type
λX :: K.T function type
T U function application
builtin C built-in types
ifix T U fixpoint type

kind K ::= ∗ type kind
K ⇒ K arrow kind

built-in functions f ::= . . .
constants k ::= . . .
built-in types C ::= . . .

Figure 4: Syntax of PIR and PLC, PIR-specific constructs are highlighted

The certification effort reported here focuses on Step 3, which is the most crucial
component: it consists of multiple optimisations and translation schemes. PIR
is a superset of the Plutus Core language: it adds several language constructs

8

for the sake of convenience, such as user-defined datatypes, strict and non-strict
let-bindings that may be (mutually) recursive. Some of the compilation steps
translate these constructs into simpler language constructs.

In Figure 4 we present the syntax of PIR and Plutus Core, adapted from
previous work [19]. The highlighted productions are specific to PIR, whereas
the others are common to both languages. Expressions that have an overline,
such as (Y :: K), should be read as any number of copies of that expression.
[rec] indicates an optional occurrence of that keyword.

The first five term productions are familiar constructs of System F. The
constructs wrap and unwrap form the isomorphism for iso-recursive types [19].
The let construct contains a group of bindings, which can be mutually recursive
when the rec keyword is used. Otherwise, the bound names are scoped linearly.
PIR supports several forms of bindings: strict and non-strict terms (indicated
by a ∼ symbol before the variable name), types and algebraic datatypes with
constructors and an eliminator.

The language of types again follows System F, but is extended with type
abstraction and application for supporting higher kinds, as well as ifix for
recursive types. Kinds are simple and can be either of function or base sort.

Finally, PIR comes with a set of built-in functions, constants and types.
None of these play an important role in the translation relations, so we omit
them for brevity. They include for example string and integer types with cor-
responding operations, as well as some cryptographic functions. In our Coq
implementation, we have defined this grammar as a family of mutually recur-
sive datatypes. We chose to represent variables as names, instead of the often
used de Bruijn representation. We motivate this choice further in Section 4.4.4.

3.1. Example transformations

In Figure ?? we present a Haskell program to introduce some of the compiler
passes that the Plutus Tx compiler performs. This program is a basic imple-
mentation of a timelock, a contract that states that funds may be moved after
a certain date, or not at all. It contains a few contrived bindings (false and
n') that will be useful to illustrate some transformations.

In figure ??, we can see that the only occurrence of false has been inlined.
Next, the dead code elimination pass cleans up the now unused definition of
false. Finally, we can see how the definition of n' is floated up one level.

The above transformations are presented using the Haskell surface syntax,
but in reality they happen on the PIR representation. Specifically, the code of
Figure ?? is compiled to the following PIR program:

let data Bool = True | False with Bool_match in

let data Unit = Unit with Unit_match in

let nonrec strict lessThanEqInteger = ... in

data EndDate = Fixed Integer | Never with EndDate_match in

λ(end : EndDate) (current : Integer).

let nonrec nonstrict false = False in

EndDate_match end

9

-- | Either a specific end date, or "never".

data EndDate = Fixed Integer | Never

pastEnd :: EndDate -> Integer -> Bool

pastEnd end current =

let false = False

in case end of

Fixed n -> (let n' = if current >= 0 then n else 0 in n')

<= current

Never -> false

(a) Implementation of a time-lock

data EndDate = Fixed Integer | Never

pastEnd :: EndDate -> Integer -> Bool

pastEnd end current =

let false = False

in case end of

Fixed n -> (let n' = if current >= 0 then n else 0 in n')

<= current

Never -> False

(b) Result after inlining

data EndDate = Fixed Integer | Never

pastEnd :: EndDate -> Integer -> Bool

pastEnd end current =

let false = False

in case end of

Fixed n -> (let n' = if current >= 0 then n else 0 in n')

<= current

Never -> False

(c) Dead code, highlighted in gray

data EndDate = Fixed Integer | Never

pastEnd :: EndDate -> Integer -> Bool

pastEnd end current =

in case end of

Fixed n -> let n' = if current >= 0 then n else 0 in

n' <= current

Never -> False

(d) Result of let-floating

Figure 5: Code of a timelock, with several example compiler transformations

10

(λunit n . lessThanEqInteger

(let nonrec nonstrict n' =

Bool_match (greaterThanEqInteger current 0)

(λunit . n) (λunit . 0)

Unit

in n')

current)

(λunit . false)

Unit

Note that case distinction of a type T is encoded as the application of an elim-
inator function T_match, which is introduced as part of a data definition. Fur-
thermore, the branches of a case distinction are delayed by abstracting over a
unit value, since function arguments are evaluated strictly in PIR.

In the Appendix of previous work [20] we have described the result of each
compiler passes on the above PIR program in detail.

3.2. Notational conventions

We will overload the . symbol per sub-section that describes a translation
relation. When necessary, we will disambiguate a specific relation with a sub-
script such as .Inline. Furthermore, we may re-use the . symbol for any of the
different type of constructs in the AST grammar (terms, types, bindings).

Often, a translation relation is defined in some context that contains infor-
mation about binders. We write Γ for contexts of term variables and ∆ for
contexts of type variables, and write the translation relation as ∆; Γ ` t . t′. We
model both of these contexts as ordered lists of pairs. We write Γ(x) = y when
(x, y) is the first occurrence of a pair in the list that has x as its first projection.

We sometimes write individual bindings from a let with square brackets
like so: [∼x : τ = t]. When convenient, we omit type and kind annotations on
binding sites like λ and let. Finally, We write let [rec] bs to describe a let
binding that may be either recursive or non-recursive.

3.3. Properties of terms

The specification of some passes reuse a few common properties of programs.
For example, the let-floating pass in Section ?? requires that the pre-term has
globally unique variable names. We formalise such properties as inductive rela-
tions on a single abstract syntax tree.

3.3.1. Globally unique variables

For some passes it is assumed that variable names are globally unique, also
known as the Barendregt-convention. It simply states that each variable name
can only be bound once. We first define BoundIn, which relates a variable to
a term in which it is bound.

[BoundIn-Lam-1]
BoundIn(x, λx. t)

11

x 6= y BoundIn(x, t)
[BoundIn-Lam-2]

BoundIn(x, λy. t)

Other binding constructs such as let have analogous rules. The constructs
in an AST that do not bind variable names simply require the property holds
for each any sub-tree. We will sometimes also use FreeIn, which is defined
similarly, but relates a variable to a term in which it occurs freely.

Then we define the global uniqueness property as a relation Unique:

Unique(t) Unique(τ) ¬BoundIn(x, t)
[Unique-Lam]

Unique(λx : τ. t)

Note that in the second hypothesis of [Unique-Lam], we have overloaded Unique
for types, which is analogously defined with respect to type variable binders such
as ∀.

3.3.2. Well-scoped expressions

Some of the compiler passes will reorder binders. In such cases, we require
that the post-term is well-scoped. In other words, that the term contains no free
variables. We define this property with an inductive well-scopedness relation
∆; Γ ` t, which, similar to a typing relation, maintains a context Γ for term
variables in scope, and ∆ for type variables in scope.

∆; (x,Γ) ` t ∆ ` τ
[WellScoped-Lam]

∆; Γ ` λ(x : τ). t

x ∈ Γ
[WellScoped-Var]

∆; Γ ` x
Once again, this property extends to types with the relation ∆ ` τ . We define

the following abbreviation:

Closed(t) := ε; ε ` t
A closed term is well-scoped in the empty contexts.

3.3.3. Pure bindings

Several passes manipulate let bindings, but only when it safe to do so: special
care has to be taken with strict bindings, which may diverge. Moving them may
therefore change the meaning of a program.

For example, the following transformation is not semantics preserving, since
the former term terminates, but the latter does not:

λx. let y = ⊥ in 3 → let y = ⊥ inλx. 3

12

To ensure that let bindings are only transformed when it is safe to do so, the Plu-
tus compiler tries to analyse if a strict binding is “pure”, that is, the bound term
terminates. Since this is of course undecidable, a few simple cases are considered,
which we model in the relations Pure, PureBinding and PureBindings.

t is a value

Γ ` Pure(t)

Γ(x) = strict

Γ ` Pure(x)

The relation Γ ` Pure(t) classifies a subset of terms that are pure: those
that are values, and variables that were bound strictly (meaning they are bound
to a value). In this case, the environment Γ contains merely the annotations
strict or nonstrict for each variable that is free in t. Note that this is relation
does not have any recursive cases, and it relies on the environment Γ.

We then define PureBinding as follows:

Γ ` PureBinding(∼x = t)

Γ ` Pure(t)

Γ ` PureBinding(x = t)

Γ ` PureBinding(data X (Y :: K) = c with x)

Γ ` PureBinding(T :: K = τ)

The PureBindings relation then simply extends PureBinding to a bind-
ing group, requiring that all bindings are a PureBinding.

Although these relations require an environment Γ for strictness information
about free variables, we will generally omit it in the presentation of translation
relations, and write Pure(t) for simplicity. In reality however, the rules of the
translation relations also take care to construct the required context Γ.

3.4. Variable Renaming

The first compiler pass we present is the renaming pass. In this pass, the
compiler transforms a program into an α-equivalent program, such that all
variable names are globally unique, i.e. the post-term t satisfies Unique(t). The
implementation of some subsequent compiler passes depend on this property.
We express variable renaming as a translation relation ∆; Γ ` t . t′, stating
that under the renaming environments ∆ (for type-variables) and Γ (for term
variables), t is renamed to t′. Both environments record the free variables, paired

13

with their corresponding name in the post-term. Similarly, type-variables can
be renamed, which we denote with ∆ ` τ . τ ′.

The case for lambda abstractions is defined as follows:

∆; (x, y),Γ ` t . t′ ∆ ` τ . τ ′ NoCapture(y,Γ, t)
[Rename-Abs]

∆; Γ ` λ(x : τ). t . λ(y : τ ′). t′

The [Rename-Abs] rule states that a lambda-bound variable x may be renamed
at its binding-site to y, when t can be renamed to t′ and τ to τ ′. Of course, x
may equal y, witnessing that no renaming took place. Lastly, we want to make
sure not to relate invalid renamings, for example:

(λx. λz. x) �. (λy. λy. y)

A straightforward way of enforcing this would be to add a hypothesis in [Rename-
Abs] that ∀v. (v, y) /∈ Γ, disallowing any shadowing in the post-term, but to
remain as general as possible, we instead require that a new binder name y does
not capture any free variable v in the pre-term that is also renamed to y in the
post-term. Therefore, we define NoCapture as an implication:

NoCapture(y,Γ, t) := ∀v. (v, y) ∈ Γ⇒ ¬FreeIn(v, t)

Rules of . for for other binding constructs such as let or Λ are very similar.
The variable case simply follows from the environment Γ:

Γ(x) = y
[Rename-Var]

∆; Γ ` x . y

Note that in contrast to the Plutus Tx compiler, this translation relation does
not establish global uniqueness of binders in the post-term, i.e. t . t′��⇒Unique(t′).
We consider that a specific property of the compiler implementation, allowing
this renaming relation to be as general as possible.

Whenever a subsequent translation relation does require the Unique prop-
erty on the pre-term, we will establish it separately by running the appropriate
decision procedure.

3.5. Inlining

The rules of the translation relation for inlining in PIR are very similar to
those of the untyped lambda calculus in Section 2.1. In addition, the Plutus
Tx inliner also considers let-bound types letα :: K = τ , which may be inlined
in type expressions. We therefore maintain a separate environment ∆ of type
bindings.

However, the Plutus Tx compiler does more than just inlining let-bound
definitions. It also removes let-bindings that have been exhaustively inlined
(also known as dead-code elimination) and it renames variables in inlined terms
to preserve the property of global uniqueness. That is, we can model the pass
as a composition of translation relations

14

. := .rename ◦ .deadcode ◦ .inline
where (R ◦ S)(x, y) := ∃z.R(x, z) ∧ S(z, y).

This introduces a problem for our certification approach: we cannot observe
and dump these “intermediate” ASTs, since they do not exist in the compiler!
There, the three transformations are fused into a single pass.

To construct a proof relating two terms, then amounts to also finding the
intermediate term, as part of the decision procedure. To simplify the search
of these intermediate ASTs, we adapt the compiler to also emit supporting
information about the performed pass; in this case, the compiler emits a list of
the eliminated variables. If the compiler emits incorrect information, we may
fail to construct a certificate, but we will never produce an incorrect certificate.

3.6. Beta redexes

Another obvious candidate for inlining is a beta-redex (λx.t1) t2, which can
be seen as another way of writing let x = t2 in t1. Instead of changing the
inlining pass described in sub-section ??, the compiler has a small pass that
rewrites such beta-redexes into (non-recursive) let constructs, after which the
inlining pass takes care of the actual inlining.

More generally, the pass considers expressions of the form:

(λx1 . . . xn.t) t1 . . . tn

It is important to notice that this is different from simply nesting normal beta
redexes, which would look like this:

(λx1. . . . ((λxn.t) tn) . . .) t1

So in order to handle the former, we define a relation Betas to inductively
relate such a term to a list of bindings bs and tin, as they would appear in
let bs in tin form. The key rule of the translation relation is then defined as:

Betas(t, bs, tin) tin . t
′
in bs . bs′

[Betas]
t . let bs′ in t′in

The pass does not only consider beta-redexes, but also instantiated type
abstractions of the form (Λ(α :: κ). t) {τ} which can similarly be treated as a
let binding of a type and for which there is a rule analogous to [Betas] in the
translation relation.

3.7. Splitting recursive let groups

Since the inlining pass does not consider bindings from a let rec, it is worth
it to analyse whether such bindings are truly recursive. If not, any non-recursive
bindings can be split out into a regular let, making them available for inlining.
The compiler implements this pass by a strongly connected component analysis
on the dependency graph obtained from the bindings.

15

We define this translation relation as follows:

t . t′ := t .s t
′ ∧Unique(t) ∧Closed(t′)

This definition states that the pre- and post-term must be syntactically related,
and the pre-term must have unique global binders, which means we do not have
to worry about shadowing when reordering binders. Finally, the well-scopedness
of the post-term ensures (in combination with Unique(t)) that any potential
reordering of bindings is correct.

In order to define .s (s for syntactic), we first use a helper relation OuterBinds
that can decompose a term of the following shape:

let [rec] bs1 in . . . let [rec] bsn in tin

The relation OuterBinds(t, [bs1, . . . , bsn], tin) holds if term t has that shape.
Then we define .s in the let rec case as:

OuterBinds(tpost, bs
′, t′in) bs .s bs

′ tin .s t
′
in

[Split-let-rec]
let rec bs in tin .s tpost

The rule [Split-let-rec] states that if bs′ are outer bindings in tpost, and they
are related with bs and the let body tin is related with the inner let body in
tpost, the terms are related. Any scoping related concerns are once again dealt
with by requiring Unique on the pre-term and Closed on the post-term.

3.8. Unwrap-wrap elimination

After inlining, it can happen that some expressions can be simplified. The
unwrap-wrap pass cleans up a specific artifact which may appear:

t . t′
[Unwrap-Wrap]

unwrap (wrap T U t) . t′

The wrap and unwrap constructs form the isomorphism of iso-recursive types
[19], hence their composition is the identity.

3.9. Dead code elimination

By means of a live variable analysis, the compiler determines which let-
bound definitions are unused and can be removed. This is often useful for
definitions that are introduced by other compiler passes. Since PIR is a strict
language, however, the compiler can only eliminate those bindings for which it
can determine they are a PureBinding, otherwise a diverging program may
suddenly become terminating.

The analysis in the compiler is not as straightforward as counting occurences.
Even a let-bound variable that does occur in the code, may be dead code, when

16

it is only used in other dead bindings. This is also known as strongly live variable
analysis [16].

In the translation relation we require that binders in the pre-term are unique,
and that the post-term is well-scoped. We will then define .s, that characterises
the removal of bindings.

t . t′ := Unique(t) ∧Closed(t′) ∧ t .s t′

Let us first consider the case of .s where a complete let has been eliminated:

PureBindings(bs) t .s t
′

[DeadBindings-Let-1]
let [rec] bs in t .s t′

Given that all bindings are pure, they can be removed. Note that we do not
mention any conditions about whether the bindings are actually dead code:
this is covered by the requirement that the pre-term is Unique and post term
is Closed. We elaborate on why both conditions are necessary in Section ??

This pass may also eliminate some, but not all bindings in a let. We treat
that as a different case:

∀b ∈ bs. Removed(b, bs′)⇒ PureBinding(b)

∀b′ ∈ bs′. ∃b ∈ bs.Name(b′) = Name(b) ∧ b .s b′

t .s t
′

[DeadBindings-Let-2]
let [rec] bs in t .s let [rec] bs′ in t′

The first hypothesis states that any binding (identified by its unique name)
which is not present in the binding group of the post-term must be a PureBinding.
Removed is defined by simply comparing binders by name, which are globally
unique. Second, we require that any binding in the post-term has a related
binding in the pre-term. These two conditions imply that the bindings of the
post-term form a subset of those in the pre-term (allowing for potential reorder-
ing). Lastly, the let bodies must also be related.

3.10. Let-floating

During let-floating, let-bindings can be moved upwards in the program.
This may save unnecessarily repeated computation and makes the generated
code more readable. The Plutus Tx compiler constructs a dependency graph
to maintain a correct ordering when multiple definitions are floated. For the
translation relation, we first consider the interaction of a let expression with
its parent node in the AST. For example, consider the case of a lambda with a
let directly under it:

PureBindings(bs)
[Float-Let-Lam]

λx. let [rec] bs in t
.s

let [rec] bs in (λx. t)

17

This rule states that a (possibly recursive) binding group consisting of only
pure bindings may float up past a lambda. This restriction is necessary for
preserving termination behaviour. We use the operator .s to denote that this
is the “syntactic” part of the translation relation, and define the full relation .
below. Similar rules express how a let can float past other language constructs.
Since the compiler pass may float lets more than just one step up, we use the
transitive closure .+

s as part of the final definition.
Furthermore, the pass may reorder bindings within a binding group (.Reorder),

and combine the bindings of adjacent let groups into a single group (.Merge).
We omit the details of these relations , as the former is defined similarly to the
reordering that can occur in dead-code elimination (Section ??), and the latter
is based on OuterBinds, as described in Section ??.

The complete translation relation of this pass is then defined as:

t . t′ := (.Merge ◦ .Reorder ◦ .+
s)(t, t′) ∧Unique(t) ∧Closed(t′)

Note that we do not need to maintain a dependency graph in the certifier, but
only need to assert that transformations do not break dependencies.

3.11. Encoding of non-strict bindings

The PIR language has both strict and non-strict let-bindings, but Plutus
Core does not. The thunking transformation is used to eliminate non-strict let-
bindings, by encoding them as strict bindings. We define the rules as a relation
Γ ` t . t′, where Γ records for every bound variable whether it was bound
strict or nonstrict. We first consider how a non-recursive, non-strict binding
is translated:

Γ ` t1 . t′1 (x, nonstrict),Γ ` t2 . t′2 ¬FreeIn(y, t1)
[Thunk-NR-NS]

Γ ` [∼x = t1 in t2] . [x = λ(y : ()). t′1 in t′2]

This rule states that the bound term is thunked by introducing a lambda ab-
straction that expects a value y of unit type as its argument. The rule for a
recursive let-binding is very similar, but also extends the environment under
which t1 is transformed.

Finally, we also have to replace the occurrences of these non-strict variables,
adding an application to the unit value (), thereby forcing evaluation.

Γ(x) = nonstrict
[Thunk-Var]

Γ ` x . x ()

3.12. Thunking of recursive bindings

This pass changes strict bindings in a let rec to non-strict bindings, which
are then directly forced again by the addition of a strict binding with the same
name, in order to preserve termination behaviour. For example:

let rec (x : τ) = t1 in t2 . let rec ∼(x : τ) = t1 in let (x : τ) = x in t2

18

The point of this tranformation is that the thunking transformation (Sub-
section 3.11), which runs after this pass, will translate the non-strict binding of
x back into a strict (but now thunked) form:

let rec (x : ()→ τ) = t1 in let (x : τ) = x () in t2

This combination of two passes establishes the property that all recursive bind-
ings are of function type, which is a requirement for the compilation of let rec
(Subsection ??).

We capture the first part of this transformation in a rule for a strict binding:

t . t′
[Thunk-TermBind-1]

[x = t] . [∼x = t′] | {x}

When relating individual bindings, we write b . b′ | V . Here the set V contains
those variables that will need additional (shadowing) strict bindings in the post-
term. In the above rule, this is a singleton set with x. This set may be empty
when bindings do not change their associated strictness:

t . t′
[Thunk-Bind-Cong]

[x = t] . [x = t′] | ∅

In fact, when strictness is changed, but the bound term is known to be Pure
(i.e. terminating), the compiler does not introduce the additional strict coun-
terpart, since termination behaviour will not change. For this case we have an
additional rule which again has the empty set for V :

t . t′ Pure(t)
[Thunk-TermBind-2]

[x = t] . [∼x = t′] | ∅

The case of . for let now becomes:

bs . bs′ | V t . t′ bsV = {[v = v] | v ∈ V }
[Thunk-Let-Rec]

let rec bs in t . let rec bs′ in (let bsV in t′)

Here, the first hypothesis relates the bindings in bs and bs′ point-wise, where
V is the union of all their sets of variables. The bindings bsV in the post-term
should then be exactly the strict bindings for the variables in V .

3.13. Further passes

There are two other passes in the PIR-to-PLC pipline: the compilation of
(mutually) recursive let-bindings and compilation of algebraic datatypes.

19

� The compilation of recursive binding groups is achieved by encoding them
as non-recursive lets, which happens in two conceptual steps: first the
group is converted into a single (recursive) binding of tuple type, where
each component corresponds to one of the original bindings. Second, a
fixpoint combinator is introduced, specific to the size of the tuple. This
fixpoint is then used to translate the recursively bound tuple into a non-
recursive binding. The original names of the binding group are then simply
projected out of the tuple.

� The compilation of algebraic datatypes considers data definitions, such
as:

let data Maybe α = Just α | Nothing with maybe in t

By means of the Scott encoding [1], they are transformed to a term that
uses type and term abstractions with equivalent definitions, of the form:

(ΛMaybe.λJust .λNothing .λmaybe. t′) τMaybe tJust tNothing tmaybe

Both of these passes have already been described in great detail elsewhere
[19]. They rely on the Scott encoding for handling algebraic datatypes (in the
first case: Scott-encoded tuples), but that approach will likely change soon with
the introduction of native sum and product types in PLC3. We have therefore
not formalised these passes.

3.14. Encoding of non-recursive bindings

At this point in the compiler pipeline, there is only one type of let construct
that may still occur: strict, non-recursive bindings. Such bindings are simply
compiled into a repeated β redexes:

t1 . t
′
1 . . . tn . t

′
n t . t′

letx1 = t1 . . . xn = tn in t . (λxi . . . xn. t′) t′1 . . . t′n
[Redex-Let]

4. Engineering considerations

In this section, we evaluate our approach to certifying an independently de-
veloped, constantly evolving compiler under the application constraints imposed
by smart contracts. We also describe lessons learnt regarding the architecture
of proofs, such that they are robust and maintainable.

4.1. Gradual verification

The certifier architecture outlined in this paper allows for a gradual ap-
proach to verification: during the development of the certification engine, each
individual step in the process increases our overall confidence in the compiler’s

3url to github proposal

20

correctness, even if we have not yet completed the end-to-end semantic verifi-
cation of the compiler pipeline.

By defining only the translation relations, we have an independent formal
specification of the compiler’s behaviour. This makes it easier to reason infor-
mally and to spot potential mistakes or problems with the implementation.

Implementing the decision procedures for translation relations ties the im-
plementation to the specification: we can show on a per-compilation basis that
a pass is sound with respect to its specification as a translation relation. Fur-
thermore, we can test that these translation relations accurately model the
compiler’s behaviour by automatically constructing evidence for various input
programs, such as those contained in the testsuite of the compiler.

Finally, by proving semantics preservation of a translation relation, we es-
tablish that the corresponding pass of the compiler is correct; for each of run of
the compiler for which we can establish that the translation relation holds, we
know that the semantics of the pre-term and post-term coincide.

4.2. Agility

The Plutus Tx compiler is developed independently of our certification effort.
Moreover, it relies on a substantial existing code base—namely, that of the
Glasgow Haskell Compiler (GHC). In addition, both GHC and the Plutus Tx-
specific parts evolve on a constant basis, improving code generation or fixing
bugs.

Given these constraints, full verification of the compiler appears to be in
conflict with the ongoing maintenance of the compiler. A proof on the basis
of the compiler source code would constantly have to adapt to the evolving
compiler source. Hence, the architecture of our certification engine is based on
a grey box approach, where the certifier matches the general outline (such as
the phases of the compiler pipeline), but not all of the implementation details
of the compiler. For example, our translation relation for the inliner admits
any valid inlining. Any changes to the compiler’s heuristics to produce more
efficient programs by being selective about what precisely to inline do not affect
the inliner’s translation relation, and hence, do not affect the certifier.

4.3. Trusted Computing Base (TCB)

The fact that the Plutus Tx compiler is not implemented in a proof assistant,
but in Haskell complicates direct compiler verification. It might be possible to
use a tool like hs-to-coq [31], which translates a subset of Haskell into Coq’s
Gallina and has been used for proving various properties about Haskell code [11].
However, given that those tools often only cover language subsets, it is not clear
that they are applicable. More importantly, such an approach would increase
the size of the trusted computing base (TCB), as the translation from Haskell
into Coq’s Gallina is not verified. Similarly, extraction-based approaches suffer
from the same problem if the extraction itself is not verified, although there are
projects like CertiCoq [3] that try to address that issue.

In any case, our architecture has a relatively small TCB. We directly relate
the source and target programs via a chain of intermediate ASTs, taking the

21

compiler implementation out of the equation. Trusting a translation certificate
comes down to trusting the Coq kernel that checks the proof, the theorem with
its supporting definitions and soundness of the Plutus Core interpreter with
respect to the formalised semantics. Of course, these components are part of
the TCB of a verified compiler too. This aspect also motivated our choice of
Coq over other languages such as Agda, due to its relatively small and mature
kernel.

4.4. Proof architecture

Since the original implementation [20], we have extended and revised several
of the implementations of the translation relations. We describe some insights
obtained in the process.

4.4.1. Composed translation relations

A convenient pattern that we have found is to define some relations as a
conjunction of simpler relations and predicates, such as the translation relation
for splitting recursive let groups (Section 3.7):

t . t′ := t .s t
′ ∧Unique(t) ∧Closed(t′)

Here we split the relation into a syntactic transformation, t .s t
′, and various

side conditions. The syntactic transformation is easy to specify; in contrast,
a transformation that would also guarantee to preserve scoping of the post-
term would be significantly harder to realise. Instead, we require the Unique
and Closed conditions separately, ensuring that bindings in a let binding
group may be reordered arbitrarily in a compiler pass as long as these separate
conditions hold.

Another case where this split of the relation is useful, is the dead code
elimination pass (Section ??). The syntactic rules merely assert that only pure
bindings can be removed, Unique and Closed predicates ensure that only
dead code is removed. Note that for dead code, Closed(t′) on its own is
not a sufficient condition. For example, consider the following program, where
shadowing occurs:

letx = true in letx = false inx

Removing the second binding of x results in a Closed term, but is not a safe
transformation! Admittedly, the translation relation could be slightly more
general by requiring that each eliminated binding was not shadowing other
bindings. However, we prefer our formulation as a conjunction of three simple
properties, because it keeps the rules of .s straightforward due to avoiding the
need for an additional context or non-local information about variable bindings.
Furthermore, it still accurately describes the compiler’s implementation, which
also assumes global uniqueness on the pre-term.

22

4.4.2. Reducing boilerplate rules

Many inductive translation relations contain boilerplate constructors; typi-
cally there are only a handful of interesting rules, and all other AST constructs
correspond to congruence rules, specifying the translation relation contains the
identity relation.

In our Coq implementation, we factor out this boilerplate by defining a
separate congruence relation, Cong. This is a ternary relation, between some
translation relation . and two terms, that requires that each construct in the
AST that the direct sub-terms to be related by .. For example, in the case of
function application, we have:

s . s′ t . t′
[Cong-App]

Cong(., s t, s′ t′)

The use of Cong simplifies some relations such as dead-code elimination
(Section ??) or splitting recursive binding groups (Section ??), but is not
general enough for relations that use environments Γ and ∆ with binder-specific
information, such as renaming. In the future, we may extend these congruences
with more arguments, enabling further reuse.

4.4.3. Relational versus functional specifications

Often, we prefer relational specifications over functions, since they are more
general and can express many-to-many relations, such as in the specification of
inlining (Section ??). On the other hand, some passes do not need this level of
generality and we can model that pass as a total Coq function. The benefit of
doing so is that a functional specification does not require a separate decision
procedure: by simply running the function on the pre-term and syntactically
comparing its output with the post-term we can establish the validity of the
translation.

Therefore, we have sometimes chosen to formalise the specification as a func-
tion. One example is the encoding of non-recursive bindings (Section ??), which
uses a clear translation scheme that applies to every non-recursive let defini-
tion. We have (partially) implemented that pass as a Coq function:

Fixpoint compile_term : Term -> Term

Similarly, the compilation of recursive binding groups can be implemented as
a Coq function encode_let_rec. However, we noticed that it is cumbersome to
try and replicate the compiler’s strategy of generating fresh variables. Therefore,
we combined this functional specification with the relational specification of
renaming of Section ??:

t . t′ := (encode let rec t) .Rename t′

23

4.4.4. Variable representation

A common way of representing variables is by using de Bruijn indices. How-
ever the Plutus compiler uses named variables. Specifically, a variable is a pair
of type String× N, where the first component is the name of the variable as it
appears in the source code and the second is the identifier used internally by
the compiler. The compiler goes through quite some effort to keep the natural
number globally unique, as we discussed in Section ??.

Our Coq AST type is flexible and parametrised by the type that is used
for binders. This allows us some more freedom for experimentation, but at the
moment, we have only instantiated this with (globally unique) String identifiers.
We plan to change this to match the compiler implementation in the near future,
which should be a straightforward refactoring.

By design, we are staying close to the compiler’s internal representation of
ASTs: we want to specify syntactic translation relations that stay as close as
possible to the compiler’s behaviour. Any more abstract notion of binding —
such as well-typed or well-scoped de Bruijn indices — would require additional
checks and conversions of each intermediate AST. Furthermore, we would have
to trust that the static or dynamic semantics that we formalise correspond to
the semantics of the original form.

4.4.5. “Big-step” versus transitive closure of “small-step”

Most translation relations are inductive: they have hypotheses that require
sub-trees to be related inductively. In the case of let-floating (Section ??), we
used a different approach, since it is not a local transformation. Instead, we
first specified a single “floating” step, and then took the transitive closure of
that relation to describe the entire the pass. In fact, many pass specifications
could be described in that way but we foresee that this approach can become
problematic when defining the corresponding decision procedure: we effectively
require a (potentially long) list of intermediate AST’s, which are not all emitted
by the compiler. For that reason, we prefer inductively defined relations.

4.4.6. Deriving sound decision procedures

Since we are currently writing decision procedures for translation relations
by hand, we are investigating ways to automate this process. In many cases
one can “read of” a (naive) strategy for a decision procedure from the rules of a
relation. Indeed, recent work [27] by Paraskevopoulou et al. has shown how to
derive computational content, including verified decision procedures, from Coq’s
inductive definitions. We hope that by building on this work, we can lower the
(maintenance) cost associated with the specification of a compiler pass even
further.

5. Related Work

5.1. Compilers and correctness

The standard approach to compiler correctness is full compiler verification:
a proof that asserts that the compiler is correct as it demonstrates that, for

24

any valid source program, the translation produces a semantically equivalent
target program. Examples of this approach include the CompCert [22] and
CakeML [21] projects, showing that (with significant effort) it is possible to
verify a compiler end-to-end. To do so, the compiler is typically implemented in
a language suitable for verification, such as the Coq proof assistant or the HOL
theorem prover.

In contrast, the technique that we propose for the Plutus Tx compiler is
based on translation validation [29]. Instead of asserting an entire compiler
correct, translation validation establishes the correctness of individual compiler
runs.

A statement of full compiler correctness is, of course, the stronger of the
two statements. Translation validation may fail to assert the correctness of
some compiler runs; either because the compiler did not produce correct code
or because the translation certifier is incomplete. In exchange for being the
weaker property, translation validation is potentially (1) less costly to realise,
(2) easier to retrofit to an existing compiler, and (3) more robust in the face of
changes to the compiler.

The Cogent certifying compiler [26] has shown that it is possible to use
translation validation for lowering the cost of functional verification of low-level
code: a program can be written and reasoned about in a high-level functional
language, which is compiled down to C. The generated certificate then proves
a refinement relation, capable of transporting the verification results to the
corresponding C code. The situation is different from ours: the Cogent compiler
goes through a range of languages with different semantic models and uses the
forward-simulation technique as a consequence. In contrast, we are working
with variations of lambda calculi that have similar semantics, allowing us to use
logical relations and translation relations.

The idea of proof-carrying code [24] is closely related to translation valida-
tion, shifting the focus to compiled programs, rather than the compiler itself.
A program is distributed together with a proof of a property such as memory
or type safety. Such a proof excludes certain classes of bugs and gives direct
evidence to the users of such a program, who may independently check the
proof before running the program. Our certification effort, while related, differs
in that we keep proof and program separate and in that we are interested in
full semantic correctness and not just certain properties like memory and type
safety.

In their Coq framework [23], Li and Appel use a technique similar to ours for
specifying compiler passes as inductive relations in Coq. Their tool reduces the
effort of implementing program transformations and corresponding correctness
proofs. The tool is able to generate large parts of an implementation together
with a partial soundess proof with respect to those relations. The approach is
used to implement parts of the CertiCoq backend.

5.2. Certificates and smart contracts

Smart contracts often manage significant amounts of financial and other
assets. Before a user engages with such a contract, which has been committed

25

to the blockchain as compiled code, they may want to inspect the source code
to assert that it behaves as they expect. In order to be able to rely on that
inspection, they need to know without doubt that (1) they are looking at the
correct source code and (2) that the source code has been compiled correctly.

While a verified smart contract compiler addresses the second point, it
doesn’t help with the first. An infrastructure of reproducible builds, on the
other hand, solves only the first point. The latter is the approach taken by
Etherscan4: to verify that a deployed Ethereum smart contract was the result
of a compiler run, one provides the source code and build information such as
the compiler version and optimisation settings.

In contrast, a certifying compiler [25] that generates an independently ver-
ifiable certificate of correct translation, squarely addresses both points. By
verifying a smart contract’s translation certificate, a smart contract user can
convince themselves that they are in possession of the matching source code
and that this was correctly compiled to the code committed to the blockchain.

5.3. Verification in the smart contract domain

Ethereum was the first blockchain to popularise use of smart contracts, writ-
ten in the Solidity programming language. Solidity is an imperative program-
ming language that is compiled to EVM bytecode, which runs on a stack ma-
chine operating on persistent mutable state. The DAO vulnerability [12] has
underlined the importance of formal verification of smart contracts. Notably,
a verification framework has been presented [10] for reasoning about embed-
ded Solidity programs in F*. The work includes a decompiler to convert EVM
bytecode, generated by a compiler, into Solidity programs in F*. The authors
propose that correctness of compilation can be shown by proving equivalence
of the embedded source and (decompiled) target program using relational rea-
soning [7]. However, this would involve a manual proof effort on a per-program
basis, and relies on the F* semantics since the embeddings are shallow. Fur-
thermore, components such as the decompiler are not formally verified, adding
to the size of the TCB.

The translation validation technique has been used for the verification of a
particular critical Ethereum smart contract [28] using the K framework. The
work demonstrates how translation validation can succesfully be applied to con-
struct proofs about the low-level EVM bytecode by mostly reasoning on the
(much more understandable) source code. The actual refinement proof is still
constructed manually, however.

The Tezos blockchain also uses a stack-like language, called Michelson. The
Mi-Cho-Coq framework [8] formalises the language and supports reasoning with
a weakest precondition logic. There is ongoing work for developing a certified
compiler in Coq for the Albert intermediate language, intended as a target
language for certified compilers of higher-level languages. This differs from our
approach as it requires the compiler to be implemented in the proof assistant.

4https://etherscan.io/verifyContract

26

https://etherscan.io/verifyContract

ConCert is a smart contract verification framework in Coq [4]. It enables for-
mal reasoning about the source code of a smart contracts, defined in a different
(functional) language. The programs are translated and shallowly embedded in
Coq’s Gallina. Interestingly, the translation is proven sound, in contrast with
approaches such as hs-to-coq [31], since it is implemented using Coq’s metapro-
gramming and reasoning facility MetaCoq [30].

6. Conclusions and further work

The Plutus Tx compiler translates a Haskell subset into Plutus Core. The
compiler consists of three main parts: the first one reuses various stages of
GHC to compile the Haskell subset to GHC Core—the principal intermediate
language used by GHC. The second part translates GHC Core to PIR and the
final part compiles PIR to Plutus Core. As Plutus Core is strict and does not
directly support datatypes, the corresponding translation scheme is quite com-
plex. Moreover, it contains numerous transformation and optimization passes.

In this paper, we focused on the certification effort covering the third part
of that pipeline; specifically, the translation steps from PIR to Plutus Core.
While the other passes are certainly important for end to end verification, they
are largely syntactic transformations that desugar user defined programs to a
smaller core language. We have developed translation relations for all passes
described in Section 3, such that we can, for example, produce a proof relating
the previously described timelock example in PIR to its final form in Plutus
Core. For some of these passes, such as inlining, we have implemented a verified
decision procedure, but most of the evidence is generated semi-automatically
by using Coq tactics. We have not yet covered all transformations in their full
generality; for example, we do not cover (mutually) recursive datatypes yet. We
have also started the semantic verification of key passes of the translation[14]
and are investigating different ways to automate decision procedures for larger
programs effectively.

In the future, we hope to continue this line of work in four directions: (1)
filling in the remaining gaps in translation relations (such as covering mutually
recursive datatypes); (2) completing the decision procedures associated with
each translation relation; (3) continuing the semantic verification of the compiler
passes; and (4) further automating our approach and improve the efficiency and
maintainability of the certifier.

7. Acknowledgements

Funding for this research was provided by NWO and IOG. Furthermore, we
would like to thank Michael Peyton Jones for his feedback and Joris Dral for
his contributions in the Coq implementation.

References

[1] Abadi, M., Cardelli, L., Plotkin, G.: Types for the Scott numerals (1993)

27

[2] Ahmed, A.: Step-indexed syntactic logical relations for recursive and
quantified types. In: European Symposium on Programming. pp. 69–83.
Springer (2006)

[3] Anand, A., Appel, A., Morrisett, G., Paraskevopoulou, Z., Pollack, R.,
Belanger, O.S., Sozeau, M., Weaver, M.: CertiCoq: A verified compiler
for Coq. In: The third international workshop on Coq for programming
languages (CoqPL) (2017)

[4] Annenkov, D., Nielsen, J.B., Spitters, B.: ConCert: a smart contract cer-
tification framework in Coq. In: Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs. pp. 215–228
(2020)

[5] Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum
smart contracts (SoK). In: Principles of Security and Trust (POST 2017).
LNCS, vol. 10204 (2017)

[6] Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre, J.C., Gimenez,
E., Herbelin, H., Huet, G., Munoz, C., Murthy, C., et al.: The Coq proof
assistant reference manual: Version 6.1. Ph.D. thesis, Inria (1997)

[7] Barthe, G., Fournet, C., Grégoire, B., Strub, P.Y., Swamy, N., Zanella-
Béguelin, S.: Probabilistic relational verification for cryptographic imple-
mentations. ACM SIGPLAN Notices 49(1), 193–205 (2014)

[8] Bernardo, B., Cauderlier, R., Hu, Z., Pesin, B., Tesson, J.: Mi-Cho-Coq, a
framework for certifying Tezos smart contracts. In: International Sympo-
sium on Formal Methods. pp. 368–379. Springer (2019)

[9] Bertot, Y., Castéran, P.: Interactive theorem proving and program devel-
opment: Coq’Art: the calculus of inductive constructions. Springer Science
& Business Media (2013)

[10] Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier,
G., Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N.,
et al.: Formal verification of smart contracts: Short paper. In: Proceedings
of the 2016 ACM workshop on programming languages and analysis for
security. pp. 91–96 (2016)

[11] Breitner, J., Spector-Zabusky, A., Li, Y., Rizkallah, C., Wiegley, J.,
Weirich, S.: Ready, set, verify! applying hs-to-coq to real-world Haskell
code (experience report). Proceedings of the ACM on Programming Lan-
guages 2(ICFP), 1–16 (2018)

[12] Buterin, V.: CRITICAL UPDATE Re: DAO Vulnerability. https://blog.
ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/

(2016), retrieved December 10, 2021

28

https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/

[13] Chapman, J., Kireev, R., Nester, C., Wadler, P.: System F in Agda, for fun
and profit. In: Mathematics of Program Construction (MPC 2019). LNCS,
vol. 11825 (2019)

[14] Dral, J.: Verified Compiler Optimisations. Master’s thesis, Utrecht Univer-
sity (2022)

[15] GHC Team: GHC 9.0 User Manual. https://downloads.haskell.org/

~ghc/9.0.1/docs/html/users_guide/extending_ghc.html

[16] Giegerich, R., Möncke, U.: Invariance of approximative semantics with
respect to program transformations. In: GI—11. Jahrestagung, pp. 1–10.
Springer (1981)

[17] Gonthier, G., Le, R.S.: An Ssreflect Tutorial. Ph.D. thesis, INRIA (2009)

[18] IOHK: The Plutus Platform and Marlowe 1.0.0 documentation.
https://plutus.readthedocs.io/en/latest/plutus/tutorials/

plutus-tx.html

[19] Jones, M.P., Gkoumas, V., Kireev, R., MacKenzie, K., Nester, C., Wadler,
P.: Unraveling recursion: compiling an IR with recursion to System F. In:
International Conference on Mathematics of Program Construction. pp.
414–443. Springer (2019)

[20] Krijnen, J.O.G., Chakravarty, M.M.T., Keller, G., Swierstra, W.: Transla-
tion certification for smart contracts. In: Functional and Logic Program-
ming: 16th International Symposium, FLOPS 2022, Kyoto, Japan, May
10–12, 2022, Proceedings. p. 94. Springer, extended version available from
https://arxiv.org/abs/2201.04919

[21] Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified
implementation of ML. ACM SIGPLAN Notices 49(1), 179–191 (2014)

[22] Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., Ferdinand,
C.: CompCert—a formally verified optimizing compiler. In: ERTS 2016:
Embedded Real Time Software and Systems, 8th European Congress (2016)

[23] Li, J.M., Appel, A.W.: Deriving efficient program transformations from
rewrite rules. Proceedings of the ACM on Programming Languages
5(ICFP), 1–29 (2021)

[24] Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
pp. 106–119 (1997)

[25] Necula, G.C., Lee, P.: The design and implementation of a certifying com-
piler. SIGPLAN Not. 39(4), 612–625 (Apr 2004)

29

https://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/extending_ghc.html
https://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/extending_ghc.html
https://plutus.readthedocs.io/en/latest/plutus/tutorials/plutus-tx.html
https://plutus.readthedocs.io/en/latest/plutus/tutorials/plutus-tx.html
https://arxiv.org/abs/2201.04919

[26] O’Connor, L., Chen, Z., Rizkallah, C., Jackson, V., Amani, S., Klein, G.,
Murray, T., Sewell, T., Keller, G.: Cogent: uniqueness types and certifying
compilation. Journal of Functional Programming 31 (2021)

[27] Paraskevopoulou, Z., Eline, A., Lampropoulos, L.: Computing correctly
with inductive relations. In: Proceedings of the 43rd ACM SIGPLAN In-
ternational Conference on Programming Language Design and Implemen-
tation. pp. 966–980 (2022)

[28] Park, D., Zhang, Y., Rosu, G.: End-to-end formal verification of Ethereum
2.0 deposit smart contract. In: Computer Aided Verification (CAV 2020).
LNCS, vol. 12224 (2020)

[29] Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 151–166. Springer (1998)

[30] Sozeau, M., Anand, A., Boulier, S., Cohen, C., Forster, Y., Kunze, F.,
Malecha, G., Tabareau, N., Winterhalter, T.: The MetaCoq project. Jour-
nal of Automated Reasoning (2020)

[31] Spector-Zabusky, A., Breitner, J., Rizkallah, C., Weirich, S.: Total Haskell
is reasonable Coq. In: Proceedings of the 7th ACM SIGPLAN International
Conference on Certified Programs and Proofs. pp. 14–27 (2018)

30

	Introduction
	The Architecture of the Certifier
	Characterising a transformation
	Decidability of translation relations
	Verification
	Certificate generation

	Translation Relations of the Plutus Tx Compiler
	Example transformations
	Notational conventions
	Properties of terms
	Globally unique variables
	Well-scoped expressions
	Pure bindings

	Variable Renaming
	Inlining
	Beta redexes
	Splitting recursive let groups
	Unwrap-wrap elimination
	Dead code elimination
	Let-floating
	Encoding of non-strict bindings
	Thunking of recursive bindings
	Further passes
	Encoding of non-recursive bindings

	Engineering considerations
	Gradual verification
	Agility
	Trusted Computing Base (TCB)
	Proof architecture
	Composed translation relations
	Reducing boilerplate rules
	Relational versus functional specifications
	Variable representation
	``Big-step'' versus transitive closure of ``small-step''
	Deriving sound decision procedures

	Related Work
	Compilers and correctness
	Certificates and smart contracts
	Verification in the smart contract domain

	Conclusions and further work
	Acknowledgements

