
A Functional Correspondence between Top-down and
Bottom-up Tree Algorithms
Fast and Correct Fully In-Place Functions with First-Class Constructor Contexts and Zippers

Microsoft Technical Report, MSR-TR-2023-28, Jul 29, 2023 (v2).

ANTON LORENZEN, University of Edinburgh, UK
DAAN LEIJEN,Microsoft Research, USA
WOUTER SWIERSTRA, Universiteit Utrecht, Netherlands
SAM LINDLEY, University of Edinburgh, UK

Enabled by recent advancements, like fully in-place programming (FIP), and precise reference counting
(Perceus), and in combination with first-class constructor contexts as presented here, we show how to express
various binary search tree algorithms in a purely functional way but with performance that rivals the best C
implementations. We illustrate our techniques by studying three particular insertion algorithms on balanced
binary seach trees: move-to-root trees, splay trees, and the recently discovered zip trees.

Insertion operations on binary search trees are typically presented in two styles: top-down or bottom-up.
In imperative code, these algorithms seem quite different — and, as in the case of splay tree insertion, they
may even return slightly different results. However, in a functional setting they are closely related. Using
continuation-passing style, defunctionalization and first-class constructor contexts, we show how to transform
one into the other, and explain precisely how their difference arises.

We present functional versions, both top-down and bottom-up, of these insertion algorithms, and mechanise
the proof of their correspondence using elementary inductive arguments. We build implementations of these
algorithms exploiting first-class constructor contexts and fully in-place programming to generate efficient
imperative code. Finally, we formalise the published, imperative top-down and bottom-up implementations in
the separation logic framework Iris and prove that these are equivalent to the functional versions.

Is there a way to combine the indulgences of impurity with the benefits of purity?
— Phil Wadler [1990]

1 INTRODUCTION
In his book on purely functional datastructures, Okasaki [1999b] showed how we can elegantly
express many tree algorithms in a purely functional way. Unfortunately, the performance of such
functional algorithms in absolute terms is often worse than their in-place updating imperative
counterparts. Enabled by recent advancements, like fully in-place programming (FIP), and precise
reference counting (Perceus), and in combination with first-class constructor contexts as presented
here, we show how to express various binary search tree algorithms in a purely functional way but
with performance that rivals the best C implementations. We show that these purely functional
implementations give rise to new insights, enable us to prove complex imperative algorithms
correct, and even improve upon them.
We illustrate our techniques by studying three particular algorithms on balanced binary seach

trees:move-to-root trees [Allen andMunro 1978; Stephenson 1980], self-adjusting splay trees [Sleator
and Tarjan 1985] and the recently discovered randomized zip trees [Tarjan et al. 2021]. These
imperative tree algorithms are typically presented in two styles: bottom-up algorithms traverse the
tree in search for a given key and then move back up to the root, performing restructuring on the
way up. In contrast, top-down algorithms keep a reference to the root and restructure directly as
the tree is traversed in search for the key. Upon reaching the key, no further traversal is necessary
and the algorithm returns (a pointer to) the tree’s root.

1

In the imperative formulation, these two styles are quite different, but in the functional setting we
can see that they are actually closely related: starting from an obvious, yet inefficient specification,
we can derive both styles of algorithms using straightforward familiar program transformations,
much as Danvy and his collaborators relate abstract machines and evaluators [Ager et al. 2003]. We
can formally prove the various definitions are equivalent using elementary inductive arguments.
Our key insight is that both styles construct unfinished intermediate trees with a single hole. We
present two general techniques describing how to derive each variant from the simple specification.
The goal of each derivation is to ensure each variant is eventually fully in-place [Lorenzen et
al. 2023b]. Such functions can be executed without needing allocation and using constant stack
space, allowing performance that can be competitive with their imperative counterparts (Section 7).

To uncover a bottom-up algorithm, we first apply CPS-conversion to our simple specification and
then we defunctionalize the resulting closures [Danvy and Nielsen 2001; Reynolds 1972]. This gives
rise to a zipper on binary trees [Huet 1997]. These are known techniques, but we show that the
zipper operations can be fully in-place – and we obtain compiled code which mimics the imperative
bottom-up algorithms that use pointer-reversal [Schorr and Waite 1967].
But what about deriving top-down algorithms? This seems impossible in a purely functional

language, as these algorithms require a reference to the tree’s root: rebalancing any subtrees in-place
would break referential transparency. We use the first-class constructor contexts presented in this
paper, to safely encapsulate the required form of mutation. When such contexts are used uniquely,
the operations to extend the context or fill its hole are done in constant time. Using accumulating
constructor contexts, we use equational reasoning to derive an efficient top-down version from the
simple recursive specification.

Finally, we can connect our purely functional implementations to their imperative counterparts.
To make this precise, we formalize the published, imperative algorithms and prove that they are
equivalent to our functional algorithms using the Iris framework for separation logic [Jung et
al. 2018]. Our proofs parallel the structure of the functional program and our loop invariant simply
describes the arguments of recursive invocations of the functional version. This not only verifies the
correctness of the imperative algorithms, but also provides evidence that the techniques presented
here indeed elucidate the inductive structure hidden beneath their imperative shell. In particular,
we show how various pointer assignments correspond to “hidden” structure that is apparent in the
functional description, like constructor contexts, zippers, and tail-calls.

More specifically, the paper makes the following contributions:
• We describe and implement first-class constructor contexts which are essential to express efficient
top-down algorithms. Rather than relying on a linear type system to ensure constructor contexts
are used safely, as proposed byMinamide [1998], we take a different tack. We use a combination of
static compilationwith runtime support for context paths [Leijen and Lorenzen 2023] – constructor
contexts now have the benefit of a pure and unrestricted functional interface, whilst still enjoying
the indulgence of impure in-place mutation for unique contexts at runtime (Section 3).

• We identify the two general techniques for deriving either a bottom-up or top-down version of a
recursive algorithm on binary trees and apply our technique to three different binary search trees:
move-to-root trees (Section 2), splay trees (Section 5) and zip trees (Section 6). Deriving bottom-
up algorithms uses a defunctionalized CPS transform [Danvy and Nielsen 2001; Reynolds 1972],
folklore in the functional programming literature. Such defunctionalized CPS algorithms only tell
half the story: we show how we can use accumulating first-class constructor contexts to derive
the top-down algorithms. To the best of our knowledge, no bottom-up version of zip trees has
been published previously, but we can directly derive such version using our generic techniques.

• Deriving the tree algorithms as fully in-place functional programs uncovers insights that are
obscured in their imperative counterparts. For example, we show how move-to-root and splay
trees differ on just one essential rebalance step. Also, we show how we can straightforwardly

2

derive a new imperative top-down zip-tree insertion algorithm from our functional version that
improves upon the published one [Tarjan et al. 2021]. Finally, it has been observed that the
published top-down and bottom-up insertion algorithms on splay trees are not equivalent [Levy
and Tarjan 2019; Lucas 2004]. We precisely describe where this discrepancy arises and give an
alternative version of bottom-up splay trees which is equivalent to its top-down counterpart.

• We formally prove the correspondence between the top-down and bottom-up algorithms using
the Coq proof assistant. First, we prove the functional versions equivalent by a direct proof by
induction – which is only possible when working with purely functional specifications. Then we
prove the respective versions equivalent to formalizations of the published imperative algorithms
using Iris [Jung et al. 2018]. For our proof of the top-down versions, we model constructor
contexts using an explicit representation of context paths and show this is expressive enough to
model the same sequence of assignments as in the published imperative code.

• We benchmark the performance of each of these derived functional algorithms in the Koka
language [Leijen 2021] and compare this to the performance of their counterparts in C, OCaml and
Haskell (Section 7). Our fully in-place functional algorithms are as fast as the best implementations
in C, even with the additional overhead that Koka incurs due to automatic memory management,
header words, arbitrary precision integers, and support for persistence.

2 MOVE-TO-ROOT TREES
Move-to-root trees, independently described by both Stephenson [1980] and Allen and Munro [1978],
are a variation of simple binary search trees, where accessing a particular key ensures it moves to
the tree’s root. By doing so, elements that are accessed often naturally drift to the top of the tree.

2.1 Deriving a Recursive Algorithm
All our examples in this paper are written in the Koka language [Leijen 2014] (v2.4.2) which
implements all the features described in this paper (including first-class constructor contexts). We
can declare a datatype for binary trees as:

type tree
Node(left : tree, key : key, right : tree)
Leaf

We use an abstract type key for the keys stored in the tree but this is usually instantiated to be
an int. The main operation on binary trees is the insert function that takes a tree and a key as its
arguments. If the key is not yet in the tree, the insert function inserts it; otherwise no elements are
inserted or deleted. Crucially, move-to-root trees ensure that the inserted key always ends up at
the root of the resulting tree. The resulting tree should still be a binary search tree, hence we can
specify the intended behaviour as follows:

fun insert(t : tree, k : key) : tree
Node(smaller(t,k), k, bigger(t,k))

That is, each call to insert should return a new binary search tree storing the elements of t smaller
than k, the key k, and the elements of t greater than k. To complete this specification, we still need
to define smaller and bigger:

fun smaller(t : tree, k : key) : tree
match t
Node(l,x,r) ->
if x < k then Node(l,x,smaller(r,k))
elif x > k then smaller(l,k)
else l

Leaf -> Leaf

fun bigger(t : tree, k : key) : tree
match t
Node(l,x,r) ->
if x < k then bigger(r,k)
elif x > k then Node(bigger(l,k),x,r)
else r

Leaf -> Leaf

This specification captures the essence of move-to-root trees, but it is also quite inefficient, requiring
two separate traversals of the input tree. We can obviously do better by fusing these two traversals
into a single pass. As a first step, we merge smaller and bigger into a single function by inlining
their definitions into the specification given by the insert:

3

fun insert(t : tree, k : key) : tree
Node(match t { Node(l,x,r) -> if x < k then Node(l,x,smaller(r,k)) ... }

, k
, match t { Node(l,x,r) -> if x < k then bigger(r,k) ... }

Next, we push down the outer Node constructor into the branches and if statements and merge the
common paths together:

fun insert(t : tree, k : key) : tree
match t
Node(l,x,r) -> if x < k then Node(Node(l,x,smaller(r,k)), k, bigger(r,k))

elif x > k then Node(smaller(l,k), k, Node(bigger(l,k),x,r))
else Node(l,k,r)

Leaf -> Node(Leaf,k,Leaf)

At this point, the functions still uses smaller and bigger – we have apparently not made any progress.
However, all these calls are on the same subtree in each branch andwe simplify this further using our
induction hypothesis. Recall our specification that states fun insert(t,k) = Node(smaller(t,k), k, bigger(t,k)).
We can use this to refine the two calls of the form Node(Node(l,x,smaller(r,k)), k, bigger(r,k)) into
a single recursive call instead:

match insert(r,k)
Node(s,y,b) -> Node(Node(l,x,s), y, b) // where y == k

where we use the variables s and b for results of calling smaller and bigger. At this point, we have a
complete direct recursive version of insert:

fun insert(t : tree, k : key)
match t
Node(l,x,r) -> if x < k then match insert(r,k)

Node(s,y,b) -> Node(Node(l,x,s), y, b)
elif x > k then match insert(l,k)

Node(s,y,b) -> Node(s, y, Node(b,x,r))
else Node(l,k,r)

Leaf -> Node(Leaf,k,Leaf)

This version performs a single traversal over the input tree. As a pure functional implementation,
it is straightforward to verify the correctness properties of this function in proof assistants such as
Coq [2017] – we discuss this in detail in Section 4. Some properties that we can prove this way
include:
• whenever t is a binary search tree, so is insert(t,k);
• every key in t also occurs in insert(t,k); and
• the key stored at the root of insert(t,k) is equal to k.
However, the current definition of insert is not tail-recursive and can use stack space linear in the
size of the tree in the worst-case. We will now proceed to derive efficient fully in-place bottom-up
and top-down variants that remedy these issues.

2.2 Bottom-Up Move-To-Root
A bottom-up algorithm first traverses down the tree to the insertion point, and then restructures
the tree on the way back up. We derive a bottom-up traversal from our derived recursive function
using standard techniques: a CPS transformation [Ager et al. 2003; Danvy et al. 2007; Plotkin 1975]
followed by defunctionalization [Bell et al. 1997; Danvy and Nielsen 2001]of the closures. Less
standard however, is our use of fully in-place functional programming [Lorenzen et al. 2023b] to
ensure that the resulting algorithm can be executed using destructive updates when possible.

CPS Conversion. In our derived recursive version we match on the recursive call as:
... if x < k then match insert(r,k) { Node(s,y,b) -> Node(Node(l,x,s),y,b) }

We can apply a CPS conversion to make it tail-recursive – instead of matching on the result, we
pass a continuation cont instead:

fun insert-cps(t : tree, k : key)
down-cps(t,k,id)

4

fun down-cps(t : tree, k : key, cont : tree -> exn tree) : exn tree
match t
Node(l,x,r) -> if x < k then down-cps(r, k, fn(t) match t

Node(s,y,b) -> cont(Node(Node(l,x,s),y,b)))

elif x > k then down-cps(l, k, fn(t) match t
Node(s,y,b) -> cont(Node(s,y,Node(b,x,r))))

else cont(Node(l,k,r))
Leaf -> cont(Node(Leaf,k,Leaf))

Defunctionalized CPS. The down-cps function uses three higher order continuation arguments:
one that traverses the right subtree; one that traverses the left subtree; and the identity function
used as the initial continuation. We now defunctionalize these, turning functions into constructors
storing the free variables of each continuation [Reynolds 1972]:

type zipper
Done
NodeL(up : zipper, key : key, right : tree)
NodeR(left : tree, key : key, up : zipper)

We have purposefully named the defunctionalized data type zipper, as it corresponds to the zipper
or ‘one hole context’ on binary trees [Huet 1997; McBride 2001]. Although we can no longer apply
the continuations directly, we can dispatch on the constructors to construct the desired tree:

fip fun rebuild(z : zipper, t : tree)
match z
Done -> t
NodeR(l,x,up) -> match t // we came from the right
Node(s,y,b) -> rebuild(up, Node(Node(l,x,s), y, b))

NodeL(up,x,r) -> match t // we came from the left
Node(s,y,b) -> rebuild(up, Node(s, y, Node(b,x,r)))

The rebuild function repeatedly moves up through the zipper reassembling the original tree. This
function is fully in-place as indicated by the fip keyword – a point we return to in the next section.
Using these definitions, we now derive the complete tail-recursive bottom-up insert function:

fip(1) fun insert-bu(t : tree, k : key)
down-bu(t,k,Done)

fip(1) fun down-bu(t : tree, k : key, z : zipper)
match t
Node(l,x,r) -> if x < k then down-bu(r, k, NodeR(l,x,z))

elif x > k then down-bu(l, k, NodeL(z,x,r))
else rebuild(z, Node(l,k,r))

Leaf -> rebuild(z, Node(Leaf,k,Leaf))

The insert-bu function is both correct and fast. The fip(1) annotation allows allocation of a single
constructor when the inserted key is not in the tree yet, but no other memory needs to be allocated.
It is also correct as we derived it equationally from the recursive specification. We can also prove
this more formally:
Theorem 1. (Correctness of bottom-up move-to-root insert)
The recursive version of move-to-root trees calculated at the beginning of this section and the
bottom up version coincide:

down-bu(t,k,z) ≡ rebuild(z, insert(t,k))

Proof. The proof proceeds by induction on the tree t. The base case, when t is a leaf, is trivial. If
the tree is non-empty, we distinguish three cases, depending on the key x stored at t is less than,
greater than, or equal to k. We cover the first case – the others are similar – where we need to show:

down-bu(r, k, NodeR(l,x,z)) ≡ rebuild(insert(r,k), NodeR(l,x,z))

which follows immediately from our induction hypothesis.
An obvious corollary of this theorem is that the recursive version calculated at the beginning of
this section coincides with the tail-recursive bottom-up insert function presented here:

5

Corollary 1. (Bottom-up is correct)
For all trees t and keys k, we have insert-bu(t,k) ≡ insert(t,k).

2.3 Intermezzo: Fully in Place Functional Programming
Throughout this paper, we write purely functional programs, but the goal is always to derive fully
in-place, or fip, functions that can be compiled to efficient code. This section highlights the key
principles underlying this recent paradigm of fully-in place functional programming. Consider for
example the function that swaps the left and right subtrees:

fip fun swap (t : tree) : tree
match t
Leaf -> Leaf
Node(l,x,r) -> Node(r,x,l)

In recent work, Lorenzen et al. [2023b] define a simple linear calculus. Any program in that fragment
can be compiled to code that does not use any (de)allocation and uses constant stack space: it can
be executed fully in-place. The fip keyword asserts that a given function is in this linear fragment,
where the Koka compiler statically checks that each fip function does not duplicate or discard
its arguments; when a function is erroneously marked as fip, the Koka compiler gives a warning
statically. In the swap function, for instance, we can reuse the heap cell from the pattern match to
“allocate” the new Node constructor. The compiled code would look like:

fip fun swap(t : tree) : tree
match t
Leaf -> Leaf
Node(l,x,r) -> val p = &t in Node@p(r,x,l)

Here &t takes the heap address of t, and the annotation Node@p initializes a Node cell at address p. The
final code therefore swaps the pointers in the Node cell in-place – just as a C programmer might
write. Intuitively, we can check if a function is fip by ensuring that in each branch the constructors
matched on use the same memory layout as the constructors “allocated”, ensuring every heap cell
can be reused. The reuse analysis allows constructors from different datatypes to reuse the same
memory cells, illustrated by the following case from the earlier down-bu function:

Node(l,x,r) -> if x < k then down-bu(r, k, NodeR(l,x,z))

Formally, in each branch of a case expression, the constructor that is matched provides us with a
reuse credit of a certain size k, written as ⋄k (similar to the space credits of Aspinall et al. [2008]).
These reuse credits are discharged when space of that size is required: in down-bu the NodeR(l,x,z)

discharges the reuse credit ⋄3 obtained by matching on the Node constructor. Constructors without
arguments, like Nil, True, or Leaf, and primitive types like integers, are called atoms and require no
allocation. Furthermore, value types like tuples are always unboxed and passed as registers or on
the stack.

Nevertheless, it is only safe to reuse these memory locations if the original parameters are owned
and unique at runtime! Inside fip functions the linear use of owned parameters is guaranteed, but
when fip functions are called from a non-fip context, the arguments may be shared. Consider the
following example:

fun mirror(t : tree, k : key) : tree
Node(t,k,swap(t))

Here the tree t is now shared. Any in-place update on t would be unsound and change the
meaning of this program. To ensure fip functions are executed safely, Koka uses precise reference
counting [Reinking, Xie et al. 2021; Ullrich and de Moura 2019] to determine dynamically whether
or not arguments can be reused in-place. In particular, for a function like swap, the generated code
becomes:

6

fip fun swap(t : tree) : tree
match t
Leaf -> Leaf
Node(l,x,r) -> val p = if unique(t) then &t else {dup(l); dup(r); decref(t); alloc(3)}

in Node@p(r,x,l)

That is, if t does have a unique reference count of 1 at runtime, the allocated space is reused.
Otherwise, t is shared: the reference counts are adjusted and a fresh heap cell is allocated.
The fip annotation in Koka only guarantees that no (de)allocation occurs if the parameters

are unique at runtime. This may be viewed as weakness – we do not guarantee statically that a
function will actually be executed in-place – but it does offer greater flexibility where we can use
fip functions in both modes. In particular, for the tree algorithms in this paper, we not only get the
efficient in-place updating behaviour for unique trees, but we can also use them persistently where
any shared (sub)trees are copied as needed. Moreover, as we see in the benchmarks in Section
7, the overhead of the dynamic uniqueness test is small and performance is close to that of the
corresponding in-place updating C algorithms (which do not support persistent usage).
The fip check provides a strong guarantee: constant stack usage and no (de)allocation at all.

Throughout this paper, we also use the fip(n) variant which allows a function to allocate at most n
constructors. This is useful for tree insertion algorithms, as we may need to allocate a constant
amount of memory for the single node storing the new key.We also have the weaker fbip annotation
for functions that do not allocate, but are allowed to deallocate and recurse on the stack.

2.3.1 Improving Bottom-Up. The swap function may seem trivial – but consider the following slight
variation that rotates a binary tree, moving subtrees from the left to the right:

fip fun rotate-right(t : tree) : tree
match t
Node(Node(ll,lx,lr),x,r) -> Node(ll,lx,Node(lr,x,r))
Node(Leaf,x,Leaf) -> Node(Leaf,x,Leaf)
Leaf -> Leaf

It is easy to check that this function is fully in-place. As fip functions can safely call other fip

functions, we can rewrite our rebuild function as follows:
fip fun rebuild(z : zipper, t : tree) : tree
match z
Done -> t
NodeL(up,x,r) -> rebuild(up, rotate-right(Node(t,x,r)))
NodeR(l,x,up) -> rebuild(up, rotate-left(Node(l,x,t)))

This now corresponds closely to the published algorithm by Allen and Munro [1978] where they
also use a bottom-up traversal using left- and right rotations. We formalise the precise relation
between our bottom-up insert-bu function and the published algorithms shortly (Section 4), but
first turn our attention to the top-down version of the same algorithm.

3 FIRST-CLASS CONSTRUCTOR CONTEXTS
A top-down algorithm traverses a structure down in a single pass and directly returns the result
structure when reaching the final position. Unfortunately, in a purely functional language is not
quite possible to express such algorithms directly. Consider the map function for example1:

fip fun map(xs : list<a>, ^f : a -> b) : list
match xs
Cons(x,xx) -> Cons(f(x), map(xx,f))
Nil -> Nil

Naively, this function would use stack space linear in the size of the first list. A well-known solution
to derive a tail-recursive version is to use an accumulator for the result list, as:

1The notation ^f borrows the f parameter so we can use it non-linearly inside the fip function.

7

fip fun map-acc(xs : list<a>, ^f : a -> b, acc : list) : list
match xs
Cons(x,xx) -> map-acc(xx, f, Cons(f(x), acc))
Nil -> reverse(acc)

fip fun map(xs,f)
map-acc(xs,f,Nil)

This is not quite a top-down version, though, as eventually we need to traverse back through the
accumulator to reverse it (in O(n) time). Similarly, using a function (or difference list [Clark and
Tärnlund 1977; Hughes 1986]) as the accumulator, we eventually need to apply the function which
essentially traverses back up through the compositions to reconstruct the final list.
In order to be able to express true top-down algorithms, we introduce first-class constructor

contexts. This abstraction can safely encapsulate the limited form of mutation necessary to define
top-down algorithms, while still having a purely functional interface. We define a constructor context
as a sequence of constructor applications that ends in a single hole. We can describe such contexts
using the following grammar:
v : := . . . | ctx K K : := □ | Ck v1 . . . K . . . vk
where we use v for values, and Ck for a constructor that takes k arguments. In Koka, the keyword ctx

starts a constructor context and the hole□ is written as an underscore _. For example, we can write
a list ending in a hole as ctx Cons(1,_), or a binary tree with a hole as ctx Node(Node(Leaf,1,Leaf),2,_).
Constructor contexts support two operations: we can compose (or “append”) two contexts

as c1 ++ c2, and apply a value to a context to fill the hole as c ++. v. Although they can also be
implemented as a regular datatype, we shall treat these constructor contexts as an abstract type.
For example, (ctx Cons(1,_)) ++ (ctx Cons(2,_)) ++. Nil evaluates to (ctx Cons(1,Cons(2,_))) ++. Nil

and then to [1,2]. Similarly, the expression:
(ctx Node(Node(Leaf,1,Leaf),2,_)) ++ (ctx Node(_,4,Node(Leaf,5,Leaf))) ++. Node(Leaf,3,Leaf)

appends and applies binary tree contexts. This can be visualised as follows:

2

1

++ 4

5

++. 3 = 2

1 4

5

++. 3 = 2

1 4

3 5

Contexts satisfy the following context laws [Leijen and Lorenzen 2023]
(app) (ctx K) ++. e = K[e] (dist) (c1 ++ c2) ++. e = c1 ++. (c2 ++. e)
The first law states that applying a context K is the same as context substitution, where the
notation K[e] substitutes the hole in K with e. The (dist) law states that application distributes
over composition. From here, we can see that contexts with (++) form a monoid with the empty
context as a unit. A natural implementation of contexts is as lamba expressions where context
composition and application correspond to function composition and application:
ctx K = 𝜆x . K[x] with x ̸∈ fv(K) c1 ++ c2 = c1 ◦ c2 c ++. e = c e

We can easily check that this satisfies the context laws. We will sometimes use this naive imple-
mentation when reasoning about programs, but it is rather inefficient.

3.1 Minamide Tuples
Although we could implement constructor contexts using functions, the key reason for additional
language support is that they can be implemented much more efficiently based on Minamide’s
[1998] context presentation in the linear hole calculus. In Minamide’s system, a context has an
affine type and it is safe to update the hole in-place. A context is represented by a Minamide tuple,
written as {x, h}, where the first element x points to the top of the data structure, and the second

8

element h points directly to the hole inside that structure. Composition and application can now
directly update the hole in-place and are constant time.

Unfortunately, it is not easy to extend an existing language with Minamide’s system as it requires
an affine type system for contexts (and also uses linear derivations and evaluation under-lambda
for contexts). In particular, this is problematic for the derivations using equational reasoning used
in this paper, that do not rule out sharing or duplication of contexts.

3.2 Context Paths
There is a way to have efficient in-place mutating context operations without requiring affine types.
The key to this is the use of context paths, which store the path from the root to the hole, first
described by Leijen and Lorenzen [2023] in the context of tail-recursion modulo-cons optimizations
in the presence of algebraic effect handlers with multi-shot resumptions. Their use of context paths
is internal and not exposed to the user, but we can use the exact same runtime mechanism to
implement first-class contructor contexts.

In essence, we compile constructor contexts to a runtime representation storing the context path
down from the top to the hole in the data structure. To enable this, we use extra bits in the header
of each object where we store the index of the child that leads to the (single) hole in the structure.
Koka re-uses an 8-bit field for this purpose which is normally used for stackless freeing.
The context path indices can be constructed in constant time when compiling constructor

contexts. Writing Ci for the constructor C decorated with child index i, we compile a constructor
context into a Minamide tuple as follows:
ctx □ = {□,NULL}
ctx C . . . □i . . . = let x = Ci . . . □i . . . in {x, &x .i}
ctx C . . . Ki . . . = let {x, h} = ctx K in {Ci . . . x . . ., h} (K ≠ □)
where &x .i denotes the address of field i in x. At runtime, a constructor allocation of C typically
initializes the header fields, including the tag. Adding in the context path index yields a single
constant, eliminating any overhead associated with this representation. For example, the Koka
compiler compiles a context like ctx Node(Node(Node(Leaf,1,Leaf),2,_),5,Leaf) internally into:

val x = Node3(Node(Leaf,1,Leaf),2,□) in { Node1(x,5,Leaf), &x.3 }

where each constructor along the context path is annotated with a child index.
With these context paths, we can now follow the path from the top of a context to the hole

in that structure at runtime, and thus we are able to copy the linear context path dynamically at
runtime when required. When we compose or apply a context we can now copy shared contexts
only when needed. In a language with precise reference counts (like Koka or Lean) we copy the
contexts at runtime along the context paths whenever they are not unique.

We can also support this in languages without precise reference counts though. In particular, we
can use a special distinguished value for a runtime hole □ that is never used by any other object.
A substitution now first checks the value at the hole: if it is a □ value, the hole is substituted for
the first time and we just overwrite the hole in-place (in constant time). However, any subsequent
substitution on the same context will find some object instead of □. At this point, we first dynamically
copy the context path (in linear time) and then update the copy in-place2.

If the contexts happen to be used linearly, then all operations execute in constant time, just as in
Minamide’s approach; but we now have full functional semantics and any subsequent substitutions
on the same context work correctly (but will take linear time in the length of the context path).
So, the expression val c = ctx Cons(1,_) in (c ++. [2] , c ++. [3]), where the context c is shared,
evaluates correctly to ([1,2],[1,3]). Here is a more complex example of a shared tree context that
2It turns out that for context composition we also need to check the second context as well to avoid creating cycles, see
Appendix B for details.

9

is applied to two separate nodes:

({ , } ++. 3) , ({ , } ++. 4)

5

2

1

= , ({ , } ++. 4)

5

2

1 3

= ,

5

2

1 3

5

2

4

In this figure, the runtime context path is denoted by bold edges. The intermediate state is interesting
as it is both a valid tree, but also a part of the tree is shared with the remaining context, where the
hole points to a regular node now. When that context is applied, only the context path (node 5 and
2) is copied first where all other nodes stay shared (in this case, only node 1).
Just as functional languages use a combination of compilation and runtime mechanisms to

implement efficient first-class lambda expressions as closures, we too use context-path compilation
in combination with runtime support to implement efficient first-class constructor contexts. We
retain a pure functional semantics without being restricted to linear use. Note that unlike FIP,
first-class constructor contexts do not depend on precise reference counting and can be applied
readily in garbage collected languages as well (see also Appendix B).

3.3 Top-Down Using Accumulating Constructor Contexts
Using the new constructor context abstraction, we are now able to define a true top-down functional
version of map by passing down an accumulating constructor context:

fip fun map-td(xs : list<a>, ^f : a -> b, acc : ctx<list>) : list
match xs
Cons(x,xx) -> map-td(xx, f, acc ++ ctx Cons(f(x),_))
Nil -> acc ++. Nil

fip fun map(xs,f)
map-td(xs, f, ctx _)

The map function now uses a single tail-recursive traversal down the list and returns the final list
directly in constant time when reaching the end of the list (and if the list xs is unique at runtime it
will be updated in place as well).

Similar to map, we can now also define a true top-down functional version of move-to-root
insertion. In the recursive version of insert presented in Section 2.1, the recursive call always
matches on the result and adds a constructor to either the left, or right tree:

... match insert(r,k)
Node(s,y,b) -> Node(Node(l,x,s), y, b)

We can make this tail-recursive by passing two accumulating constructor contexts for the left- and
right tree. For example, in the case outlined above, we extend the context we have accumulated so
far with an additional ctx Node(l,x,_). In the base cases, we then use the accumulated contexts to
construct the final tree:

fip(1) fun insert-td(t : tree, k : key) : tree
down-td(t,k,ctx _, ctx _)

fip(1) fun down-td(t : tree, k : key, accl : ctx<tree>, accr : ctx<tree>) : tree
match t
Node(l,x,r) -> if x < k then down-td(r, k, accl ++ ctx Node(l,x,_), accr)

elif x > k then down-td(l, k, accl, accr ++ ctx Node(_,x,r))
else Node(accl ++. l, x, accr ++. r)

Leaf -> Node(accl ++. Leaf, k, accr ++. Leaf)

We start with two empty contexts ctx _, and we can see that in each branch we extend either
the left context with smaller element, or the right context with larger elements. There is no need

10

to traverse a zipper “back up”, as we saw for the bottom-up algorithm. It is straightforward to
prove the following equality, relating the recursive version of move-to-root trees calculated at the
beginning of this section to top-down version using constructor contexts:
Theorem 2. (Correctness of top down move to root insert)
For all trees t, keys k and constructor contexts accl and accr,

down-td(t,k,accl,accr) ≡ val Node(l,x,r) = insert(t,k) in Node(accl ++. l, x, accr ++. r)

Proof. The proof proceeds by induction on the tree t. The base case, when t is a leaf, is trivial. If
the tree is non-empty, we distinguish three cases, depending on the key x stored at t is less than,
greater than, or equal to k. For the first case, we need to show:

down-td(r, k, accl ++ Node(l,x,_), accr) ≡
val Node(l’,x’,r’) = insert(r,k) in Node(accl ++ Node(l,x,_) ++. l’, x’, accr ++. r’)

This follows from our induction hypothesis for the right subtree, where we use the (dist) law. The
other cases are similar. As a corollary, we again obtain that the recursive version coincides with
top-down version using constructor contexts:
Corollary 2. (Top-down equals recursive specification)
For all trees t, keys k, insert-td(t,k) ≡ insert(t,k)

4 FUNCTIONAL AND IMPERATIVE MOVE-TO-ROOT COINCIDE
We have now derived two functional implementations from our recursive specification. How can
we relate these implementations to the imperative move-to-root algorithms published by Stephen-
son [1980] and Allen and Munro [1978]? As we will see, these algorithms rely heavily on pointer
manipulation: it is not at all obvious that they are correct or even represent the ‘same’ program.
These published algorithms are usually written in imperative pseudocode. To reason about

them, we formalize each algorithm precisely in Iris [Jung et al. 2018], a framework for (higher-
order concurrent) separation logic [Reynolds 2002] implemented as a library in the Coq proof
assistant [2017]. In the style of Frumin et al. [2019] and Bedrock2 [Erbsen et al. 2021; Pit-Claudel
et al. 2022], we have defined an embedded language, called AddressC, building on the standard
HeapLang language supported by Iris [2022]. The AddressC language is embedded into Coq where
we use extensive Notation to have the embedded code resemble a low-level C-style language that can
match the typical pseudo-code in published algorithms closely. Eventually, AddressC is desugared
into a standard HeapLang value representing the low-level control-flow and heap operations on
which the proofs operate.

While our language builds on HeapLang, we place special consideration on precisely modeling
while loops and the (untyped) low-level structure of memory. For example, we model a tree as:

Fixpoint is_tree (t : tree) (v : val) : iProp Σ :=
match t with
| Leaf => ⌜v = #0⌝
| Node l x r => ∃(p:loc) l’ r’, ⌜v = #p⌝ ∗ p ↦→∗ [l’; #x; r’] ∗ is_tree l l’ ∗ is_tree r r’
end.

This states that a Leaf is represented by a null address (the constant #0). To represent a non-empty
tree, Node l x r, requires having some address #p, pointing to a heap cell of 3 fields containing an
address for the left tree (l’), its key #x, and an address for the right tree r’. The separating conjuction,
∗, ensures that the tree is indeed inductively defined and that there are no cycles. For the bottom-up
algorithms we additionally need to model zippers, which requires us to distinguish between NodeL

and NodeR. To do so, we include an additional tag field in the heap cells, as p ↦→∗ [#1; l’; #x; r’].
Variables typically denote memory locations, and just as in C, we use & to take an address of

a location and we use ∗ to dereference an address. We can also dereference at an offset, writing
nodeJ2K to dereference the second field of the node address. We usually define notation for constant
offsets so we can write node->right instead of nodeJ2K to get the value of the right child.

11

Definition heap_mtr_insert_td : val :=
fun: (name, root) {

var: left_dummy := #0 in
var: right_dummy := #0 in
var: node := root in
var: left_hook := &left_dummy in
var: right_hook := &right_dummy in
while: (true) {
if: (node != #0) {
if: (node->value == name) {

∗left_hook = node->left;;
∗right_hook = node->right;;
root = node;;
break

}
else {
if: (node->value > name)
{

∗right_hook = node;;
right_hook = &(node->left);;
node = node->left

}

else
{
∗left_hook = node;;
left_hook = &(node->right);;
node = node->right

} } }
else {
∗left_hook = #0;;
∗right_hook = #0;;
root = AllocN #3 #0;;
root->value = name;;
break

}
};;
root->left = left_dummy;;
root->right = right_dummy;;
ret: root

}.

Fig. 1. The move-to-root top-down algorithm formalized in AddressC on the left, versus a screenshot of
Stephenson’s published algorithm on the right

4.1 Proving Stephenson’s Top-Down Algorithm
Stephenson [Stephenson 1980] presented an imperative top-down insertion algorithm for top-
down move-to-root trees in pseudocode. Figure 1 shows both Stephenson’s top-down algorithm
as published and our formal AddressC implementation. We can see that our formal AddressC
implementation corresponds to the published algorithm almost line-by-line. Using Iris, we can now
formally relate the functional algorithm and AddressC implementation:
Theorem 3. (Stephenson’s imperative top-down move-to-root algorithm is correct)

Lemma heap_mtr_insert_td_correct (k : Z) (tv : val) (t : tree) :
{{{ is_tree t tv }}}
heap_mtr_insert_td (ref #k) (ref tv)
{{{ v, RET v; is_tree (mtr_insert_td k t) v }}}.

The pre-condition requires that the argument address tv points to a valid in-memory tree cor-
responding to t, and the post-condition establishes that the result address v points to a valid
in-memory tree that corresponds to mtr_insert_td k t. The entire proof, relating the functional
top-down move-to-root trees with their AddressC implementation, still requires about 30 lines
of tactics (see Appendix D.1). The proof goes through because we can directly relate the loop
invariant of this algorithm to the recursive calls of mtr_insert_td. As we see in the next Section,
this is only possible because constructor contexts precisely capture the top-down behaviour of
Stephenson’s algorithm. It would be much harder for example to relate the AddressC code to our
original recursive definition. As is often the case in verification, finding the right formulation of
our theorem is vital – constructor contexts are indispensable in this proof.

12

4.2 Representing Constructor Contexts
Stephenson’s algorithm uses intricate pointer manipulation and even goto-statements that make
it non-trivial to verify formally. The key insight is that Stephenson builds the smaller and bigger
trees using the left_hook and right_hook variables. For example, for the case where the key in the
current node is larger than the argument key (name), we have:

if: (node->value > name) {
∗right_hook = node;;
right_hook = &(node->left);;
node = node->left }

Here the current node address is written to ∗right_hook which is then itself updated to point to the
left child of the current node (right_hook = &(node->left)). Afterwards the current node is advanced
to the left child. This corresponds to the functional version, where the current node is written into
the right context (accr) and the hole is set to its left child:

down(l, k, accl, accr ++ ctx Node(_,x,r))

At this point though, we have all kinds of problems in the formal setting. Not only have we
overwritten the value that right_hook was previously pointing to, but we have introduced aliasing
where both the current bigger tree’s left-child and node point to the same location. The bigger tree
is not even a valid constructor context as the left child is “dangling” pointer (that will eventually
be overwritten). Yet we can still prove these pointer manipulations correct by relating them to
the constructor contexts used in our functional algorithm. First, we define an explicit functional
datatype that corresponds to the slow path of constructor contexts with explicit context paths:

type ctx0 = type ctx =
NodeL(z : ctx0, x : key, r : tree) Ctx0(z : ctx0)
NodeR(l : tree, x : key, z : ctx0) Hole
EndNodeL(x : key, r : tree)
EndNodeR(l : tree, x : key)

The predicate ctx0 relates non-empty contexts to their Minamide tuple. The NodeL and NodeR con-
structors represent the context path going left- or right. The EndNodeL and EndNodeR correspond to
the final nodes containing the hole. Then, just as we did for is_tree, we define how our inductive
context (z) corresponds to the fast path of a context: a Minamide tuple of two pointers to the top of
the context (v) and the hole within (h).

Fixpoint is_ctx0 (z : ctx0) (v : val) (h : loc) : iProp Σ :=
match z with
| NodeL z x r => ∃ (p : loc) z’ r’, ⌜v = #p⌝ ∗ p ↦→∗ [z’; #x; r’] ∗ is_ctx0 z z’ h ∗ is_tree r r’
| EndNodeL x r => ∃ (p : loc) r’, ⌜v = #p⌝ ∗ ⌜h = Loc.add p 0⌝ ∗

p □ ↦→∗ 0 [#□; #x; r’] ∗ is_tree r r’
...

This definition ensures that h points to the hole in the context, and that by filling this hole, we
can extend the context or re-construct the tree. The NodeL case is just like before. But the EndNodeL

case is new: the p □↦→∗ 0 [#□; #x; r’] predicate which states that p holds on to the key #x

and subtree r’ but not the value at position 0 where the hole is. This is different from the usual
presentation [Charguéraud 2016] and allows us to change the value of the hole without inspecting
the constructor context (to allow temporarily for a dangling pointer). For example, we can now
prove that the following lemma holds:

Lemma ctx_of_ctx (z1 : ctx) (z2 : ctx0) (zv1 : loc) (h1 : loc) (zv2 : val) (h2 : loc) :
is_ctx z1 zv1 h1 ∗ h1 ↦→ zv2 ∗ is_ctx0 z2 zv2 h2 -∗ is_ctx (comp z1 z2) zv1 h2.

This lemma states that if the hole points to another context, together, they form the composed
context. This is the key lemma that enables checking the individual cases of Stephenson’s algorithm.
With these definitions, the proof of the top-down algorithm is highly automated and we resolve
many obligations associated with assignments on the heap automatically using diaframe [Mulder
et al. 2023 2022]. The brevity of the proof – despite the intricate nature of Stephenson’s algorithm –
provides further evidence that these definitions capture the essence of top-down algorithms.

13

4.3 Proving Allen and Munro’s Bottom-Up Algorithm
While Allen and Munro [1978] do not present imperative pseudo-code, we can define an imperative
version of their algorithm in AddressC. They introduce a “simple exchange” (corresponding to
what is now called a rotation) and describe their algorithm as:

[..] perform a sequence of simple exchanges on the retrieved record so that it is moved to the root.
. . . By carefully using the coding trick of “reversing the direction of the pointers” in performing
the search, only two or three extra storage locations are required.

We can directly implement the mentioned pointer reversal technique [Schorr and Waite 1967] in
AddressC (see Appendix C.1). The code corresponds closely to the functional bottom-up version
we derived earlier. In particular, just as constructor contexts captured the top-down behavior in
Stephenson’s algorithm, a zipper captures the structure of in-place pointer-reversal. Even though
the use of pointer-reversal is complex from a formal perspective, we can use the functional zippers
to relate the functional and imperative versions to make the proofs go through.
Theorem 4. (Allen and Munro’s imperative bottom-up move-to-root algorithm is correct)

Lemma heap_rebuild_correct (z : zipper) (t : root_tree) (zipper tree : loc) (zv tv : val) :
{{{ zipper ↦→ zv ∗ is_zipper z zv ∗ tree ↦→ tv ∗ is_root_tree t tv }}}
heap_rebuild #zipper #tree
{{{ v, RET v; is_root_tree (move_to_root z t) v }}}.

Lemma heap_mtr_insert_bu_correct (i : Z) (tv : val) (t : tree) :
{{{ is_tree t tv }}}
heap_mtr_insert_bu (ref #i) (ref tv)
{{{ v, RET v; is_tree (mtr_insert_bu i t) v }}}.

The precondition of heap_mtr_rebuild requires that the argument addresses, zipper and tree, point to
a zipper z and non-leaf binary tree t. The postcondition guarantees that after execution, the memory
location that is returned, v, denotes the non-leaf binary tree arising from our functional algorithm,
rebuild. Similarly, heap_mtr_insert_bu_correct specifies that given an arbitrary binary tree t with its
heap representation tv, the imperative version returns a tree corresponding to mtr_insert_bu i t.

5 SPLAY TREES
Having looked at move-to-root trees, we can apply the same techniques to their improved sibling,
splay trees [Sleator and Tarjan 1985]. The move-to-root trees only move the accessed element to
the root of the tree but they do not restructure the tree. As such, the tree can degrade to a list in the
case of ordered accesses. Splay trees on the other hand are self-adjusting: the accessed element also
restructures the path to the root to become more balanced. Sleator and Tarjan [1985] identify six
different kinds of tree rotations that are required, zig, zigzig, zigzag and their mirrored counterparts
– is it possible to derive all of these rotations?

5.1 The Essence of Splay Tree Rebalancing
We can start again with the original specification of move-to-root trees in Section 2.1 since splay
trees satisfy the exact same requirements:

fun insert(t : tree, k : key) : tree
Node(smaller(t,k), k, bigger(t,k))

Instead of directly deriving the recursive, top-down, and bottom-up algorithms as we did previously,
we first unroll the definition of smaller once more:

14

fun smaller(t : tree, k : key) : tree
match t
Node(l,x,r) -> if x < k then match r

Node(rl,rx,rr) ->
if x < k then Node(l,x,Node(rl,rx,smaller(rr,k)) // (A)
elif x > k then Node(l,x,smaller(rl,k)) else Node(l,x,rl)

elif x > k then match l
Node(ll,lx,lr) ->
if x < k then Node(ll,lx,smaller(lr,k))
elif x > k then smaller(lr,k) else ll

else l
Leaf -> Leaf

Now we gain insight into why move-to-root trees can easily become unbalanced: when we move
twice to the right (and dually, twice to the left for the bigger function) as in the branch labelled (A),
we create a short unbalanced part with two right leaning nodes:

(Node(l,x,Node(rl,rx,rr)) -> Node(l,x,Node(rl,rx,smaller(rr,k)) // A

A splay tree though rotates those nodes instead, resulting in a more balanced result:
(Node(l,x,Node(rl,rx,rr)) -> Node(Node(l,x,rl),rx,smaller(rr,k))

This is the essence of splay tree restructuring! It captures the key difference between move-to-root
trees and splay trees. It is the only meaningful change necessary to derive splay trees, in the same
style as our derivation of move-to-root trees in the previous section.

5.2 Recursive Splay Trees
We can now derive the top-down and bottom-up splay trees, as presented by Sleator and Tar-
jan [1985], directly from our specification. As before, we inline the unrolled definitions of smaller

and bigger, and merge the branches to end up with a single recursive function:
fun insert(t : tree, k : key) : tree
match t
Node(l,x,r) ->
if x < k then match r
Node(rl,rx,rr) ->
if rx < k then match insert(rr,k)

Node(rrl,rrx,rrr) -> Node(Node(Node(l,x,rl),rx,rrl),rrx,rrr) // (A)
elif rx > k then match insert(rl,k)

Node(rll,rlx,rlr) -> Node(Node(l,x,rll),rlx,Node(rlr,rx,rr))
else Node(Node(l,x,rl),rx,rr)

Leaf -> Node(Node(l,x,Leaf),k,Leaf)
elif x > k then match l
...

else Node(l,x,r)
Leaf -> Node(Leaf,k,Leaf)

Here we marked the new restructuring case of smaller (A). This derived insert function closely
mirrors the version presented by Okasaki [1999b] (Sec. 5.4).

5.3 Top-Down Splay Trees
Just as with move-to-root trees (Section 3.3), we can again use accumulating constructor contexts
to build the ‘smaller’ and ‘bigger’ trees on the way down. In particular, a match on a recursive call:

match insert(rr,k)
Node(rrl,rrx,rrr) -> Node(Node(Node(l,x,rl),rx,rrl),rrx,rrr) // (A)

can be changed into a direct tail-recursive call, accumulating the constructor contexts:
splay(rr, k, accl ++ ctx Node(Node(l,x,rl),rx,_), accr)

The derived top-down version becomes:
fun insert-td(t : tree, k : key) : tree
down-td(t, k, ctx _, ctx _)

15

fip(1) fun down-td(t : tree, k : key, accl : ctx<tree>, accr : ctx<tree>) : tree
match t
Node(l,x,r) ->
if x < k then match r
Node(rl,rx,rr) ->
if rx < k then down-td(rr, k, accl ++ ctx Node(Node(l,x,rl),rx,_), accr)
elif rx > k then down-td(rl, k, accl ++ ctx Node(l,x,_), accr ++ ctx Node(_,rx,rr))
else Node(accl ++. Node(l,x,rl), rx, accr ++. rr)

Leaf -> Node(accl ++. Node(l,x,Leaf), k, accr ++. Leaf)
elif x > k then match l
...

else Node(accl ++. l, x, accr ++. r)
Leaf -> Node(accl ++. Leaf, k, accr ++. Leaf)

Now we have an efficient fip(1) function again. We can also formally check that top-down and
direct splay tree insertion coincide:
Theorem 5. (Correctness of top-down splay tree insertion)
down-td(t,k,accl,accr) ≡ val Node(l,x,r) = insert(t,k) in Node(accl ++. l, x, accr ++. r)

5.4 Bottom-Up Splay Trees
Deriving the bottom-up version is again done by doing a CPS-transformation first, followed by
defunctionalizing the closures. Since there are 4 recursive calls in the derived recursive version, the
defunctionalization leads to a zipper with 4 constructors (plus Done for the identity):

type zipper
NodeRR(l : tree, k : key, rl : tree, rk : key, up : zipper)
NodeRL(l : tree, k : key, up : zipper, rk : key, rr : tree)
NodeLR(ll : tree, lk : key, up : zipper, k : key, r : tree)
NodeLL(up : zipper, lk : key, lr : tree, k : key, r : tree)
Done

This type, however, is less suitable for reuse. Compared to the zipper used to define bottom-up
move-to-root trees, we cannot reuse a Node constructor from our tree to extend the zipper in-place
(as a node needs a ⋄3 credit, but the zipper gives ⋄5). Although we have lost the obvious reuse
opportunity, we can recover it readily enough: since each of the nodes records two steps to the left
or right, we can represent this with our previous zipper type. As every constructor is used after
matching on two node constructors in our input tree, we can still ensure our algorithm is fully
in-place. Therefore, we use the previous version of our zipper type, and replace occurrences like
NodeRL(l,x,z,rx,rr) with NodeL(NodeR(l,x,up),rx,rr). Doing so, we can once again defunctionalize
the CPS transformed program to obtain a fully in-place bottom-up version of insert:

fip(1) fun insert-bu(t : tree, k : key) : tree
down-bu(t, k, Done)

fip(1) fun down-bu(t : tree, k : key, z : zipper) : tree
match t
Node(l,x,r) ->
if x < k then match r
Node(rl,rx,rr) ->
if rx < k then down-bu(rr,k,NodeR(rl,rx,NodeR(l,x,z)))
elif rx > k then down-bu(rl,k,NodeL(NodeR(l,x,z),rx,rr))
else rebuild(z, Node(Node(l,x,rl),rx,rr))

Leaf -> rebuild(z, Node(Node(l,x,Leaf),k,Leaf))
elif ...
else rebuild(z, Node(l,x,r))

Leaf -> rebuild(z, Node(Leaf,k,Leaf))

fip fun rebuild(z : zipper, t : tree) : tree
match t
Node(tl,tx,tr) -> match z
NodeR(rl,rx,NodeR(l,x,up)) -> rebuild(up, Node(Node(Node(l,x,rl),rx,tl),tx,tr)) // RR
NodeL(NodeR(l,x,up),lx,lr) -> rebuild(up, Node(Node(l,x,tl),tx,Node(tr,lx,lr))) // RL
NodeR(rl,rx,NodeL(up,x,r)) -> rebuild(up, Node(Node(rl,rx,tl),tx,Node(tr,x,r))) // LR
NodeL(NodeL(up,x,r),lx,lr) -> rebuild(up, Node(tl,tx,Node(tr,lx,Node(lr,x,r)))) // LL
_ -> Node(tl,tx,tr) // Done

This version is now tail-recursive and fully in-place. We call this the derived bottom-up version. By
induction on the tree, we can again prove that top-down and direct splay tree insertion coincide:

16

Theorem 6. (Correctness of bottom-up splay tree insertion)
down-bu(t,k,z) ≡ rebuild(z, insert(t,k))

5.4.1 Fused Bottom-Up. The down-bu function still uses nested pattern matches. Can we use a
single match instead? To do so, we first need to make the recursive calls more regular by using a
singleton zipper when the key is already present. In particular, we need to change a rebuild call
like rebuild(z, Node(Node(l,x,rl),rx,rr)) into rebuild(NodeR(l,x,z), Node(rl,rx,rr)) instead.

When we inline rebuild, we can see though that this step is not exactly equivalent (in particular,
when z is a NodeL). It is still giving correct binary search trees but can lead to trees that are structured
slightly differently – a point we will return to in Section 5.6. For now, with this change, the nested
matches become equal to the outer match and we can un-unroll them into a single match:

fip(1) fun down-bu-fused(t : tree, k : key, z : zipper) : tree
match t
Node(l,x,r) ->
if x < k then down-bu-fused(r, k, NodeR(l,x,z))
elif x > k then down-bu-fused(l, k, NodeL(z,x,r))
else rebuild(z, Node(l,x,r))

Leaf -> rebuild(z, Node(Leaf,k,Leaf))

All the rebalancing now takes place in the rebuild function which we need to extend with two more
cases to handle potential singleton zippers:

fip fun rebuild(z : zipper, t : root) : tree
match root
Root(tl,tx,tr) -> match z
Done -> Node(tl,tx,tr)
NodeR(rl,rx,Done) -> Node(Node(rl,rx,tl),tx,tr) // zig
NodeL(Done,lx,lr) -> Node(tl,tx,Node(tr,lx,lr))
NodeR(rl,rx,NodeR(l,x,up)) -> rebuild(up, Root(Node(Node(l,x,rl),rx,tl),tx,tr)) // zigzig
NodeL(NodeR(l,x,up),lx,lr) -> rebuild(up, Root(Node(l,x,tl),tx,Node(tr,lx,lr)))
NodeR(rl,rx,NodeL(up,x,r)) -> rebuild(up, Root(Node(rl,rx,tl),tx,Node(tr,x,r))) // zigzag
NodeL(NodeL(up,x,r),lx,lr) -> rebuild(up, Root(tl,tx,Node(tr,lx,Node(lr,x,r))))

We call this the fused bottom-up version, insert-bu-fused. By starting from our initial specification
with just two cases for rebalancing, we now derived the usual six rebalancing cases that are common
in the splay tree literature: zig, zigzig, zigzag, and their mirrored counterparts.

5.5 Functional and Imperative Splay Trees Coincide
Using our AddressC embedded language in Iris we formalized the published top-down and bottom-
up algorithms by Sleator and Tarjan [1985], where we use pointer-reversal for bottom-up. Once
again, there is a line-by-line correspondence between the published pseudocode and formal Ad-
dressC implementations that we have written (Appendix C.2 and C.3). Using the same techniques as
for move-to-root trees we have formally established that the functional implementations accurately
model the published imperative algorithms:
Theorem 7. (Sleator and Tarjan’s imperative top-down splay algorithm is correct)

Lemma heap_splay_insert_td_correct (k : Z) (tv : val) (t : tree) :
{{{ is_tree t tv }}}
heap_splay_insert_td (ref #k) (ref tv)
{{{ v, RET v; is_tree (splay_insert_td k t) v }}}.

Theorem 8. (Sleator and Tarjan’s imperative bottom-up splay algorithm is correct)
Lemma heap_splay_insert_bu_correct (k : Z) (tv : val) (t : tree) :

{{{ is_tree t tv }}}
heap_splay_insert_bu (ref #k) (ref tv)
{{{ v, RET v; is_tree (splay_insert_bu_fused k t) v }}}.

It is worth repeating that the proofs of these theorems are direct, requiring (hardly any) additional
lemmas. This is only possible because the functional implementations precisely capture the iterative
behaviour of their imperative counterparts through contructor contexts and zippers.

17

5.6 Equivalence between Splay Restructuring
Theorem 8 proves that the published imperative algorithm gives the same results as our fused
bottom-up version – not the derived bottom-up one which is equivalent to the top-down algorithm.
As also observed by Lucas [2004], the published imperative bottom-up and top-down algorithms
are not equivalent.

The fused and derived algorithms have similar theoretical amortized bounds but each can create
different trees. For example, if we start from a right-unbalanced tree with nodes 1 to 4 and insert
node 4, we get different results for each of the various algorithms:

initial tree:

1
2
3
★ 4

move-to-root:

4
1

2
3

top-down splay:

4
2

1 3

(fused) bottom-up splay:

4
1

3
2

where our derived bottom-up is equivalent to the top-down splay algorithm.
The difference between the bottom-up and top-down trees may seem trivial, but it turns out

our small transformation step in Section 5.4.1 may have potential theoretical consequences. In
1985, Sleator and Tarjan introduced the dynamic optimality conjecture which states that the cost
of accesses with splay trees is within a constant factor of an optimal algorithm for performing
accesses [Sleator and Tarjan 1985]. The conjecture still stands to this day, but in recent work, Levy
and Tarjan [2019] present possible avenues for proving this conjecture. In particular, they show
that the subsequence property is a sufficient (and necessary) condition for dynamic optimality.
One step towards proving the subsequence property is to show that the splay algorithm has the
transformation property where we can perform a bounded number of accesses to transform two
arbitrary binary search trees with the same elements into each other. It turns out that the fused
bottom-up algorithm has this property but unfortunately this does not hold for the published
top-down algorithm (and our derived top-down and bottom-up algorithms) [Levy and Tarjan 2019].

6 ZIP TREES
In recent work, Tarjan et al. [2021] introduce zip trees which can be seen as the functional equivalent
of skip lists [Pugh 1990]. A zip tree is a binary search tree where every node also has a rank.

alias key = int
alias rank = int
type ztree
Leaf
Node(rank : rank, left : ztree, key : key, right : ztree)

We choose node ranks independently from a geometric distribution, where the rank of a node is
non-negative integer k with probability 1/2k+1. Besides being max heap-ordered for the keys, the
tree is now also max heap-ordered with respect to the ranks with ties broken in favor of smaller
keys. We define is-higher-rank as:

fip fun is-higher-rank(^(r1,k1) : (rank,key), ^(r2,k2) : (rank,key)) : bool
(r1 > r2 || (r1 == r2 && k1 < k2))

Any parent node always is-higher-rank than its children. Since a zip tree is also a binary search
tree, we can also see that the rank of a parent is always greater than the rank of its left-child, and
greater than or equal to the rank of its right child. Interestingly, the shape of a zip tree is now
fully determined by just the rank/key pairs in the tree, and independent of the insertion order.
See Figure 2 for an example of two valid zip trees. Intuitively we can see that given the geometric
distribution of ranks, the shape of a tree naturally tends to be well balanced, with twice as many
nodes at each lower rank. This means that the zip tree operations never need to do any explicit

18

initial tree:

12
5

10
0

17
2

14
1

13
0

16
1

18
2

inserting 15 with rank 3:

12
5

10
0

15
3

14
1

13
0

17
2

16
1

18
2

unzip

Fig. 2. Inserting a node with key 15 and rank 3 into a zip tree (with ranks shown as single digits in blue).
Once the insertion point is found (as the right child of node 12), the tree at node 17 is unzipped along the key
15, and the resulting trees become the left- and right child of the inserted node. Deletion is the inverse where
the children are zipped instead.

rebalancing which simplifies the implementation compared to usual balanced tree algorithms
The rank can be chosen independently at random, but in order to combine search and insertion,

we can also derive the rank pseudo randomly from the key. For our implementation we define:
pub fip fun rank-of(^k : key) : rank
val x0 = k.int32.inc
val x1 = xor(x0,shr(x0,16))*0x297a2d39.int32
val x2 = xor(x1,shr(x1,16))
x2.ctz // count trailing zero bits

To insert an element into a zip tree, we first calculate the rank of the node. We can now traverse
down until we find the fixed insertion point, as it is fully determined by the rank and key:

pub fun insert(t : ztree, k : key) : ztree
down(t, rank-of(k), k)

fun down(t : ztree, rank : rank, k : key) : ztree
match t
Node(rnk,l,x,r) | is-higher-rank((rnk,x), (rank,k)) // go down while a node is higher rank
-> if (x < k) then Node(rnk, l, x, down(r,rank,k))

else Node(rnk, down(l,rank,k), x, r)
_ -> val (s,b) = unzip(t,k) in Node(rank,s,k,b)

Once we reach the insertion point where we are of higher rank than the current tree t, we unzip
the tree t into two trees: one containing all the elements smaller than k and one containing all the
bigger elements:

fun unzip(t : ztree, k : key) : (ztree,ztree)
(smaller(t,k), bigger(t,k))

Interestingly, this is almost the same initial definition of move-to-root trees. The definitions of
smaller and bigger are identical to the ones we have seen previously. Figure 2 illustrates inserting a
node into a tree and the resulting unzip operation. Since the shape of a zip tree is always fixed by
its rank/key pairs, deletion is the inverse of insertion which zips child trees back together.

6.1 Recursive Zip Trees
Similar to move-to-root and splay trees, we can again inline and merge the definitions smaller and
bigger and derive a direct recursive version of unzip:

fun unzip(t : ztree, k : key) : (ztree,ztree)
match t
Node(rnk,l,x,r) ->
if (x < k) then val (s,b) = unzip(l,k) in (Node(rnk,l,x,s),b)
elif (x > k) then val (s,b) = unzip(r,k) in (s, Node(rnk,b,x,r)
else (l,r)

Leaf -> (Leaf,Leaf)

19

Like before, it is straightforward to formally prove that our specification of insert maintains the
expected properties of a zip tree.

6.2 Top-Down Zip Trees
To derive the top-down algorithm, we can again accumulate the smaller and bigger trees in
constructor contexts. The unzip function becomes:

fun unzip(t : ztree, k : key, accl : ctx<ztree>, accr : ctx<ztree>) : (ztree,ztree)
match t
Node(rnk,l,x,r) -> if (x < k) then unzip(r, k, accl ++ ctx Node(rnk,l,x,_), accr)

elif (x > k) then unzip(l, k, accl, accr ++ ctx Node(rnk,_,x,r))
else (accl ++. l, accr ++. r)

Leaf -> (accl ++. Leaf, accr ++. Leaf)

Unfortunately, this is not quite fip since in the case that the key is present in the unzipped tree, the
else branch discards the Node on which we matched. However, we can avoid calling unzip in the
first place if the key is present and derive an efficient fip version:

fip(1) fun insert-td(t : ztree, k : key) : ztree
down-td(t, rank-of(k), k, ctx _)

fip(1) fun down-td(t : ztree, rank : rank, k : key, acc : ctx<ztree>) : ztree
match t
Node(rnk,l,x,r) | is-higher-rank((rnk,x), (rank,k))
-> if (x < k) then down-td(r, rank, k, acc ++ ctx Node(rnk,l,x,_))

else down-td(l, rank, k, acc ++ ctx Node(rnk,_,x,r))
Node(_,_,x,_) | x == k -> acc ++. t
_ -> val (s,b) = unzip-td(t, k, ctx _, ctx _) in acc ++. Node(rank,s,k,b)

fip fun unzip-td(t : ztree, k : key, accl : ctx<ztree>, accr : ctx<ztree>) : (ztree,ztree)
match t
Node(rnk,l,x,r) -> if (x < k) then unzip-td(r, k, accl ++ ctx Node(rnk,l,x,_), accr)

else unzip-td(l, k, accl, accr ++ ctx Node(rnk,_,x,r))
Leaf -> (accl ++. Leaf, accr ++. Leaf)

It is straightforward to show formally that our derivation is correct:
Theorem 9. (Correctness of top-down zip tree insertion)
down-td(t,k,acc) ≡ acc ++. insert(t,k)

where we need the following lemma for the correctness of unzip-td:
Lemma 1. (Correctness of top-down unzip)
unzip-td(t,k,accl,accr) ≡ val (s,b) = unzip(t,k) in (accl ++. s, accr ++. b)

6.3 Bottom-Up Zip Trees
We can also derive a bottom-up version from our recursive specification. Again, we first do a CPS
conversion, and then defunctionalize the continuations into a zipper:

type zipper
NodeR(rank : rank, left : ztree, key : key, up : zipper)
NodeL(rank : rank, up : zipper, key : key, right : ztree)
Done

Now we can reuse the zipper for both the down and unzip operations, as both these functions only
use the zipper to “rebuild” the tree back up:

fip fun rebuild(z : zipper, t : ztree) : ztree
match z
NodeR(rnk,l,x,up) -> rebuild(up, Node(rnk,l,x,t))
NodeL(rnk,up,x,r) -> rebuild(up, Node(rnk,t,x,r))
Done -> t

The down and unzip now take the zipper(s) as an accumulating argument, where we again ensure we
never unzip trees with the key present:

fip(1) fun insert-bu(t : ztree, k : key) : ztree
down-bu(t, rank-of(k), k, Done)

20

Definition heap_unzip_td : val :=
fun: (x, key, cur) {

var: accl := &(x->left) in (* ctx _ *)
var: accr := &(x->right) in
while: (cur != #0) {
if: (cur->key < key) {
∗accl = cur;; (* accl ++ ctx ... Node(rnk,l,x,_) *)
repeat: { accl = &(cur->right);; cur = cur->right }
until: ((cur == #0) || (cur->key >= key))

} else {
∗accr = cur;;
repeat: { accr = &(cur->left);; cur = cur->left }
until: ((cur == #0) || (cur->key < key))

}
};;
∗accl = #0;; (* accl ++. Leaf *)
∗accr = #0

}.

Fig. 3. Our new formal unzip algorithm in AddressC as derived from the functional version on the left, versus
a screenshot of the unzip part of Tarjan, Levy, and Timmel’s algorithm on the right.

fip(1) fun down-bu(t : ztree, rank : rank, k : key, z : zipper) : ztree
match t
Node(rnk,l,x,r) | is-higher-rank((rnk,x), (rank,k))
-> if (x < k) then down-bu(r, rank, k, NodeR(rnk, l, x, z))

else down-bu(l, rank, k, NodeL(rnk, z, x, r))
Node(_,_,x,_) | x == k -> rebuild(z, t)
_ -> val (s,b) = unzip-bu(t,k,Done,Done) in rebuild(z, Node(rank,s,k,b))

fip fun unzip-bu(t : ztree, k : key, zs : zipper, zb : zipper) : (ztree,ztree)
match t
Node(rnk,l,x,r) ->
if (x < k) then unzip-bu(r, k, NodeR(rnk,l,x,zs), zb)

else unzip-bu(l, k, zs, NodeL(rnk,zb,x,r))
Leaf -> (rebuild(zs,Leaf), rebuild(zb,Leaf))

We can optimize this a bit further: for the down-bu function, the zipper along the search path always
just rebuilds the exact same path since no restructuring takes place, unlike the rebuilding for
move-to-root or splay trees. It can be more efficient to use a constructor context for down-bu instead,
as this can rebuild the tree in constant time.

For the optimized bottom-up version the correctness theorem is as before:
Theorem 10. (Correctness of bottom-up zip tree insertion)
down-bu(t,k,acc) ≡ acc ++. insert(t,k)

but now with the following lemma for the correctness of unzip-bu:
Lemma 2. (Correctness of bottom-up unzip)
unzip-bu(t,k,zs,zb) ≡ val (s,b) = unzip(t,k) in (rebuild(zs,s), rebuild(zb,b))

6.4 Proving Zip Trees Correct
The published imperative top-down zip insertion algorithm is interesting as it uses a minimal
number of pointer assignments. However, as shown on the right side of Figure 3, it is not entirely
straightforward to understand as it uses nested iterations and uses a single pointer variable fix to
point to either the left- or right hole in each iteration. At the end of each outer iteration, we need
to test whether to update the left- or right child:

This test complicates the algorithm since it resolves differently in the first iteration (where fix = x)
than subsequent ones. But perhaps we can avoid such checks in the first-place?

What we can do instead is “derive” an imperative algorithm from our functional one by manually
“compiling” to AddressC code and removing any checks and code that deal with reference counting
and handling of shared data. The listing on the left in Figure 3 shows the AddressC code that we can
derive this way from our functional top-down unzip-td function (in Section 6.2), next to a screenshot

21

of the unzip part of the algorithm by Tarjan, Levy, and Timmel [2021, Algorithm 2]. Our derived
algorithm uses two accumulator contexts, accl and accr, instead of a single fix variable, and there is
no need for an extra test at the end of each iteration. If we translate directly from our functional
unzip-td, a context composition such as accl ++ ctx Node(rnk,l,x,_) would actually become:

accl = cur;; (accl ++ ctx Node(rnk,l,x,_) *)
accl = &cur->right;;
cur = cur->right (* tail-call *)

without an inner repeat-until loop. However, while we traverse right children, where cur->key < key,
we would now update the right-child hole with same right tree address on each iteration! To
minimize the number of pointer assignments, we can instead construct a larger context as a chain
of right-child nodes as long as cur->key < key. In our algorithm in Figure 3 we use a nested iteration
to move the hole as far as possible along the right children:

accl = cur;; (accl ++ ctx Node(rnk1,l1,x1, ... Node(rnkN,lN,xN, _) ...) *)
repeat: {
accl = &cur->right;;
cur = cur->right

} until: ((cur == #0) || (cur->key >= key))

This is an optimization that we cannot directly express on the functional side at this time. Gud-
jónsson and Winsborough [1999] have already studied a similar optimization in their work on
compile-time reuse in Prolog. As another example, the same situation occurs in the ubiqutious
map function (see Section 3.3): if all nodes in the mapped list are reused, the tail of each Cons is
overwritten with the same tail address.

Just like the published algorithm by Tarjan, Levy, and Timmel, our final derived algorithm (shown
fully in Appendix C.4) now uses minimal pointer assignments, but it is shorter with fewer tests
and branches, and we can prove it correct:
Theorem 11. (Imperative top-down zip tree insertion is correct)

Lemma heap_zip_insert_td_correct (k rank : Z) (tv : val) (t : ziptree) :
{{{ is_ziptree t tv }}}
heap_zip_insert_td (ref tv) (ref #rank) (ref #k)
{{{ v, RET v; is_ziptree (zip_down_td t rank k Hole) v }}}.

There is no published bottom-up algorithm, but just as with the top-down version we can easily
derive an efficient bottom-up algorithm in AddressC from our functional version (Appendix C.5) as
well and prove this correct:
Theorem 12. (Imperative bottom-up zip tree insertion is correct)

Lemma heap_zip_insert_bu_correct (tv : val) (t : ziptree) (rank : Z) (k : Z) (zv : val) (z : zipper) :
{{{ is_ziptree t tv ∗ is_zipper z zv }}}
heap_zip_insert_bu (ref tv) (ref #rank) (ref #k) (ref zv)
{{{ v, RET v; is_ziptree (zip_down_bu t rank k z) v }}}.

7 BENCHMARKS
Figure 4 shows benchmark results for the various derived algorithms in this paper. We compare
Koka against the best known iterative C implementations. For bottom-up algorithms, we also
benchmark ML and Haskell implementations that are direct translations of the bottom-up Koka
versions. We ran the benchmarks on Ubuntu 22.04.2 using an AMD 7950X at 4.5Ghz. We used
Koka v2.4.2 (-O2), the C implementations were compiled with Clang 14 (-O3 -DNDEBUG), ML with
OCaml 4.13.1 (ocamlopt -O2), and Haskell with GHC 8.8.4 (-O2). Each benchmark performs 10M
insertions starting with an empty tree, using a pseudo random sequence of keys between 0 and
100 000. Initially the tree is populated quickly up to 100 000 elements followed by many insertions
where the element already exists. We tested all top-down (-td) and bottom-up (-bu) versions of
move-to-root tree (mtr), splay trees (splay), and zip trees (zip). Figure 4 also includes tests for
red-black trees (rb) but we disregard those for the moment.

22

mtr-td mtr-bu splay-td splay-bu zip-td zip-bu rb-td rb-bu
0x

1x

2x

3x

(1
.1
8s
)

(1
.6
2s
)

(1
.2
6s
)

(1
.6
8s
)

(1
.0
2s
)

(1
.0
1s
)

(1
.2
0s
)

(1
.2
7s
)

1.
04
x

1.
49
x

1.
05
x

1.
75
x

1.
10
x

1.
10
x

0.
81
x

0.
80
x

0.
87
x 1.

30
x

1.
00
x

1.
52
x

0.
95
x

0.
92
x

0.
78
x

0.
67
x

N
A

2.
89
x

N
A

3.
02
x

N
A

4.
28
x

N
A

3.
17
x

N
A

3.
02
x

N
A

3.
05
x

N
A

4.
75
x

N
A

3.
42
x

re
la
ti
ve

ti
m
e
(lo

w
er

is
be
tt
er
)

Koka C "equalized" C (linked with mimalloc, header word on td) OCaml Haskell

Fig. 4. Benchmarks on Ubuntu 22.04.2 (AMD 7950X 4.5Ghz) comparing the relative performance of C, ML,
and Haskell against Koka for move-to-root (mtr), splay trees (splay), and zip trees (zip) for both top-down (td)
and bottom-up (bu) variants. Each benchmark performs the same sequence of 10M pseudo-random insertions
between 0 and 100 000 starting with an empty tree.

If we look at the performance relative to Koka in Figure 4 we see that our purely functional fip
derived versions always outperform C for move-to-root, splay, and zip-trees! How is that even
possible? The Koka code in particular must perform more operations:
• Koka has automatic memory management, and thus everything is reference counted. The gener-
ated code also includes branches to handle potential thread shared structures (which requires
atomic reference count operations).

• Koka uses arbitrary precision integers (int) for keys and all comparisons and arithmetic operations
include branches for the case where big integer arithmetic is required.

• Context composition and application are reference counted to handle sharing, and always check
for empty contexts. In the C code empty context checks are unnecessary due to stack allocation.

• Koka reuses memory when possible, but the trees can always be used persistently as well, and
insertion can also handle shared trees where the spine to the insertion point is copied.

One factor why Koka still outperforms C is that Koka is tightly integrated with the optimized
mimalloc allocator [Leijen et al. 2019]. To gain better insight into what the actual overheads of
the above features are in our functional code, we also include “equalized” C: here we link the C
programs withmimalloc as well (overriding malloc and free), and we include an unused header word
in the top-down algorithms to ensure an equal amount of memory is allocated.3 This is the third
bar in Figure 4. Even compared to equalized C our functional versions still perform remarkably
well, being at most 15% slower for top-down move-to-root trees, and only 6% slower for top-down
zip-trees. This is suprising, given the additional safety guarantees Koka provides. Many of these
checks are cache-local and use just few instructions in the fast path (e.g. is-unique). We conjecture
that on modern hardware small fast-path branches with cache-local accesses can be quite cheap –
due to the speculation with many parallel compute units the actual performance bottlenecks may
be somewhere else, such as a dependency on an uncached memory read.
Even with equalized C, our functional versions are still substantially faster on the bottom-up

move-to-root and splay trees. This is due to the difference in implementations: in our derived
functional versions we use zippers which are compiled essentially to use in-place pointer-reversal
at runtime. The C implementations, in constrast, are using parent pointers instead which is the
usual way of traversing back up for the bottom-up algorithms. However, for move-to-root and
3This is not required for the bottom-up algorithms in C since these have parent pointers which balances out against Koka’s
header words (which uses pointer reversal through zippers and needs no parent pointers).

23

splay trees the constant restructuring is now more expensive since we need to also adjust parent
pointers for each rotation. This cost is much less pronounced for zip trees for which considerably
less restructuring takes place, and so the performance difference is correspondingly smaller. As an
experiment, we also implemented a pointer-reversal version of Allen and Munro’s move-to-root
bottom-up algorithm using the lowest pointer bit to distinguish left- from right paths. In that case,
the equalized C code performs about 14% better than our functional version.

The top-down zip tree algorithm in C uses Tarjan et al.’s algorithm. We also tested this with our
derived algorithm, and the simpler version that does not have the inner repeat-until iterations (and
may thus perform extra pointer assignments as shown in Section 6.4). For our benchmark though,
we could not measure any significant differences in execution times between these versions.

Red-Black Trees. Figure 4 also contains benchmark results for bottom-up [Guibas and Sedgewick 1978;
Lorenzen and Leijen 2022; Okasaki 1999a] and top-down [Tarjan 1985; Weiss 2013] red-black tree
algorithms. It is beyond the scope of this paper to discuss those in detail but we can apply the
same techniques that we have shown in this paper to implement the bottom-up version using
defunctionalized CPS and zippers, and the top-down version with constructor contexts. The top-
down C version is based on the GNU library tree search implementation which encodes the node
color in the least significant pointer bit [Schmidt 1997], while the bottom-up one implements the
algorithm described by Cormen et al. [2022]. The relative performance of Koka versus (equalized) C
is still good, but less impressive as for the other data structures: about 25% slower for the top-down
algorithm and almost 50% slower for the bottom-up version. This shows that there is still room for
further improvements in our compilation techniques.
Each variant performs slower for different reasons though. We believe the functional version

of bottom-up red-black trees is slower because the C versions can use early bailout: on the way
back up as soon as a parent is no longer red, the C version can immediately return the root pointer.
For the functional version though we need to unwind the zipper completely to reconstruct the
tree. There seems no obvious way to implement such optimization on the functional side – we
would need some concept of parent pointers to achieve similar behaviour. For the top-down version
the slower performance is less clear, but we believe it is due to the need to keep track of extra
context. Top-down red-black tree rebalancing requires access to the parent and grand-parent of the
current node for its rebalancing operations. In C we can just keep two extra pointers around on
the traversal down. In the functional version though we need two derivative node constructors
for the parent and grandparent, together with the accumulating constructor context – moving the
grand-parent into the constructor context on each iteration. We imagine that a potential path to
improving this situation is to allow a limited form of pattern matching on constructor contexts.

8 RELATEDWORK
We discuss related work of the studied algorithms in the main text. Here, we want to present an
overview of the work related to the employed techniques.

Datastructures with a hole. Zippers [Huet 1997] are the canonical functional representation of
datastructures with a hole. They can be derived from types [Hinze et al. 2004; McBride 2001 2008],
but also arise syntactically as the defunctionalization of the closures generated by a CPS-conversion
[Danvy and Nielsen 2001]. While they have long been known to be the functional equivalent of
backpointers [Huet 2003; Munch-Maccagnoni and Douence 2019], only recently has this insight
been exploited to actually compile them to pointer reversing code [Lorenzen et al. 2023b].
In contrast, constructor contexts, as studied in this work, have received far less attention. One

reason for this may be that previous implementations required type systems to ensure safety.
Minamide [1998] describes a linear type system for efficient one-hole contexts, while destination
passing style [Bour et al. 2021; Pottier and Protzenko 2013] requires linear or ownership types.

24

Huet [2003] also discusses top-down structures with a hole Ω, but he does not make an explicit
connection to top-down algorithms or present an efficient implementation.
Some top-down algorithms can also be expressed using either laziness [Wadler 1984] or tail

recursionmodulo cons (TRMC) [Bour et al. 2021; Friedman andWise 1975; Leijen and Lorenzen 2023;
Risch 1973]. However, both techniques require the programmer to provide an expression up-front
which determines the value eventually filling the hole. This makes it more cumbersome and
sometimes impossible to express top-down algorithms with these techniques. Laziness additionally
carries a performance overhead due to the creation of intermediate thunks. Conversely, TRMC
can be implemented manually with first-class constructor contexts: Leijen and Lorenzen [2023]
introduce the context transformation, which generalises Danvy and Nielsen’s [2001] approach to
constructor contexts.

Compilation of functional programs. A crucial step of our compilation is to reuse [Lorenzen and
Leijen 2022; Schulte and Grieskamp 1992; Ullrich and de Moura 2019] old heap cells for new ones.
This can be performed automatically in languages with precise reference counting [Reinking, Xie
et al. 2021; Ullrich and de Moura 2019], but could also be manually implemented in languages with
uniqueness types [Barendsen and Smetsers 1996]. However, in order to achieve a fully in-place
algorithm, we also need to be sure that certain values (such as tuples) are not allocated on the
heap. Lorenzen et al. [2023b] propose a calculus for such functions which ensures that the functions
presented here do not have spurious allocations.

In this work, we study compilation as a refinement [Appel 2016] which allows us to connect the
functional implementation to published imperative code. Modulo exact choice of variable names
and helper functions, it is possible to compile functional code directly to published imperative code.
Hofmann [2000] first proposed such a scheme and Gudjónsson and Winsborough [1999] presents
an optimization to avoid updating the hole of the context in cases where it already contains the
right value, just as in the published implementation of zip tree insertion.

Verification of imperative algorithms. Insertion and deletion algorithms for binary search trees
have been verified countless times: There is a large literature on functional implementations [Nip-
kow et al. 2021 2020] as well as destructive implementations [Armborst and Huisman 2021; Pek et
al. 2014; Stefanescu et al. 2016 2016; Zhan 2018]. However, these algorithms are typically based
on recursive code and thus do not deal with the issues discussed in this paper. Surprisingly, there
seems to be far less literature on verifying idiomatic, imperative code as it appears in algorithm
papers. Schellhorn et al. [2022] and Dross and Moy [2017] formalize the text-book insertion and
deletion of red-black trees, but due to the use of inline invariants their code does not resemble the
original implementation. Lammich [2020] formalizes an array-based implementation of pattern-
defeating quicksort in the Boost C++ library. Enea et al. [2015] prove insertion algorithms for
AVL trees and red-black trees in C correct by deriving a representation for the already-traversed
segment. They do not consider a functional version and thus have to perform a proof search.

Formalizing constructor contexts. Following Charguéraud [2016], we define an inductive repre-
sentation of one-hole datastructures. In the work of Enea et al. [2015], these segments also hold
additional invariants, but this is not necessary if one only wants to relate the segments to their
functional counterpart. Cao et al. [2019] formalize an idiomatic, non-balancing insertion into binary
trees and point out that a constructor context can also be represented in separation logic using
a magic wand, thereby hiding the implementation of constructor contexts behind their interface.
This representation avoids having to define segments and opens an opportunity to re-create this
work in tools that have special support for magic wands such as Viper [Dardinier et al. 2022; Müller
et al. 2016]. Tuerk [2010] demonstrates a method for proving the correctness of while-loops that
recurse on an argument by using simple pre- and post-conditions; this may be powerful enough

25

to prove the correctness of bottom-up algorithms as well as those top-down algorithms that arise
from a functional version via TRMC.

9 CONCLUSION AND FUTUREWORK
We believe that the techniques presented in this paper can be applied to other algorithms and
datastructures. It may be interesting to explore and relate the different implementations of datas-
tructures such as red-black trees from a functional perspective. It may also be possible to derive
efficient imperative implementations of traditional functional datastructures, that are not yet well
known in the imperative world. Lorenzen et al. [2023b] already describe such an implementation
for finger trees.

REFERENCES
Adams. 1993. Functional Pearls Efficient Sets—a Balancing Act. Journal of Functional Programming 3 (4). Cambridge University

Press: 553–561. doi:https://doi.org/10.1017/S0956796800000885.
Ager, Biernacki, Danvy, and Midtgaard. 2003. A Functional Correspondence between Evaluators and Abstract Machines. In

Proceedings of the 5th ACM SIGPLAN International Conference on Principles and Practice of Declaritive Programming, 8–19.
PPDP ’03. Association for Computing Machinery, New York, NY, USA. doi:https://doi.org/10.1145/888251.888254.

Allen, and Munro. 1978. Self-Organizing Binary Search Trees. Journal of the ACM (JACM) 25 (4). ACM New York, NY, USA:
526–535.

Appel. 2016. Modular Verification for Computer Security. In 2016 IEEE 29th Computer Security Foundations Symposium (CSF),
1–8. IEEE.

Armborst, and Huisman. 2021. Permission-Based Verification of Red-Black Trees and Their Merging. In 2021 IEEE/ACM 9th
International Conference on Formal Methods in Software Engineering (FormaliSE), 111–123. IEEE.

Aspinall, Hofmann, and Konečný 2008. A Type System with Usage Aspects. Journal of Functional Programming 18 (2).
Cambridge University Press: 141–178.

Barendsen, and Smetsers. 1996. Uniqueness Typing for Functional Languages with Graph Rewriting Semantics.Mathematical
Structures in Computer Science 6 (6). Cambridge University Press: 579–612. doi:https://doi.org/10.1017/S0960129500070109.

Bell, Bellegarde, and Hook. 1997. Type-Driven Defunctionalization, ICFP ’97, . Association for Computing Machinery, New
York, NY, USA, 25–37. doi:https://doi.org/10.1145/258948.258953.

Blelloch, Ferizovic, and Sun. 2016. Just Join for Parallel Ordered Sets. In Proceedings of the 28th ACM Symposium on Parallelism
in Algorithms and Architectures, 253–264.

Bour, Clément, and Scherer. Apr. 2021. Tail Modulo Cons. Journeées Francophones Des Langages Applicatifs (JFLA), April.
Saint Médard d’Excideuil, France. https://hal.inria.fr/hal-03146495/document. hal-03146495.

Cao, Wang, Hobor, and Appel. 2019. Proof Pearl: Magic Wand as Frame. arXiv Preprint arXiv:1909.08789.
Charguéraud. 2016. Higher-Order Representation Predicates in Separation Logic. In Proceedings of the 5th ACM SIGPLAN

Conference on Certified Programs and Proofs, 3–14.
Clark, and Tärnlund. 1977. A First Order Theory of Data and Programs. In IFIP Congress, 939–944.
Cormen, Leiserson, Rivest, and Stein. 2022. Introduction to Algorithms. MIT press.
Danvy, Millikin, and Nielsen. Nov. 2007. On One-Pass CPS Transformations. J. Funct. Program. 17 (6): 793–812. doi:https://

doi.org/10.1017/S0956796807006387.
Danvy, and Nielsen. 2001. Defunctionalization at Work. In Proceedings of the 3rd ACM SIGPLAN International Conference on

Principles and Practice of Declarative Programming, 162–174.
Dardinier, Parthasarathy, Weeks, Müller, and Summers. 2022. Sound Automation of Magic Wands. In Computer Aided

Verification: 34th International Conference, CAV 2022, Haifa, Israel, August 7–10, 2022, Proceedings, Part II, 130–151. Springer.
Dross, andMoy. 2017. Auto-Active Proof of Red-Black Trees in SPARK. InNASA Formal Methods: 9th International Symposium,

NFM 2017, Moffett Field, CA, USA, May 16-18, 2017, Proceedings 9, 68–83. Springer.
Enea, Sighireanu, and Wu. 2015. On Automated Lemma Generation for Separation Logic with Inductive Definitions. In

Automated Technology for Verification and Analysis: 13th International Symposium, ATVA 2015, Shanghai, China, October
12-15, 2015, Proceedings 13, 80–96. Springer.

Erbsen, Gruetter, Choi, Wood, and Chlipala. 2021. Integration Verification across Software and Hardware for a Simple
Embedded System. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, 604–619.

Friedman, and Wise. Dec. 1975. Unwinding Stylized Recursion into Iterations. 19. Bloomingdale, Indiana. https://legacy.
cs.indiana.edu/ftp/techreports/TR19.pdf.

Frumin, Gondelman, and Krebbers. 2019. Semi-Automated Reasoning About Non-Determinism in C Expressions. In ESOP,
60–87.

26

https://doi.org/10.1017/S0956796800000885
https://doi.org/10.1145/888251.888254
https://doi.org/10.1017/S0960129500070109
https://doi.org/10.1145/258948.258953
https://hal.inria.fr/hal-03146495/document
https://doi.org/10.1017/S0956796807006387
https://doi.org/10.1017/S0956796807006387
https://legacy.cs.indiana.edu/ftp/techreports/TR19.pdf
https://legacy.cs.indiana.edu/ftp/techreports/TR19.pdf

Gudjónsson, and Winsborough. 1999. Compile-Time Memory Reuse in Logic Programming Languages through Update in
Place. ACM Transactions on Programming Languages and Systems (TOPLAS) 21 (3). ACM New York, NY, USA: 430–501.

Guibas, and Sedgewick. 1978. A Dichromatic Framework for Balanced Trees. In 19th Annual Symposium on Foundations of
Computer Science (sfcs 1978), 8–21. IEEE.

Hinze, Jeuring, and Löh. 2004. Type-Indexed Data Types. Science of Computer Programming 51 (1-2). Elsevier: 117–151.
Hofmann. 2000. In-Place Update with Linear Types or How to Compile Functional Programms into Malloc-Free C. Preprint,

Www. Dcs. Ed. Ac. Uk/~ Mxh/malloc. Ps. Gz. Citeseer.
Huet. 1997. The Zipper. Journal of Functional Programming 7 (5): 549–554.
Huet. 2003. Linear Contexts, Sharing Functors: Techniques for Symbolic Computation. Thirty Five Years of Automating

Mathematics. Springer, 49–69.
Hughes. 1986. A Novel Representation of Lists and Its Application to the Function “reverse.” Information Processing Letters

22 (3). Elsevier: 141–144.
Jung, Krebbers, Jourdan, Bizjak, Birkedal, and Dreyer. 2018. Iris from the Ground up: AModular Foundation for Higher-Order

Concurrent Separation Logic. Journal of Functional Programming 28. Cambridge University Press: e20. doi:https://doi.org/
10.1017/S0956796818000151.

Lammich. 2020. Efficient Verified Implementation of Introsort and Pdqsort. In Automated Reasoning: 10th International Joint
Conference, IJCAR 2020, Paris, France, July 1–4, 2020, Proceedings, Part II 10, 307–323. Springer.

Leijen. 2014. Koka: Programmingwith Row Polymorphic Effect Types. InMSFP’14, 5thWorkshop onMathematically Structured
Functional Programming. doi:https://doi.org/10.4204/EPTCS.153.8.

Leijen. 2021. The Koka Language. https://koka-lang.github.io.
Leijen, and Lorenzen. Jul. 2022. Tail Recursion Modulo Context – An Equational Approach. MSR-TR-2022-18. Microsoft

Research.
Leijen, and Lorenzen. Jan. 2023. Tail Recursion Modulo Context: An Equational Approach. Proc. ACM Program. Lang. 7

(POPL). doi:https://doi.org/10.1145/3571233. See also [Leijen and Lorenzen 2022].
Leijen, Zorn, and de Moura. 2019. Mimalloc: Free List Sharding in Action. Programming Languages and Systems, LNCS,

11893. Springer International Publishing. doi:https://doi.org/10.1007/978-3-030-34175-6_13. APLAS’19.
Levy, and Tarjan. 2019. A New Path from Splay to Dynamic Optimality. In Proceedings of the Thirtieth Annual ACM-SIAM

Symposium on Discrete Algorithms, 1311–1330. SODA ’19. Society for Industrial and Applied Mathematics, San Diego,
California.

Lorenzen, and Leijen. Sep. 2022. Reference Counting with Frame Limited Reuse. In Proceedings of the 27th ACM SIGPLAN
International Conference on Functional Programming (ICFP’2022). ICFP’22. Ljubljana, Slovenia.

Lorenzen, Leijen, and Swierstra. May 2023. FP 2: Fully in-Place Functional Programming. MSR-TR-2023-19. Microsoft Research.
Lorenzen, Leijen, and Swierstra. Sep. 2023. FP2: Fully in-Place Functional Programming. In Proceedings of the 28th ACM

SIGPLAN International Conference on Functional Programming (ICFP’2023). ICFP’23. Seattle,USA. Under submission.
See [Lorenzen et al. 2023a] for the extended technical report.

Lucas. May 2004. A Direct Algorithm for Restricted Rotation Distance. Inf. Process. Lett. 90 (3). Elsevier North-Holland, Inc.:
129–134. doi:https://doi.org/10.1016/j.ipl.2004.02.001.

McBride. 2001. The Derivative of a Regular Type Is Its Type of One-Hole Contexts. http://strictlypositive.org/diff.
pdf. (Extended Abstract).

McBride. 2008. Clowns to the Left of Me, Jokers to the Right (pearl) Dissecting Data Structures. In Proceedings of the 35th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 287–295.

Minamide. 1998. A Functional Representation of Data Structures with a Hole. In Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 75–84. POPL ’98. San Diego, California, USA. doi:https://doi.
org/10.1145/268946.268953.

Mulder, Czajka, and Krebbers. 2023. Beyond Backtracking: Connections in Fine-Grained Concurrent Separation Logic.
Proceedings of the ACM on Programming Languages 7 (PLDI). ACM New York, NY, USA: 1340–1364.

Mulder, Krebbers, and Geuvers. 2022. Diaframe: Automated Verification of Fine-Grained Concurrent Programs in Iris. In
Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation,
809–824.

Munch-Maccagnoni, and Douence. 2019. Efficient Deconstruction with Typed Pointer Reversal. In ML 2019-Workshop, 1–8.
Müller, Schwerhoff, and Summers. 2016. Viper: A Verification Infrastructure for Permission-Based Reasoning. In Verification,

Model Checking, and Abstract Interpretation: 17th International Conference, VMCAI 2016, St. Petersburg, FL, USA, January
17-19, 2016. Proceedings 17, 41–62. Springer.

Nipkow, Blanchette, Eberl, Gómez-Londoño, Lammich, Sternagel, Wimmer, and Zhan. 2021. Functional Algorithms, Verified.
Nipkow, Eberl, and Haslbeck. 2020. Verified Textbook Algorithms: A Biased Survey. In Automated Technology for Verification

and Analysis: 18th International Symposium, ATVA 2020, Hanoi, Vietnam, October 19–23, 2020, Proceedings 18, 25–53.
Springer.

27

https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.4204/EPTCS.153.8
https://koka-lang.github.io
https://doi.org/10.1145/3571233
https://doi.org/10.1007/978-3-030-34175-6_13
https://doi.org/10.1016/j.ipl.2004.02.001
http://strictlypositive.org/diff.pdf
http://strictlypositive.org/diff.pdf
https://doi.org/10.1145/268946.268953
https://doi.org/10.1145/268946.268953

Okasaki. 1999. Red-Black Trees in a Functional Setting. Journal of Functional Programming 9 (4). Cambridge University
Press: 471–477.

Okasaki. Jun. 1999. Purely Functional Data Structures. Colombia University, New York.
Pek, Qiu, and Madhusudan. 2014. Natural Proofs for Data Structure Manipulation in C Using Separation Logic. ACM

SIGPLAN Notices 49 (6). ACM New York, NY, USA: 440–451.
Pit-Claudel, Philipoom, Jamner, Erbsen, and Chlipala. 2022. Relational Compilation for Performance-Critical Applications:

Extensible Proof-Producing Translation of Functional Models into Low-Level Code. In Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design and Implementation, 918–933.

Plotkin. 1975. Call-by-Name, Call-by-Value and the 𝜆-Calculus. Theoretical Computer Science 1 (2): 125–159. doi:https://doi.
org/10.1016/0304-3975(75)90017-1.

Pottier, and Protzenko. 2013. Programming with Permissions in Mezzo. In Proceedings of the 18th ACM SIGPLAN International
Conference on Functional Programming, 173–184. ICFP ’13. ACM, Boston, Massachusetts, USA. doi:https://doi.org/10.1145/
2500365.2500598.

Pugh. 1990. Skip Lists: A Probabilistic Alternative to Balanced Trees. Communications of the ACM 33 (6). ACM New York,
NY, USA: 668–676.

Reinking, Xie, de Moura, and Leijen. 2021. Perceus: Garbage Free Reference Counting with Reuse. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and Implementation, 96–111. PLDI 2021. ACK,
New York, NY, USA. doi:https://doi.org/10.1145/3453483.3454032.

Reynolds. 1972. Definitional Interpreters for Higher-Order Programming Languages. In Proceedings of the ACM Annual
Conference - Volume 2, 717–740. ACM, Boston, Massachusetts, USA. doi:https://doi.org/10.1145/800194.805852.

Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Proceedings 17th Annual IEEE Symposium
on Logic in Computer Science, 55–74. IEEE.

Risch. Nov. 1973. REMREC - A Program for Automatic Recursion Removal. Inst. för Informationsbehandling, Uppsala
Universitet. https://user.it.uu.se/~torer/publ/remrec.pdf.

Schellhorn, Bodenmüller, Bitterlich, and Reif. 2022. Separating Separation Logic–modular Verification of Red-Black Trees.
In Working Conference on Verified Software: Theories, Tools, and Experiments, 129–147. Springer.

Schmidt. 1997. The GNU C Library, tsearch. https://github.com/lattera/glibc/blob/master/misc/tsearch.c.
Schorr, and Waite. 1967. An Efficient Machine-Independent Procedure for Garbage Collection in Various List Structures.

Communications of the ACM 10 (8). ACM New York, NY, USA: 501–506.
Schulte, and Grieskamp. 1992. Generating Efficient Portable Code for a Strict Applicative Language. In Declarative Program-

ming, Sasbachwalden 1991, 239–252. Springer.
Sleator, and Tarjan. 1985. Self-Adjusting Binary Search Trees. Journal of the ACM (JACM) 32 (3). ACM New York, NY, USA:

652–686.
Stefanescu, Park, Yuwen, Li, and Roşu. 2016. Semantics-Based Program Verifiers for All Languages. ACM SIGPLAN Notices

51 (10). ACM New York, NY, USA: 74–91.
Stephenson. 1980. A Method for Constructing Binary Search Trees by Making Insertions at the Root. International Journal

of Computer & Information Sciences 9. Springer: 15–29.
Tarjan. May 1985. Efficient Top-Down Updating of Red-Black Trees. TR-006-85. Princeton University. https://www.cs.

princeton.edu/research/techreps/TR-006-85.
Tarjan, Levy, and Timmel. 2021. Zip Trees. ACM Transactions on Algorithms (TALG) 17 (4). ACM New York, NY: 1–12.
The Coq Development Team. Oct. 2017. The Coq Proof Assistant, Version 8.7.0 (version 8.7.0). Zenodo. doi:https://doi.org/10.

5281/zenodo.1028037.
The Iris Team. 2022. The Iris 4.0 Reference. https://plv.mpi-sws.org/iris.
Tuerk. 2010. Local Reasoning about While-Loops. VSTTE 2010: 29.
Ullrich, and de Moura. Sep. 2019. Counting Immutable Beans – Reference Counting Optimized for Purely Functional

Programming. In Proceedings of the 31st Symposium on Implementation and Application of Functional Languages (IFL’19).
Singapore.

Wadler. 1984. Listlessness Is Better than Laziness: Lazy Evaluation and Garbage Collection at Compile-Time. In Proceedings
of the 1984 ACM Symposium on LISP and Functional Programming, 45–52.

Wadler. 1990. Comprehending Monads. In Proceedings of the 1990 ACM Conference on LISP and Functional Programming,
61–78.

Weiss. 2013. Data Structures and Algorithm Analysis in C++ (Fourth Edition). Addison-Wesley.
Zhan. 2018. Efficient Verification of Imperative Programs Using auto2. In Tools and Algorithms for the Construction and

Analysis of Systems: 24th International Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I 24, 23–40. Springer.

28

https://doi.org/10.1016/0304-3975%252875%252990017-1
https://doi.org/10.1016/0304-3975%252875%252990017-1
https://doi.org/10.1145/2500365.2500598
https://doi.org/10.1145/2500365.2500598
https://doi.org/10.1145/3453483.3454032
https://doi.org/10.1145/800194.805852
https://user.it.uu.se/~torer/publ/remrec.pdf
https://github.com/lattera/glibc/blob/master/misc/tsearch.c
https://www.cs.princeton.edu/research/techreps/TR-006-85
https://www.cs.princeton.edu/research/techreps/TR-006-85
https://doi.org/10.5281/zenodo.1028037
https://doi.org/10.5281/zenodo.1028037
https://plv.mpi-sws.org/iris

A PROGRAMMINGWITH CONSTRUCTOR CONTEXTS
As also shown by Minamide [1998], there are various standard functions that can be implemented
more efficiently using constructor contexts. We already saw the top-down version of map in Sec-
tion 3.3:

fip fun map-td(xs : list<a>, ^f : a -> b, acc : ctx<list>) : list
match xs
Cons(x,xx) -> map-td(xx, f, acc ++ ctx Cons(f(x),_))
Nil -> acc ++. Nil

fip fun map(xs,f)
map-td(xs, f, ctx _)

The map function is actually tail-recursive modulo cons [Bour et al. 2021; Friedman and Wise 1975;
Leijen and Lorenzen 2023; Risch 1973], and can potentially be optimized by a compiler automatically
to a form that mimics map-td. The scope of TRMC optimizations is limited though, and with first-
class contexts we can go beyond that. Consider the flatten function which concatenates a list of
lists, and is usually defined as:

fun flatten(xss : list<list<a>>) : list<a>
match xss
Cons(xs,xxs) -> append(xs, flatten(xxs))
Nil -> Nil

The flatten function is not tail-recursive modulo cons, and uses stack space linear in the size of
the input list. Again, we can use an accumulating constructor context to flatten the lists in one
traversal. Key to this is the ability to return the accumulator as a first-class result value from append

instead of applying it directly4:
fip fun append-td(xs : list<a>, acc : ctx<list<a>>) : ctx<list<a>>
match xs
Cons(x,xx) -> append-td(xx, acc ++ ctx Cons(x,_))
Nil -> acc

fbip fun flatten-td(xss : list<list<a>>, acc : ctx<list<a>>) : ctx<list<a>>
match xss
Cons(xs,xxs) -> flatten-td(xxs, append-td(xs, acc))
Nil -> acc

fbip fun flatten(xss : list<list<a>>) : list<a>
flatten-td(xss, ctx _) ++. Nil

Since constructor contexts are first-class, we can return them from functions like append-td and
also store them as intermediate results. In the case of lists, they are an efficient implementation of
difference lists [Clark and Tärnlund 1977; Hughes 1986] and similar techniques can be used for
functions like filter, partition, zip, etc.

A.1 Union on Zip Trees
As another interesting example of the usefulness of first-class constructor contexts, we take a look
at the union operation on zip trees. A common imperative approach is to use an intermediate
array, but we would like to do this in an in-place divide-and-conquer style for optimal efficiency
[Adams 1993; Blelloch et al. 2016]. To do this we define a variant of the top-down find, which we
call split. This splits a tree at the insertion point for a key into three parts: the tree above the
insertion point as a context, and the unzipped smaller and bigger tree:

4The flatten function is fbip (instead of fip) as it deallocates the Cons nodes of the outer list.

29

fip(1) fun split(t : ztree, rank : rank, k : key, acc : ctx<ztree>) : (ctx<ztree>,ztree,ztree)
match t
Node(rnk,l,x,r) | is-higher-rank((rnk,x), (rank,k))

-> if x < k then split(r, rank, k, acc ++ ctx Node(rnk,l,x,_))
else split(l, rank, k, acc ++ ctx Node(rnk,_,x,r))

Node(_,l,x,r)
-> if x == k then (acc,l,r)

else val (s,b) = unzip(t, k, ctx _, ctx _) in (acc,s,b)
Leaf -> (acc,Leaf,Leaf)

Note that we cannot quite (re)use this function for general insertion as it may deallocate a single
node if the key is already present (and for insertion we want to reuse such a node in-place and
thus need the specialized down function). Here we return the constructor context of the tree above
the insertion as a first-class result. We can now write an efficient in-place union function:

fbip fun union(t1 : ztree, t2 : ztree) : ztree
match t1
Node(rnk,l1,x,r1) ->
val (top,l2,r2) = split(t2, rnk, x, ctx _)
top ++. Node(rnk, union(l1,l2), x, union(r1,r2))

Leaf -> t2

Here we use split to split the second tree around the insertion point for x. Due to the fixed shape
of a zip tree (and having the rank being determined by the key), the new node is always of higher
rank than l1,l2 and r1,r2, and must come under top – and we can recursively construct the left- and
right tree as the union of l1,l2 and r1,r2 respectively. The union function is marked fbip [Lorenzen
et al. 2023b] as it does not allocate – but it is not quite fip as it may deallocate nodes that are in
both trees, and needs stack space linear in the depth of the first tree.

30

struct ctx_t { // a Minamide context
heap_block_t* root;
heap_block_t** hole;

};

struct ctx_t ctx_copy(struct ctx_t c) {
... // copy ‘c.root‘ along the context path until reaching ‘c.hole‘

}

// (++.) : cctx<a,b> -> b -> a
heap_block_t* ctx_apply(struct ctx_t c1, heap_block_t* x)
{
// is c1 an empty context?
if (c1.root == NULL) return x;

// copy c1 ?
struct ctx_t d1 = (*c1.hole != HOLE ? ctx_copy(c1) : c1); // (A)

*d1.hole = x;
return d1.root;

}

// (++) : cctx<a,b> -> cctx<b,c> -> cctx<a,c>
struct ctx_t ctx_compose(struct ctx_t c1, struct ctx_t c2)
{
// is c1 an empty context?
if (c1.root == NULL) return c2;

// copy c1 ?
struct ctx_t d1 = (*c1.hole != HOLE ? ctx_copy(c1) : c1); // (A)

// copy c2 ? (needed to avoid cycles)
struct ctx_t d2 = ((*c2.hole != HOLE || c1.hole == c2.hole) ? ctx_copy(c2) : c2); // (B)

*d1.hole = d2.root;
d1.hole = d2.hole;
return d1;

}

Fig. 5. Implementing constructor composition and application in the runtime system (for languages without
precise reference counts).

B IMPLEMENTING CONSTRUCTOR CONTEXTS
Figure 5 shows a partial implemention in C code of how one can implement constructor contexts in a
runtime for languages without precise reference counting. We assume that HOLE is the distinguished
value for unfilled holes (□). When we compose two contexts we need to ensure we can handle
shared contexts as well where we copy a context along the context path if needed (using ctx_copy).
In the application and composition functions, the check (A) sees if the hole in c1 is already

overwritten (where *c1.hole != HOLE). In that case we copy c1 along the context path as shown in
Section 3.2 to maintain referential transparency.

However, in the composition operation we also need to do a similar check for c2 as well in order
to avoid cycles: the second check (B) checks if c2 has an already overwritten hole, but also if the
hole in c2 is the same as in c1. In either case, c2 is copied along the context path. Effectively, both
checks ensure that the new context that is returned always ends with a single fresh HOLE. Let’s
consider some examples of shared contexts. A basic example is a simple shared context, as in:

val c = ctx Cons(1,_) in (c ++. [2], c ++. [3])

which evaluates to ([1,2],[1,3]). Here, during the second application, check (A) ensures the shared
context c is copied such that the list [1,2] stays unaffected.

A more tricky example is composing a context with itself:
val c = ctx Cons(1,_) in (c ++ c) ++. [2]

which evaluates to [1,1,2]. The check (B) here copies the appended c (since c1.hole == c2.hole). In
this example the potential for a cycle is immediate, but generally it can be obscured with a shared
context inside another. Consider:

31

val c1 = ctx Cons(1,_)
val c2 = ctx Cons(2,_)
val c3 = ctx Cons(3,_)
val c = c1 ++ c2 ++ c3 in (c ++ c2) ++. [4]

which evaluates to [1,2,3,2,4]. The check (B) again copies the appended c2 in c ++ c2 (since
*c2.hole != HOLE).

Note that the (B) check in composition is sufficient to avoid cycles. In order to create a cycle
in the context path, either c1 must be in the context path of c2 (I), or the c2 in the context path
of c1 (II). For case (I), if c1 is at the end of c2, then their holes are at the same address where
c1.hole == c2.hole. Otherwise, if c1 is not at the end, then *c1.hole != HOLE and we have copied c1

already due to check (A). For case (II) the argument is similar: if c2 is at the end of c1 we again have
c1.hole == c2.hole, and otherwise *c2.hole != HOLE.

Languages with Precise Reference Counting. In a language with precise reference counts, we do
not need a distinguished value for holes, but copy contexts eagerly whenever they are shared. The
tests (A) and (B) become:

// copy c1 ?
struct ctx_t d1 = (!is_unique(c1.root) ? ctx_copy(c1) : c1); // (A)

// copy c2 ? (needed to maintain context paths where each node beside the root is unique)
struct ctx_t d2 = (!is_unique(c2.root) ? ctx_copy(c2) : c2); // (B)

This is the implementation that is used in the Koka runtime system. The (B) check here is required
to maintain the invariant that context paths always form unique chains [Leijen and Lorenzen 2023].
From this property it follows directly that no cycles can occur in the context path.

32

C FORMAL ADDRESSC IMPLEMENTATIONS
This appendix shows the formalized AddressC versions of various published insertion algorithms
that we have proven correct with respect to the corresponding functional versions in this paper.
The top-down move-to-root insertion by Stephenson [1980] is already shown in Figure 1 (Sec-

tion 4). The top-down splay tree insertion by Sleator and Tarjan [1985] is again almost line-by-line
equal to the published algorithm. Minor deviations arise from the fact that we split the simultaneous
assignment in the rotate and link functions into several single assignments (like a C programmer
would do), that we use two contexts lctx and rctx instead of the equivalent sentinels left(null)

and right(null), and that we add extra cases to the heap_splay_insert_td function to handle the case
where the key is already present in the tree.

The bottom-up splay tree insertion follows the same structure as the published, imperative
algorithm. But it is not line-by-line equal as we implement the procedure using pointer reversal.
However, this highlights the similarity to zippers and is an equally valid implementation strategy;
after all, Sleator and Tarjan [1985] introduce bottom-up splay trees as follows:

Splaying, as we have defined it, occurs during a second, bottom-up pass over an access path.
Such a pass requires the ability to get from any node on the access path to its parent. To make
this possible, we can save the access path as it is traversed (either by storing it in an auxiliary
stack or by using “pointer reversal” to encode it in the tree structure), or we can maintain parent
pointers for every node in the tree.

Finally, bottom-up move-to-root and bottom-up zip-tree insertion were not described in pseudo-
code, but our implementation is idiomatic for the pointer-reversal approach.

C.1 Bottom-Up Move-To-Root Tree Insertion
The formalized bottom-up move-to-root algorithm as described by Allen and Munro [1978].

Notation "e ’->tag’" := (Load (e%E +I #0%nat)) (at level 20) : expr_scope.
Notation "e ’->left’" := (Load (e%E +I #1%nat)) (at level 20) : expr_scope.
Notation "e ’->key’" := (Load (e%E +I #2%nat)) (at level 20) : expr_scope.
Notation "e ’->right’" := (Load (e%E +I #3%nat)) (at level 20) : expr_scope.

Definition rotate_right :=
fun: (t) {
var: l := t->left in
var: lr := l->right in
t->left = lr;;
l->right = t;;
t = l

}.

Definition rotate_left :=
fun: (t) {
var: r := t->right in
var: rl := r->left in
t->right = rl;;
r->left = t;;
t = r

}.

33

Definition heap_mtr_rebuild :=
fun: (zipper’ , tree’) {
while: (true) {
if: (zipper’ == #0) { break } else {
if: (zipper’->tag == #1) {
var: up := zipper’->left in
zipper’->left = tree’;;
rotate_right (&zipper’);;
zipper’ = up

} else {
var: up := zipper’->right in
zipper’->tag = #1;; (* set tag from NodeR to Node *)
zipper’->right = tree’;;
rotate_left (&zipper’);;
zipper’ = up

} } };; ret: tree’
}.

Definition heap_mtr_insert_bu :=
fun: (i, tree’) {
var: zipper’ := #0 in
while: (true) {
if: (tree’ == #0) {
tree’ = AllocN #4 #0;;
tree’->tag = #1;;
tree’->key = i;;
break

} else {

if: (i == tree’->key) {
break

} else {
var: tmp := #0 in
(if: (i < tree’->key) {
tmp = tree’->left;;
tree’->left = zipper’

} else {
tmp = tree’->right;;
tree’->tag = #2;;
tree’->right = zipper’

});;
zipper’ = tree’;;
tree’ = tmp

} } };;

ret: (heap_mtr_rebuild (&zipper’) (&tree’))
}.

C.2 Bottom-Up Splay Insertion
The bottom-up splay tree insertion as shown by Sleator and Tarjan [1985] (Section 4, page 666).

Notation "e ’->tag’" := (Load (e%E +I #0%nat)) (at level 20) : expr_scope.
Notation "e ’->left’" := (Load (e%E +I #1%nat)) (at level 20) : expr_scope.
Notation "e ’->key’" := (Load (e%E +I #2%nat)) (at level 20) : expr_scope.
Notation "e ’->right’" := (Load (e%E +I #3%nat)) (at level 20) : expr_scope.

Definition rotate_right : val :=
fun: (z, t) {
var: tmp := z->left in
z->tag = #1;;
z->left = t->right;;
t->right = z;;
z = tmp

}.

Definition rotate_left : val :=
fun: (z, t) {
var: tmp := z->right in
z->tag = #1;;
z->right = t->left;;
t->left = z;;
z = tmp

}.

34

Definition heap_splay_rebuild : val :=
fun: (px, x) {
while: (true) {
if: (px == #0) {
break

} else {
if: (px->tag == #1) {
var: gx := px->left in
if: (gx == #0) {
rotate_right (&px) (&x)

} else {
if: (gx->tag == #1) {
rotate_right (&gx) (&px);;
rotate_right (&px) (&x);;
px = gx

} else {
rotate_right (&px) (&x);;
rotate_left (&px) (&x)

}
}

} else {
var: gx := px->right in
if: (gx == #0) {
rotate_left (&px) (&x)

} else {
if: (gx->tag == #1) {
rotate_left (&px) (&x);;
rotate_right (&px) (&x)

} else {
rotate_left (&gx) (&px);;
rotate_left (&px) (&x);;
px = gx

}
}

}
}

};;
ret: x

}.

Definition heap_splay_insert_bu : val :=
fun: (i, tree’) {
var: zipper’ := #0 in
while: (true) {
if: (tree’ == #0) {
tree’ = (AllocN #4 #0);;
tree’->tag = #1;;
tree’->key = i;;
break

} else {
if: (i == tree’->key) {
break

} else {
var: tmp := #0 in
(if: (i < tree’->key) {
tmp = tree’->left;;
tree’->left = zipper’

} else {
tmp = tree’->right;;
tree’->tag = #2;;
tree’->right = zipper’

});;
zipper’ = tree’;;
tree’ = tmp

}
}

};;
ret: heap_splay_rebuild (&zipper’) (&tree’)

}.

C.3 Top-Down Splay Insertion
The top-down splay tree insertion as shown by Sleator and Tarjan [1985] (Section 4, page 669).

35

Notation "e ’->left’" := (Load (e%E +I #0%nat)) (at level 20) : expr_scope.
Notation "e ’->key’" := (Load (e%E +I #1%nat)) (at level 20) : expr_scope.
Notation "e ’->right’" := (Load (e%E +I #2%nat)) (at level 20) : expr_scope.

Definition rotate_right : val :=
fun: (tree’) {
var: l := tree’->left in
tree’->left = l->right;;
l->right = tree’;;
tree’ = l

}.

Definition rotate_left : val :=
fun: (tree’) {
var: r := tree’->right in
tree’->right = r->left;;
r->left = tree’;;
tree’ = r

}.

Definition link_left : val :=
fun: (tree’, lhole) {
∗lhole = tree’;;
lhole = &(tree’->right);;
tree’ = tree’->right

}.

Definition link_right : val :=
fun: (tree’, rhole) {
∗rhole = tree’;;
rhole = &(tree’->left);;
tree’ = tree’->left

}.

Definition assemble : val :=
fun: (tree’, lhole, rhole, lctx, rctx) {
∗lhole = tree’->left;;
∗rhole = tree’->right;;
tree’->left = lctx;;
tree’->right = rctx

}.

Definition heap_splay_insert_td : val :=
fun: (i, tree’) {
var: lctx := #0 in
var: rctx := #0 in
var: lhole := &lctx in
var: rhole := &rctx in
while: (true) {
if: (tree’ != #0) {
if: (i == tree’->key) {
break

} else {
if: (i < tree’->key) {
if: (tree’->left != #0) {
if: (i == tree’->left->key) {
link_right (&tree’) (&rhole);;
break

} else {
if: (i < tree’->left->key) {
rotate_right (&tree’);;
link_right (&tree’) (&rhole)

} else {
link_right (&tree’) (&rhole);;
link_left (&tree’) (&lhole)

}
}

} else {
var: l := tree’->left in
l = AllocN #3 #0;;
l->key = i;;
l->right = tree’;;
tree’ = l;;
break

}

36

} else {
if: (tree’->right != #0) {
if: (i == tree’->right->key) {
link_left (&tree’) (&lhole);;
break

} else {
if: (i > tree’->right->key) {
rotate_left (&tree’);;
link_left (&tree’) (&lhole)

} else {
link_left (&tree’) (&lhole);;
link_right (&tree’) (&rhole)

}
}

} else {
var: r := tree’->right in
r = AllocN #3 #0;;
r->left = tree’;;
r->key = i;;
tree’ = r;;
break

}
}

}
} else {
tree’ = AllocN #3 #0;;
tree’->key = i;;
break

}
};;
assemble (&tree’) (&lhole) (&rhole) (&lctx) (&rctx);;
ret: tree’

}.

C.4 Derived Top Down Zip Tree Insertion
This is our new top-down zip tree insertion as derived from the functional top-down algorithm in
Section 6.2 and 6.4.

Notation "e ’->rank’" := (Load (e%E +I #0%nat)) (at level 20) : expr_scope.
Notation "e ’->left’" := (Load (e%E +I #1%nat)) (at level 20) : expr_scope.
Notation "e ’->key’" := (Load (e%E +I #2%nat)) (at level 20) : expr_scope.
Notation "e ’->right’" := (Load (e%E +I #3%nat)) (at level 20) : expr_scope.

Definition heap_is_higher_rank : val :=
rec: "is_higher_rank" "rk1" "rk2" "x1" "x2" :=
("rk2" < "rk1") || (("rk1" == "rk2") && ("x1" < "x2")).

Definition heap_unzip_td : val :=
fun: (x, key, cur) {
var: accl := &(x->left) in (* ctx _ *)
var: accr := &(x->right) in
while: (cur != #0) {
if: (cur->key < key) {
∗accl = cur;; (* accl ++ ctx ... Node(rnk,l,x,_) *)
repeat: { accl = &(cur->right);; cur = cur->right }
until: ((cur == #0) || (cur->key >= key))

} else {
∗accr = cur;;
repeat: { accr = &(cur->left);; cur = cur->left }
until: ((cur == #0) || (cur->key < key))

}
};;
∗accl = #0;; (* accl ++. Leaf *)
∗accr = #0

}.

37

Definition heap_zip_insert_td : val :=
fun: (root, rank, key) {
var: cur := root in
var: prev := &root in
while: ((cur != #0) && heap_is_higher_rank (cur->rank) rank (cur->key) key) {
if: (cur->key < key) { prev = &(cur->right);; cur = cur->right }
else { prev = &(cur->left) ;; cur = cur->left }

};;
if: ((cur != #0) && (cur->key == key)) {
ret: root

} else {
var: x := AllocN #4 cur in
x->rank = rank;;
x->key = key;;
∗prev = x;;
heap_unzip_td (&x) (&key) (&cur);;
ret: root

}
}.

C.5 Derived Bottom-Up Zip Tree Insertion
This is bottom-up zip tree insertion as derived from the functional bottom-up algorithm in Section 6.3
and 6.4.

Notation "e ’->tag’" := (Load (e%E +I #0%nat)) (at level 20) : expr_scope.
Notation "e ’->rank’" := (Load (e%E +I #1%nat)) (at level 20) : expr_scope.
Notation "e ’->left’" := (Load (e%E +I #2%nat)) (at level 20) : expr_scope.
Notation "e ’->key’" := (Load (e%E +I #3%nat)) (at level 20) : expr_scope.
Notation "e ’->right’" := (Load (e%E +I #4%nat)) (at level 20) : expr_scope.

Definition heap_is_higher_rank : val :=
rec: "is_higher_rank" "rk1" "rk2" "x1" "x2" :=
("rk2" < "rk1") || (("rk1" == "rk2") && ("x1" < "x2")).

Definition heap_rebuild : val :=
fun: (zipper’, tree’) {
while: (true) {
if: (zipper’ == #0) {
break

} else {
if: (zipper’->tag == #1) {
var: tmp := zipper’->left in
zipper’->left = tree’;;
tree’ = zipper’;;
zipper’ = tmp

} else {
var: tmp := zipper’->right in
zipper’->tag = #1;;
zipper’->right = tree’;;
tree’ = zipper’;;
zipper’ = tmp

}
}

};;
ret: tree’

}.

38

Definition heap_unzip_bu : val :=
fun: (tree’, k) {
var: zs := #0 in
var: zb := #0 in
while: (true) {
if: (tree’ == #0) {
break

} else {
if: (tree’->key < k) {
var: tmp := tree’->right in
tree’->tag = #2;;
tree’->right = zs;;
zs = tree’;;
tree’ = tmp

} else {
var: tmp := tree’->left in
tree’->left = zb;;
zb = tree’;;
tree’ = tmp

}
}

};;
ret: Pair (heap_rebuild (&zs) (ref #0)) (heap_rebuild (&zb) (ref #0))

}.

Definition heap_zip_insert_bu : val :=
fun: (tree’, rank, k, acc) {
while: (true) {
if: (tree’ == #0) {
tree’ = AllocN #5 #0;;
tree’->tag = #1;;
tree’->rank = rank;;
tree’->key = k;;
break

} else {
if: (heap_is_higher_rank (tree’->rank) rank (tree’->key) k) {
if: (tree’->key < k) {
var: tmp := tree’->right in
tree’->tag = #2;;
tree’->right = acc;;
acc = tree’;;
tree’ = tmp

} else {
var: tmp := tree’->left in
tree’->left = acc;;
acc = tree’;;
tree’ = tmp

}

} else {
if: (tree’->key == k) {
break

} else {
var: tmp := heap_unzip_bu (ref tree’) (ref k) in
tree’ = AllocN #5 #0;;
tree’->tag = #1;;
tree’->rank = rank;;
tree’->left = Fst tmp;;
tree’->key = k;;
tree’->right = Snd tmp;;
break

}
}

}
};;
ret: heap_rebuild (&acc) (&tree’)

}.

39

D EXAMPLE PROOFS
D.1 Move-To-Root Top-Down is Correct
As an example of a typical proof in AddressC with Iris, here is the proof of Theorem 3 that
Stephenson’s top-down move-to-root insertions is correct (Theorem 3 in Section 4). The main
difficulty of this proof lies in specifying the loop invariants "H" for the while-loop. The first formula
passed to the wp_while_true tactic gives the condition once the loop terminates and the second
formula gives the invariant for subsequent iterations. The first formula mirrors the return value
of the functional code (Section 3.3), which returns two trees l and r. Additionally, it specifies that
left_dummy and right_dummy point to those trees, that root points to a Node allocation and that our
final result Node l x r is equal to the result of the functional code mtr_insert_td i t.

The invariant for subsequent iterations mirrors the recursive calls of the functional code, which
calls itself in tail-position on a tree t’ and two contexts lz’, rz’. Additionally, the invariant specifies
that left_dummy and right_dummy point to the contexts and left_hook and right_hook point to the holes,
while node points to the subtree and name stays constant. Finally, it asserts ownership over the root

location and asserts that the functional values lz’, rz’, t correspond to a loop iteration of the
functional code mtr_insert_td.
Once this invariant is given, the proof is mostly automated and it is only necessary to make

the case-splits into branches and specify the relevant invocations of the context composition and
application lemmas.

Lemma heap_mtr_insert_td_correct (i : Z) (tv : val) (t : tree) :
{{{ is_tree t tv }}}
heap_mtr_insert_td (ref #i) (ref tv)
{{{ v, RET v; is_tree (mtr_insert_td i t) v }}}.

Proof.
wp_begin "Ht"; name, root. wp_var left_dummy. wp_var right_dummy.
wp_load. wp_var node. wp_var left_hook. wp_var right_hook. wp_while_true "H"
(∃ l (x : Z) r lv rv (p : loc) lv’ rv’, (* condition on exiting the loop *)

root ↦→ #p ∗ p ↦→∗ [lv’; #x; rv’]
∗ left_dummy ↦→ lv ∗ is_tree l lv
∗ right_dummy ↦→ rv ∗ is_tree r rv
∗ ⌜mtr_insert_td i t = Node l x r⌝)%I

(∃ lz’ rz’ t’ (lhv rhv : loc) lhvv rhvv rootv treev, (* invariant during iteration *)
node ↦→ treev ∗ is_tree t’ treev
∗ root ↦→ rootv ∗ name ↦→ #i
∗ left_hook ↦→ #lhv ∗ lhv ↦→ lhvv ∗ is_ctx lz’ left_dummy lhv
∗ right_hook ↦→ #rhv∗ rhv ↦→ rhvv ∗ is_ctx rz’ right_dummy rhv
∗ ⌜mtr_insert_td i t = mtr_insert_td_go i lz’ rz’ t’⌝)%I.

- iDecompose "H". wp_heap. wp_type.
- iDestruct "H" as (lz’ rz’ t’ lhv rhv lhvv rhvv rootv treev) "[? [Ht H]]".
iDecompose "H". rewrite H. unfold td_insert_go at 1.
destruct t’ as [|l x r].
+ iDestruct "Ht" as %->. wp_heap.
iPoseProof (tree_of_ctx lz’ Leaf left_dummy lhv) as "?".
iPoseProof (tree_of_ctx rz’ Leaf right_dummy rhv) as "?".
wp_type.

+ iDestruct "Ht" as (p l’ r’) "[-> [? [? ?]]]". wp_heap.
case_bool_decide; wp_heap.
{ iPoseProof (tree_of_ctx lz’ l left_dummy lhv) as "?".
iPoseProof (tree_of_ctx rz’ r right_dummy rhv) as "?".
wp_type. }

{ case_bool_decide; wp_heap.
{ iPoseProof (ctx_of_ctx rz’ (Node0’ x r) right_dummy rhv) as "?".
wp_continue lz’, (comp rz’ (Node0’ x r)), l. }

{ iPoseProof (ctx_of_ctx lz’ (Node2’ l x) left_dummy lhv) as "?".
wp_continue (comp lz’ (Node2’ l x)), rz’, r. } }

- wp_type.
Qed.

Created with Madoko.net.

40

https://www.madoko.net

	Abstract
	1 Introduction
	2 Move-To-Root Trees
	2.1 Deriving a Recursive Algorithm
	2.2 Bottom-Up Move-To-Root
	2.3 Intermezzo: Fully in Place Functional Programming
	2.3.1 Improving Bottom-Up

	3 First-Class Constructor Contexts
	3.1 Minamide Tuples
	3.2 Context Paths
	3.3 Top-Down Using Accumulating Constructor Contexts

	4 Functional and Imperative Move-To-Root Coincide
	4.1 Proving Stephenson's Top-Down Algorithm
	4.2 Representing Constructor Contexts
	4.3 Proving Allen and Munro's Bottom-Up Algorithm

	5 Splay Trees
	5.1 The Essence of Splay Tree Rebalancing
	5.2 Recursive Splay Trees
	5.3 Top-Down Splay Trees
	5.4 Bottom-Up Splay Trees
	5.4.1 Fused Bottom-Up

	5.5 Functional and Imperative Splay Trees Coincide
	5.6 Equivalence between Splay Restructuring

	6 Zip Trees
	6.1 Recursive Zip Trees
	6.2 Top-Down Zip Trees
	6.3 Bottom-Up Zip Trees
	6.4 Proving Zip Trees Correct

	7 Benchmarks
	8 Related Work
	9 Conclusion and Future Work
	References
	A Programming with Constructor Contexts
	A.1 Union on Zip Trees

	B Implementing Constructor Contexts
	C Formal AddressC Implementations
	C.1 Bottom-Up Move-To-Root Tree Insertion
	C.2 Bottom-Up Splay Insertion
	C.3 Top-Down Splay Insertion
	C.4 Derived Top Down Zip Tree Insertion
	C.5 Derived Bottom-Up Zip Tree Insertion

	D Example Proofs
	D.1 Move-To-Root Top-Down is Correct

