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Abstract
The formal verification of an optimising compiler for a real-

istic programming language is no small task. Most verifica-

tion efforts develop the compiler and its correctness proof

hand in hand. Unfortunately, this approach is less suitable

for today’s constantly evolving community-developed open-

source compilers and languages. This paper discusses an

alternative approach to high-assurance compilers, where a

separate certifier uses translation validation to assess and

certify the correctness of each individual compiler run. It

also demonstrates that an incremental, layered architecture

for the certifier improves assurance step-by-step and may be

developed largely independently from the constantly chang-

ing main compiler code base. This approach to compiler

correctness is practical, as witnessed by the development

of a certifier for the deployed, in-production compiler for

the Plinth smart contract language. Furthermore, this paper

demonstrates that the use of functional languages in the

compiler and proof assistant has a clear benefit: it becomes

straightforward to integrate the certifier as an additional

check in the compiler itself, leveraging the the Rocq prover’s

program extraction.

Keywords: Compiler correctness, Translation validation, Cer-

tified compilation, Smart contracts
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1 Introduction
Compiler verification is an old problem, dating back to the

dawn of functional programming [McCarthy and Painter

1967]. More recently, interactive proof assistants have been

successfully used to establish the correctness of realistic com-

pilers. These efforts target well defined and stable languages,

such as C [Leroy et al. 2016] and Standard ML [Kumar et al.

2014]; a substantial part of the compiler is developed in the

proof assistant, thereby closely coupling development and

verification. Yet the correctness of compilers for languages

that are in flux — the de facto standard in today’s landscape

of community-developed open source compilers — where

verification and development can proceed independently

remains a less explored problem.

We propose a more flexible approach to compiler cor-

rectness based on translation validation [Pnueli et al. 1998].

Rather than porting a compiler to a proof-assistant and prov-

ing its implementation correct, we show how to certify the

correctnes of a run of the compiler post-hoc, generating

a (machine checkable) proof that the source program’s se-

mantics have been preserved. Translation validation is not

a new idea, but this paper demonstrates that it is a viable

alternative to the verification of industrial strength compilers

for functional languages under active development.

Moreover, by using a layered architecture, we show how

verification need not be an all-or-nothing endeavour. Each

pass is specified, validated and verified separately. By hav-

ing the compiler emit the intermediate code after each pass,

we link the compiler’s behaviour to its mechanised formali-

sation. The (1) specification, (2) decidability of that specifi-

cation, and (3) verification of each pass happens in a theo-

rem prover, independently of compiler development. Each of

these steps, layer by layer, improves the trustworthiness of

the overall system. Throughout the paper, we will show that

a layered certifier, even when only partially implemented,

helps developers to improve the correctness of the compiler

and provides machine-checkable certificates to end-users

who care about the correct compilation of their programs.

This is particularly important in application areas that re-

quire a high degree of assurance and a verifiable connection

between source and target code.
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As an example, consider financial applications, such as

blockchains. Here, smart contracts—that is, compiled code on

public blockchains such as Ethereum or Cardano—control

significant amounts of financial assets, yet must operate un-

der adversarial conditions. Bugs in smart contract code are

a significant problem in practice [Atzei et al. 2017]. To make

matters worse, code is typically hard to update securely, once

it has been committed to the blockchain. Recent work has

also established that compilers for smart contract languages

can exacerbate this problem [Park et al. 2020, Section 3]. Bugs

encountered in the Vyper compiler, for example, have been

shown to compromise smart contract security. Consequently,

translation certificates for smart contracts are valuable tools

to improve the security of applications on public blockchains.

Moreover, given that the blockchain only carries the com-

piled code, the irrefutable link to the source code establishes

the provenance of the on-chain code.

To demonstrate the feasibility of our approach, we have

implemented large parts of a certifier for the Plinth smart

contract compiler
1
using the Rocq prover. The code of the

certifier is publicly available
2
. The Plinth language and com-

piler are under active development, independent of our ver-

ification effort. Previous work in this domain has focused

on specifying different passes done by the Plinth compiler

[Krijnen et al. 2024]. Yet in itself, this check is too limited: to

guarantee that the semantics of a program is preserved, we

still need to prove that each pass preserves a program’s mean-

ing. The current work builds on these results, presenting an

overarching methodology, that also includes the proof of cor-

rectness of passes and the development of a certifier. More

specifically, this paper makes the following contributions:

• Wepresent our layeredmethodology for constructing a

certifying compiler (Section 2). This approach enables

the incremental verification of production compilers

under active development, such as the Plinth compiler.

• We present two different architectures for retrofitting

the verification on the compiler (Section 3): the certifier

which constructs machine-checkable certificates in

the form of Rocq proof scripts (Section 3.1), and the

formal pedantic mode, which runs as a check directly

in the compiler code base (Section 3.2). Crucially, this

tooling is already of value before all layers of all passes

have been implemented, gradually providing stronger

guarantees as more passes are formalised.

• We formalise the semantics of Plinth’s intermediate

representation (PIR) and build a framework for prov-

ing validator equivalence of two programs using Rocq

(Section 4).

1https://github.com/IntersectMBO/plutus
2https://github.com/jaccokrijnen/plutus-cert

• To evaluate the viability of this approach, we consider

the work necessary for implement the layers of a typi-

cal pass in the Plinth compiler and collect initial bench-

marks of the certified compilation of an auction con-

tract (Section 5). Moreover, we evaluate the formal

pedantic mode by enabling it on a test-suite of the

compiler.

It is important to note that translation validation has been

succesfully applied in industrial-strength compilers for im-

perative languages [Lopes et al. 2021; Sewell et al. 2013], but

functional compilers have received much less attention. We

defer a more detailed comparison between our approach and

the existing work on translation validation to Section 6. Our

results extend and adapt a great deal of existing work on

compiler verification. Yet these technical contributions are

connected by a single overarching result: the application

of these ideas to an industrial strength compiler, yielding a

result far greater than the sum of its parts.

2 Layered Certification Methodology
Verification of a production compiler is no small task. The

well-known CompCert project contains around 100 000 lines

of code and was estimated to have cost six person-years of

effort [Kästner et al. 2017], its proof being “among the largest

ever performed with a proof assistant” [Leroy et al. 2016].

These formally verified compilers have been developed from

scratch with verification in mind. The post-hoc verification

of an existing compiler is much harder, especially if it is

still under active development. Adding new optimisation

passes, language features, or performance improvements

all require substantial effort to verify. Yet the continuous

evolution of languages and compilers is common practice.

How can we address compiler correctness of compilers under

active development in a less monolithic fashion?

We propose a layered certification methodology, based on

translation validation [Pnueli et al. 1998]: instead of proving

that the compiler always produces correct code, we check the

correctness of code generated by individual compiler runs.

Our approach is layered in the sense that we gradually and

incrementally work towards the complete certification of the

entire compiler. Each layer comes with its own verification

artifacts; each artifact improves the overall assurance of the

compiler as a whole. Moreover, our methodology can be

applied to each compiler pass in isolation. In this way, we

manage the complexity of the verification effort, yet the fruit

of our labour is of immediate value to compiler developers.

The development is split into the following four separate

layers, which are illustrated in Figure 1 for a single pass.

The specification layer consists of a formal specification

of the compiler pass, mechanised in a proof assistant. Such a

specification takes the form of an inductively defined relation

on pairs of abstract syntax trees (𝑅𝑖 in Figure 1). In our case,

https://github.com/IntersectMBO/plutus
https://github.com/jaccokrijnen/plutus-cert
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𝑅𝑖 = . . .

interface

specification

automation

verification

pass

compiler

(𝑝𝑖 , ℎ𝑖𝑛𝑡𝑠 , 𝑝𝑖+1)

𝑝𝑖 𝑝𝑖+1

𝑝𝑖 𝑝𝑖+1𝑅𝑖

𝑝𝑖 𝑝𝑖+1≃

Figure 1. The layered architecture for a run of the multi-pass

compiler pipeline, highlighting a single pass that transforms

program 𝑝𝑖 into 𝑝𝑖+1. The four colored boxes represent the

layers implemented in the proof assistant.

we have mechanised them in the Rocq prover (Section 2.1).

We will refer to such specifications as translation relations.

The interface layer bridges the gap between the formal

development in Rocq and the compiler (Section 2.2). We

modify the compiler to produce a compilation trace, that

records for each pass its input and output ASTs (𝑝𝑖 and 𝑝
′
𝑖

in Figure 1) together with additional information about the

run, such as the pass name and optional hints about the

transformation that took place. By parsing the compilation

trace into Rocq, we can now formulate and prove the theorem

stating that a given run of the compiler behaved according

to its specification. Given the size of the programs involved

however, writing the proofs by hand becomes tedious quite

quickly.

The automation layer (Section 2.3), defines a decision

procedure for each translation relation. This decision proce-

dure can establish proof that a particular run of the compiler

behaves in accordance with its specification. More precisely,

for each pass it decides whether 𝑅𝑖 (𝑝𝑖 , 𝑝𝑖+1) holds.
Finally, the verification layer (Section 2.4) consists of a

formal proof that each translation relation preserves program

semantics (represented using the ≃ operator in Figure 1). The

verification layer asserts the correctness of the translation

layer. Therefore, any compiler run that is accepted by the

automation layer is guaranteed to preserve the semantics of

the input program.

In Section 2.5 we elaborate on how each layer increases

the assurance of the compiler.

2.1 Specification Layer
The specification layer defines the intended behaviour of

the compiler. For each compiler pass, the specification layer

consists of a translation relation: a binary relation on abstract

syntax trees, relating the program before the pass (which

we may refer to as “pre-term”) and the result of the pass

𝐵(𝑥) = 𝑡 𝐵 ⊢ 𝑡 ▷ 𝑡 ′

𝐵 ⊢ 𝑥 ▷ 𝑡 ′
inl_var_1

𝐵 ⊢ 𝑥 ▷ 𝑥
inl_var_2

𝐵 ⊢ 𝑠 ▷ 𝑠′ (𝑥 ↦→ 𝑠), 𝐵 ⊢ 𝑡 ▷ 𝑡 ′

𝐵 ⊢ let 𝑥 = 𝑠 in 𝑡 ▷ let 𝑥 = 𝑠′ in 𝑡 ′
inl_let

𝐵 ⊢ 𝑠 ▷ 𝑠′ 𝐵 ⊢ 𝑡 ▷ 𝑡 ′

𝐵 ⊢ 𝑠 𝑡 ▷ 𝑠′ 𝑡 ′
inl_app

𝐵 ⊢ 𝑡 ▷ 𝑡 ′

𝐵 ⊢ 𝜆𝑥 . 𝑡 ▷ 𝜆𝑥. 𝑡 ′
inl_lam

Figure 2. Specification of an inlining pass for the lambda

calculus with let

Inductive inlining :

list (string * expr) -> expr -> expr -> Prop :=

| inl_var_1 {B x t t'} :

lookup x B = Some t ->

inlining B t t' ->

inlining B (Var x) t'

| inl_var_2 {B x} :

inlining B (Var x) (Var x)

| ...

Figure 3. Same specification as a Rocq inductive datatype

(“post-term”). To illustrate these specifications, consider a

simple lambda calculus with let bindings:

𝑡 ::= 𝑥 | 𝜆𝑥 . 𝑡 | 𝑡 𝑡 | let 𝑥 = 𝑡 in 𝑡

Let inlining is a typical compiler pass that may replace some

(but not necessarily all) let-bound variables with their def-

inition. Such a transformation is non-local, since we need

to keep track of the let-bindings in scope. The specification

will take the form of a ternary relation 𝐵 ⊢ 𝑠 ▷ 𝑡 which states

that pre-term 𝑠 can be transformed into post-term 𝑡 under

the context 𝐵, which maps variables to their let-bound defi-

nitions. The translation relation is presented in Figure 2 as a

set of inference rules, and in Figure 3 as a Rocq inductive.

Specifically, Rule inl_var_1 states that we may conclude

that a variable 𝑥 is replaced by a term 𝑡 ′ when 𝑥 was let-

bound to term 𝑡 (first premise) and 𝑡 itself is translated to

𝑡 ′ (second premise). This allows repeated inlining passes.

Rule inl_var_2 states that a variable occurrence may also

be left unchanged, e.g., if it is bound by a lambda or if the

compiler decides not to inline the corresponding let binding.
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The remaining are congruence rules, where the Rule inl_let

extends the environment 𝐵 with the definition of 𝑥 .

Note that this relation is not a function, but a proper re-

lation. It may relate one pre-term 𝑡 to many post-terms,

depending on which variable occurrences are inlined. It is

therefore more general than an implementation in the com-

piler, which uses a fixed strategy or heuristic to decide which

occurrences to inline. This leaves room for compiler devel-

opers to choose any strategy, meaning any change to the

compiler heuristics or ‘magic-numbers’ [Peyton Jones and

Marlow 2002] is independent of this specification.

The specification layer of the compiler consists of induc-

tively defined translation relations for each compiler pass,

implemented as an inductive type in Rocq. We generate doc-

umentation in the form of TEX inference rules from the Rocq

definitions using the InducTEX tool [Krijnen 2024]. This tool

uses MetaCoq’s metaprogramming capabilities to produce

TEX code. Indeed, the rules in Figure 2 were generated from

the definition in Figure 3 using InducTEX. The resulting doc-

umentation is more readable for developers unfamiliar with

some of the peculiarities of Rocq syntax.

2.2 Interface Layer
While having a formal specification is certainly useful, the

specification layer is unrelated to the actual compiler. The

interface layer establishes that connection. Firstly, the com-

piler dumps the ASTs after each pass, labelled with the name

of the pass. We call the collection of dumps a compilation

trace. Next, the proof assistant parses this trace to the corre-

sponding inductive types.

This does require a compiler modification. Yet it is non-

invasive and most compilers already include facilities to

dump intermediate programs. In the case of our certifier for

the Plinth compiler, we only had to adapt existing pretty

printing infrastructure to produce terms that can readily be

read into Rocq (see also Section 4).

The interface layer is a trusted component: we do not

prove its correctness, yet it is indispensable in our design.

Hence, the printer and parser should be as straightforward as

possible. For example, we chose our AST definitions in Rocq

to closely mirror the internal ones of the Plinth Compiler

(Section 4). This significantly reduces the trusted computing

base and maintains a close connection between the com-

piler and proof assistant. Moreover, overall correctness only

depends on the correct printing and parsing of the source

program and the final compiled program, not on intermediate

ASTs. While we cannot formally verify the parser and pretty

printer, we can check a ‘roundtrip’ property – by asserting

that after pretty printing the Rocq AST and subsequently

parsing the resulting program, reconstructs the original AST.

This property gives us a high degree of confidence that the

parsers and pretty printers involved do not change the syn-

tactic structure of a program in any meaningful way.

2.3 Automation Layer
Given a run of the compiler, the interface and specification

layers produce a proof obligation: we need to establish that

each compiler pass behaves as expected. We could interac-

tively prove such properties using Rocq’s tactics, yet this

is inadvisable. The programs and proof goals can become

quite large and hard to read. Furthermore, proof automation

using tactics, such as auto, tend to be slow on such large

proof goal. To make matters worse, these tactics may fail

or require excessively large search depths to produce the

desired proof. Instead, we use proof by reflection [Bertot and

Castéran 2013, Chapter 16] and write a decision procedure

for each relation in the specification layer. These decision

procedures form the automation layer.

A decision procedure for the inlining relation decides if

two terms are in the relation:

Definition dec_inlining :

list (string * bool) -> expr -> expr -> bool :=

fix dec_inlining B s t := match s, t with

| Var x, t => Var x =? t ||

(match lookup x B with

| Some u => dec_inlining B u t

| None => false

end)

| ...

This recursive function accepts an environment of let-bound

variables and two terms, and should return true if they are in
the inlining translation relation. The first case of the match
checks rules inl_var_2 and inl_var_1.

To make this connection between the translation relation

and decision procedure precise, we prove an equivalence:

Lemma inline_equiv B e1 e2 :

dec_inlining B e1 e2 = true <-> inlining B e1 e2.

Formany passes, the equivalence can be proven by straight-

forward induction on the first term. This lemma allows us to

immediately construct a proof when two concrete terms t1
and t2 (dumped by the interface layer) are in the translation

relation:

Lemma spec_t1_t2 : inlining [] t1 t2.

Proof. now (apply inline_equiv). Qed.

Some compiler passes may rely on the results of a global

static analysis, or perhaps they perform multiple transfor-

mations at once. In such cases, it can help to extend the

interface layer, having the compiler emit further information

that aids the decision procedure. For example, The inliner

in the Plinth compiler also performs simultaneous variable

renaming. In such cases we can simplify the decision proce-

dure by emitting these renamings explicitly alongside the

abstract syntax trees in the interface layer.
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2.4 Verification Layer
The first three layers certify that each compiler run behaves

according to a syntactic specification. What remains is to

establish that this specification itself is correct. In the ver-

ification layer, we address the classic compiler verification

problem of establishing semantic preservation of each indi-

vidual pass.

There are many ways of proving preservation of seman-

tics, depending on the style of semantics and the program-

ming languages involved. Here we will assume a big-step

operational semantics of the form t ==> v, where term t
evaluates to value v. Let us also assume a notion of “top-level”

programs that are accepted by the compiler. For our simple

lambda calculus these will be closed terms of type Z → Z.
We then consider two top-level programs 𝑝 and 𝑞 observa-

tionally equivalent when they have the same input-output

(and consequently, termination) behaviour:

Definition eq_obs p q := forall n m,

Apply p (Const n) ==> Const m <->

Apply q (Const n) ==> Const m.

That is, applying 𝑝 and 𝑞 to the same integer constant re-

sults in equal output values. Here we have omitted some

assumptions about 𝑝 and 𝑞 such as their well-typedness. Fur-

thermore both 𝑝 and 𝑞 are written in the same language –

whereas compilers correctness may also involve target code

with different semantics.

To complete the verification layer we need to prove a

correctness theorem of the following type:

forall p q, inlining [] p q -> eq_obs p q.

One standard way of proving this is by establishing a simu-

lation, that is, proving that the following diagram commutes

for arbitrary closed expressions 𝑠 and 𝑡 :

𝑠 𝑣

𝑡 𝑤

==>

==>

inlining [] inlining []

When 𝑠 and 𝑡 are related through the translation relation

for inlining, evaluating either of them results in values that

are also related via the translation relation. For the case

where 𝑠 and 𝑡 are top-level progams, this implies observa-

tional equivalence.

Upon completing the correctness proofs of each individual

compiler pass, we can establish that a complete run of the

compiler has preserved the semantics of its input program.

2.5 Gradual assurance
Verification need not be an all-or-nothing endeavour. By

developing the verification architecture in layers and pass by

pass, it becomes possible to gradually increase the assurance

of the compiler. Each layer improves the trustworthiness of

the compiler, even if not all layers for each have been fully

implemented.

To define the specification layer for a pass, we have to de-

velop a good understanding of the corresponding implemen-

tation in the compiler. The informal reasoning and studying

of the source code, as well as the task of formulating a trans-

lation relation in Rocq’s logic, may already uncover bugs or

complications in the design of compiler pass.

The interface layer enforces that the formalisation does

not happen in a vacuum and works with the actual repre-

sentation of programs, rather than an idealised or simplified

version. By testing the round-trip property, we obtain a high

degree of assurance that the representation in the proof as-

sistant and compiler are equal.

The automation layer produces a tangible proof that the

compiler adheres to its specification. Not only can it be

used to check individual runs of the compiler, the resulting

proof term can be indepedently validated as it is machine-

checkable. Using program extraction, the corresponding de-

cision procedures may be run independently of the proof

assistant.

Finally, the verification layer ensures that the translation

relation is semantically sound. This guarantees that a partic-

ular compiler pass is semantics preserving.

3 Certifier
Next, we discuss how the four layers of our methodology

can be used to build a certifier, working with the compiler, to

generate verifiable certificates. The latter can be bundled and

distributed together with the compiled software, enabling

users to check the certificate before executing the software.

A certificate is a proof script containing a top-level theorem.

Depending on which compiler passes have been formalised

and up to which layer, the certifier assembles all available

evidence to support this theorem. As the formalisation of

source

compiler

target

trace certifier

Rocq formalisationRocq formalisationRocq formalisation

certificate

checker

Figure 4. Architecture of the certifier (in orange) retrofitted

on an existing compiler (white). Square boxes represent files,

rounded boxes represent tools.
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the system is extended, the certifier’s claims in the top-level

theorem get stronger and stronger.

Certificate generation is irrelevant during the develop-

ment process, but part of the release process of a the compiled

software. However, we do not suggest to disable the certifier

completely; instead, we provide the option of a lightweight

mode, which we call formal pedantic mode (Section 3.2). This

mode allows to catch compiler bugs early, but it does not

produce a certificate, avoiding the overhead of constructing

and checking a formal proof.

3.1 The architecture of a certifier
Certifying a compiler run is a three-step process, illustrated

in Figure 4:

1. The compiler dumps a compilation trace: a text file

containing labelled intermediate ASTs of the program

that is being compiled, and optionally hints about the

transformation that took place.

2. A simple post-processing tool turns the textual dump

into a structured Rocq project. It includes the compi-

lation trace as a defined object, and imports the Rocq

formalisation of the compiler passes and correspond-

ing layers as a library. Finally, it includes the top-level

theorem with proof about the compilation trace.

3. Finally, the checker tool invokes the Rocq compiler to

build the project and check the proof of the top-level

theorem. Since that theorem mentions a source and

target programs, the checker also confirms that they

match the provided source and target programs.

We consider each of the steps in detail and turn our attention

to PIR again (which we will more formally discuss in Section

4).

3.1.1 Dumping a compilation trace. The compiler and

certifier need to use a common format for the trace. Here,

we outline the Rocq definitions of the AST of PIR and an

enumeration of the compiler passes. The abstract syntax

follows the concrete syntax in Figure 6 (we omit almost

all productions of the grammar here, with the exception of

terms).

Inductive term :=

| Var : name -> term

| LamAbs : binderName -> ty -> term -> term

(* ... *).

Inductive pass :=

Rename | DeadCode | (* ... *) .

Definition comp_trace := term * list (pass * term).

A comp_trace contains the source parsed by the compiler,

together with a list of intermediate ASTs, paired with a label

identifying the generating compiler pass.

We opted for a text-based format and used generic pro-

gramming to implement basic pretty-printing for the types

involved in a comp_trace (essentially a simplified version of

GHC’s derived Show instances). On the Rocq side, we defined

suitable notations to parse a trace directly as source code.

3.1.2 Generating a certificate. A certificate is a Rocq

project that consists of three main components: the formal

development of the different passes, the trace, and a top-level

theorem. To this end, we developed a small command-line

utility that simply includes the first two and creates a proper

project structure. To then construct the type of the top-level

theorem, the formal development exposes a basic interface:

Inductive claim :=

| AccordingToSpec : rel_decidable -> claim

| Verified : rel_verified -> claim

| Unchecked : claim.

A claim describes what gets checked for a given compiler

pass. Depending on the level of formalisation, this could be

according to specification if the pass has a completed automa-

tion layer (as witnessed by a decidable translation relation

rel_decidable), verified (witnessed by a verified, decidable

translation relation), or completely unchecked otherwise.

The top-level theorem is constructed with some helper

functions:

Definition claims_prop

: (pass -> claim) -> comp_trace -> Prop.

Definition trace_dec : forall claims trace,

option (claims_prop claims trace).

The claims_prop function computes the type of the top-level

theorem, given a claim for each pass and a trace. The result-

ing type is a conjunction of the form 𝑡1 𝑅1 𝑡2∧· · ·∧𝑡𝑛−1 𝑅𝑛−1 𝑡𝑛 .
Here, 𝑡𝑖 is a term and 𝑅𝑖 a relation depending on the claim:

an AccordingToSpec claim will result in the relation being

the corresponding translation relation, a Verified claim will

result in semantic equivalence, and an Unchecked claim will

be the universal relation, relating any two elements. The

trace_dec function then allows to decide this top-level the-

orem, which internally uses the decision procedures and

correctness results of the formalisation.

The proof script for this top-level theorem is therefore

completely generic, as it is only parametrised by the claims

and trace. Our command-line tool uses a simple textual tem-

plate to construct this final piece of the certificate.

3.1.3 Checking the certificate. To verify a certificate,

the checker uses Rocq to type-check the proof of the top-

level theorem and checks that it actually states a property

about the provided source and target program. This should be

done before distributing a certificate, after which users of the

compiled program can independently verify the certificate.

Since the formalisation is included as source code, it is

completely transparant which passes up to which layer are
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source

compiler

formal pedantic mode

target

Rocq formalisationRocq formalisationRocq formalisation
extraction

Figure 5. Architecture of formal pedantic mode

proven. One can independently inspect the ASTs, transla-

tion relations, dynamic semantics and definition of semantic

equivalence to understand the top-level theorem.

3.2 Formal pedantic mode
Formal pedantic mode is a light-weight alternative to the full

architecture of Section 3.1, for retrofitting verification on the

compiler. The key idea is that after the compiler performs

a pass, it also immediately runs the corresponding decision

procedures in-process. But since decision procedures are de-

fined in the proof assistant, not in the compiler, this requires

some form of crossing language boundaries. In our case, we

have leveraged Rocq’s extraction mechanism [Letouzey 2002]

to generate Haskell code, leveraging the functional nature

of the formalisation.

Since our interface layer for PIR closely follows the syntax

of the compiler (Section 2.2), and both Gallina and Haskell

are statically-typed functional languages, it becomes trivial

to extract the decision procedures from the automation layer,

and integrate them in the Plinth compiler. After all, they

have the simple type term -> term -> bool.
Figure 5 illustrates how a compiler runs in formal pedantic

mode: if any of the decision procedures fail, the compiler

fails and does not produce target code. Note that there is no

certificate produced to witness the correctness compilation,

which is typically not necessary during the development

process (only at time of release). In this way, formal pedantic

mode offers an efficient alternative that can provide quick

feedback for potential miscompilations.

Additionaly, this mode is a valuable addition to a compiler

test suite. Compilers typically have a collection of sample

programs for measuring performance or testing succesful

termination. Since the decision procedures are available as

extracted Haskell code, it can easily be integrated and used

for testing the correctness of compilation of those test cases.

In Section 5 we discuss our initial experience of such an

integration for the Plinth compiler and an existing test suite.

4 Formalisation
To reason formally about program transformations, we need

to fix the semantics of the intermediate languages used by

𝜅 ::= ∗ | 𝜅 ⇒ 𝜅

𝜎, 𝜏 ::= 𝛼 | 𝜎 → 𝜏 | ∀𝛼 :: 𝜅.𝜎 | 𝜆𝛼 :: 𝜅.𝜎 | 𝜎 𝜏 |
ifix 𝜎 𝜏 | U

𝑡 ::= 𝑥 | 𝜆𝑥 : 𝜏 . 𝑡 | 𝑡 𝑡 | Λ𝛼 :: 𝜅.𝑡 | 𝑡 {𝜏} |
iwrap 𝜎 𝜏 𝑡 | unwrap 𝑡 | builtin F |
constant U 𝑘 | error 𝜏 | let [rec] 𝑏 in 𝑡

𝑏 ::= [∼]𝑥 : 𝜏 = 𝑡 | 𝛼 :: 𝜅 = 𝜏 |

data 𝛼 (𝛽 :: 𝜅) = 𝑐 with 𝑥

𝑐 ::= 𝑥 (𝜏)
U ::= Bool | Unit | Data | . . .

Figure 6. Syntax of PIR and PLC, PIR-specific constructs

highlighted

the Plinth compiler. This section outlines the key definitions

required for the verification layer and how to establish val-

idator equivalence of two programs. We have mechanised

these in Rocq.

4.1 Syntax of PIR and PLC
The Plinth compiler accepts Plinth, a subset of Haskell, and

targets Plutus Core (PLC), which can be run on the Cardano

blockchain. Most of the optimisation passes are done on the

Plutus Intermediate Representation (PIR), a superset of PLC

which in turn is a superset of System 𝐹
𝜇
𝜔 , a polymorphic

lambda calculus with type functions and recursive types. Fig-

ure 6 presents the syntax of the kinds, types and terms of both

PIR and PLC (PIR-specific constructs have been highlighted

in grey). We use square brackets [] to indicate optional syn-

tax; a line over syntactic constructs indicates that these may

be repeated zero or more times. We sometimes write ∅ for

an empty list of bindings in a let group.

PIR and PLC share the same type language which con-

sist of type variables, functions and universal quantification,

lambda abstraction, application of type functions, an indexed

fixpoint type for iso-recursive types, and built-in types U.
The term language is a Church-style System 𝐹

𝜇
𝜔 , where

iwrap and unwrap are the term-level witnesses for iso-

recursive types. Additionally, there is a set of built-in func-

tions F for efficient computation with built-in types, such

as arithmetic operations and hashing functions. We leave

this set implicit here. Execution may produce an error; each

error value is is annotated with its type to aid type checking.

PIR supports let bindings that can be mutually recursive.

There are various flavours of let-bindings: term-level binding

which can be strict or lazy (indicated by a ∼ symbol), type

bindings and lastly algebraic datatypes (ADT) which can

have type variables and consist of a set of constructors 𝑐 and

an elimination principle 𝑥 . Constructors are declared with a

name and type signature.
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Δ ⊢ 𝜎 :: ∗ 𝜎 𝜎 ′ Δ; (Γ, 𝑥 : 𝜎 ′) ⊢ 𝑡 : 𝜏
Δ; Γ ⊢ (𝜆𝑥 : 𝜎. 𝑡) : 𝜎 ′ → 𝜏

T-LamAbs

Δ ⊢ 𝜏 :: 𝜅 𝜏 𝜏 ′

𝐹 𝐹 ′ Δ ⊢ 𝐹 :: (𝜅 ⇒ ∗) ⇒ (𝜅 ⇒ ∗)
𝐹 ′ (𝜆𝑋 :: 𝜅.ifix 𝐹 ′ 𝑋 )) 𝜏 ′ 𝜎 Δ; Γ ⊢ 𝑡 : 𝜎

Δ; Γ ⊢ iwrap 𝐹 𝜏 𝑡 : ifix 𝐹 ′ 𝜏 ′
T-IWrap

Figure 7. Selected rules of the PIR type system

4.2 Static semantics
The syntax in Figure 6 defines the types and kinds of PIR.

Kinds are either a base kind or function kind, and kinding

rules are of the form Δ ⊢ 𝜏 :: 𝜅 . The rules of the kind system

are standard (see for example [Pierce 2002]).

Type expressions may contain 𝛽-redexes. To decide type

equality during type checking, the Plinth compiler therefore

uses a type normalisation algorithm. We define an inductive

relation 𝜎 𝜏 , stating that a type-expression 𝜎 normalises

to 𝜏 . Again, such reduction relations are fairly standard for

System 𝐹𝜔 .

Typing rules are of the form Δ; Γ ⊢ 𝑡 : 𝜏 (Figure 7), stating
that in kinding context Δ and typing context Γ, term 𝑡 has

type 𝜏 . In contrast to the standard presentation that has a

type-conversion rule, we define a syntax-directed system

that uses type normalisation, which aligns with the Plinth

type-checker. For example, T-LamAbs extends Γ after first

normalising the type annotation 𝜎 . The PIR type checker

ensures that it only checks terms against normalised types.

Similarly, our rules ensure that we only assign normalised

types to a term.

Type normalisation has another role in the type system:

it drives the unfolding of recursive types. In PIR, a recursive

type ifix 𝐹 𝑇 represents a indexed fixpoint [Peyton Jones

et al. 2019] of a type-function 𝐹 of kind (𝜅 ⇒ ∗) ⇒ (𝜅 ⇒ ∗).
The corresponding typing rule T-IWrap unfolds fixpoint one

step by normalising an application of 𝐹 .

The complete rules of the static semantics of PIR are given

in Appendix B.

4.3 Dynamic semantics
We define a dynamic semantics of PIR (and thus PLC) using

a strict, big-step operational semantics with substitution.

We write 𝑡 ⇓ 𝑟 , stating that term 𝑡 evaluates to result 𝑟 .

Here, 𝑟 can be either a value or an error . Most rules are

entirely standard; we add rules for dealing with errors (which

abort the computation) and a set of rules for the various let-

constructs of PIR, both recursive and non-recursive (𝑡 ⇓rec 𝑟
and 𝑡 ⇓nonrec 𝑟 respectively).

In our Rocq mechanisation of the dynamic semantics, we

have covered the vast majority of PIR language constructs,

with the exception of recursive algebraic datatypes. Some

of the complex built-in operations (such as hashing primi-

tives) currently have no corresponding formalisation in Rocq.

However, by axiomatising their implementation, we can still

formally reason about optimisation passes, which almost

always leave built-in operations untouched.

The complete rules of the operational semantics of PIR

are given in Appendix C.

4.4 Validator equivalence
The Plinth compiler is primarily used to compile validators,

which are programs that can be deployed on the Cardano

blockchain to lock digital assets. On Cardano, any proposed

transaction needs to be validated before it is executed. For

each asset that it tries to transfer, the attached validator pro-

gram is executed to determine if the transaction may do so.

Typical conditions of a validator include public key authen-

tication and enforcing payment deadlines. Validators are the

fundamental building blocks for implementing higher-level

smart contracts on a UTXO-style blockchain.

A Plinth validator is a function of type Data → Unit. The
argument contains all information the validator may need

to perform its checks, such as the proposed transaction and

the current time. If the validator succeeds, it terminates with

a unit value ⟨⟩, otherwise it halts with an error.

Definition 1 (Validator equivalence ≡val). If 𝑝 and 𝑞 are

well-typed validator scripts, and 𝑖 is an arbitrary constant of

type Data, we write 𝑝 ≡val 𝑞 to mean

𝑝 𝑖 ⇓ ⟨⟩ ⇐⇒ 𝑞 𝑖 ⇓ ⟨⟩

Definition 2 (Correct compiler pass). A translation relation

R is correct, when for all well-typed validator scripts 𝑝, 𝑞

𝑝 𝑅 𝑞 =⇒ 𝑝 ≡val 𝑞

In other words, any two related programs have the same

operational behaviour. To completely verify the compiler, it

is required to prove that each translation relation from the

specification layer is correct.

Note that this notion of equivalence implies identical ter-

mination behaviour of related programs. In some compilers,

it may be fine if a non-terminating program is optimised

into a terminating one. In our case, this is a problem: a non-

terminating validator will never unlock funds, whereas a

terminating one might do so.

5 Preliminary evaluation
In this section, we evaluate the proposed methodology, doc-

umenting our experience with the certification of the Plinth

compiler. We briefly go through the formalisation of the

dead code elimination pass, and discuss how it impacts the

compiler’s codebase and what practical challenges we en-

countered during the proof development.
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Dead code elimination. Dead code elimination is an im-

portant compiler pass that is run several times in the simpli-

fier pipeline of the Plinth compiler. As the Plinth standard

libraries are included as a top-level let binding for every

program, dead code elimination is absolutely necessary to

keep code size of the generated binaries in check. We have

implemented the four layers for this pass and will briefly

reflect on each of those. A more detailed treatment of this

pass can be found in Appendix A.

The pass is concerned with let bindings. For example, the

compiler may analyze the following program

let 𝑥 = 3 in let 𝑦 = 𝑥 + 𝑥 in 10

and decide that it can be optimised to the term 10. Note that

the pass is not always entirely trivial: 𝑥 is dead code only

because 𝑦 is dead code (and 𝑥 is not used anywhere else).

Furthermore, pir is strict, meaning that a binding may only

be removed when its evaluation has no side-effects (such as

throwing an error).

For the specification layer, let us consider the main rule

of non-recursive let bindings:

BV(𝑏) ∩ FV(let 𝑏𝑠′ in 𝑡 ′) = ∅
BTV(𝑏) ∩ FTV(let 𝑏𝑠′ in 𝑡 ′) = ∅

𝑏 ∈ Pure let 𝑏𝑠 in 𝑡 ▷ let 𝑏𝑠′ in 𝑡 ′

let (𝑏;𝑏𝑠) in 𝑡 ▷ let 𝑏𝑠′ in 𝑡 ′
DCE-Elim

Given a let with 𝑏;𝑏𝑠 as its bindings, 𝑏 may be removed

under a few conditions: (1) the term variables and (2) type

variables bound by 𝑏 may not occur freely in the resulting

post-term (expressed as those sets being disjoint), (3) 𝑏 is a

pure binding (i.e. terminates without side-effects) and (4) the

rest of the term can be recursively translated. Since deciding

termination is undecidable in general, pure is a sound subset

of terms that have the property (based on the corresponding

compiler analysis).

For the automation layer, we have defined the decision

procedures for the disjointness checks, the pure property

and the translation relation itself and proven it equivalent

to the translation relation. Their implementations straight-

forwardly follow the inductive structure of the inference

rules.

The interface layer has identical functionality for most

passes: printing the pre- and post-term in the compiler and

then parsing them into Rocq (Section 2.2). For the dead code

elimination pass however, we implement some additional be-

haviour. As a result of removing let bindings, a let expression

may end up with zero bindings, so the compiler pass also

performs a bit of cleanup, transforming let ∅ in 𝑡 into 𝑡 .
Although we could include that transformation in the rules

such as DCE-NR-Elim, it clutters the translation relation

and obscures the simplicity of two conceptually different

transformations.

Instead, we define a separate translation relation (denoted

here as ▷′
) that solely captures the cleanup of empty let

groups. The overall specification for the pass then becomes

∃𝑡1 . 𝑡0 ▷ 𝑡1 ∧ 𝑡1 ▷′ 𝑡2. Here, 𝑡0 and 𝑡2 are the terms dumped

by the compiler, but AST 𝑡1, which may still contain empty

let groups, never existed during compilation! Therefore, we

construct this virtual AST within Rocq in the interface layer,

using a straightforward recursive function on 𝑡0 and 𝑡2.

Although decomposing a pass in this manner incurs some

more work in the interface layer, it pays off in the automa-

tion and verification layer: another example is the inliner

pass, which includes a form of dead code elimination. By

analogously decomposing that pass and constructing an in-

termediate AST in Rocq, translation relations remain simple

and can be reused across specifications.

Finally, for the verification layer, we have proven validator

equivalence using a simulation-style argument, with induc-

tion on the evaluation relation. In the forward direction

this requires proving a simple lemma that [𝑣/𝑥] 𝑡 = 𝑡 when
𝑥 ∉ FV(𝑡). In the backwards direction, it requires a lemma

that any 𝑡 ∈ Pure terminates according to the big-step eval-

uation relation.

While dead code elimination may appear like a relatively

simple transformation, its structure is representative of more

complex optimisations. Its correctness relies on two program

analyses: purity of bound expressions and strong liveness

of variables. In general, compiler passes will often rely on

analysis results or pre-conditions established by previous

transformations. Those properties will have to appear in

some form in the translation relation.

Crucially, checking that the property of an analysis holds

can be much simpler than performing the analysis itself, as

we see with the disjointness check instead of a strongly live

variable analysis. Additionally, results of complexer analyses

may simply be dumped by the compiler alongside the ASTs

of the pass in the interface layer, leaving only the task to

check (in the automation layer) that they imply the required

property. This is also the reason that CompCert resorts to

translation validation for register allocation [Rideau and

Leroy 2010].

Constructing certificates. We ran our certifier on a real-

istic Plinth validator that implements an auction (260 LOC)

using a commodity laptop. The compiler pretty-printed and

dumped all 362 intermediate ASTs in about 35s, resulting

in 160MB of plain text. Generating the Rocq certificate took

2s, and the overall certificate can be compressed into 13MB

using standard gzip compression.

We built and type-checked the certificate with verifica-

tion claims on two passes (dead code elimination and non-

recursive let compilation), which took about 14 minutes.

The main culprit here is our Rocq parser for AST terms; the

actual proof checking is relatively fast. There is plenty of

low-hanging fruit to speed up the parser – but as a proof

of concept, the current implementation suffices. Note that

certificate generation is only run once per software release;
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the formal pedantic mode gives similar guarantees more

cheaply. Running the certificate checker overnight is per-

fectly acceptable in this domain, where it is essential to only

deploy smart contracts that are correct.

One of the small engineering hurdles we encountered in

generating certificates is that a full compilation trace could

not fit in a single Rocq script, as coqc would run out of

memory due to the sheer size of the ASTs involved. Instead,

we now produce a single Rocq file per AST and construct

the trace by importing the ASTs from the compiled modules.

Running Rocq projects at this scale uncovers other issues.

For example, the naive Peano encoding of natural numbers

obviously does not scale to ASTs that use natural numbers

for the representation of variable names. These problems are

easy to overcome – we use a more efficient representation

now – but often unforeseen.

Integrating the Rocq formalisation as compiler tests.
To assess a formal pedantic mode in the Plinth compiler

(Section 3.2), we have also integrated our Rocq development

in the compiler, measured performance characteristics, and

observed the impact on the existing code-base. To this end,

we have extracted the Rocq decision procedure of the dead-

code elimination pass, checking the pass with several input

programs that contain dead code.

We have extended the compiler’s build system to run

Rocq’s extraction mechanism to produce Haskell before the

compiler is compiled. To interface with this generated code,

there is minimal glue code required, since we have made a

point of staying close to the compiler representation in the

formalisation.

The Plinth compiler contains a test-suite of golden tests

for each compiler pass: a set of PIR programs with their

expected output. These programs are usually small in size

and they test some behaviour relevant to the pass. In the

case of dead-code elimination, there are 16 such test cases.

To get a sense of the performance characteristics, we mea-

sured the execution time of the dead-code elimination deci-

sion procedures for each of the golden tests. They typically

run in a handful of milliseconds on a commodity laptop,

adding roughly 1–5% to the overall pass execution time.

We have also tested the decision procedure on a signifi-

cantly larger program: the interpreter for the Marlowe smart

contract language [Lamela Seijas and Thompson 2018]. This

interpreter evaluates contracts written in the Marlowe DSL,

used to implement a class of financial contracts. We noticed a

much longer execution time of 2–3s, dominating the overall

pass execution time. This can be explained by the fact that

our naive decision procedure is quadratic, as it repeatedly

computes the set of free variables in recursive calls. There

are numerous ways to resolve this issue. A tupling transfor-

mation would make the check linear again. Alternatively, we

can adapt the compiler to provide information about the set

of dead bindings that have been eliminated by a given pass,

removing the need for proof search in the decision procedure

altogether. Even if formal pedantic mode is slow for a certain

pass, most smart contracts are relatively small; developers

may always choose to run the formal pedantic mode less

frequently.

The impact on the Plinth compiler codebase has been

very modest. The extracted code from Rocq is around 1K

lines of code, whereas the glue code is only around 250 LOC.

Compared to the overall size of the Plinth project, this is

negligible.

Interestingly, we discovered a mismatch between the im-

plementation and the specification, as one of the tests failed.

It turned out that it was not a compiler bug, but that the

implementation was recently extended to include an excep-

tional case where parts of a datatype binding can be elimi-

nated (but not the full binding). This example indicates the

importance of such a test-suite to keep the compiler imple-

mentation and its specification in sync.

Proof engineering considerations. After working on the

formalisation of several compiler passes, we have noticed

that it is relatively easy to implement the specification and

automation layer, which suffice to set up the a specification

checker for certificates or formal pedantic mode of a pass.

For example, common duplication across translation relation

definitions such as compatibility rules (Section A.1) can be

factored out and reused. Moreover, dumping and parsing of

the interface layer can be reused, as most passes do not need

to dump more information than the pre- and post-terms.

Writing decision procedures for inductive definitions can

still be quite some work. To address this, we have adapted

work of the QuickChick project [Paraskevopoulou et al.

2022]. That work uses meta-programming in Rocq to gen-

erate decision procedures and soundness proofs, but for a

limited subset of inductive definitions. As a result, we can

sometimes save time by generating (parts of) the decision

procedures and soundness lemmas.

The verification layer however requires most of the work.

In part, this is expected because of the larger proofs involving

the formalised metatheory. Writing out the required lemmas

about substitutions, variable binding, and other common

patterns in working with our validator equivalence requires

substantial effort.

Another challenge mechanising proofs about PIR is that

it is a not a toy language: it requires reasoning about lan-

guage constructs that can be awkward or inconvenient to

manipulate, that are often omitted inmore idealised language

formalisations. For example, mutually recursive let-groups

cause the AST types to have nested recursion, resulting in

more complicated induction schemes and a programming

style aimed at passing Rocq’s termination checker. Other

constructs such as built-in functions (which require a notion

of partial application) and errors (with atypical control flow)



A Layered Certifying Compiler Architecture FUNARCH ’25, October 12–18, 2025, Singapore, Singapore

all require extra rules in the big-step semantics, resulting in

many more cases in each proof.

Although most of our Rocq development is specific to

the PIR pipeline, the ideas of the methodology are generally

applicable for compilers that use a nano-pass architecture.

Furthermore tooling such as InducTEX can readily be used

for generating TEX from other inductive specifications.

At the same time, the layered approach is not limited to

the Rocq prover. Developers at IOG have started adopting the

layered methodology for the PLC backend of the compiler,

but using the Agda language [Bove et al. 2009].

6 Discussion
6.1 Related work

Correct compilation. There is a rich line of work on com-

piler verification, we will not attempt to give an exhaustive

overview of the area. We have previously mentioned other

verification projects using interactive proof assistants, no-

tably CakeML [Kumar et al. 2014] and CompCert [Leroy

et al. 2016]. Those projects focus on compilers implemented

in a proof assistant for well defined and stable languages.

Despite the higher cost of such approach, verified compilers

(when total) have a completeness guarantee that translation

validation cannot offer: each run of the compiler is correct.

The idea of translation validation goes back to work on

compiling synchronous programming languages [Cimatti

et al. 1997; Pnueli et al. 1998]. Over the years, it has been

succesfully applied to optimising compilers on a larger scale,

such as GCC [Necula 2000; Sewell et al. 2013] and LLVM

[Lopes et al. 2021], catching numerous compiler bugs. These

works have a similar motivation to ours (retrofitting verifica-

tion on existing compilers) but differ in the type of languages,

which have a low-level imperative style and are first-order.

The semantics are based on control flow graphs, often com-

bined with symbolic execution and SMT solvers for finding

proofs. While this allows for a high degree of automation, the

verification is restricted to intra-procedural optimisations.

Cogent [O’Connor et al. 2021] is a certifying compiler

based on translation validation, also built for a purely func-

tional language. It is aimed at systems programming, and

features a uniqueness type system to avoid manual memory

management, as well as garbage collection. In contrast to our

approach, it onlyworks for awhite-box approach in the sense

that it assumes full access and control over the compiler, as

the compiler generates the target code (a well-defined subset

of C), and embedding of the source program as well as the

correctness proofs. Furthermore, the correctness proofs are

concerned with the translation steps between vastly differ-

ent representations and semantics, whereas optimisations

are deferred to the (trusted) C compiler.

The term certifying compiler was originally introduced

in the context of proof-carrying code [Necula 1997], which

focuses on distributing compiled code together with proof of

a safety policy, such as type-safety or memory-safety. Such

untrusted code can then safely interact with a host system.

Our certificates are similarly distributed with compiled code,

but do not interact with a host system: Plutus validators are

stand-alone programs and our certificate is meant to support

reasoning about functional properties of the source code.

There are several other compilers for smart contract lan-

guages. ConCert is a smart contract verification framework

in Rocq [Annenkov et al. 2020]; there is ongoing work on

verifying a compiler for the Albert language on the Tezos

blockchain; the K framework has been used to verify Ethereum

contracts using translation validation techniques similar to

those described here [Park et al. 2020].

Existing Formalisations. The type system for PLC has

been formalised before [Chapman et al. 2019], using an

intrinsically-typed syntax in Agda. Typing rules for PIR have

been described previously [Peyton Jones et al. 2019], but do

not align completely with the compiler implementation of

the type-checker. In the current work, we give a semantics

that stays true to the current implementation of the Plinth

compiler.

Krijnen et al. [2024] have previously described specifica-

tions of various passes of Plinth compiler. That work, how-

ever, does not discuss the verification of those specifications,

which we address in the verification layer—a key contribu-

tion of the current paper. Without the validator equivalence,

as defined in Section 4 and employed in Section 5, there may

still be bugs that change the meaning of a program in both

the compiler and the specification.

6.2 Further work
End-to-end verification. The surface language of the

Plinth compiler is a subset of Haskell, which is directly desug-

ared via GHC Core into PIR, we have not yet included those

languages in the formalisation. Can we extend this approach

to create an end-to-end certifying compiler? This would re-

quire a formalisation of Haskell’s rich surface language as

well as GHC’s Core. To make matters more complicated, PIR

is a strict language and the subset of Haskell is compiled

as if it were a strict language. Any correctness preservation

proof would have to work under the (unusual) assumption

that GHC Core is evaluated strictly.

As an alternative, we have started building on the work

done in the context of CertiCoq [Anand et al. 2017], a project

that aims to implement a verified compiler for Rocq’s Gallina.

Other work [Annenkov et al. 2022] has recently shown how

to extend CertiCoq’s pipeline to target a typed intermediate

language 𝜆𝑇□ . To achieve end-to-end certification, we envi-

sion a verified translation from this lambda calculus to PIR.

This approach does have its own drawbacks. Firstly, Plinth

was designed specifically to have a single language for on-

chain and off-chain code. Writing smart contracts in Gallina

would break this property, even if the resulting contracts
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can be extracted to Haskell. More practically, any realistic

smart contract requires numerous functions from the Plinth

standard libraries, all written in Haskell. We have an initial

experiment using hs2coq [Spector-Zabusky et al. 2018] to

port these libraries to Gallina that appears quite promising.

Semantic verification. So far, we have verified the trans-
lation relations for dead code elimination and non-recursive

let compilation. The existing work by Krijnen et al. [2024]

gives an overview of the various passes of Plinth. We expect

that most of these, such as variable renaming or let desug-

aring, will be relatively easy to verify with the architecture

presented here. Other passes, such as the translation from al-

gebraic datatypes to their Scott encodings [Peyton Jones et al.

2019] will be harder to verify, since the correctness relies on

parametricity properties. To that end, we have ongoing work

on a logical relation for PIR, to prove a much more powerful

contextual equivalence, which implies validator equivalence.

Language support. In the semantics described so far, we

have not yet formalised the entire Plinth language, as we do

not yet cover recursive ADTs. Plinth’s treatment of (locally

bound) ADTs is somewhat non-standard. We do not believe

this to be a fundamental limitation of our approach, but have

simply chosen to focus our engineering effort elsewhere.
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A Case Study: Dead Code Elimination
Dead code elimination is an important compiler pass that

is run several times in the simplifier pipeline of the Plutus

compiler. As the Plutus standard libraries are included in a

top-level let binding for every program, dead code elimina-

tion is absolutely necessary to keep code size of the generated

binaries in check. In this section, we illustrate the verification

process for this compiler pass.

The complete verification of each compiler pass is beyond

the scope of the current paper. Instead, we describe the key

definitions and lemmas required to verify a typical compiler

pass completely. The work presented here has been mecha-

nised in the Rocq prover.

A.1 Specification layer
Informally, code is dead when it is not used in the evaluation

of the rest of the program. The Plutus compiler concerns

itself with eliminating dead let bindings by way of a live

variable analysis. Since the let construct is strict by default,

a binding can only be removed if it is known to terminate.

Otherwise, the compiler might transform a non-terminating

program into a terminating one, changing the program’s

semantics.

In Figure 8 we define a predicate on bindings, Pure, that

characterises the subset of bindings that the compiler con-

siders “pure”, i.e., their evaluation is guaranteed to termi-

nate. Strict bindings are pure if they are values. Non-strict

bindings are always considered pure, since no evaluation

happens at its definition. Strict bindings, on the other hand,

can only be removed if they bind a value (such as a lambda

abstraction or constant), this is the same criterion used in

the compiler. Datatype bindings and type bindings do not

require evaluation, hence they are trivially pure.

A detailed account of the specification for the dead code

elimination pass has previously been given by Krijnen et al.

[2024]. It defines a translation relation that is composed of

several syntactic properties, such as well-scopedness and

uniqueness of variable names. In this section, we rephrase

this specification, giving a single binary inductive relation

that immediately captures dead code elimination. Compared

to their work, this definition is more general as it does not

require globally unique variables and the corresponding se-

mantic argument is more direct.

In Figure 8, we sketch the translation relation for dead

code elimination ▷ for terms and ▷𝐵 for let-bindings. We

can divide the rules in two categories:

• Compatibility rules Dead code elimination need not

remove any bindings at all. Hence, the identity relation

should be included in our translation relation. For each

language construct, we add a compatibility rule, stating

the translation relation is closed under that construct.

DCE-Apply is a compatibility rule.

𝑏 ∈ Pure

∼𝑥 : 𝜏 = 𝑡 ∈ Pure

𝑡 ∈ value

𝑥 : 𝜏 = 𝑡 ∈ Pure

data 𝛼 = . . . ∈ Pure 𝛼 :: 𝜅 = 𝑇 ∈ Pure

𝑠 ▷ 𝑡

𝑠 ▷ 𝑡 𝑡 ▷ 𝑡 ′

𝑠 𝑡 ▷ 𝑠′ 𝑡 ′
DCE-Apply

BV(𝑏) ∩ FV(let 𝑏𝑠′ in 𝑡 ′) = ∅
BTV(𝑏) ∩ FTV(let 𝑏𝑠′ in 𝑡 ′) = ∅

𝑏 ∈ Pure let 𝑏𝑠 in 𝑡 ▷ let 𝑏𝑠′ in 𝑡 ′

let 𝑏;𝑏𝑠 in 𝑡 ▷ let 𝑏𝑠′ in 𝑡 ′
DCE-Elim

𝑏 ▷𝐵 𝑏
′ let 𝑏𝑠 in 𝑡 ▷ let 𝑏𝑠′ in 𝑡 ′

let 𝑏;𝑏𝑠 in 𝑡 ▷ let 𝑏′;𝑏𝑠′ in 𝑡 ′
DCE-Keep

Figure 8. Translation relation for dead code elimination

(selected rules)

• Binding-related rulesWhen relating a let group of

the form let 𝑏;𝑏𝑠 in 𝑡 , there are two cases: either the

binding 𝑏 was removed in the post-term or it was kept.

If the binding has been removed (DCE-Elim), the post-

term should be of the form let 𝑏𝑠′ in 𝑡 . This transfor-
mation is only correct under certain conditions: (1) 𝑏

is a pure binding, to preserve termination behaviour;

(2) the remainder of the let group is related; (3) the

bound term variables (BV(b)) do not occur freely in the

post-term (FV(let 𝑏𝑠′ in 𝑡 ′)), and (4) the same require-

ment on type variables. If the binding is not eliminated

(DCE-Keep), we only require that (1) there is a related

binding 𝑏′ in the post-term and (2) the rest of the let

group is related.

Note that the last two conditions of the DCE-Elim rule in

Figure 8 ensure that any variables bound by the let binding

are unused. It is important to check for the free variables in

the post-term rather than those in the pre-term. Consider a

let-bound variable 𝑥 that occurs in other dead code:

let 𝑥 = 3 in let 𝑦 = 𝑥 + 𝑥 in 10 ▷ 10

Here, 𝑥 ’s definition is dead code while it occurs freely in the

pre-term, but not in the post-term. This distinction ensures

that our relation describes strong live variables.
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1 Fixpoint dec_dce (t t' : term) : bool :=
2 match t t' with
3 | Apply s t, Apply s' t' =>
4 dec_dce s s' && dec_dce t t'
5 | Let NonRec (b::bs) tb
6 , Let NonRec (b'::bs') tb' =>
7 if dec_dce_B b b'
8 then
9 dec_dce
10 (Let NonRec bs tb)
11 (Let NonRec bs' tb')
12 else
13 dec_pure b &&
14 dec_disj
15 (bv b)
16 (fv (Let NonRec bs' tb')) &&
17 dec_disj
18 (btv b)
19 (ftv (Let NonRec bs' tb')) &&
20 dec_dce (Let NonRec bs tb) t'
21 | ...
22 end
23 with dec_dce_B : binding -> binding -> bool

Figure 9. Decision procedure for dead code elimination (se-

lected cases)

A.2 Automation layer
In the automation layer, we define the decision procedures

for each of the relations used to specify the dead code elim-

ination pass. Implementating these procedures is usually

quite straightforward: many cases can be read off from the

inference rules, as they are mostly syntax-directed.

In Figure 9 we show a code fragment of the decision pro-

cedures. Those for Disjoint and Pure straightforwardly

implement their relations, so we omit their implementations

here. The function dec_dce is defined mutually recursive

with dec_dce_B, which decide ▷ and ▷𝐵 correspondingly.

Here we show only the cases for function application (line

3, corresponding to rule DCE-Apply) and non-recursive lets

with a non-empty list of bindings. In the latter case, both

DCE-Elim and DCE-Keep are applicable, so we first try to

apply the DCE-Keep rule (line 6); if that fails, we try the

DCE-Elim rule (lines 9–12). The resulting decision proce-

dure is sound and complete with respect to the translation

relation, which we prove by induction on the pre-term:

Lemma 3 (Soundness of decision procedure).
dec_Term t t’ = true ⇐⇒ 𝑡 ▷ 𝑡 ′.

A.3 Interface Layer
For most passes, the interface layer has the same function-

ality: printing the pre- and post-term in the compiler and

then parsing them into Rocq (Section 2.2). For the dead code

elimination pass however, we extend the interface layer with

further pass-specific behaviour: constructing a virtual inter-

mediate AST.

In the dead code elimination pass, the compiler not only

removes unused bindings, but it will also clean up let groups

that as a result have no bindings. Although this is a very local

transformation, it clutters the translation relation and the

decision procedure when formulated simultaneously with

dead code elimination. Therefore we decompose the two

transformations and implement another translation relation

(denoted here as ▷′
) that solely captures the removal of

empty let groups. The overall specification for this pass then

becomes ∃𝑡1. 𝑡0 ▷ 𝑡1 ∧ 𝑡1 ▷′ 𝑡2. Here, 𝑡0 and 𝑡2 are the terms

dumped by the compiler. Within the compiler however, the

AST 𝑡1, which may still contain empty let groups, never

exists. Therefore, we construct this tree within Rocq, using

a straightforward recursive function on 𝑡0 and 𝑡2.

Although decomposing a pass in this manner incurs some

more work in the interface layer, it pays off in the automa-

tion and verification layer: another example is the inliner

pass, which includes a form of dead code elimination. By

analogously decomposing that pass and constructing an in-

termediate AST in Rocq, translation relations remain simple

and can be reused across specifications.

A.4 Verification Layer
Finally, we establish that the specification of dead code elim-

ination preserves program semantics. In this section, we

sketch the key lemmas that are necessary to complete the

proof. Before formally proving validator equivalence, we

first prove that the translation relation preserves typing.

Lemma 4 (Dead code preserves typing). If 𝑡 ▷ 𝑡 ′ and Δ; Γ ⊢
𝑡 : 𝜏 , then Δ; Γ ⊢ 𝑡 ′ : 𝜏 .

Proof. By induction on the derivation of the translation rela-

tion. The case of DCE-Elim relies on a weakening property,

since Γ and Δ contains variables that are eliminated in the

post-term, but do not occur freely. □

For proving validator equivalence, we first prove an obvi-

ous fact about substitution:

Lemma 5 (Substitution of eliminated bindings). If 𝑥 ∉ fv(𝑡),
then for all terms 𝑠 , [𝑠/𝑥]𝑡 = 𝑡

In other words, substitution behaves as the identity on

unused variables. A similar lemma is needed for type substi-

tution.

Similarly, we prove that pure bindings can be safely added

to a let expression:

Lemma 6 (Purity of Pure bindings). If 𝑏 ∈ Pure, and

let 𝑏𝑠 in 𝑡 ⇓ 𝑣 , then also let 𝑏;𝑏𝑠 in 𝑡 ⇓ 𝑣

Finally, we prove a lemma that dead-code elimination

includes the identitiy relation:
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Lemma 7 (▷ is reflexive). For all terms 𝑡 , 𝑡 ▷ 𝑡 .

Proof: using the inference rules without DCE-Elim.

With these three lemmas in hand (and with many smaller

facts about substitution), we can prove validator equivalence.

As we saw previously in Section 4, this requires first prov-

ing a simulation diagram, in which evaluation commutes

with the translation relation. We do this separately in both

direction, here we demonstrate the forward direction:

Lemma 8 (⇓ respects ▷ (forward)). If 𝑡 ▷ 𝑡 ′ and 𝑡 ⇓ 𝑣 , then
there exists 𝑣 ′, such that 𝑡 ′ ⇓ 𝑣 ′ and 𝑣 ▷ 𝑣 ′

𝑡 𝑣

𝑡 ′ 𝑣 ′

⇓

⇓

▷ ▷

The proof is done by induction on the evaluation relation,

using Lemma 5 for the case where a let binding is eliminated.

Note that because of the mutual family of evaluation rela-

tions (see Appendix C), this proof requires a more elaborate

mutual induction scheme. The backwards direction proceeds

similarly, and uses lemma 6

Theorem9 (Correctness of dead code elimination). If ∅;∅ ⊢
𝑡 : Data → Unit and 𝑡 ▷ 𝑡 ′, then 𝑡 ≡val 𝑡

′

Proof: Let i be a constant of the built-in type ‘Data‘, by

Lemma 7, 𝑖▷𝑖 . By rule DCE-Apply, 𝑡𝑖▷𝑡 ′𝑖 . Forward direction:
assume 𝑡𝑖 ⇓ 𝑣 , then by Lemma 8, there exists a 𝑣 ′ such that

𝑡 ′𝑖 ⇓ 𝑣 ′ and 𝑣 ▷ 𝑣 ′. By type preservation, either 𝑣 = ⟨⟩ = 𝑣 ′
or 𝑣 = error = 𝑣 ′, so we can conclude that 𝑣 = 𝑣 ′. The
backwards direction is symmetric.

B Static semantics of PIR
In the following figures, we have formalised the type and

kind system of PIR. These rules are rendered based on the

Rocq inductives that we use in the formalisation.

• Figure 10 gives the kinding rules

• Figure 11 describes how types can be normalised in a

normal form

• Figure 12 give the typing rules for term constructs in

the PIR language

• Figure 13 gives typing rules for constructor signatures,

and the different type of bindings in a let group.

C Operational semantics of PIR
We have defined the operational semantics of PIR using

a substitution-based reduction. Once again, the rules are

simply based on the Rocq formalisation. First, we define

values as a predicate on terms in Figure 14. This includes

neutral terms for partially-applied built-in functions.

In Figure 15, the rules for evaluation of most term con-

structs are given. For example, the case for function applica-

tion E-Apply uses substitution after evaluation the argument

to a value (and checking it is not an error). The semantics

also include rules for dealing with errors that halt the pro-

gram immediately: in Figure 16, most language constructs

have a rule explaining how to propagate a thrown error. For

partial applications of built-in functions, we require a set of

rules that deal with neutral values (Figure 17).

We define a separate evaluation relation for both these

non-recursive let bindings (𝑡 ⇓nonrec 𝑣) and recursive let

bindings (𝑡 ⇓rec 𝑣) in Figure 18; these are embedded with

trivial rules in the main evaluation relation (see bottom of

Figure 15). Both these rules process the individual let bind-

ings in the binding group one by one. The evaluations rules

for both non-recursive (E-Let) and recursive let bindings

(E-LetRec) appeal to these relations.

To evaluate non-recursive let-binding groups, we require

several rules to distinguish strict and non-strict recursive

let bindings, term bindings and type bindings. An example

rule, E-Let-NonRec-TermBind, shows how to define the

semantics of strict term-binding by evaluating the right-

hand-side and substituting the resulting value.

For recursive binding groups, we have a similar evalua-

tion relation, extended with some additional context, keep-

ing track of the entire group of bindings 𝑏0. This is needed

as the let bindings may be mutually recursive. We write

𝑏0 ⊢ let rec 𝑏 in 𝑡 ⇓nonrec, where 𝑏0 stores to the complete

sequence of let-bindings being processed. The E-LetRec

rule instantiates 𝑏0 to the complete binding group. The rule

E-LetRec-TermBind defines the evaluation of a single (non-

strict) recursive binding, by substituting a single unfolding of

the bound variable’s right hand side, appropriately wrapped

in the binding group.
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Δ ⊢ 𝜏 :: 𝜅

Δ(𝑋 ) = 𝐾
K-Var

Δ ⊢ 𝑋 :: 𝐾

Δ ⊢ 𝑇1 :: ∗ Δ ⊢ 𝑇2 :: ∗
K-Fun

Δ ⊢ 𝑇1 → 𝑇2 :: ∗

Δ ⊢ 𝑇 :: 𝐾 Δ ⊢ 𝐹 :: (𝐾 ⇒ ∗) ⇒ (𝐾 ⇒ ∗)
K-IFix

Δ ⊢ ifix 𝐹 𝑇 :: ∗
Δ, 𝑋 :: 𝐾 ⊢ 𝑇 :: ∗

K-Forall

Δ ⊢ (∀𝑋 :: 𝐾.𝑇 ) :: ∗

built-in type U has kind 𝐾
K-Builtin

Δ ⊢ U :: 𝐾

Δ, 𝑋 :: 𝐾1 ⊢ 𝑇 :: 𝐾2

K-Lam

Δ ⊢ (𝜆𝑋 :: 𝐾1.𝑇 ) :: 𝐾1 ⇒ 𝐾2

Δ ⊢ 𝑇1 :: 𝐾1 ⇒ 𝐾2 Δ ⊢ 𝑇2 :: 𝐾1

K-App

Δ ⊢ 𝑇1 𝑇2 :: 𝐾2

Figure 10. Kinding of types

𝜎 𝜏

𝑇1 𝜆𝑋 :: 𝐾.𝑇𝑛
1

𝑇2 𝑇𝑛
2

[
𝑇𝑛
2
/𝑋

]
𝑇𝑛
1

𝑇𝑛

N-Beta

𝑇1 𝑇2 𝑇𝑛

𝑇1 𝑇𝑛
1

𝑇𝑛
1
∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑇2 𝑇𝑛

2

N-App

𝑇1 𝑇2 𝑇𝑛
1
𝑇𝑛
2

𝑇1 𝑇𝑛
1

𝑇2 𝑇𝑛
2

N-Fun

𝑇1 → 𝑇2 𝑇𝑛
1
→ 𝑇𝑛

2

𝑇 𝑇𝑛

N-Forall

∀𝑋 :: 𝐾.𝑇 ∀𝑋 :: 𝐾.𝑇𝑛

𝑇 𝑇𝑛

N-Lam

𝜆𝑋 :: 𝐾.𝑇 𝜆𝑋 :: 𝐾.𝑇𝑛

N-Var

𝑋 𝑋

𝐹 𝐹𝑛 𝑇 𝑇𝑛

N-IFix

ifix 𝐹 𝑇 ifix 𝐹𝑛 𝑇𝑛

N-Builtin

U U

Figure 11. Type normalisation
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Δ; Γ ⊢ 𝑡 : 𝜏

Γ(𝑥) = 𝑇 𝑇 𝑇𝑛

T-Var

Δ; Γ ⊢ 𝑥 : 𝑇𝑛

Δ ⊢ 𝑇1 :: ∗ 𝑇1 𝑇𝑛
1

Δ; (Γ, 𝑥 : 𝑇𝑛
1
) ⊢ 𝑡 : 𝑇𝑛

2

T-LamAbs

Δ; Γ ⊢ (𝜆𝑥 : 𝑇1 . 𝑡) : 𝑇𝑛
1
→ 𝑇𝑛

2

Δ; Γ ⊢ 𝑡1 : 𝑇𝑛
1
→ 𝑇𝑛

2
Δ; Γ ⊢ 𝑡2 : 𝑇𝑛

1

T-Apply

Δ; Γ ⊢ 𝑡1 𝑡2 : 𝑇𝑛
2

(Δ, 𝑋 :: 𝐾); Γ ⊢ 𝑡 : 𝑇𝑛

T-TyAbs

Δ; Γ ⊢ (Λ𝑋 :: 𝐾.𝑡) : (∀𝑋 :: 𝐾.𝑇𝑛)

Δ; Γ ⊢ 𝑡1 : (∀𝑋 :: 𝐾2 .𝑇
𝑛
1
) Δ ⊢ 𝑇2 :: 𝐾2 𝑇2 𝑇𝑛

2

[
𝑇𝑛
2
/𝑋

]
𝑇𝑛
1

𝑇𝑛

T-TyInst

Δ; Γ ⊢ 𝑡1 {𝑇2} : 𝑇𝑛

Δ ⊢ 𝑇 :: 𝐾

𝑇 𝑇𝑛

Δ ⊢ 𝐹 :: (𝐾 ⇒ ∗) ⇒ (𝐾 ⇒ ∗)
𝐹 𝐹𝑛

(𝐹𝑛 (𝜆𝑋 :: 𝐾.ifix 𝐹𝑛 𝑋 )) 𝑇𝑛 𝑇𝑛
0

Δ; Γ ⊢ 𝑀 : 𝑇𝑛
0

T-IWrap

Δ; Γ ⊢ iwrap 𝐹 𝑇 𝑀 : ifix 𝐹𝑛 𝑇𝑛

Δ; Γ ⊢ 𝑀 : ifix 𝐹𝑛 𝑇𝑛 Δ ⊢ 𝑇𝑛
:: 𝐾 (𝐹𝑛 (𝜆𝑋 :: 𝐾.ifix 𝐹𝑛 𝑋 )) 𝑇𝑛 𝑇𝑛

0

T-Unwrap

Δ; Γ ⊢ unwrap𝑀 : 𝑇𝑛
0

𝑐 has type U
T-Constant

Δ; Γ ⊢ constant U 𝑐 : U

builtin F has type 𝑇

𝑇 𝑇𝑛

T-Builtin

Δ; Γ ⊢ builtin F : 𝑇𝑛

Δ ⊢ 𝑇 :: ∗
𝑇 𝑇𝑛

T-Error

Δ; Γ ⊢ error 𝑆 : 𝑇𝑛

Δ′ = Δ, bindsΔ (𝑏)
bindsΓ (𝑏) bindsΓ (𝑏)𝑛

Γ′ = Γ, bindsΓ (𝑏)𝑛
Δ; Γ ⊢nonrec 𝑏
Δ′
; Γ′ ⊢ 𝑡 : 𝑇𝑛 Δ ⊢ 𝑇𝑛

:: ∗
T-Let

Δ; Γ ⊢ let 𝑏 in 𝑡 : 𝑇𝑛

Δ′ = Δ, bindsΔ (𝑏)
bindsΓ (𝑏) bindsΓ (𝑏)𝑛

Γ′ = Γ, bindsΓ (𝑏)𝑛
Δ′
; Γ′ ⊢rec 𝑏

Δ′
; Γ′ ⊢ 𝑡 : 𝑇𝑛 Δ ⊢ 𝑇𝑛

:: ∗
T-LetRec

Δ; Γ ⊢ let rec 𝑏 in 𝑡 : 𝑇𝑛

Figure 12. Typing of terms
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Δ ⊢c 𝑐 : 𝜏

𝑐 = 𝑥 (𝑆 →𝑈 )
𝑈 is result type Δ ⊢ 𝑆 :: ∗

W-Con

Δ ⊢c 𝑐 : 𝑈

Δ; Γ ⊢b 𝑏

Δ ⊢ 𝑇 :: ∗ 𝑇 𝑇𝑛

Δ; Γ ⊢ 𝑡 : 𝑇𝑛

W-Term

Δ; Γ ⊢b [∼]𝑥 : 𝑇 = 𝑡

Δ ⊢ 𝑇 :: 𝐾
W-Type

Δ; Γ ⊢b 𝑋 :: 𝐾 = 𝑇

Δ′ = Δ, 𝑌 :: 𝐽 Δ′ ⊢c 𝑐 : constrLastTy(𝑑)
W-Data

Δ; Γ ⊢b data (𝑋 :: 𝐾) (𝑌 :: 𝐽 ) = 𝑐 with 𝑥

Δ; Γ ⊢nonrec 𝑏

𝑏 = 𝑏, 𝑏′

Δ; Γ ⊢b 𝑏
bindsΓ (𝑏) bindsΓ (𝑏)𝑛

(Δ, bindsΔ (𝑏)); (Γ, bindsΓ (𝑏)𝑛) ⊢nonrec 𝑏′
W-BindingsNonRec

Δ; Γ ⊢nonrec 𝑏

Δ; Γ ⊢rec 𝑏

𝑏 = 𝑏, 𝑏′ Δ; Γ ⊢b 𝑏 Δ; Γ ⊢rec 𝑏′
W-BindingsRec

Δ; Γ ⊢rec 𝑏

Figure 13.Well-formedness of constructors and bindings
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𝑡 ∈ 𝑣𝑎𝑙𝑢𝑒

V-LamAbs

𝜆𝑥 : 𝑇 . 𝑡 ∈ 𝑣𝑎𝑙𝑢𝑒
V-TyAbs

Λ𝑋 :: 𝐾.𝑡 ∈ 𝑣𝑎𝑙𝑢𝑒

𝑣 ∈ 𝑣𝑎𝑙𝑢𝑒
V-IWrap

iwrap 𝐹 𝑇 𝑣 ∈ 𝑣𝑎𝑙𝑢𝑒
V-Constant

constant U 𝑐 ∈ 𝑣𝑎𝑙𝑢𝑒

⟨0, 𝑛𝑣⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙
V-Neutral

𝑛𝑣 ∈ 𝑣𝑎𝑙𝑢𝑒
⟨𝑛, 𝑡⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙

𝑛 < 𝑎𝑟𝑖𝑡𝑦 (builtin F)
NV-Builtin

⟨𝑛, builtin F⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙
𝑣 ∈ 𝑣𝑎𝑙𝑢𝑒 ¬𝑖𝑠𝐸𝑟𝑟𝑜𝑟 (𝑣) ⟨succ 𝑛, 𝑛𝑣⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙

NV-Apply

⟨𝑛, 𝑛𝑣 𝑣⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙

⟨succ 𝑛, 𝑛𝑣⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙
NV-TyInst

⟨𝑛, 𝑛𝑣 {𝑇 }⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙

Figure 14. Values and neutral terms

𝑡 ⇓ 𝑣

E-LamAbs

𝜆𝑥 : 𝑇 . 𝑡 ⇓ 𝜆𝑥 : 𝑇 . 𝑡
𝑡1 ⇓ 𝜆𝑥 : 𝑇 . 𝑡0

𝑡2 ⇓ 𝑣2
¬𝑖𝑠𝐸𝑟𝑟𝑜𝑟 (𝑣2) [𝑣2/𝑥] 𝑡0 ⇓ 𝑣0

E-Apply

𝑡1 𝑡2 ⇓ 𝑣0

E-TyAbs

Λ𝑋 :: 𝐾.𝑡 ⇓ Λ𝑋 :: 𝐾.𝑡
𝑡1 ⇓ Λ𝑋 :: 𝐾.𝑡0 [𝑇2/𝑋 ] 𝑡0 ⇓ 𝑣0

E-TyInst

𝑡1 {𝑇2} ⇓ 𝑣0

𝑡0 ⇓ 𝑣0 ¬𝑖𝑠𝐸𝑟𝑟𝑜𝑟 (𝑣0)
E-IWrap

iwrap 𝐹 𝑇 𝑡0 ⇓ iwrap 𝐹 𝑇 𝑣0

𝑡0 ⇓ iwrap 𝐹 𝑇 𝑣0
E-Unwrap

unwrap 𝑡0 ⇓ 𝑣0

E-Constant

constant U 𝑐 ⇓ constant U 𝑐

let 𝑏 in 𝑡 ⇓nonrec 𝑣
E-Let

let 𝑏 in 𝑡 ⇓ 𝑣

𝑏 ⊢ let rec 𝑏 in 𝑡 ⇓rec 𝑣
E-LetRec

let rec 𝑏 in 𝑡 ⇓ 𝑣

Figure 15. Big-step operational semantics (basic terms)

E-Error

error 𝑇 ⇓ error 𝑇
𝑡1 ⇓ error 𝑇

E-Error-Apply1

𝑡1 𝑡2 ⇓ error 𝑇

𝑡2 ⇓ error 𝑇
E-Error-Apply2

𝑡1 𝑡2 ⇓ error 𝑇

𝑡1 ⇓ error 𝑇
E-Error-TyInst

𝑡1 {𝑇2} ⇓ error 𝑇

𝑡0 ⇓ error 𝑇 ′
E-Error-IWrap

iwrap 𝐹 𝑇 𝑡0 ⇓ error 𝑇 ′
𝑡0 ⇓ error 𝑇

E-Error-Unwrap

unwrap 𝑡0 ⇓ error 𝑇

𝑡1 ⇓ error 𝑇 ′
E-Error-Let-TermBind

let ((𝑥 : 𝑇 = 𝑡1), 𝑏) in 𝑡0 ⇓ error 𝑇 ′

Figure 16. Big-step operational semantics (errors)
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E-NeutralBuiltin

builtin F ⇓ builtin F

⟨0, 𝑛𝑣 𝑣⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙
E-NeutralApply

𝑛𝑣 𝑣 ⇓ 𝑛𝑣 𝑣

⟨0, 𝑛𝑣 {𝑇 }⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙
E-NeutralTyInst

𝑛𝑣 {𝑇 } ⇓ 𝑛𝑣 {𝑇 }

¬(⟨0, 𝑡1 𝑡2⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙)
𝑡1 ⇓ 𝑛𝑣1

⟨0, 𝑛𝑣1⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙
𝑡2 ⇓ 𝑣2

¬𝑖𝑠𝐸𝑟𝑟𝑜𝑟 (𝑣2) 𝑛𝑣1 𝑣2 ⇓ 𝑣0
E-NeutralApplyPartial

𝑡1 𝑡2 ⇓ 𝑣0

¬(⟨0, 𝑡1 {𝑇 }⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙)
𝑡1 ⇓ 𝑛𝑣1

⟨0, 𝑛𝑣1⟩ ∈ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑛𝑣1 {𝑇 } ⇓ 𝑣0
E-NeutralTyInstPartial

𝑡1 {𝑇 } ⇓ 𝑣0

𝑖𝑠𝐹𝑢𝑙𝑙𝑦𝐴𝑝𝑝𝑙𝑖𝑒𝑑 (𝑛𝑣1 𝑣2) 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑛𝑣1 𝑣2) = 𝑣
E-NeutralApplyFull

𝑛𝑣1 𝑣2 ⇓ 𝑣

𝑖𝑠𝐹𝑢𝑙𝑙𝑦𝐴𝑝𝑝𝑙𝑖𝑒𝑑 (𝑛𝑣1 {𝑇 }) 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑛𝑣1 {𝑇 }) = 𝑣
E-NeutralTyInstFull

𝑛𝑣1 {𝑇 } ⇓ 𝑣

Figure 17. Big-step operational semantics (built-in functions)

𝑡 ⇓nonrec 𝑣

𝑡1 ⇓ 𝑣1 ¬𝑖𝑠𝐸𝑟𝑟𝑜𝑟 (𝑣1) [𝑣1/𝑥] (let 𝑏 in 𝑡0) ⇓ 𝑣2
E-Let-NonRec-TermBind

let ((𝑥 : 𝑇 = 𝑡1), 𝑏) in 𝑡0 ⇓ 𝑣2
[𝑇 /𝑋 ] (let 𝑏 in 𝑡0) ⇓nonrec 𝑣1

E-Let-TypeBind

let ((𝑋 :: 𝐾 = 𝑇 ), 𝑏) in 𝑡0 ⇓nonrec 𝑣1

𝑡0 ⇓ 𝑣0
E-Let-Nil

let ∅ in 𝑡0 ⇓ 𝑣0

𝑡 ⇓rec 𝑣

𝑏0 ⊢ (let rec 𝑏 in
[
(let rec 𝑏0 in 𝑡1)/𝑥

]
𝑡0) ⇓rec 𝑣1

E-LetRec-TermBind

𝑏0 ⊢ let rec ((∼𝑥 : 𝑇 = 𝑡1), 𝑏) in 𝑡0 ⇓rec 𝑣1

𝑡0 ⇓ 𝑣0
E-LetRec-Nil

𝑏0 ⊢ let rec ∅ in 𝑡0 ⇓rec 𝑣0

Figure 18. Big-step operational semantics (let-bindings)
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