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In strict languages, laziness is typically modeled with explicit thunks that defer a computation until needed

and memoize the result. Such thunks are implemented using a closure. Implementing lazy data structures
using thunks thus has several disadvantages: closures cannot be printed or inspected during debugging;

allocating closures requires additional memory, sometimes leading to poor performance; reasoning about the

performance of such lazy data structures is notoriously subtle. These complications prevent wider adoption of

lazy data structures, even in settings where they should shine. In this paper, we introduce lazy constructors as
a simple first-order alternative to lazy thunks. Lazy constructors enable the thunks of a lazy data structure to

be defunctionalized, yielding implementations of lazy data structures that are not only significantly faster but

can easily be inspected for debugging.
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1 Introduction
Purely functional data structures have several important advantages. Data structures implemented

in a purely functional language are persistent, thread safe, and may be verified using elementary

methods. Efficient purely functional data structures, however, often require laziness to avoid

recomputation, even when implemented in a strict language [Okasaki 1998]. In a strict language,

like OCaml and Racket, computations may be deferred by creating an explicit thunk. Despite the

apparent simplicity of implementing laziness in this fashion, using higher-order functions has its

drawbacks: thunked computations cannot be printed or inspected; allocating closures requires

additional memory; reasoning about the performance of such arbitrary closures is a subtle affair.

This paper explores how to add a dash of laziness to a strict language, where computations

are deferred explicitly using a first-order data constructor , defunctionalizing the higher-order

closures programmers would otherwise write by hand. As we will show, these techniques suffice

to implement purely functional data structures efficiently, reducing the time and space used by

traditional implementation techniques. To sketch the main idea, consider the following definition

of a stream in Koka [Leijen 2014]:
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type stream<a>
SCons(head : a, tail : stream<a>)
SNil
lazy SAppend(s1 : stream<a>, s2 : stream<a>) ->

match s1
SCons(x,xx) -> SCons(x,SAppend(xx,s2))
SNil -> s2

Besides the familiar data constructors, SNil and SCons, there is a third lazy constructor SAppend.

Whenever we append two streams using this constructor, the operation takes constant time.

However, in contrast to the regular constructors, we never match on a lazy constructor. Instead,

whenever the run-time encounters an SAppend constructor, the associated right-hand side of the

data declaration is executed, producing a single SCons cell if the first stream is non-empty. Written

in this style, the append of the two streams happens on-demand, only traversing as much of the

first stream as is necessary. To illustrate this point, we define the take function on streams:
1

fun stream/take(xs : stream<a>, n : int) : list<b>
if n <= 0 then Nil
else match xs

SCons(x,xx) -> Cons(x, stream/take(xx,n - 1))
SNil -> Nil

As this definition shows, there is no need to write a case for the SAppend constructor. If there are

any lazy constructors in the argument stream, these are forced on-demand as the take function

traverses its input. This is best illustrated with an example:

val xs : stream<int> = SCons(0,SAppend(SCons(1,SNil),SCons(2,SNil)))

If we call take(xs,1) this produces a singleton list with the number 0, leaving the tail of the stream

unchanged. If we call take(xs,2), however, this evaluates the lazy SAppend constructor – but only

enough to discover that the second element of the resulting list should be 1. Taking three or more

elements forces the entire stream. This process happens entirely under the hood and the program

cannot observe that thunks have been evaluated. Laziness preserves referential transparency: a

lazy thunk is indistinguishable from the value it computes.

However, for debugging or educational purposes, it would be nice to be able to peek under the

hood [Gill 2000]. With lazy constructors, this is possible: the unsafe primitive debug-show displays the

lazy constructors without forcing any further evaluation. The informal description of the behaviour

of take is visible in the command line:

> take(xs,1); debug-show(xs)
SCons(0,SAppend(SCons(1,SNil),SCons(2,SNil)))
> take(xs,2); debug-show(xs)
SCons(0,SCons(1,SAppend(SNil,SCons(2,SNil))))
> take(xs,3); debug-show(xs)
SCons(0,SCons(1,SCons(2,SNil)))

Lazy constructors are limiting: unlike unrestricted laziness as in Haskell or the explicit thunks

in strict languages, our example stream only supports a single lazy operation. If we need other

lazy operations, we need to add further lazy constructors to the stream data type. As we shall see,

however, most implementations of lazy data structures (e.g. as given by Okasaki [1998]) rely only

on a handful of lazy operations. By making the laziness first-order, we gain the ability to inspect

and optimize thunked computations in new and interesting ways.

For example, the compiler can now statically determine the runtime size of each lazy constructor:

the memory location associated with each forced SAppend cell can for example always be reused

in-place for the resulting SCons cell, instead of overwriting it with an indirection node as in most

implementations of laziness. Moreover, with Perceus reference counting [Lorenzen and Leijen 2022;

1
In Koka, we can locally qualify an identifier, as in stream/take. A bare take is usually resolved to the right definition based

on the type context, but we can always use the fully qualified name as well to distinguish it for example from list/take.
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Reinking, Xie et al. 2021], if the matched SCons of s1 happens to be unique at runtime, the next

SAppend can reuse that memory in-place as well.

Just as first-order data types are easier to manipulate and implement efficiently than their Church

encoding, the first-order approach to laziness pioneered in this paper is both efficient and effective.

This paper demonstrates the applicability of lazy constructors, nails down their semantics, and

benchmarks the performance of our implementation in Koka. More specifically, this paper makes

the following contributions:

• We illustrate the use of first-order laziness through a series of examples drawn from Okasaki’s

book on functional on functional data structures [Okasaki 1998], such as the Bankers Queue and

Realtime Queue (Section 2). Our implementation using lazy constructors arises naturally from

defunctionalizing the thunked closures used in Okasaki’s original implementation (Section 3).

• We formalize the behaviour of lazy constructors as a modest extension of Launchbury’s natural

semantics for lazy evaluation [Launchbury 1993] and prove that this extension preserves type

soundness and referential transparency (Section 4).

• We present a small step semantics, which forms the basis of the implementation in Koka. The

first-order nature of lazy constructors enables new compiler optimizations that are not possible

in general: avoiding indirection nodes entirely; re-using memory; and running in constant stack

space. We justify these compiler optimizations using equational reasoning (Section 5).

• We implement lazy constructors in Koka and benchmark all lazy queues and heaps given

by Okasaki [1998]. Our benchmarks show that lazy data structures, implemented using lazy

constructors, are always faster than the same data structures implemented using traditional

thunks, and can come close to their strict implementations even in sequential settings where

laziness provides no benefit (Section 6).

The associated technical report [Lorenzen et al. 2025] contains proofs, listings of Okasaki’s data

structures and further examples of lazy constructors.

2 Programming with First-Order Laziness
To illustrate the importance of laziness, even in a strict language, we revisit the Bankers Queue

example by Okasaki [1998]. It is a typical example of a functional data structure that uses laziness

to obtain better amortized time complexity bounds in a persistent setting.

2.1 A Strict BankersQueue Using Lists
To warm up, we first define a strict Bankers Queue; the next section will give an alternative lazy

implementation using streams. A Bankers Queue consists of a pair of lists, where new elements are

appended to the rear list ys, and elements are removed from the front list xs:

struct queue<a> // queue with elements ‘xs ++ reverse(ys)‘
xs : list<a> // front list
n : int // length of the front
ys : list<a> // rear list (to be reversed)
m : int // length of the rear

The queue maintains the invariants that length(xs)==n, length(ys)==m, and n>=m. As the rear list

grows and the front list shrinks, the queue becomes unbalanced. To ensure the desired invariant is

maintained, Okasaki defines a balance function that sometimes moves the rear list to the front list:

fun balance( Queue(xs,n,ys,m) : queue<a> ) : queue<a>
if n >= m

then Queue(xs,n,ys,m)
else Queue(xs ++ reverse(ys), n + m, Nil, 0)
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The the enqueue and dequeue operations ensure the result queues are always balanced:

fun snoc( Queue(xs,n,ys,m) : queue<a>, y : a ) : queue<a>
balance(Queue(xs, n, Cons(y,ys), m + 1))

fun uncons( Queue(xs,n,ys,m) : queue<a> ) : maybe<(a,queue<a>)>
match xs

Cons(x,xx) -> Just((x, balance(Queue(xx, n - 1, ys, m))))
Nil -> Nothing

However, as noted by Okasaki, this implementation is not always very efficient. A rebalancing step

may take time linear in the length of the queue (xs ++ reverse ys). In a persistent setting, there may

be many shared references to a single queue; unless we ensure the rebalancing computation is also

shared, each reference may need to redo the rebalancing work. To illustrate this point, consider the

following code snippet:

val q = Queue(xs,n,xs,n)
for(1,n, fn(i) snoc(q,i))

In this example, we construct an ‘almost unbalanced’ queue q. Each snoc operation in the loop

requires the queue to be rebalanced, where each rebalancing requires 2n steps. Consequently, the

entire loop takes quadratic time. If, however, the rebalancing work is shared between the different

calls to snoc, then the loop runs in linear time. Even in this strict and persistent setting, there is a

clear need for some memoization in order to avoid such recomputation.

2.2 A Lazy BankersQueue Using Streams
To obtain the optimal amortized time complexity of the Bankers Queue in a persistent setting, we

need to ensure that the result of the rebalancing is shared between all copies of the queue. Rather

than using lists, we use a variation of the streams from the introduction instead:

struct queue<a>
xs : stream<a> // the front stream
n : int // length of the front
ys : stream<a> // rear stream
m : int // length of the rear

However, unlike our streams from the introduction, we not only need an append operation, but

also a reverse operation:

type stream<a>
SNil
SCons(head : a, tail : stream<a>)

lazy SAppend(s1 : stream<a>, s2 : stream<a>) ->
match s1

SCons(x,xx) -> SCons(x,SAppend(xx,s2))
SNil -> s2

lazy SReverse(s : stream<a>, acc : stream<a>) -> // accumulating reverse
match s

SCons(x,xx) -> SReverse( xx, SCons(x,acc) )
SNil -> acc

The rebalancing function now uses the lazy constructors to defer and share rebalancing:

fun balance( Queue(xs,n,ys,m) ) : queue<a>
if n >= m

then Queue(xs,n,ys,m)
else Queue(SAppend(xs,SReverse(ys,SNil)), n + m, SNil, 0)

Since the only operations we need to rebalance the queue are append and reverse, we only need two

lazy constructors – SAppend and SReverse. Moreover, the definitions of snoc and uncons remain un-

changed as we never match on lazy constructors. The balance function introduces lazy constructors,

but defers the associated work. Consider the loop we saw previously:
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val q = Queue(xs,n,xs,n)
for(1,1000, fn(i) snoc(q,i))

Each call to snoc simply creates a delayed computation for the rebalancing in constant time (as

SAppend(xs,SReverse(ys,SNil))), which only takes constant time. In contrast, the uncons operation

pattern matches on the front stream, which may trigger evaluation of the lazy constructors and

can thus take linear time. Still, Okasaki shows that this implementation of the bankers queue has

constant amortized time complexity.

2.3 Lazy Match
Unlike traditional implementations of laziness, lazy constructors remain first order. Consequently,

they can be printed for the sake of debugging:

> val xs = SCons(1,SCons(0,SNil))
> val q0 = Queue(xs,2,xs,2)
> val q = snoc(q,2)
> debug-show(q)
Queue( SAppend(SCons(1,SCons(0,SNil)),SReverse(SCons(2,SCons(1,SCons(0,SNil)))) ), 5, SNil, 0)

Of course, since q is persistent, we can uncons an element and still observe the original queue:

> val _ = uncons(q)
> debug-show(q)
Queue( SCons(1, SAppend(SCons(0,SNil),SReverse(SCons(2,SCons(1,SCons(0,SNil)))) ), 5, SNil, 0)

The reader may be startled at this point: clearly the queue q has changed! Doesn’t this break

referential transparency? The answer is no: though the stream has indeed changed, this cannot be

observed since any attempt to match on q never yields a lazy constructor. In fact, this is exactly

why any thunk can be overwritten with its value without breaking referential transparency.

However, it can be useful for debugging to peek under the hood during evaluation of a lazy data

structure: this is what the debug-show function does. This function is implemented using an additional

unsafe primitive, lazy match, that can observe lazy constructors without forcing evaluation.

The lazy match construct is used extensively to implement first-order laziness. In particular,

the Koka compiler inserts an additional eval call whenever a programmer matches on a data type

with lazy constructors. The compiler generated eval function evaluates the argument to weak head

normal form. The code corresponding to the uncons function becomes:

fun uncons( Queue(xs,n,ys,m) )
match stream/eval(xs) // compiler inserts an ‘eval‘ automatically

SCons(x,xx) -> Just((x, balance(Queue(xx, n - 1, ys, m))))
SNil -> Nothing

The eval function uses the lazy match primitive, inserting the code associated with each lazy

constructor in the corresponding branch, roughly like:

// compiler generated
fun stream/eval(s : stream<a>)

lazy match s
SAppend(s1,s2) -> match s1

SCons(x,xx) -> lazy-update(s, SCons(x,SAppend(xx,s2)))
SNil -> lazy-update(s, eval(s2))

SReverse(s1,acc) -> match s1
SCons(x,xx) -> lazy-update(s, eval(SReverse(xx, SCons(x,acc))))
SNil -> lazy-update(s, eval(acc))

_ -> s

where the lazy-update primitive updates the root node with the result. In practice, we generate

a more efficient version where we do not use stack space unnecessarily. While this stream/eval

function uses the stack in the last three branches (where eval is not a tail-call), we will derive a

more efficient version in Section 5.
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2.4 The BankersQueue with Logarithmic Worst-Case Time Complexity
While our Bankers Queue has constant amortized time complexity, its worst-case time complexity

is still linear in the size of the queue. The reversal is monolithic: once the SAppend is fully evaluated,

we need to completely reverse the second list to find the last element. How can we ensure that

these queues have better worst-case complexity?

Okasaki [1998] reimplements the Bankers Queue using rotations that combine appending with

reversal. However, our first-order lazy constructors support a simpler solution – albeit one that

requires further language support. The main idea is to evaluate at most one lazy constructor instead

of recursively evaluating up to weak head normal form. If we do this for the reversed tail each

time we evaluate an SAppend constructor, then we can ensure that by the time all SAppend’s are done,

the tail is fully reversed. To evaluate only one lazy constructor, the compiler generates a second

evaluation function, called eval-one:

// compiler generated
fun stream/eval-one(s : stream<a>) : stream<a>

lazy match s
...
SReverse(s1,acc) -> match s1

SCons(x,xx) -> lazy-update(s, SReverse(xx, SCons(x,acc)))
SNil -> lazy-update(s, acc)

_ -> s

As we can see, it is almost equivalent to the eval function. The key difference is that eval-one is no

longer recursive. For example, if the first list is Nil, the eval-one function returns the accumulated

list – whether it is in weak head normal form or not.

Using this primitive, we can reduce the worst-case time complexity from linear to logarithmic,

by only adding a single line to the code associated with the SAppend constructor:

type stream<a>
...
lazy SAppend( s1 : stream<a>, s2 : stream<a> ) ->

stream/eval-one(s2) // for each SAppend, evaluate also one SReverse
match s1

SCons(x,xx) -> SCons(x, SAppend(xx,s2))
SNil -> s2

The key here is that s2 always contains the SReverse constructor. In this fashion, we evaluate one

step of the reversal every time we invoke the SAppend constructor. As s2 is only one element longer

than s1 when rebalance, by the time the SAppend hits the SNil case the SReverse is almost done – we

pay a little more during each SAppend step, but gain more predictable performance overall.

2.5 Avoiding Stack Overflows from Recursive Evaluation
The code associated with the SAppend constructor seems entirely innocent. On closer inspection,

however, when there are nested SAppend constructors, this may trigger recursive evaluation:

type stream<a>
...
lazy SAppend( s1 : stream<a>, s2 : stream<a> ) ->

match s1 // may evaluate an SAppend recursively!
SCons(x,xx) -> SCons(x, SAppend(xx,s2))
SNil -> s2

As this call is not tail-recursive, it requires stack space. If the s1 stream is a long sequence of

unevaluated SAppend constructors, this may ultimately lead to a stack overflow.

This is not a purely theoretical concern. When working on our benchmarks, we discovered

that the Physicists Queue, Implicit Queue, and Binomial Heaps as presented by Okasaki [1998]

require stack space linear in the size of the queue. This can be a problem in practice: when two
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𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑥𝑠1, 𝑦𝑠1) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑅𝑜𝑜𝑡,𝑦𝑠1) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑅𝑜𝑜𝑡,𝑦𝑠1) 𝑆𝐶𝑜𝑛𝑠 (ℎ, 𝑡1)

𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑥𝑠2, 𝑦𝑠2) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑢𝑝1, 𝑦𝑠2) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑢𝑝1, 𝑦𝑠2) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑡2, 𝑦𝑠1)

𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑥𝑠3, 𝑦𝑠3) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑥𝑠3, 𝑦𝑠3) 𝑆𝐶𝑜𝑛𝑠 (ℎ, 𝑡3) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑡3, 𝑦𝑠2)

𝑆𝐶𝑜𝑛𝑠 (ℎ, 𝑡) 𝑆𝐶𝑜𝑛𝑠 (ℎ, 𝑡) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑡, 𝑦𝑠3) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑡, 𝑦𝑠3)

𝑥𝑠1 𝑡1

𝑥𝑠2

𝑢𝑝1 𝑢𝑝1

𝑡2

𝑥𝑠3

𝑢𝑝2

𝑥𝑠3 𝑡3

𝑢𝑝2

𝑡3

Fig. 1. In a Schorr-Waite traversal, we first descend and reverse the pointers until we find a normal constructor.
Then we evaluate the lazy constructors from the bottom-up. From left to right: (1) nested lazy constructors:
to force the topmost constructor we first have to force the ones below it, (2) the runtime has descended to
the bottom-most constructor and reversed the pointers, (3) the bottom-most constructor has been evaluated
and we follow the ‘up’ pointer, (4) the final result once evaluation is complete.

million elements were subsequently inserted into the Physicists Queue, the stack overflowed in

both Koka 3.1.3 and OCaml 4.14.2
2
. We are not aware of any technique that avoids this problem

with traditional lazy thunks.

However, as we show in detail in Section 5.5, this problem can be resolved with lazy constructors.

As we compile a specialized eval function for each data type, we can specialize eval to evaluate nested

thunks tail-recursively using an in-place Schorr-Waite traversal [Leijen and Lorenzen 2023 2025;

Lorenzen et al. 2023; Schorr and Waite 1967], illustrated in Figure 1. If a programmers wants to

ensure that an argument of a lazy constructor is fully evaluated before the constructor is evaluated,

they can put an exclamation mark, e.g. !xs, before the name of the argument. This indicates that

Koka’s runtime should force the argument before it begins to evaluate the lazy constructor
3
:

lazy SAppend( !xs : stream<a>, ys : stream<a> ) -> ...

With the ! annotation, before the SAppend constructor is evaluated, the runtime first evaluates the xs

stream. This does not require any extra stack- or heap space, since eval can keep track of all lazy

constructors under evaluation using an in-place zipper [Huet 1997; Lorenzen et al. 2024] stored in

the lazy constructors themselves. In this fashion, we avoid allocating arbitrary stack space, even if

SAppend constructors are nested.

2.6 The RealtimeQueue with Constant Time Complexity
The Bankers Queue operations are amortized constant-time, but still have logarithmic worst-case

time complexity. When the queue rebalances, the front stream may start with another SAppend

constructor. If this is the case, rebalancing creates nested SAppend constructors. Fortunately, the

number of nested constructors is bounded: since we only rebalance when the front stream is shorter

than the rear stream, we know that the number of nested SAppend thunks is logarithmic in the

total length of the queue. A call to uncons may have to perform one step for each of the SAppend

constructors in the front stream, leading to a logarithmic worst-case time complexity.

To ensure our operations have constant worst-case time complexity, we need the front stream to

evaluate one step every time we perform an operation on the queue. Okasaki [1998] (Section 7.2)

proposes to do this by adding a ‘schedule parameter’. This schedule parameter is a suffix of the

2
As measured on an Apple M1 which has a hard limit for stack size of 65mb.

3
At the moment this is not yet implemented in Koka but we hope to have it working soon according to the rules in

Section 5.5.
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front stream; the schedule starts with the only SAppend constructor in the entire stream. Maintaining

this invariant is the key ingredient to obtain constant worst-case time complexity.

struct queue<a>
front : stream<a>
rear : list<a>
sched : stream<a>

There are several other modifications to the queue type. Note that the rear queue is now a list rather

than a stream; rather than store the lengths of the front and rear stream, the schedule determines

when the queue must be rebalanced:

fun balance( Queue(front,rear,sched) : queue<a> ) : queue<a>
match sched

SCons(_,s) -> Queue(front,rear,s)
SNil -> val f = SAppend(front,SReverse(rear,SNil)) in Queue(f,Nil,f)

In each rebalancing operation, the schedule is evaluated to weak head normal form. If the schedule

is non-empty, its tail becomes the new schedule. Rebalancing happens when the schedule is empty

– and hence the front stream is fully evaluated. In that case, the new schedule is initialized to f,

shared with the new front of the queue. As the front stream is fully evaluated, f will never contain

nested SAppend constructors. This ensures the desired constant worst-case time complexity.

The only thing that remains to be done, is implement the snoc and uncons operations:

fun snoc( Queue(front,rear,sched) : queue<a>, x : a) : div queue<a>
balance( Queue(front, Cons(x,rear), sched) )

fun uncons( Queue(front,rear,sched) : queue<a> ) : div maybe<(a,queue<a>)>
match front

SCons(x,xx) -> Just((x, balance(Queue(xx,rear,sched))))
SNil -> Nothing

As both operation call balance, they are guaranteed to advance the schedule, as required. In the

previous examples we mostly relied on laziness to defer computation, but in the Realtime Queue we

also rely on the computation being shared – in this case between the front stream and the schedule.

3 Illuminating First-Order Laziness
To develop a deeper intuition for lazy constructors, we begin by showing how these arise naturally

as the defunctionalized version of explicit thunks. To do so, we recreate the stream definition used

in the previous section, starting from the more familiar implementation from the literature. We

begin by defining the standard stream interface, without using any lazy constructors, but instead

deferring computations with explicit thunks:

alias stream<a> = thunk<streamcell<a>>
type streamcell<a>

SCons( head : a, tail : stream<a> )
SNil

A stream is a list where the list cells are separated by lazy thunks (using the style of Wadler

et al. [1998] and Okasaki [1998, section 4.2]). This makes it possible to perform operations like

appending streams in constant time initially, where the linear-time append is only evaluated once

that part of the list is reached. Such delayed computations are encapsulated in thunks, which take

a closure that is only evaluated when needed. Thunks have the typical interface:

type thunk<a>
fun delay( f : () -> a ) : thunk<a>
fun force( t : thunk<a> ) : div a

The delay function creates a thunk from a computation and force evaluates the thunk. In Koka, we

use the div effect to indicate that forcing a thunk may diverge. Under the hood, the implementation

ensures that the computation is run at most once: after the first call to force, its result is memoized
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and returned in constant time upon every subsequent call. We can use this API to implement the

familiar append and reverse functions on streams:

fun sappend( s1 : stream<a>, s2 : stream<a> ) : div streamcell<a>
match s1.force

SCons(x,xx) -> SCons(x, append(xx,s2))
SNil -> s2.force

fun append( s1 : stream<a>, s2 : stream<a> ) : div stream<a>
delay{ sappend(s1,s2) }

fun sreverse( s1 : stream<a>, s2 : stream<a> ) : div streamcell<a>
match s1.force
SCons(x,xx) -> sreverse(xx, delay{ SCons(x,s2) })
SNil -> s2.force

fun reverse( s1 : stream<a> ) : div stream<a>
delay{ sreverse(s1, delay{ SNil }) }

3.1 Lazy Constructors for Thunks
As the first step towards recreating the streams used in the previous section, we begin by imple-

menting the thunk<a> interface using lazy constructors:

type thunk<a>
Memo( v : a )
lazy Lazy( f : () -> a ) ->

Memo( f() )

This type has two constructors. The Memo constructor stores a value of type a. The Lazy constructor

is a lazy constructor that can be used to construct a values of type thunk<a>. Remember, the lazy

constructor is never observable in a match statement; any match on a value of type thunk<a> will

force evaluation of the corresponding expression, Memo( f() ). Using this definition, we can easily

simulate the typical thunk interface from strict languages:

fun delay( f : () -> a ) : thunk<a>
Lazy(f)

fun force( t : thunk<a> ) : a
match t

Memo(v) -> v

The power of lazy constructors is that they allow us to specialize thunks to the computations they

contain. By analyzing the possible closures f that may be stored in Lazy, we can specialize the

higher-order thunk<a> type for our program. We define the first-order stream<a> type as:

type stream<a> =
Memo( v : streamcell<a> )
lazy SAppend( xs : stream<a>, ys : stream<a> ) ->

Memo( sappend(xs, ys) )
lazy SReverse( xs : stream<a>, acc : stream<a> ) ->

Memo( sreverse(xs, acc) )

We keep the Memo constructor from the definition of thunk<a> but specialize Lazy(f) to the two

computations that are used. This type now has two separate lazy constructors for these two

computations, but we can still define force as before. We do need to update the corresponding code

to append and reverse streams. The definition for sappend, for example, now reads:

fun sappend( s1 : stream<a>, s2 : stream<a> ) : div streamcell<a>
match s1.force

SCons(x,xx) -> SCons(x,SAppend(xx,s2))
SNil -> s2.force

Here we still need to force each stream to a streamcell. Where the previous definition deferred the

recursive call to sappend, we now simply use the lazy SAppend constructor to the same effect.
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3.2 The Cost of Laziness
Based on the last section, one might think that lazy constructors are just the defunctionalization of

explicit thunks. But, in fact, they are a bit more powerful than that and allow us to fix a performance

problem that arises when using explicit thunks. Let us consider a fully evaluated stream, such as:

> val nums = Memo(SCons(1, Memo(SCons(2, Memo(SCons(3, Memo(SNil)))))))

There is an indirection node between every pair of adjacent elements in the stream! This is a

consequence of the encoding of streams, where the elements of streamcell<a> and those of stream<a>

alternate. This means that traversing even a fully-evaluated stream will require twice as many

pointer lookups as traversing a list: all SCons and Memo nodes live in different cells linked by pointers.

In practice, languages like OCaml can mitigate this problem since they distinguish indirection

nodes from all other values, which makes it possible to omit indirection nodes when the stream is

fully evaluated on creation.

However, if a stream is the result of a lazy computation, the indirection nodes are unavoidable.

For example, if we append a stream to nums, the SAppend constructor has to be rewritten as a Memo

constructor to ensure that all references to app can share the memoized result:

> val nums’ = SAppend(nums, Memo(SNil))
> debug-show(force(nums’))
Memo(SCons(1, SAppend(Memo(SCons(2, Memo(SCons(3, Memo(SNil))))), Memo(SNil))))

This implies that once we fully evaluate the append, all Memo nodes in the stream are necessary:

> debug-show(forceall(nums’))
Memo(SCons(1, Memo(SCons(2, Memo(SCons(3, Memo(SNil)))))))

These indirections are typical for the traditional approach to laziness, but they may introduce a

significant performance cost compared to a strict program. Appending to a list of length n involves

only n allocations, but appending to a stream of length n requires 2n allocations to also create all

the indirection nodes in between. In fact, without defunctionalization, this is usually even more

expensive since each thunk involves another allocation for a closure and so 3n allocations can be

necessary.

Furthermore, the indirection nodes stay in the stream even once the thunks are fully evaluated,

where they introduce additional pointer lookups. Garbage collected languages like OCaml may

remove this indirection during GC runs, but this optimization is not available in reference counted

languages such as Koka [Leijen 2014] or Lean [Moura and Ullrich 2021].

This is one of the reasons why lazy data structures are often less efficient than their strict

counterparts. As we show in our benchmarks, the classic lazy data structures of Okasaki [1998] are

a factor of 2-3x less efficient than their strict counterparts when implemented using explicit thunks.

3.3 Fusing Streams and Stream Cells
In contrast to traditional approaches to laziness, first-order lazy constructors allow us to remove

most of these indirections. To obtain a better version of stream<a> with fewer indirections, we inline

the definition of streamcell<a> in the type of streams:

type stream<a>
SNil
SCons( x : a, xx : stream<a> )
lazy SAppend( xs : stream<a>, ys : stream<a> ) ->

sappend(xs, ys)
lazy SReverse( xs : stream<a>, acc : stream<a> ) ->

sreverse(ys, acc)

Compared to the previous stream<a> declaration, we have replaced the Memo constructor with the SNil

and SCons constructors. Furthermore, we do not return Memo from SAppend and SReverse and instead

return the remaining stream immediately. This makes the structure of the type quite different: where
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the previous definition would alternate SCons cells with thunks, we can nowmix normal and lazy con-

structors arbitrarily. For example, the fully evaluated stream SCons(1, SCons(2, SNil)) is a valid inhabi-

tant of this stream type, as is the stream containing lazy constructors SAppend(SAppend(SNil, SNil), SNil).

To complete this definition, however, we need to update our sappend and sreverse functions.

These no longer need to match on Memo constructors, but rather manipulate the streams directly. To

illustrate this point, we redefine both sreverse and sappend:

fun sreverse( s1 : stream<a>, s2 : stream<a> ) : div stream<a>
match s1

SCons(x,xx) -> sreverse( xx, SCons(x,s2) )
SNil -> s2

fun sappend( s1 : stream<a>, s2 : stream<a> ) : div stream<a>
match s1
SCons(x,xx) -> SCons(x, SAppend(xx,s2) )
SNil -> s2

Note that, unlike our previous definition, we now build the accumulator of sreverse as a sequence

of SCons cells with no more indirection nodes Memo in between.

But where did the indirections go? We still need to memoize the result of evaluating an SAppend

or SReverse. To ensure the results of evaluating these lazy constructors are still shared, Koka inserts

an implicit indirection into the lazy constructor above:

lazy SAppend( xs : stream<a>, ys : stream<a> ) ->
Indirect(sappend(xs, ys))

When matching on a stream s it can now happen that s is an indirection node, pointing to some s’.

In that case the runtime follows the indirection and keeps matching on s’. These indirection nodes,

however, are only created when a lazy constructor is evaluated. For example, the accumulator built

in the sreverse function is completely free from indirections. This reduces the memory overhead

that typically arises from sharing lazy computations.

3.4 In-Place Reuse of Lazy Constructors
As an additional optimization Koka avoids allocating an indirection node when it sees a constructor.

This is exactly what made our earlier thunk<a> type work:

type thunk<a>
Memo( v : a )
lazy Lazy( f : () -> a ) ->

Memo( f() )

Here, no implicit indirection node is created: instead the memory underlying the Lazy constructor

is rewritten to contain a Memo constructor during evaluation.

By inlining the definitions of sappend and sreverse into the definition of the stream data type, we

avoid indirection nodes altogether. The type of the SAppend constructor then becomes:

lazy SAppend( xs : stream<a>, ys : stream<a> ) ->
match xs

SCons(x,xx) -> SCons(x, SAppend(xx,ys))
SNil -> ys

This definition makes explicit that the SAppend constructor evaluates to an SCons constructor if the

first branch is taken. Koka can detect this fact and will not create an indirection node in that

case: instead the memory cell holding the SAppend constructor is overwritten to contain the SCons

constructor. This is similar to how the original Spineless Tagless G-machine can sometimes perform

in-place updates of closures instead of creating indirections [Peyton Jones 1992].

In those branches where the tail position is not a constructor of an appropriate size, we still

generate an indirection node. In the SNil case above, we reuse the space of the SAppend constructor

for an indirection to ys. To get rid of them, we can inline the force and match on the second stream:
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lazy SAppend( xs : stream<a>, ys : stream<a> ) ->
...

SNil -> match ys
SCons(y,yy) -> SCons(y,yy)
SNil -> SNil // an indirection is still necessary here

This rewrites SAppend into SCons in the first branch and only requires an indirection node in the last

case. However, if the old SCons in ys still has a reference it will stay around, which can increase

space usage [Peyton Jones 1992].

3.5 In-Place Reuse with Reference Counting
It is important to note that our in-place reuse of lazy constructors is quite different to in-place reuse
using reference counting [Reinking, Xie et al. 2021; Schulte and Grieskamp 1992; Ullrich and de

Moura 2019]. In that setting, memory cells are reused in-place when their reference count is one.

In contrast, the memoization of lazy constructors does not require reference count at all. In fact,

memoization is only useful if the memory cell is shared among several references!

Nonetheless, the Koka compiler combines both techniques. Internally, the Koka compiler rewrites

the SAppend constructor to the following code snippet:

lazy SAppend( xs : stream<a>, ys : stream<a> ) as _root ->
match xs

SCons( x, xx ) as cell ->
reuse-always(_root, SCons( x, reuse-if-unique(cell, SAppend(xx,ys)) ))

SNil -> reuse-always(_root, Indirect(ys))

That is, the _root memory cell holding the SAppend constructor is overwritten with the SCons cell in

the first branch and the Indirect node in the second branch. This is independent of the reference

count of the stream cell. Conversely, if the reference count of the cell of the front stream happens

to be one (and only then), its memory location is reused for the new SAppend constructor.

When a programming languages combines lazy constructors with reference counting, this allows

programmers to write code that runs with no fresh allocations at all. This is a key advantage of the

first-order approach to laziness. Koka’s memory re-use based on reference counts is limited to first-

order data constructors: it cannot re-use memory locations associated with closures or traditional

thunks. Our approach paves the way for adding laziness to the fully in-place calculus [Lorenzen et

al. 2023], which promises to enable the first fully in-place lazy data structures.

4 Formalization
In this section we formalize a high-level view on lazy constructors that abstracts from implementa-

tion concerns such as in-place updates. First, we consider a model of lazy constructors based on

Section 3.1, where forcing does not have to recurse. Our type A F B states that a lazy constructor

carrying A can be forced using the function F to yield a normal constructor of type B and will

be memoized. This model of lazy constructors is quite similar to traditional laziness and we can

adapt Launchbury [1993]’s semantic to reason about it.

Similar to how normal data types can be encoded as a sum-of-products, we propose to model

lazy data types as a thunked-sum-of-products. For example, a lazy data type such as:

type example
A(a1 : A1, ..., ai : Ai)
B(b1 : B1, ..., bj : Bj)
lazy C(c1 : C1, ..., ck : Ck) -> e_c
lazy D(d1 : D1, ..., dl : Dl) -> e_d

might be encoded as

((C1 × . . . × Ck) + (𝐷1 × . . . × 𝐷l)) F ((A1 × . . . × Ai) + (B1 × . . . × Bj))
with: F (lv) = case lv { inl (c1, . . ., ck) → ec ; inr (d1, . . ., dl) → ed }.
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However, this encoding only works if ec and ed are guaranteed to return one of the constructors

A or B. As described in Section 3.3, we want to allow lazy constructors to also return further lazy

constructors. To model this, we wrap the lazy type into a recursive type:

𝜇𝛼. ((C1 × . . . × Ck) + (𝐷1 × . . . × 𝐷l)) F (((A1 × . . . × Ai) + (B1 × . . . × Bj)) + 𝛼)
This allows the function F to return either a normal constructor (inl) or another lazy constructor (inr).
As we show in this section, we can perform more optimizations if we fuse the recursive type and the

lazy constructors into an abstract type of recursive lazy constructors A F B := 𝜇𝛼. A F (B + 𝛼).
Our final encoding is then:

((C1 × . . . × Ck) + (𝐷1 × . . . × 𝐷l)) F ((A1 × . . . × Ai) + (B1 × . . . × Bj))

4.1 Core Calculus
Figure 2 shows the syntax and typing rules of a calculus with lazy constructors. The calculus is a

standard lambda calculus restricted to be first-order. As such, we include units, sums, products and

isorecursive types but not closures. We include top-level function declarations F (x) = e : A → B.
The restriction to first-order is not necessary for the soundness of lazy constructors (and indeed,

you can store closures in lazy constructors in Koka), but it emphasises our point that laziness can

exist in a purely first-order setting.

Tomodel lazy constructors, we add a new typeA F B. This type represents the lazy computation

that arises from applying the top-level function F to an argument of type A, evaluating to a value

of type B. We can create a new value of this type by supplying an already computed value v : B as

memo v or an input v : A to the computation as lazyF v. While these introduction forms are similar

to a sum type, the elimination form step v always returns a value of type B, either by evaluating the
computation F or by returning the memoized value. The introduction forms lazyF v and memo v
are not part of the syntax for values, since in the semantics they involve the side-effect of allocating

a new location in a store which can persist the result of the lazy evaluation.

4.2 Natural Semantics
In Figure 3, we present a big-step semantics for our calculus. The judgement Γ : e ⇓ Δ : v means

that under store Γ the expression e will evaluate to store Δ and value v. For the standard features

of our calculus, the big-step rules are straightforward and they do not modify the store.

Following the Natural Semantics for Lazy Evaluation [Launchbury 1993], we use a store Γ to

keep track of thunks. While Launchbury stores expressions e in the store, we store lazy constructors

of the form lazyF v. Assuming that it is known in advance what possible expressions can appear,

these representations correspond where F abstracts the expression e as e = F (v) with v = fv(e).
Launchbury stores a fully evaluated expression as a value w, whereas we use the more explicit

memo w.
The lazy rule then follows Launchbury’s Let-rule, where we create a new thunk in the store Γ

and return a new reference to it. Similar to how the Let-rule applies both to expressions and values

(since values are a subset of expressions), our lazy rule applies to all lazy values (both lazyF v and

memo v). The step rule follows Launchbury’s Variable-rule, where we remove x from the store,

evaluate the computation and store the result in the new store. In the Variable-rule, the computed

value is further transformed to rename all bound variables, but we can omit this step since our

values do not contain lambdas and thus no bound variables. If the thunk happens to be evaluated

already, we use the recall rule to access it.
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Types:

A, B ::= 1 | A + B | A × B | 𝛼 | 𝜇𝛼. A | A F B

Values and Expressions:

v ::= x, y, z (variables) e ::= v | lv ((lazy) values)

| () (unit) | let x = e in e (let binding)

| inl v | inr v (sum) | case v { inl x → e; inr y → e } (case split)

| (v, v) (pair) | split v { (x, y) → e } (splitting pairs)

| fold v (fold rec. type) | unfold v (unfold rec. type)

lv ::= memo v (memoized value) | F v (application)

| lazyF v (lazy computation) | step v (single-step forcing)

Σ ::= ∅ | Σ, F (x) = e : A → B (recursive top-level functions)

Γ, x : A ⊢ x : A
var

Γ ⊢ v : Ai i ∈ {l, r}
Γ ⊢ ini v : Al + Ar

inl/inr

Γ ⊢ v : A Γ ⊢ w : B

Γ ⊢ (v, w) : A × B
pair

Γ ⊢ v : A[𝜇𝛼. A/𝛼]
Γ ⊢ fold v : 𝜇𝛼. A

fold

Γ ⊢ () : 1

unit

⊩ ∅
defbase

Γ ⊢ e1 : A Γ, x : A ⊢ e2 : B

Γ ⊢ let x = e1 in e2 : B
let

Γ ⊢ v : Al + Ar Γ, x : Ai ⊢ ei : C

Γ ⊢ case v { inl x → el ; inr y → er } : C
case

Γ ⊢ v : A × B Γ, x : A, y : B ⊢ e : C

Γ ⊢ split v { (x, y) → e } : C
split

Γ ⊢ v : 𝜇𝛼. A

Γ ⊢ unfold v : A[𝜇𝛼. A/𝛼]
unfold

F : A → B ∈ Σ Γ ⊢ v : A

Γ ⊢ F v : B
app

⊩ Σ x : A ⊢ e : B

⊩ Σ, F (x) = e : A → B
deffun

F : A→ B ∈ Σ Γ ⊢ v : A

Γ ⊢ lazyF v : A F B

F : A → B ∈ Σ Γ ⊢ v : B

Γ ⊢ memo v : A F B

Γ ⊢ v : A F B

Γ ⊢ step v : B

Fig. 2. Syntax and Types for a First-order Calculus with Lazy Constructors

4.3 Soundness
We show that our calculus is sound with respect to our semantics using a logical relation. We

include a step-indexing parameter k since our calculus includes isorecursive types and write ⇓k for
evaluations that can be performed in k steps. A store Δ extends Γ in k steps, written as Γ ⊑k Δ, if
Δ only contains more or more-evaluated thunks than Γ. Concretely, we take the reflexive-transitive
closure of the rules:
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Γ : v ⇓ Γ : v
value

F (x) = e ∈ Σ
Γ : e[v/x] ⇓ Δ : w

Γ : F v ⇓ Δ : w
app

z fresh

Γ : lv ⇓ (Γ, z ↦→ lv) : z
lazy

z ↦→ memo v ∈ Γ

Γ : step z ⇓ Γ : v
recall

Γ : e1 ⇓ Δ : v Δ : e2 [v/x] ⇓ Θ : w

Γ : let x = e1 in e2 ⇓ Θ : w
let

Γ : e[v1/x, v2/y] ⇓ Δ : w

Γ : split (v1, v2) { (x, y) → e } ⇓ Δ : w
split

Γ : unfold (fold v) ⇓ Γ : v
unfold

Γ : ei [v/xi] ⇓ Δ : w

Γ : case (ini v) { inl xl → el ; inr xr → er } ⇓ Δ : w

Γ : F v ⇓ Δ : w

(Γ, x ↦→ lazyF v) : step x ⇓ (Δ, x ↦→ memo w) : w
step

Fig. 3. Natural Semantics for Lazy Constructors

Γ ⊑1 Γ, x ↦→ lv
extend

Γ : F v ⇓k Δ : w

Γ, x ↦→ lazyF v ⊑k+1 Δ, x ↦→ memo w
eval

As usual for logical relations we will argue that if an expression can evaluate to a value under a

store Γ then it evaluates to the same value for all stores that extend Γ. In this interpretation, the

lazy rule thus encodes the notion of referential transparency: evaluating arbitrary thunks in the

heap does not change whether (and to what) an expression evaluates.

Next, we define our meaning of valuesVkJAK and expressions Ek,ΔJAK. Since we are working
with a big-step semantics, we can not distinguish between stuck and diverging programs. However,

we will prove that if a well-typed program evaluates to a value, then the value will have the correct

type:

Ek, ΔJAK := { e | ∀j < k. ∀Θ, v. (Δ : e ⇓j Θ : v) ⇒ Δ ⊑j Θ and (Θ, v) ∈ Vk − jJ A K }
The interpretation of values is straightforward in all cases except for the lazy type. For a lazy value

lazyF v, we need both that v is valid for type A and that the thunk can be evaluated to a value of

type B at any time in the future:

VkJ 𝜇𝛼. A K := { (Δ, fold v) | ∀j < k. (Δ, v) ∈ VjJ A[𝜇𝛼. A/𝛼]K }
VkJ A F B K := { ((Δ, z ↦→ lazyF v), z) | (Δ, v) ∈ VkJ A K, ∀j ⩽ k, Θ. Δ ⊑j Θ ⇒

F v ∈ Ek − j, ΘJBK }
∪ { ((Δ, z ↦→ memo v), z) | (Δ, v) ∈ VkJ B K }

With this setup, we can prove:

Lemma 1. (Store extension preserves types.)
If (Δ, v) ∈ VkJ A K and Δ ⊑j Θ, then (Θ, v) ∈ Vk − jJ A K.
We connect our semantics to the type system by defining the semantic soundness relation Γ ⊨ e : A
which implies that for all substitutions 𝜎 of variables in Γ by values of the correct type that are

valid for k more steps, the evaluation of e will yield a value of type A in k steps (if it converges):

Γ ⊨ e : A := ∀k ⩾ 0, Δ, 𝜎 ∈ Gk,ΔJΓK. 𝜎 (e) ∈ Ek,ΔJAK
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Then we obtain our type soundness result:

Theorem 1. (Type Soundness.)
If Γ ⊢ e : A, then Γ ⊨ e : A.
As an intermediate result from our soundness proof, we also see that evaluating the heap further

does not change the final computed value. This shows that the evaluation of lazy constructors in

the store in referentially transparent:

Theorem 2. (Lazy evaluation is referentially transparent.)
If Γ : e ⇓ Δ : v and Γ ⊑ Γ′, then Γ′ : e ⇓ Δ′

: v with Δ ⊑ Δ′
.

4.4 Recursive Lazy Constructors
To model a type like the stream, where SReverse can evaluate to another lazy constructor SReverse, we

need to encode lazy data types using iso-recursive types. In the style of a delay monad [Altenkirch

et al. 2017; Capretta 2005; Chapman et al. 2019] or trampoline [Ganz et al. 1999], we can define a

type of recursive lazy constructors as:

A F B := 𝜇𝛼. A F (B + 𝛼)
where the eval function recursively steps the lazy constructors until we obtain a non-lazy construc-

tor:

eval x = case (step (unfold x)) { inl y → y; inr y → eval y }
This design is only a small extension of our first model of lazy constructors, yet allows us to encode

the full power of lazy constructors as in Section 3.3. However, while the definition above is a correct

description of recursive lazy constructors, it turns out that our implementation contains another

subtlety: it does not allow us to distinguish how many iterations eval had to perform.

Consider an inhabitant of this type like fold (memo (inr (fold (memo (inl v))))). At first glance,
it might appear that the outer indirection is unnecessary and that the value is in fact equivalent

to fold (memo (inl v)), since both values yield v when passed to eval. However, in the definition

above, there is no restriction that lazy constructors are always deconstructed using eval, which
makes it possible to distinguish the two values by simply case-splitting after a call to step. This is a
well-known problem for implementations of laziness that attempt to short-cut indirections. For

example, consider the following OCaml code:

let nested = lazy (lazy (raise Not_found))
let eval l = match l with lazy v -> ()
let () = eval nested; eval nested; ()

In this code, we evaluate the outer lazy twice and expect the exception not to be thrown. However,

after the first evaluation, the lazy is rewritten into an indirection. If the runtime system attempted

to short-cut the indirection, this would make nested point to the inner lazy value. Then the second

evaluation would throw the exception, thus changing the semantics of the program. In practice,

OCaml’s runtime system still tries to short-cut indirections, but guarantees that this does not

affect the semantics of the program; in particular, indirections are not removed if they lead to an

unevaluated lazy value
4
.

However, our example is a bit different from the OCaml example: while the two lazy values in

OCaml belong to different thunks, in our case the two indirections morally belong to the same

thunk. This suggests that if we were to make our encoding abstract, we could use this fact to

short-cut the indirection.

4
https://github.com/ocaml/ocaml/blob/4.14/runtime/minor_gc.c#L236
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4.5 Short-Cutting Indirections
To be able to short-cut indirections, we thus need to ensure that the encoding of recursive lazy

constructors stays abstract and make it a first-class type in our calculus. We introduce a new

type A F B and define its interpretation by fusing the A F B type with the iso-recursive type

wrapped around it:

VkJ A F B K := { ((Δ, z ↦→ lazyF v), z) | (Δ, v) ∈ VkJ A K, ∀j < k, Θ. Δ ⊑ Θ ⇒
F v ∈ Ek − j, ΘJ B + (A F B) K }

∪ { ((Δ, z ↦→ memo v), z) | (Δ, v) ∈ VkJ B K }
∪ { ((Δ, z ↦→ indirect v), z) | ∀j < k. (Δ, v) ∈ VjJ A F B K }

Compared to earlier, a lazy value now evaluates to B + (A F B), but memo still only contains

values of type B. Instead, if the lazy value evaluates to A F B, then we create an indirection node

pointing to the folded lazy constructor. The crucial aspect of this formalization is that we can now

shortcut indirections. We formalize this using the following two rules:

y ↦→ indirect z ∈ Γ

Γ, x ↦→ indirect y ⊑ Γ, x ↦→ indirect z
cuti

y ↦→ memo v ∈ Γ

Γ, x ↦→ indirect y ⊑ Γ, x ↦→ memo v
cutm

We do not allow shortcutting an indirection that points directly to a lazy constructor since that

could duplicate work: if the lazy constructor would be duplicated into a different location in the

store, its evaluation would be independent of the evaluation of the original location. Our referential

transparency theorem still holds for this calculus:

Theorem 3. (Short-cutting indirections is referentially transparent.)
If Γ : e ⇓ Δ : v and Γ ⊑ Γ′, then Γ′ : e ⇓ Δ′

: v with Δ ⊑ Δ′
.

5 Implementation
While Section 4 gives a high-level overview over lazy constructors, it does not give a direct strategy

for implementing lazy constructors efficiently. In this section, we instead take a more low-level

view. We propose several primitives that can be used to implement lazy constructors efficiently

and derive an efficient recursive evaluation algorithm. Unlike the high-level step function of the

previous section, our new low-level primitives do not preserve the referential transparency of

lazy evaluation and should thus be exposed only as unsafe or kept hidden in the underbelly of a

compiler.

In Section 2.3, we define a simple stream/eval function, but already noticed that it used too

much stack space. In this section, we will show how to derive a more efficient implementation of

stream/eval:

fun stream/eval( s : stream<a> )
lazy match s

SAppend( s1, s2 ) -> lazy-eval-sappend(s, s1, s2)
SReverse( s1, acc ) -> lazy-eval-sreverse(s, s1, acc)
Indirect(ind) -> eval(ind)
_ -> s

fun lazy-eval-sappend( s : stream<a>, s1 : stream<a>, s2 : stream<a> )
match s1
SCons(x,xx) -> lazy-update(s, SCons(x, SAppend(xx, s2)))
SNil -> lazy-update(s, Indirect(s2)); eval(s2)

fun lazy-eval-sreverse( s : stream<a>, s1 : stream<a>, acc : stream<a> )
match s1
SCons(x,xx) -> lazy-eval-sreverse(s, xx, SCons(x, acc))
SNil -> lazy-update(s, Indirect(s2)); eval(s2)

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 261. Publication date: August 2025.



261:18 Anton Lorenzen, Daan Leijen, Wouter Swierstra, and Sam Lindley

Expressions:

e ::= . . . (as before)

| lazy match v { lazyF l y → e; memo y → e } (lazy match and acquire lock)

| memoize l w (update cell and release lock)

Σ ::= . . . | Σ, F (l; x) = e : A→ B → C (top-level functions)

We keep all rules as in the high-level core calculus except step. We augment each rule with a linear

environment L of locations. For the introduction rules, unfold rule and app rule L is empty, the let

rule splits L among its antecedents while the case and split rules pass L to their antecedents.

Furthermore we add the rules:

⊩ Σ l : A | x : B ⊢ e : C

⊩ Σ, F (l; x) = e : A → B → C
deflapp

F : A→ B → C ∈ Σ ∅ | Γ ⊢ v : B

l : A | Γ ⊢ F l v : C
lapp

∅ | Γ ⊢ w : B

l : A F B | Γ ⊢ memoize l w : B
memoize

∅ | Γ ⊢ v : A F B L, l : A F B | x : A ⊢ e1 : C L | Γ, y : B ⊢ e2 : C

L | Γ ⊢ lazy match v { lazyF l x → e1; memo y → e2 } : C
lazymatch

Fig. 4. Low-level core calculus

Compared to our simpler implementation, we can see that we now write an indirection node if

a lazy constructor returns another lazy constructor. This allows us to keep evaluating without

using stack space, but means that we might have to follow an indirection chain from a previous

evaluation. Furthermore, our simpler version generated an eval(SReverse(xx, SCons(x,acc)))), where

a lazy constructor is created and immediatedly evaluated. In our new implementation, we instead

directly jump to the correct evaluation function lazy-eval-sreverse which saves a branch and writes

to memory.

Unfortunately, it is tricky to show that our final implementation is in fact correct, where a lazy

constructor will be updated to the correct value. However, it turns out that we can derive this

version by equational reasoning from the simpler implementation, which corresponds more clearly

to our high-level calculus.

5.1 Implementation Calculus
Our low-level calculus is a variation of the high-level calculus. We introduce two new primitives:

lazy match v { lazyF l x → e1; memo y → e2 } allows us to inspect the value of a lazy constructor.

In the first branch e1 we additionally get access to the location l of the lazy constructor. Our second

primitive memoize l w allows us to overwrite the cell l of a lazy constructor with memo w. A
location l : : A F B acts as a destination for a value of type B [Allain et al. 2025; Bagrel and

Spiwack 2025; Shaikhha et al. 2017], which can filled usingmemoize. In our semantics, all locations

l returned by lazy match are locked and thus can not be accessed until the lock is released by

memoize.
To ensure the soundness of the low-level calculus, we need to ensure that locked locations are

handled linearly. In particular, this guarantees that a locked location is overwritten using memoize
exactly once. We achieve this by adding a second environment L to the calculus that contains all

locked locations and ensure that no locked location can ever escape into a value held in Γ. The rules
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Store and evaluation context:

v : := a | . . . (heap cells)
𝜑 : := memo v | lazyF v | locked
S : := ∅ | S, a ↦→𝜑

E : := □ | let x = E in e

S | e1 −→ S′ | e2
S | E[e1] ↦−→ S′ | E[e2]

step

Evaluation steps:

(let) S | let x = v in e −→ S | e[v/x]
(app) S | F v −→ S | e[v/x] where F (x) = e ∈ Σ
(split) S | split (v1, v2) { (x, y) → e } −→ S | e[v1/x, v2/y]
(case) S | case (ini v) { inl xl → el ; inr xr → er } −→ S | ei [v/xi]
(unfold) S | unfold (fold v) −→ S | v
(lazy) S | lazyF v −→ S, a ↦→ lazyF v | a a fresh
(memo) S | memo v −→ S, a ↦→memo v | a a fresh
(memoize) S, a ↦→ locked | memoize a w −→ S, a ↦→memo w | w
(lazy match) S, a ↦→v | lazy match a { lazyF l x → e1; memo y → e2 }

−→ S, a ↦→ locked | e1 [a/l,w/x] if v = lazyF w
−→ S, a ↦→memo w | e2 [w/y] if v = memo w

Fig. 5. Small-step semantics of implementation

of our high-level calculus can be modified to treat the L environment linearly in the usual way.

In further preparation, we add a new type of top-level function F (l; x) which also takes a location.

This is necessary, since locked locations may not be stored in values and so we can not represent

this by a product F ((l, x)). Despite taking two arguments a function F (l; x) has to be fully applied.

Given those primitive operations, we can implement the step operation as:

step x = lazy match x
lazyF l v → memoize l (F v)
memo y → y

It is easy to see that with this implementation of step, the original step rule of the high-level

calculus becomes derivable. In particular, our low-level calculus strictly extends the high-level

calculus:

Lemma 2. (The low-level calculus implements the high-level calculus)
If Γ ⊢ e : A, then ∅ | Γ ⊢ e : A.

5.2 Small-Step Semantics
In Figure 5, we describe a small-step semantics for lazy constructors. As in the natural semantics, we

only keep lazy constructors in the store. Each memory cell is either a lazy ormemo value or locked.
The small-semantics of the derived step function corresponds directly to the natural semantics of

the primitive step: while the big-step semantics removes the cell x from the heap entirely during

evaluation, the small-step semantics keeps it in the heap as locked and thus inaccessible. This

allows us to prove that the small-step semantics faithfully implements the big-step semantics:

Lemma 3. (The small-step semantics implements high-level semantics.)
If Γ : e ⇓ Δ : v, then Γ | e ↦−→∗ Δ | v.
Would it also be possible to show the reverse direction? In general this is not possible, since the

implementation calculus allows us to memoize any value of the correct type, while the high-level

calculus only allows us to memoize values that are produced by the evaluation of a lazy constructor.
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However, for expressions that can be checked in the high-level calculus, the small-step semantics

and the big-step semantics are equivalent.

Our description of cells under evaluation as “locked” mirrors our implementation: If Koka

detects that a lazy constructor is thread-shared (recorded using reference counts [Ullrich and

de Moura 2019]), Koka will use an atomic compare-and-swap to overwrite the tag of the lazy

constructor with a special tag that indicates that the cell is being evaluated. The lazy match
primitive acquires this lock during matching and the memoize primitive releases it. This ensures

that a cell is evaluated at most once, even in the presence of multiple threads. However, as in other

implementations of laziness, the evaluation of a lazy constructor may deadlock if it tries to evaluate

itself. Haskell and OCaml can detect this case and throw an exception.

5.3 Tail-Recursive Evaluation
Using our new primitives, we can obtain a faster implementation of the lazy evaluation function.

As before, we can define the recursive forcing function as:

eval x = case (step (unfold x)) { inl y → y; inr y → eval y }
= lazy match (unfold x)

lazyF l v → case (memoize l (F v)) { inl y → y; inr y → eval y }
memo y → case y { inl y → y; inr y → eval y }

In the first branch of the lazy-match we run F v, memoize its result and then case-split to find out

if the result can be returned (inl) or is a lazy constructor that needs to be evaluated further.

It turns out that we can often avoid the case-split if we specialize the eval function to the concrete

function F that is evaluated in the lazy constructor. To achieve this we will use equational reasoning

in the style of [Leijen and Lorenzen 2023 2025]. First, we define the translation JeKl as:
JeKl = case (memoize l e) { inl y → y; inr y → eval y }

For the function F that is evaluated in eval, we define a specialized function F ′
with the definition:

F ′(l; v) = JF vKl
and we can use it in our eval function as:

eval x = lazy match (unfold x)
lazyF l v → F ′ l v
memo v → case v { inl y → y; inr y → eval y }

So far, nothing has happened: our new evaluation function corresponds exactly to the previous

version. However, we have shifted the position of the case-split from the eval function into the

translation. The key insight is now that we can improve the translation JeKl by specializing it

to different syntactic constructs. For example, several syntactic constructs permute with both

memoize l and case:
Jlet y = e1 in e2Kl = let y = e1 in Je2Kl
Jcase v { inl y → e1; inr y → e2 }Kl = case v { inl y → Je1Kl ; inr y → Je2Kl }
Jsplit v { (y, z) → e }Kl = split v { (y, z) → JeKl }

This means that we can push down the memoization and case-split into the return values of the

computation F . If the translated expression e is well-typed, there are few possible return values to

F . For variables (and unfolds of variables), we have to perform the memoization and case-split. But

in some cases we can do better:

Jinl wKl = memoize l (inl w); w
Jinr wKl = memoize l (inr w); eval w

If the function F ends in inl w, the evaluation ends at this point. We can thus memoize this result
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∅ | Γ ⊢ w : B

l : A F B | Γ ⊢ memoize l w : B

∅ | Γ ⊢ w : A F B

l : A F B | Γ ⊢ indirect l w : A F B

∅ | Γ ⊢ v : A F B L, l : A F B | x : A ⊢ e1 : C
𝐿 | Γ, y : A F B ⊢ e2 : C L | Γ, z : B ⊢ e3 : C

L | Γ ⊢ lazy match v { lazyF l x → e1; indirect y → e2; memo z → e3 } : C
lazymatch

Evaluation steps:

(memoize) S, a ↦→ locked | memoize a w −→ S, a ↦→memo w | w
(indirect) S, a ↦→ locked | indirect a w −→ S, a ↦→ indirect w | w
(lazy match) S, a ↦→v | lazy match a { lazyF l x → e1; indirect y → e2; memo z → e3 }

−→ S, a ↦→ locked | e1 [a/l,w/x] if v = lazyF w
−→ S, a ↦→ indirect y | e2 [w/y] if v = indirect w
−→ S, a ↦→memo w | e3 [w/z] if v = memo w

Fig. 6. Short-cutting indirections

and return w without an extra case-split. If the function F ends in inr w, we also memoize the

intermediate result and directly continue evaluating it.

In our implementation, these two cases enable the in-place update of lazy constructors: Since we

know the size of the data that is memoized, we can often avoid creating an indirection node memo
and instead write the data directly into the lazy cell.

Another interesting special case is if we can already see syntactically what the next lazy thunk

will be. This happens for example when a SReverse constructor is evaluated to another SReverse. In

that case, we can specialize the call to eval further:
Jinr (fold (lazyF v))Kl = case (memoize l (inr (fold (lazyF v)))) { inl y → y; inr y → eval y }

= let y = lazyF v in memoize l (inr (fold y)); eval (fold y)
= let y = lazyF v in memoize l (inr (fold y)); lazy match y

lazyF l v → F ′ l v
memo v → case v { inl y → y; inr y → eval y }

= let y = lazyF v in memoize l (inr (fold y)); lock y in F ′ y v
In the last line, we now create a new lazy cell, memoize it in l and then immediately jump to F ′

.

Since F ′
expects y to be locked, we use the macro:

lock y in e := lazy match y { lazyF y _ → e; memo v → impossible }
However, this might seem slightly wasteful: Why do we write the result into a new cell y and

write an indirection into l when we could just write the result into l? This is not quite possible so
far, since we do not consider indirections specially and thus run into the problem of Section 4.4.

However, by considering indirections as proposed in Section 4.5, we can use an additional reasoning

step to reduce the last line to just F ′ l v.

5.4 Short-Cuts During Evaluation
To be able to short-cut indirections, we change our memoize and lazy match primitives and add

a new indirect primitive as in Figure 6. The indirect instruction acts like memoize but puts an

indirect into the store that can be safely shortcut as shown in Section 4.5. On the locations l we
now have to record the full type of the lazy constructor, where a location of type of type A F B
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Expressions:

e ::= . . . (as before)

| link l (l′, v) in e (link cells and keep lock)

| unlink { inl () → e; inr (l, x) → e } (unlink locked cells)

𝜑 : := memo v | lazyF v | locked | locked (z, v)
(link) S, a ↦→ locked | link a (a′, v) in e −→ S, a ↦→ locked (a′, v) | e

(unlink) S, a ↦→v | unlink a { inl () → e1; inr (l, x) → e2 }
−→ S, a ↦→ locked | e1 if v = locked
−→ S, a ↦→ locked | e2 [a′/l,w/x] if v = locked (a′, w)

∅ | Γ ⊢ v : A L, l : �A B | Γ ⊢ e : C

L, l : B, l′ : �A B | Γ ⊢ link l (l′, v) in e : C
link

L | Γ ⊢ e1 : C L, l : B, l′ : �A B | Γ, x : A ⊢ e2 : C

L, l : �A B | Γ ⊢ unlink l { inl () → e1; inr (l′, x) → e2 } : C
unlink

Fig. 7. Linking cells

can be filled either with an indirection to another value of type A F B or with the memoized

result B. Given those primitive operations, we can refine the eval operation from Section 5.3 as:

eval x = lazy match x
lazyF l v → case (F v) { inl y → memoize l y; inr y → eval (indirect l y) }
indirect y → eval y
memo y → y

We can now repeat the calculation from the previous section. The cases for let-bindings, case-

statements and split-statements are the same and for inl w and inr w we obtain similar terms.

The main difference is in the special inr (lazyF v) case. After calling F ′ y v, y points to a chain of

indirections ending in a memo. The cutm and cuti short-cutting rules give us the laws:

indirect l y; memoize y z = memoize l z; memoize y z
indirect l y; indirect y z = indirect l z; indirect y z

This allows us to replace the evaluation of F ′ y v by F ′ l v:

Jinl wKl = memoize l w
Jinr wKl = indirect l w; eval w
Jinr (lazyF v)Kl = let y = lazyF v in indirect l y; lock y in F ′ y v

= let y = lazyF v in lock y in indirect y l; F ′ l v
= F ′ l v

In the last case, we are creating an indirection in y that points to l. But then the cell y is unused

and we can avoid allocating it altogether.

In practice, we also short-cut indirections in the indirect case of the lazy match construct. This

important in practice to avoid long chains of indirections, which can change the time complexity if

traversed repeatedly. We discuss in more detail in our tech report [Lorenzen et al. 2025].

5.5 Linking Cells for Schorr-Waite Traversal
Leading up to our discussion of the Schorr-Waite traversal, we make another addition to our

calculus. While we have so far represented locked cells by the value locked, our implementation

actually only sets a flag in the header to indicate that they are locked. This means that the storage
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space of the cell remains available even while it is in a locked state. In our calculus, we use a new

value locked (l, v) to indicate that a cell is in a locked state but contains both another location l
and a value v.

We can write to a locked cell l using the link l (l′, v) in e construct and we can check whether a

locked cell l contains a value using the unlink l construct. Cells that may contain a value have type

�A B, which means they contain a linked value of type A and are a destination for type B. To create
a linked chain in the first place, we assume that there is a cell null : �A B in the environment

(corresponding to a NULL pointer in the implementation).

5.6 Schorr-Waite Evaluation of Lazy Constructors
As we saw in Section 2.5, the evaluation of thunks can lead to stack overflow, if there are recursive

calls to eval in F . We can avoid this by further transforming the lazy evaluation function as JeKz,l
with an additional zipper z that is stored in the lazy cells themselves.

For the i-th call to eval in F , we write Ei to denote its evaluation-context. Let Ai be the product

type of the free variables of Ei. We define the zipper as the sum type of the Ai and define an unroll
function that for a given zipper extracts the correct evaluation context to continue:

unroll l v = unlink l
inr (z, 𝛼) → case 𝛼 { ini 𝛼 i → JEi [v]Kz,l }
inl () → v }

Then we can extend our translation to find such evaluation contexts, construct the zipper and call

the correct unroll function:
JEi [eval v]Kz,l = link l (z, ini 𝛼 i) in unroll l (eval v) where 𝛼 i = fv(Ei)

Again, we see that nothing has changed: the call to unroll can be inlined to yield the left-hand-side,

since the unlink in unroll just extract what we just linked into l. But this setup now provides us

with a technique for making the call to eval tail-recursive. We define a new forcing function that

includes the unroll:
eval′ z x = unroll z (eval x)

= unroll z (case (step (unfold x)) { inl y → y; inr y → eval y })
= case (step (unfold x)) { inl y → unroll z y; inr y → unroll z (eval y) }
= case (step (unfold x)) { inl y → unroll z y; inr y → eval′ z y }
= lazy match (unfold x)

lazyF l v → case (memoize l (F v) ) { inl y → unroll z y; inr y → eval′ z y }
memo y → case y { inl y → unroll z y; inr y → eval′ z y }

This suggests that we change our interpretation function to:

JeKz,l = case (memoize l e ) { inl y → unroll z y; inr y → eval′ z y }
which yields our tail-recursive forcing function:

eval′ z x = lazy match (unfold x)
lazyF l v → F ′ z l v
memo y → case y { inl y → unroll z y; inr y → eval′ z y }

eval x = eval′ null x
As before we have:

Jlet y = e1 in e2Kz,l = let y = e1 in Je2Kz,l
Jcase v { inl y → e1; inr y → e2 }Kz,l = case v { inl y → Je1Kz,l ; inr y → Je2Kz,l }
Jsplit v { (y, z) → e }Kz,l = split v { (y, z) → JeKz,l }
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But now our bases cases are:

Jinl wKz,l = memoize l (inl w); unroll z w
Jinr wKz,l = memoize l (inr w); eval′ z w
Jinr (lazyF v)Kz,l = let y = lazyF v in memoize l (inr (fold y)); lock y in F ′ z y v

Compared to our previous calculation, little has changed: we only pass the zipper on to eval′ and
call unroll once evaluation is finished. In the remaining indirection in the last case can be short-cut

to just F ′ z l v as discussed in Section 5.4.

6 Benchmarks
To test the runtime performance of lazy constructors, we have implemented all the lazy queues and

heaps presented by Okasaki [1998], both using the standard approach with lazy thunks and with

our new approach using lazy constructors. We benchmark them in a sequential setting without

sharing of the persistent data structures. Since the laziness has no performance benefits in this

setting (even in a theoretical or amortized sense), this allows to isolate the performance overhead

of laziness itself. We compare the following systems and implementations:

• Koka (lazy): Koka 3.1.3 (-O2 –no-debug) using the implementation given by Okasaki with Koka’s

traditional lazy type.

• Koka (strict): Same as Koka (lazy) but with all laziness removed from the implementations.

• Koka (lazy cons): Same as Koka (lazy) but using our custom implementation with lazy

constructors.

• OCaml (lazy): OCaml 4.14.2 (-O2, OCAMLRUNPARAM="s=16M") using the implementations as given

by Okasaki using the Lazy.t type.

• OCaml (strict): Same as OCaml (lazy), but with all laziness removed from the implementations.

• Haskell (lazy): GHC 9.10.1 (-O2 -threaded -fworker-wrapper-cbv and +RTS -N8 -A32M -qb0) using

the implementations given by Okasaki.

• Haskell (strict): Same as Haskell (lazy) but compiled using -XStrict.

• Koka (no reuse): As we discuss in the next section, reuse analysis [Lorenzen and Leijen 2022;

Reinking, Xie et al. 2021] has a large impact on the performance of the benchmarks in Koka,

so we also test the Koka benchmarks with the –fno-reuse flag which disables reuse analysis.

For queues, we iterate the following procedure 1000 times: we snoc 100 000 integers into a queue,

where in the first iteration we generate the integers at random and in the following iterations

we uncons the elements out of the previous queue. This setup means that at any time the memory

contains up to two queues with about 100 000 elements combined. This keeps the RSS of the

program stable over the course of a benchmark run which particularly helps garbage collected

languages. For heaps, we use the same method where we deleteMin from one heap and insert into

the next, but we only do this for 100 heaps.

The benchmarks results are shown in Figure 8 where we normalize against the run time of the

strict versions. The figure shows from top-to-bottom the benchmarks for Koka, Koka with no-reuse,

OCaml, and Haskell. The results support our three main claims:

(1) Compared to the strict version, traditional lazy thunks have a significant average perfor-

mance overhead of 150% in Koka, 110% in OCaml, and 140% in Haskell. In contrast, lazy

constructors have a smaller average overhead of just 43% in Koka.

(2) Lazy constructors are always faster than traditional lazy thunks.

(3) In some benchmarks, the performance overhead of lazy constructors is less than 25%, thus

yielding lazy data structures that are close in performance to their strict counterparts, while

maintaining superior theoretical properties.
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Fig. 8. Benchmarks on Apple M1 for Okasaki’s queues and heaps in a sequential setting. Each graph shows
results relative to the strict version of the benchmark. From top-to-bottom, the results are for Koka, Koka
with no-reuse, OCaml, and Haskell.
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6.1 Reuse Analysis and Laziness
We have split our analysis of Koka’s performance into two parts: one with reuse analysis enabled

and one with it disabled. Reuse analysis significantly improves the performance of strict data

structures in Koka. However, it is much less useful in a lazy setting. To see this, consider the

realtime queue, where we perform a lazy rotation using a stream type:

alias stream<a> = thunk<streamcell<a>>
type streamcell<a> =

SNil
SCons( x : a, xs : stream<a> )

fun rotate( front : stream<a>, rear : list<a>, sched : stream<a> ) : pure stream<a>
match (front.eval(), rear)

(SNil, Cons(y,_)) -> memo(SCons(y,sched ))
(SCons(x,xs), Cons(y,ys)) -> delay{ SCons(x, rotate(xs,ys,memo(SCons(y,sched))) ) }

Here, memo creates a thunk from an existing value, while delay creates a thunk from a computation.

Crucially, while reuse analysis can reuse the space from the Cons cell for the SCons cell passed to

memo in the first branch, it does not apply to the constructors in the closure passed to delay. This is

because reuse analysis never considers reuse opportunities under closures, since closures can be

run arbitrarily often (although, in this case, this is a missing optimization since the delay function

guarantees that the closure is only called once).

In contrast, when laziness is removed, the stream becomes a simple list and both the front and

rear list can now be reused for the final result:

fun rotate( front : list<a>, rear : list<a>, sched : list<a> ) : pure list<a>
match (front, rear)

(Nil, Cons(y,_)) -> Cons(y, sched)
(Cons(x,xs), Cons(y,ys)) -> Cons(x, rotate(xs,ys,Cons(y,sched)))

In practice, reuse analysis can significantly speed-up both the strict version of this data structure

and our version with lazy constructors, while the traditional lazy version remains mostly unaffected.

7 Related Work
Quotient Types. Lazy constructors A F B can be viewed as a quotient type obtained by quoti-

enting the sum-type A + B by the step function, while recursive lazy constructors A F B are

the sum type quotiented by eval. In general, it is possible to mutate quotient types under the hood,

where one element of an equivalence class can be swapped with any other element of the same

class without breaking referential transparency. This trick was proposed by Selsam et al. [2020]

and was a major inspiration for this work. They show how to implement pointer equality and

hash-based memoization under a quotient so that they can be used in pure code, but do not consider

the interaction with recursive types.

Semantics of Laziness. Nailing down the semantics of lazinesswas a longstanding problem. Launch-

bury [1993] was the first to give a natural semantics for lazy evaluation. The key insight was

to require all function arguments to be let-bound; whenever an argument was evaluated, the

corresponding heap location was updated. Sestoft [1997] has derived an abstract machine from

Launchbury’s lazy semantics. Even though the resulting machine is first order, it still needs to

handle arbitrary lazy closures. Deriving a similar machine from our semantics for lazy constructors

would be interesting further work. More recently, Nakata and Hasegawa [2009] have given an

alternative small-step and big-step semantics for laziness, that has been proven to be equivalent to

the original natural semantics by Launchbury.

Laziness in OCaml. OCaml short-cuts indirection nodes during GC when the indirection points

to a strict value. If the indirection node points to a lazy value or another indirection, it can not be
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short-cut to preserve the soundness of lazy pattern matching. In recent versions of OCaml, the

short-cutting of indirection nodes is disabled when using instrumentation [Dolan 2018] and during

major GC [Dolan 2021]. However, in practice, it appears that most lazy values are either forced

early and their indirection short-cut during minor GC or not forced at all [Scherer et al. 2021].

OCaml’s implementation of laziness currently does not support multicore [Scherer et al. 2021].

Laziness in Haskell. In Haskell, laziness is pervasive: all function arguments are evaluated lazily by

default. As such, Haskell compilers use sophisticated techniques to make this efficient [Hartel 1991;

Johnsson 1984; Marlow and Peyton Jones 2004 2006; Marlow et al. 2007; Peyton Jones 1992]. Just like

our lazy constructors, early GHC implementations based on Spineless Tagless G-Machine [Peyton

Jones 1992] used to update closures in-place if the closure was large enough. This approach was later

abandoned [Marlow and Peyton Jones 1998,page 12] in favor of a more uniform return convention.

As we showed in Section 5.3, we need to be careful to preserve lazy semantics when applying

optimizations, and the GHC compiler takes great care to preserve laziness during its many program

transformations [Peyton Jones and Lester 1991; Peyton Jones et al. 1996].

8 Limitations and Future Work
The Global Nature of Defunctionalization. One drawback of lazy constructors is that they have to

be declared up-front in the data type definition. This means that our approach does not support

adding lazy constructors to a data type defined in a different module or library. To enable users

of a library to define their own thunks, its author may add special lazy constructors such as

lazy SLazy(f : () -> stream<a>) -> f() to their types. Users can then use these lazy constructors

to define their own thunks, but they will be based on closures and not defunctionalized. To also

benefit from defunctionalization, a programming language could combine lazy constructors with

open data types [Löh and Hinze 2006]. However, open lazy constructors would have to carry a

function pointer to their evaluation function, which makes it harder to see where reuse happens

and we expect the performance may be slightly worse due to the indirect call.

GADTs and Effects. As typical for defunctionalized programs [Pottier and Gauthier 2004], some

thunks can only be expressed as lazy constructors if the language supports GADTs [Cheney

and Hinze 2003; Xi et al. 2003]. Koka currently assumes that for a type like stream<a>, all lazy

constructors return a stream<a> and not, for example, a stream<int>. To lift this restriction, we would

have to implement GADTs, so that the branches of the lazy match construct can make use of this

type information. Furthermore, Koka assumes that lazy constructors perform no effects except

divergence. We could allow lazy constructors to perform other effects (eg. throw an exception,

write to a reference, I/O), but then every function that matches on a lazy data type would have to

be annotated by those effects, leading to the expression problem if a new lazy constructor is added

later.

Concurrency. Since Koka’s reference counting scheme makes it possible to efficiently determine

whether a thunk is thread-shared or not [Reinking, Xie et al. 2021; Ullrich and de Moura 2019], our

implementation can use a fast-path and does not have to acquire or release locks in single-threaded

programs. For thread-shared thunks, we implement blackholing using an atomic compare-and-swap

operation, where other threads will busy-wait until the evaluation of the lazy constructor is complete.

This is an inefficient strategy, which is likely to be slower than more advanced schemes [Harris

et al. 2005]. However, we plan to change the implementation in the future to block threads an a

mutex. In particular, any lazy constructor has at least one field (to hold a possible indirection) and

while being black-holed, we can use that field to store a mutex on which other threads block.
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