JFP 35, €20, 27 pages, 2025. (© The Author(s), 2025. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.

doi:10.1017/S0956796825100087

Towards type-directed compiler calculation

WOUTER SWIERSTRA

Utrecht University, Netherlands
(e-mail: w.s.swierstra@uu.nl)

Abstract

This paper explores a principled approach to calculating abstract machines and associated compilers,
starting from an intrinsically typed interpreter. After deriving a compiler for a simple expression lan-
guage in some detail, the first steps of this calculation are repeated to derive an optimizing evaluator
for the simply typed lambda calculus.

1 Introduction

A compiler translates high-level programs to machine instructions. These instructions may
be drawn from some fixed instruction set for a particular piece of hardware, but they
may equally well be instructions for a theoretical model of such hardware, sometimes
referred to as an abstract machine. To verify that a compiler preserves the semantics of the
source language is no small task (Leroy, 2009). Recently, there has been a renewed inter-
est in calculating compilers from their specification (Bahr & Hutton, 2015, 2020, 2022;
Pickard & Hutton, 2021). Such calculations guarantee that the compiler is correct, without
necessitating further proof post hoc.

These calculations, however, are not entirely mechanical. In particular, when deriving
a stack-based evaluator from one written in direct style (the types of), the stack machine
operations are invented during calculation, rather than calculated from their specification.
This paper aims to explore a recurring pattern in these calculations, showing how a com-
piler may be derived by first calculating a stack-based evaluator in a type-directed fashion.
The complete derivation of a verified compiler proceeds in several steps:

e We will start by defining an intrinsically typed evaluator. This paper covers two
such evaluators: one for a simple arithmetic language (Section 2.1) and the other for
the simply typed lambda calculus (Section 3).

e Next, we will formulate the #ypes of the target stack machine, together with the
correctness property that the stack machine should satisfy (Section 2.2). This
correctness property forms the specification of our desired stack machine.

e A straightforward calculation, starting from this specification, yields a stack-based
interpreter, both for arithmetic expressions (Section 2.3) and the lambda calculus
(Section 4).

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796825100087
https://orcid.org/0000-0002-0295-7944
mailto:w.s.swierstra@uu.nl
https://doi.org/10.1017/S0956796825100087

2 W. Swierstra

e To derive a compiler for the language of arithmetic expressions, the stack-based
interpreter is first written in continuation passing style (Section 2.4). From this
interpreter, we will read off a linear instruction set corresponding to our target
language. The compiler itself maps each language construct to its corresponding
instruction; the derived execution of the target language interprets each instruction
to the corresponding stack machine operation (Section 2.5).

e Alternatively, defunctionalizing the CPS transformed stack-based interpreter yields
a tail-recursive abstract machine in the style of Ager et al. (2003) (Section 2.6).

Crucially, the types drive the calculations. For the lambda calculus, we do not replay the
same series of steps as for our arithmetic language. Instead, we will focus on deriving
optimizations by modifying the types used to represent variable binding (Section 5). The
calculations presented here are inspired by those by Meijer (1992); each step in our calcu-
lations has been fully formalized in the interactive proof assistant and dependently typed
programming language Agda (Norell, 2007).

2 A simple expression language

Before we can start calculating a compiler, we need to fix the source language and its
semantics. We will begin by writing an intrinsically typed tagless interpreter in the style
of Augustsson & Carlsson (1999). From this interpreter, we will derive the compiler for a
typed stack machine language, as proposed by McKinna & Wright (2006). This result is
not surprising, but it will showcase the style of calculation that we will use throughout the
remainder of this article.

2.1 An intrinsically typed interpreter

A well typed interpreter needs a language of types. For the sake of simplicity, we will
consider a simple universe with natural numbers, booleans, and functions:

data U : Set where
bool : U
nat : U

= :U=-U—=>U

Any element of this universe can be mapped to its corresponding Agda type. We will
sometimes refer to this as the denotation or interpretation of our (object) types:

[] : U— Set
[bool] = Bool
[nat] =N

[a=b] = [a]— [b]

With our types in place, we can now define the expression language that is the object of
our study.

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

Towards type-directed compiler calculation 3

data Expr : U — Set where
val : N— Exprnat
plus : Expr (nat = nat = nat)
if . Expr(bool=a=a=a)
app : Expr(a=b)— Expra— Exprb

Our expressions consist of (natural number) values, additions, conditional statements, and
application. We could add numerous other operations — such as Boolean constants, com-
parisons, other arithmetic operations, and so forth — none of which would require any novel
insight when performing the upcoming calculations. We have chosen to keep the language
small, yet capturing several different language constructs. In contrast to other compiler
calculations (Bahr & Hutton, 2015), we have chosen to include different types, including
functions and a polymorphic language construct. Note that, although we have a single node
for applications — rather than make each operator store its recursive arguments — this is not
an essential design choice, but allows for parts of the calculation to be reused when consid-
ering the lambda calculus. The source language is chosen to exhibit various programming
language features, rather than be particularly expressive. There is, for example, no way to
write a boolean valued expression with only this choice of constructors.

We can reap the rewards of our well typed syntax when defining an interpreter. The type
of our eval function maps expressions to their corresponding values:

eval : Expra— [a]

eval (val x) =x
eval if = if_then_else_
eval plus = 4+

eval (app t; tz) = (evalty) (eval tp)

The tagless interpreter relies on the static type structure: each operator of the expression
language is mapped to its Agda counterpart; the app constructor is mapped to Agda’s
application. The types structure imposed on our expression language ensures this definition
type checks.

2.2 Stack-based interpreters

With this interpreter in place, we can now start working towards our calculation. The stack
machine that we will calculate will use the same types — but we will assign them a different
meaning. We aim to derive a stack-based evaluator where a function’s arguments are stored
on a stack. To type such stacks, we extend the meaning of our types to work over lists of
types, storing an element of the corresponding type:

[_]* : List U— Set
[ar- =T
[a:as]*=[a] x[as]*
Now we can define an alternative meaning for our types, mapping types to stack-based

functions. Each such stack-based function expects its arguments pushed on the top of the
stack, replacing them with the result of the function call:

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

4 W. Swierstra

[_]s : U— Set
[a]s = V{o : ListU} — argsaoc — resultac

This definition uses two auxiliary functions, args and result, that compute the shape of the
argument stack and resulting stack, respectively:

args : U — List U— Set
args(a=>b)o = [a]s x argsbo
argsnat 0 = [o]*
argsboolo = [o]*

result : U— List U — Set
result bool o = Bool x [o]*
resultnat o =Nx[o]*
result (a=b)o = resultbo

At this point, an example is in order. Previously, we interpreted our object type nat as
Agda’s natural numbers, N. With the stack-based interpretation of types, however, this
becomes a function from stacks to stacks:

[nat]s = V{o}—=>[o]*>Nx][o]*

Rather than return a natural number directly, we now expect an input stack and produce an
output stack with a natural number on it. More generally, a function type a = b becomes
stack transformer, taking the arguments a on the top of the input stack, producing an out-
put stack storing a value of type b on its top. In contrast to most stack-based semantics,
the values stored on the stack will be functions themselves, rather than a natural number.
We will revisit the higher-order nature of the values stored on the stack in the discussion
towards the end of this paper.

Equivalence of type denotations. The two denotations we have defined for our types
are equivalent. We can define the conversion in either direction by induction on the type
structure:

a:Va—=[a]—>[a]s
y:Va—=>[a]s—[a]

abool xé& = (x,%)
o nat x & =(x,§)
a(@=>b)f(x,&) =ab(f(yax)é

y bool f = proj; (ftt)
y nat f = proj; (ftt)
y@=bf=Aax—>ybRré—>f(xax,§))

At base types, nat and bool, the conversions are straightforward. The conversion to stack-
based types pushes the argument value on the top of the stack. In the opposite direction,
the stack-based semantics is run on an empty stack, tt, before projecting out the desired

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

Towards type-directed compiler calculation 5

value from the top of resulting stack. The case for function types is more involved. Let us
look at both cases in more detail:

e The o function converts a function in direct style to its stack-based equivalent. If we
ignore the conversions « and y on the right-hand side of the definition, we see that
top of the stack x, is fed into f, before recursing and feeding any remaining stack
arguments into the result.

e Conversely, the y function converts a stack-based function to one in direct style.
Once again, we begin by ignoring the conversions « and y that occur in the function
definition. The lambda bound argument x is pushed on to the stack &; the resulting
stack is then passed to the function f. The two conversions ensure that the top of
the stack stores a values of type [a]s and the lambda’s body returns a value of type
[b] as required.

These functions combine two ideas that can be found in the literature. The names are
borrowed from Meijer (1992), who refers to these functions as the abstraction and con-
cretization functions respectively. In his thesis, he shows how these functions form a
generalized form of curry and uncurry, recursively rearranging a function’s arguments
in the appropriate fashion. The curry and uncurry functions typically have the following
type:

uncurry : (a—>b—>c)—>(axb)—c
curry :((@axb)—»>c)—(@—>b—c¢)

The o and y functions defined above, however, are recursive: any (additional) arguments
are recursively (un)curried. Although the function types we have encountered so far (aris-
ing from addition and conditionals in our source language) are first order, this will no
longer be the case once we add lambda abstractions.

The types of the « and y functions from Meijer’s thesis have been generalized, inspired
by recent work on categorical compiler calculation by Elliott (2020). Where Meijer’s orig-
inal definition did not account for (arbitrary) stacks, Elliott states that ‘the essence of stack
computation’ is captured by the following type:

a—>b = Vo—>(axo)—>(bxo)

By repeatedly uncurrying and accounting for the ambient stack, we arrive at the definition
of @ and y above.
Finally, we assert that these two functions are mutual inverses:

ay-inv:Va—(x:[a]) >x=ya(xax)
ya-inv :Va— (x: [a]s) > @a(yax)=x

Proving these equalities directly in Agda, however, is not possible. In particular, they rely
on both function extensionality and parametricity, both of which are admissible but not
provable in Agda. We can complete this proof, provided we add these as postulates. In
what follows, we will leave the arguments to both « and y implicit, as these are (usually)
inferred by Agda automatically.

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

6 W. Swierstra

2.3 Calculating a stack-based interpreter

The problem of finding a stack-based interpreter for evaluating our language boils down
to finding a function mapping expressions to their ‘stack machine’ semantics. That is, we
would like to uncover a function with the following type:

stack-eval : Expra— [a]s

Of course, not any such function will do. In particular, it should satisfy the following
property:

correctness : V(e : Expra) (& : argsao) — « (eval e) £ =stack-evale &

This specification suffices to determine the definition of our next interpreter. The calcu-
lation proceeds by induction on the expression, unfolding the definitions of eval and «.
We will present each case individually; the derivations we provide have been checked by
Agda — but we have replaced the proofs terms by comments explaining each step. In the
final step of each calculation, we can read off the definition of the stack-eval function for
that particular case.

Constant values. The case for values is entirely straightforward:

correctness (val x) & = begin
o (eval (val x)) &
=(definition of eval)
ax§&
=(definition of @)

wer |

X,
=(use as definition)

stack-eval (val x) &

|

Unsurprisingly, the stack-based evaluation of a value simply pushes the value on top of
the stack. After each of our calculations, we define a separate function handling that con-
structor — which we will reuse later when calculating the corresponding compiler. In this
case, the calculation above gives rise to the following function that pushes its argument on
to the input stack:

push : N— [nat]s
pushx & = (x,§)

Addition. The case for addition is not much harder.

correctness plus (x,y, &) = begin

a (eval plus) (x,y, &)

=(definition of eval)
a(C+) X,y 8)

=(definition of o)
yx+vyy.§

=(use as definition)
stack-eval (plus) (x, vy, &)
O

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

Towards type-directed compiler calculation 7

One advantage of defining addition as a leaf in the abstract tree of our expression language,
rather than a node with two sub-expressions, is that the calculation of addition does not
require induction, but follows trivially: we only need to unfold the definitions of eval and
a. The corresponding operation for our stack-based interpreter adds the numbers on the
top of the stack:

add : [nat= nat=nat]s
add (x,y.§) = (yx+vy.§)

Conditionals. The case for conditional statements is a bit more complicated. Here Agda
sometimes struggles to instantiate the (implicitly quantified) type of the two conditional
branches. Furthermore, the calculation uses two lemmas to apply a function and pass an
argument to both branches.

correctnessif (c,t, e, &) = begin
a(evalif)(c,t,e,§)
=(definition of eval)
a (if_then_else_)(c,t,e, &)
=(distribution over if)
(ify cthena (yt)elsea (ye))é
=(by ya-inv)
(ify cthentelsee) &
=(distribution over if)
(ify cthent& elseeé)
=(use as definition)
stack-eval if (c,t, e, &)
U

From the last line, we can read off the conditional operation for our target interpreter:

cond : [bool=>a=a=a];
cond(c,t,e,&) = ifycthentéelseeé

Application. The case for applications is arguably the most interesting: it is here that we
need to use our induction hypotheses.

correctness (app t; t;) § = begin
o (eval (app t; 1)) €
=(definition of eval)
a ((eval ty) (eval tp)) &
=(by ay-inv)
a ((evalty) (v (x (eval 12)))) &
=(induction hypothesis)
a ((eval ty) (y (stack-eval tp))) &
=(definition of «)
a (eval ty) (stack-eval t, , &)
=(induction hypothesis)
(stack-eval ty) (stack-eval t; , &)
=(use as definition)
stack-eval (app t; t) &
O

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

8 W. Swierstra

The derivation proceeds by unfolding the definition of eval. There is one creative step: to
apply our induction hypothesis, we introduce a (spurious) function application of y o «
on the second argument of the application constructor. The remainder of the calculation
then proceeds immediately. Generalizing the last line of our calculation, we read off the
following application operation for stack-based computations:

apply : [a=b]s—[a]s—>[b]s
apply fx§ = f(x, &)
This exemplifies stack-based computations, where function application amounts to pushing

an argument on to a stack, before executing the function itself.
Collecting all the definitions above yields the following stack-based evaluator:

stack-eval : Expra— [a]s

stack-eval (val x) = push x
stack-eval plus = add
stack-eval if = cond

stack-eval (app t; to) = apply (stack-eval ty) (stack-eval t;)

This is a slight variation of the stack machine given by McKinna & Wright (2006). There
are several minor differences: their machine also uses a no-op operation; the conditional
operation presented here is not recursive — but rather the app constructor is the only way
to assemble larger expressions.

2.4 Transforming to continuation passing style

Although we have calculated a stack-based interpreter, we have not yet derived a compiler.
To do so requires two further steps. First, we calculate a new version of our interpreter,
written in continuation passing style, thereby fixing the order of evaluation of application
nodes. In the next section, we will derive our compiler from this version. These two steps
will produce a linear sequence of instructions for a stack machine, in contrast to the stack-
based evaluator from the previous section.

The type of the CPS-transformed version of our stack-based interpreter should take an
extra continuation as its argument:

stack-cps : Expra— (Ja]s—> O — C

Once again, not all such functions will do. In particular, the next version of our interpreter
should satisfy the following specification:

stack-cps-correct : (e : Expra)(k : [a]s = C) — k(stack-eval e) = stack-cps e k

The calculation itself of this interpreter is largely mechanical. We illustrate the calcula-
tion using two illustrative cases: constants and applications. In the case for constants, the
‘calculation” merely unfolds the definition of stack-eval:

stack-cps-correct (val x) k =
k (stack-eval (val x))
=(definition of stack-eval)
k (push x)
=(use as definition)
stack-cps (val x) k
U

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

Towards type-directed compiler calculation 9

Just as we saw previously, it will be useful to introduce a separate auxiliary function for
each case of the CPS-transformed stack-based interpreter. In the case for constants, this
function applies the continuation to the corresponding stack operator:

push-c : N— (k : [nat]s > C)— C
push-cnk = k (push n)

Similar immediate calculations for addition and conditionals immediately give rise to two
other functions for our next interpreter:

add-c : (J(nat=nat=nat)]s > C)— C
add-ck = kadd

cond-c : ([bool=>a=a=a]s—>C—C
cond-ck = kcond

The more interesting case is that for applications. After unfolding the definition of
stack-eval, it is not immediately obvious how to apply our induction hypotheses. By intro-
ducing an additional step swapping the arguments of apply, we lift out the stack-eval e,
bringing the expression into the desired form.

stack-cps-correct (appe; e2) k =

k (stack-eval (app e €3))
=(definition of stack-eval)

k (apply (stack-eval e;) (stack-eval e;))
=(definition of swap and function composition)

(k o swap apply (stack-eval e;)) (stack-eval ;)
=(induction hypothesis)

stack-cps e; ((k o swap apply) (stack-eval e;))
=(induction hypothesis)

stack-cps e; (stack-cpse; (A xf — k (apply fx)))
=(use as definition)

stack-cps (app e; e2) k

O

The rest of the calculation follows directly. We read off the required auxiliary function
from the last step:

apply-c: (k: [b]s—> O —([a]s—>[a=b]s—> O
apply-ckxf = k (apply fx)

In this calculation, we fix the evaluation order. Here we have opted to first evaluate e; and
then evaluate e;; alternatively, we could have chosen the reverse order, first applying the
induction hypothesis for e, before using that for e;, changing the order in which the argu-
ments to app are evaluated. The observation that CPS-transforming fixes the evaluation
order dates back to Reynolds (1972).

To complete the definition of our stack-based evaluator in continuation passing style,
we collect all the derived functions in a single definition.

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

10 W. Swierstra

stack-cps : Expra— ([a]s > C)— C

stack-cps (val n) = push-c
stack-cps plus = add-c
stack-cps if = cond-c

stack-cps (app e| e;) = stack-cpse; o stack-cps e; o apply-c

We can recover our original stack-based evaluator by passing the identity function as the
initial continuation.

stack-cps-eval : Expra— [a]s
stack-cps-eval e = stack-cpse (A x — x)

The next two subsections describe different further transformations on our stack-based
interpreter in continuation passing style. In the next section, we will derive a com-
piler, essentially introducing an intermediate data structure representing the code for
the stack-cps evaluator. The final section defunctionalizes this evaluator, producing a
tail-recursive abstract machine (Reynolds, 1972; Ager et al., 2003; McBride, 2008).

2.5 Calculating a compiler

To recover the compiler proposed by McKinna and Wright, we create an intermediate
datatype for our instruction set. This reifies the instructions for the evaluator presented
in the previous section as a separate datatype. The resulting transformation is a form of
‘reforestation’, inverse to deforestation (Wadler, 1988), that introduces an intermediate
datatype between the syntax and stack machine semantics. In this final step, we introduce
a data type for our instruction set:

Code : U— Set

The constructors of this data type are read off from our previous evaluator; we will
calculate a new function that executes these instructions:

exec : Codea— [a]s
The definition of exec will be calculated from the following specification:

compiler-correctness : V(e : Expra)(c : Code(a=b)) (¢ : argsbo) —
exec (compile-acc e ¢) & = exec c (stack-eval e, &)

Here the code c plays the role of the continuation that we saw previously. Intuitively, this
property states that executing compiled code should produce the same result as evaluating
an expression directly using our stack-based evaluator.

The Code data type has one constructor for each of the functions passed to the stack-cps
evaluator from the previous section:

data Code : U — Set where
PUSH : N — Code (nat = c) — Codec
ADD : Code((nat = nat = nat) = c) — Codec
COND : Code ((bool = a=a=>a)=>c) - Codec
APP : Code(b=c)— Code(a=(a=b)=10¢)
HALT : Code(c= c¢)

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

Towards type-directed compiler calculation 11

The type of each constructor is determined by the corresponding branch in the machine-cps
function. Compare, for example, the type of push-c function with the corresponding PUSH
constructor:

push-c : N— (k : [nat]s > C)— C

The continuation argument has become the remaining code to execute. A more complicated
example is that for applications, giving rise to the APP constructor:

apply-c : (k: [b]s > O — ([a]s—> [a=b]s = O

Once again, the continuation argument determines the type of the remaining code; any
additional arguments, such as the values of type a and a = b, will now be found on
the stack rather than passed explicitly. Finally, the HALT instruction corresponds to the
identity function used as the initial continuation to kick off stack-cps.

The compilation itself simply maps each language construct to the corresponding stack
machine operation, using an additional Code argument rather than the continuation. The
only interesting case is that for applications, where the codes of both sub-expressions are
compiled one after the other.

compile-acc : Expra — Code(a= b) — Codeb

compile-acc (val x) = PUSH x
compile-acc plus = ADD
compile-acc if = COND

compile-acc (app e; e;) = compile-acc e; o compile-acce; o APP

Once again, the top-level compiler starts with an initially empty code continuation:

compile : Expra— Codea
compile e = compile-acce HALT

To prove that our compiler is correct, we calculate the execution semantics of our
code. There is little creativity involved at this point: each target instruction should call
the corresponding operation that we have derived previously. The desired type of the
corresponding exec maps code to stack-machine operations:

exec : Codea— [a]s

The specification given at the beginning of this section is more general than necessary.
Rather than reason about the top-level compile function directly, we formulate a more
general property in terms of compile-acc. All that remains is to calculate the exec function
that satisfies this specification. To illustrate the calculation, we cover the two cases for
constants and application.

The case for constants follows immediately after expanding definitions:

compiler-correctness (val x) c &€ =

exec (compile-acc (val x) ¢) &

=(definition of compile-acc)
exec (PUSH xc) &

=(use as definition)
exec ¢ (push x, &)

=(definition of stack-eval)
exec ¢ (stack-eval (val x) , &)
O

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

12 W. Swierstra

Note that we expand definitions on both sides of the equation: unfolding the definition
stack-eval on the right and and compile-acc on the left.

The case for applications is not much harder. After unfolding definitions and applying
our induction hypotheses, the desired definition reveals itself immediately:

compiler-correctness (appe; ;) cé =

exec (compile-acc (appej e;)c) &
=(definition of compile-acc)

exec (compile-acc e (compile-acce; (APP ¢))) &
=(induction hypothesis)

exec (compile-acc e; (APP ¢)) (stack-eval e , £)
=(induction hypothesis)

exec (APP c) (stack-eval e, , stack-eval e , &)
=(use as definition)

exec c (apply (stack-eval e;) (stack-eval e;) , &)
=(definition of stack-eval)

exec ¢ (stack-eval (appe; e7), &)

O

Assembling these calculations into a single definition shows how executing code maps
every constructor to the operation derived for our stack machine:

exec : Codea—[a]s

exec (PUSH xc) & = execc(pushx, &)
exec (ADDc) & = execc(add, &)
exec (CONDc) & = execc(cond, §)

exec (APP¢) (x,f, &) = execc(applyfx, &)
exec HALT (x, &) x &

Finally, instantiating the code argument to HALT, lets us formulate our main correctness
result, relating compiled code to the original direct evaluator from Section 2.1:

main-compiler-correctness : (e : Expra) (¢ : argsao) —
exec (compilee) € =« (evale) &

This concludes the derivation of the correct compiler in several steps. Starting from an
intrinsically typed interpreter, via a direct stack-based interpreter and one in continuation
passing style, to our final compiler.

Higher-order stacks. One drawback of this construction is that the stacks store higher-
order values — as opposed to the first-order stacks that appear in typical compiler
calculations. The reason for this is twofold. First, the expression language may contain par-
tial applications (of additions or conditionals). These partial applications must be stored on
the stack during evaluation; as a result, the stack contains functional values. Second, the
arguments of a function in our ‘stack semantics’ are themselves — recall the following
clause of our stack semantics:

args(a=>b)o = [a]s x argsbo

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

Towards type-directed compiler calculation 13

To restrict ourselves to first-order data on the stack, we would need to replace [a s in this
definition with a (first-order) representation of the argument type. In the expression lan-
guage, we have seen so far, partial applications may be defunctionalized to their first-order
representation; in the lambda calculus presented in the next section, we would need to rep-
resent such higher-order arguments by the corresponding closure. As different languages
require different first-order data representations, we have used the definition above — at the
expense of having a machine that stores higher-order values on the stack.

Calculating compilers. This section has derived the semantics of the virtual machine,
namely the exec function, rather than the compiler we set out to calculate. Arguably, the
compiler is the least interesting part of our calculation: the target language’s constructors
and their types are determined by functions calculated in the previous section. The com-
piler itself merely maps each language construct to its corresponding target operation. To
also calculate the compiler, we need to specify its intended behaviour. To do so, we begin
by defining the function that maps a series of instructions to their corresponding semantics,
that is, the composition of the corresponding CPS-transformed function from the previous
section:

toCPS : Codeb— ([b]s > A)— A

We now specify the intended behaviour of the compiler in terms of the stack-based CPS-
transformed evaluator derived in the previous section:

compiler-spec : (e : Expra)(c : Code(a=b))(k : [b]s > A)—
toCPS (compile-acc e ¢) k = stack-cps e (toCPS c o apply-c k)

In particular, combining the specifications from all the previous sections establishes the
familiar correctness statement:

toCPS (compilee)id € = (evale) &

2.6 A tail recursive machine

The previous section demonstrated how to derive a compiler from the stack-based inter-
preter in continuation passing style. This introduced a separate data type for code, where
each constructor is a placeholders for a stack machine operation. In this section, we demon-
strate how defunctionalizing the continuations leads to a tail recursive abstract machine —
a transformation that has been explored extensively in the literature (Reynolds, 1972; Ager
etal.,2003; McBride, 2008), albeit rarely in the intrinsically typed setting. Even though we
have already derived our correct compiler, this establishes the connection with similar tech-
niques commonly found in the literature. This section serves to highlight the differences
between the calculation of compiler and abstract machines.

Defunctionalizing the intrinsically typed stack-based evaluator in continuation passing
style, defined in Section 2.4, is a bit of a puzzle. Even if similar derivations have been
done before in the simply typed setting, ensuring the type indices line up nicely in this
development requires some thought. To derive our final, tail recursive machine requires
three definitions:

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

14 W. Swierstra

dataK : U— Set
continue : K(a=b)— [a]s— [b]s
exec-cps : Expra— K(a=b)— [b]s

The datatype K represents our defunctionalized continuations; the function continue
applies such a defunctionalized continuation to an argument value; finally, the exec-cps
function corresponds to our tail recursive abstract machine. Once these types are in place,
the definition of the remaining ingredients follows readily enough.

The CPS-transformed machine uses three continuations: the identity function and one
for each argument of an application. Correspondingly, the datatype representing the
defunctionalized continuations has three constructors:

data K where
ARG : Expra—> K((b=c—K({(a=b)=r0)
FUN :[a=b]s—>Kb=c)—>K@=r0)
STOP : K(a=a)

The names of the constructors are inspired by existing work on deriving abstract machines
by Ager et al. (2003). The ARG constructor stores an (unevaluated) function argument; the
FUN constructor applies a function to the top of the stack. Last but not least, the STOP
constructor corresponds to the identity function, used as the initial continuation.

To assign meaning to these defunctionalized continuations, we define the continue
function — mapping each value in K to the appropriate function:

continueSTOP v =v
continue (ARG e k) f = exec-cpse (FUN fk)
continue (FUN fk) v = continue k (apply fv)

Each of these cases corresponds to one of the continuations used previously. The STOP
constructor halts the recursion and returns the value that has been computed. The ARG
constructor evaluates the second argument of an application, once the first has been fully
evaluated. The FUN constructor applies the functional value stored to the value on the top
of the stack.

To complete the definition of our abstract machine, we define a tail-recursive function
that uses our K data type, rather than the continuations used previously.

exec-cps (val x) k = continue k (push x)
exec-cps plus k = continue k (add)
exec-cps if k = continue k cond

exec-cps (app e; e2) k = exec-cpse; (ARG e; k)

abstract-machine : Expra— [a]s
abstract-machinee = exec-cpse STOP

In the base cases, we reuse the instructions from the stack-based evaluator that we calcu-
lated previously and call the continue function to apply the continuation. In the case for
applications, we store the second expression in our defunctionalized continuation and con-
tinue evaluating the first argument. The top-level abstract machine executes an expression,
starting with an empty continuation.

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

Towards type-directed compiler calculation 15

Unfortunately, these definitions do not pass Agda’s termination check. The problematic
call is the ARG branch of the continue function: here we recurse over the expression e
with a larger defunctionalized continuation. Although this expression e was originally a
structurally smaller sub-expression, arising from the last clause of the exec-cps function,
Agda’s termination checker is unable to see that the recursion will terminate. Using a
suitable well-founded relation, we could prove termination (Tomé Cortifias & Swierstra,
2018), but we will refrain from doing so here.

Under the assumption that these functions terminate, we can prove following cor-
rectness result, relating the stack machine we calculated with its CPS-transformed and
defunctionalized tail recursive variant:

abstract-machine-correct : (e : Expra)(k : K(a=b)) (& : argsbo)—
exec-cps e k & = continue k (stack-eval e) &

The proof follows immediately by induction on the argument expression. Fixing the defi-
nitions of K and continue, we should be able to calculate the definition of exec-cps, just as
we calculated the execution of code in the previous section.

3 Lambda calculus

The previous section calculated a compiler for a first-order language. Can we use the same
techniques for a higher-order language? This section explores how to extend our specifica-
tion and the initial steps of calculations to the simply typed lambda calculus. To redo our
calculation, we first need to define an intrinsically typed source language:

data Term : List U — U — Set where
lam : Term(a ::) b— Term ' (a=b)
app : TermI'(a=b)— TermT'a— Term ' b
var : RefT"'a— Term I a
val : N— TermT nat

The Term data type is a well-known representation of the simply typed lambda terms as an
indexed family. We will typically use the variable I" for contexts — or lists of types —and a
and b for the types themselves. The applications and constants are familiar; this definition
introduces lambdas and variables. Each lam constructor adds a new variable to the context.
We can refer to these variables using the well-typed De Bruijn indices:

data Ref : List U— U — Set where
top : Ref(a:: IN)a
pop : RefTa— Ref(b ::) a

You might read Ref I' o as a (proof-relevant) witness showing that the type o occurs in
the context I'. The definition is analogous to simple De Bruijn indices, where top and pop
play the roles of zero and successor, respectively.

Evaluating lambda terms requires an environment. Such environments consist of a
heterogeneous list of values, indexed by a context describing the type of values it stores.

dataEnv (el : U— Set) : List U— Set where
nil : Envel]]
_:ela—>Envell' > Envel(a ::)

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

16 W. Swierstra

As we will use the same environment to store different interpretations of our type universe,
we add an additional parameter, el : U — Set. The key advantage of indexing both our
references and environments with the same context is that we can now define the following
total and type-safe lookup function:

lookup : RefT'a— Envel’ — ela
lookuptop (x-env) = x
lookup (pop i) (x - env) = lookupienv

With these definitions in place, we complete the familiar definition of the evaluator for the
simply typed lambda calculus:

[Env] = Env[_]

eval : TermT a— ([Env] T — [a])
eval(lamt) env = Av—evalt(v-env)
eval (app t; tp) env = (eval t; env) (eval t; env)
eval (varx) env = lookup x env

eval (val ¢) env = ¢

We introduce the type synonym [Env] for environments storing values. This eval function
maps the lam constructor to Agda’s lambdas; the app constructor is mapped to Agda’s
application. By passing an environment storing values for all the term’s variables, the
evaluation of variables becomes a call to the lookup function. This environment is extended
as we go under a lambda.

This completes our brief review of the evaluator for the simply typed lambda calculus —
but how can we calculate a stack-based interpreter?

4 A stack-based evaluator for the lambda calculus

To calculate a stack-based evaluator, we begin by introducing a variant of our environ-
ments using the ‘stack semantics’ for our types, rather than the ‘direct semantics’ used in
our evaluator:

[Env]s : List U — Set
[Env]s = Env[_]s

We can use this variation of environments to specify the problem of deriving our stack-
based evaluator. Our aim is to define an evaluator with the following type:

stack-eval : TermT a — ([Env]s T — [a]s)

The type is almost the same as the type of our evaluator, only it interprets contexts and
types using our stack semantics. To ensure that our stack-based evaluator is correct, it
should satisfy the following property:

correctness : V(t : TermI"a)(env : [Env]T) (¢ : argsao) —
a (eval tenv) & = stack-eval t (mapEnva env) &

In words, evaluating a term and executing it using the (currently undefined) stack-based
evaluator should produce the same result. Note that the types of our object language, their

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

Towards type-directed compiler calculation 17

stack-based denotation, and @ and y functions are all the same as we saw previously in the
calculation of our expression compiler.

The only difference with our previous specification is the presence of the additional
environment — passed to the evaluation function on the left-hand side of the equality. The
stack machine we have set out to calculate, however, takes a different type environment
as its argument, namely one of of type [Env]s I rather than [Env] I". We cannot reuse our
environment directly, but can use our abstraction function « to map from one to the other:

mapEnv : {eljel, : U — Set} — (V{a}—elja — eba) —> Envel; T — Envel, T
mapEnv f nil = nil
mapEnv f(x - env) = fx- mapEnvfenv

To uncover the definition of the stack-eval function, we perform induction on the argu-
ment term. In each case, we rewrite the left-hand side of the equation above, until it no
longer refers to the eval function. In this way, we can read off the required definition for
stack-eval for each of the four constructors of the Term data type. Two of the cases are
almost identical to those from our previous calculation, namely, those for applications and
constants: the only difference being the additional environment argument. For the sake of
brevity, we will only present the two new cases for variables and lambda abstractions.

Variables. To handle variables, we relate the two environments on either side of our
specification, env and map « env. To do so, we rely on the natural property relating map
and lookup, stating that for all functions f, environments env and references i we have:

f (lookupienv) = lookupi(map fenv)
Using this property, our calculation proceeds as follows.

correctness (vari)envé =

o (eval (vari)env) &

=(definition of eval)
o (lookupienv) &

=(lookup-map property)
lookup i (mapEnv « env) &

=(use as definition)
stack-eval (var i) (mapEnv« env) &
O

In the final step, we can read off the required case for variables:

stack-eval (vari) = lookupi

Unsurprisingly, variables lookup the corresponding value from the environment.
Abstraction. The last remaining constructor is that for lambda abstraction. Even
though lambda abstractions introduce higher-order functions into our object language,

the techniques we have seen so far suffice to calculate the corresponding stack machine
operations.

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

18 W. Swierstra

correctness (lamt) env (arg, &) =
a (eval (lamt) env) (arg, &)
=(definition of eval)
a (A x— evalt(x-env))(arg, &)
=(definition of « for functions)
a(evalt(y arg-env)) &
=(induction hypothesis)
stack-eval t (mapEnva (y arg - env)) &
=(definition of mapEnv)
stack-eval t (o (y arg)- mapEnvaenv) &
=(by ya-inv)
stack-eval t (arg - mapEnv o env) &
=(use as definition)
stack-eval (lam t) (mapEnv « env) (arg, &)
0

The derivation for lambda expressions is almost embarrassingly simple. After unfolding
the definitions of eval and o, we can immediately use our induction hypothesis. After this
step, the remaining calculation unfolds definitions and applies the property relating o and
y to rewrite the term into the desired form.

We can now collect all these clauses in single definition, describing a stack-based eval-
uator for lambda terms. Before doing so, however, we define auxiliary operations for each
of the definitions we have calculated:

apply : ([Env]sT = [a=b]s) = ([Env]sT — [a]s) = ([Env]s T — [b]s)
applyfargenvé = fenv(argenv, &)

enter : ([Env]s(a = T) — [b]s) = ([Env]sT — [a=b]s)
enterfenv(arg, &) = f(arg-env) &

push : N — [Env]s " — [nat]s

pushcenvé = (c,§)

Finally, we define our evaluator by mapping each constructor to the operation we have

calculated:

stack-eval (val ¢) = pushc

stack-eval (lamt) = enter (stack-eval t)

stack-eval (app t; tp) = apply (stack-eval t;) (stack-eval t,)
stack-eval (var x) = lookup x

To define the corresponding compiler or tail-recursive abstract machine, we would need
to write the stack-based evaluator in continuation passing style, before reforesting or
defunctionalizing, respectively. Doing so would require a careful treatment of the con-
text information, that changes as we go under binders. Instead of doing so, we change tack
and revisit the original work by Meijer (1992) and calculate the compiler optimizations
suggested therein.

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

Towards type-directed compiler calculation 19

5 Optimizing environments
Meijer (1992) suggests two optimizations for the stack-based evaluator derived so far:

e We always extend the environment when entering the body of a lambda, even if the
corresponding variable is unused.

o In the case for applications, the entire environment is duplicated and passed to both
arguments, even if only a fraction of the environment is needed.

The challenge is to calculate these optimizations, showing they follow naturally from our
definitions so far. To achieve this, we need to shift to a different representation of variables
and binding: rather than maintain a context of all the variables that may be used, we keep
track of a subset of this context, tracking all the variables that zave been used. Before we
can make this more precise, we need to introduce several auxiliary definitions for sublists
and the functions to manipulate them.

We could keep track of the variables a term uses in a separate context, i.e., a list of
types. In the case for applications, we will need to compute their union, combining the
variables used on either side of the application; but the union of lists is rather messy to
define, especially as we are using positions in each list to variables. Fortunately, we are not
interested in arbitrary contexts, but rather in subsets of our context I'. We can introduce a
separate data type to describe such subsets.

data Subset : List U — Set where
stop : Subset]
drop : SubsetI" — Subset (a :: ')
keep : Subset I' — Subset (a :: T")

The type Subset I' tells us for each element of I whether it should be included in the subset
or not. We map such subsets to their corresponding context easily enough.

L _|:SubsetI’ — ListU

| stop | =

L drop A | =|A]
|keepfa =a}A] =a [A]

We will typically use the variable A to refer to such subsets.

To determine which variables to include in an environment, we would like to compute
the subset of variables that occur in a given term. That is, we would like to define a function
with the following type:

variables : TermI"a — SubsetI"

Before we can complete this definition, however, we will need to define several auxiliary
functions for creating and manipulating subsets.

To compute the union of two subsets, A} U A,, we simply keep each element that occurs
in either A; or in Aj:

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

20 W. Swierstra

U : SubsetT" — SubsetI” — SubsetT’
stop Ustop = stop

dropxs U dropys = drop (xs Uys)

drop xs U keepys = keep (xs U ys)

keep xs U dropys = keep (xs U ys)

keep xs U keep ys = keep (xs U ys)

If we were to work with contexts directly, it is less clear how to compute their union: given
a pair of contexts, we would need to determine which variables are shared by both.
The empty subset, @, is the unit of this union operator.

@ :{I : ListU} — SubsetT’

Atk = stop
@{x :: T} = drop¥

We can create a nonempty subset from any given reference in I':

singleton : RefI"a — Subset T’
singleton top = keep ¥
singleton (pop p) = drop (singleton p)

Here we keep the variable the reference refers to, but drop all others.
Finally, we will need one last operation, used as we go under a binder. The tail operation
that returns the shrinks the subset, limiting it to the remaining context:

tail : Subset(a :: ') — Subset T’
tail (drops) = s
tail (keeps) = s

Using these four operations, we can easily compute the variables that occur in a given
term. Each of the four operations on subsets defined above is used to handle each of the
four cases in our term language.

variables (lamt) = tail (variablest)

variables (app t; t;) = (variablest;) U (variables t)
variables (var i) = singleton i

variables (val ¢) =0

While this definition lets us compute the variables used by a single term, when calculating
our optimizing stack-based evaluator, we need to know the variables that occur in every
subterm. Instead of repeatedly calling variables, we choose to define a variation of the
Term data type, where each constructor tracks the set of variables used in its subterms:

data CDB (T : List U) : SubsetI' — U — Set where
lam : CDB(a :: ') Ab— CDBT (tail A) (a=b)
app : CDBT' Aj(a=b)—> CDBT Aa— CDBT (AjUAj)b
var : (i : RefT"a) - CDBT (singletoni)a
val : N— CDBT @nat

McBride (2018) has dubbed this particular variable representation, modeling the variables
used in a term as a subset of all variables in scope, as the co-de Bruijn representation;
hence the name, CDB.

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

Towards type-directed compiler calculation 21

Note that we can always forget the information about variable occurrences and recover
our original Term:

forget : CDOBI' Aa — TermI'a

forget (lam cdb) = lam (forget cdb)

forget (app cdb; cdby) = app (forget cdb,) (forget cdb;)
forget (var i) = vari

forget (val x) = valx

Note that the inverse operation, producing a pair of subset A and co-de Bruijn term of the
corresponding type, is not much harder to define using the functions we have defined at the
beginning of this section. This shift in variable representation, while useful, is not overly
demanding.

We are almost ready to start the calculation of the optimizing version of our stack-based
evaluator. Before we can do so, we need one last operation on environments. Given any
environment over the context I and a subset of I', we can compute a new environment,
restricting it to contain only those values that occur in the argument subset:

restrict : (A : SubsetI') — [Env]sT — [Env]s| A]
restrict stop nil = nil

restrict (drop A) (v - n) = restrict A n

restrict (keep A)(v-1n) = v-restrict A p

This definition is entirely determined by its type signature.

We will now show how to find a variation of our previous stack-based evaluator that
operates on CDB terms, but only requires an environment with values for all the variables
that actually occur in the term:

stack-eval-opt : CDBT" Aa — [Env]s A] — [a]s
This optimizing evaluator should satisfy the following correctness property.

correctness-opt : (t : CDBI" Aa) — (env : [Env]sT") (£ : argsao) —
stack-eval (forget t) env & = stack-eval-opt t (restrict A env) &

Once again, we will start our derivations on the left-hand side of the equation, rewriting
until we have eliminated any reference to the stack-eval function and can read off the
desired definition of stack-eval-opt. The cases for constants are unchanged. The case for
variables follows naturally, as we only have a single possible value to return. The only
non-trivial cases are those for applications and lambda abstractions.

Abstraction — unused variable. The case for abstractions now distinguishes two further
cases, depending on whether or not the bound variable occurs or not. When the variable
does occur, and our subset starts with a keep constructor, we can unfold definitions and
apply our induction hypothesis, thereby fixing the behaviour of stack-eval-opt. The case
when the freshly bound variable goes unused (and our subset starts with a drop construc-
tor), however, is more interesting. In that case, we know that the body of the lambda does
not use the bound variable. As a result, the environment we pass in must not be extended
with its value. This intuition is made precise by the following calculation, considering the
case where a lambda binds an unused variable:

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

22 W. Swierstra

correctness-opt (lam {A = drop A} t)env(arg, &) =
stack-eval (forget (lam { A = drop A} t))env (arg, &)
=(definition of forget)
stack-eval (lam (forget { A = drop A} t))env (arg, &)
=(definition of stack-eval)
stack-eval (forget { A = drop A}t)(arg-env)é&
=(induction hypothesis)
stack-eval-opt t (restrict (drop A) (arg - env)) &
=(definition of restrict)
stack-eval-opt t (restrict A env) &
=(use as definition)
stack-eval-opt (lam { A = drop A} t) (restrict A env) (arg, &)
O

We combine this function with the case for lambda abstractions as given by the function
enter in previous section, leading to the following definition of enter-opt. The second
argument of enter-opt corresponds to evaluating the body of the lambda — generalizing
stack-eval-opt t in the calculation above. Furthermore, the definition generalizes over any
environment — rather than writing the argument environment in the form restrict A env
explicitly.
enter-opt : (A : Subset(a :: ') = ([Env]s LA] — [b]s) —

([Env]s [tail A] - [a=b]s)
enter-opt (keep A)fenv (arg, &) = f(arg-env) &
enter-opt (drop A)fenv (arg, &) = fenvé
The first case, associated with the keep constructor, is exactly the same as the enter func-
tion we saw previously. The case for the drop constructor discards the argument at the top
of the stack, before entering the function body, just as we saw in the calculation above.

Application. In the case for applications, we can perform a similar calculation, unfolding
our definitions and applying the induction hypotheses. As we shall see, the challenge here,
however, is to pass the right environment to the two recursive calls:

correctness-opt (appt; ty)envé =

stack-eval (forget (appt; ty)) env &
=(definition of forget)

stack-eval (app (forget t;) (forget t)) env &
=(definition of stack-eval)

stack-eval (forget t|) env (stack-eval (forget t) env, &)
=(induction hypothesis)

stack-eval (forget t|) env (stack-eval-opt t; (restrict A, env), &)
=(induction hypothesis)

stack-eval-opt t; (restrict A env) (stack-eval-opt t; (restrict A, env), &)
=(projection lemmas)

stack-eval-optt; (71 A| A, (restrict (A U Aj) env))
(stack-eval-opt t; (;r5 Ay A (restrict (A1 U Aj)env)), €)
=(use as definition)

stack-eval-opt (app t; tp) (restrict (A} U Aj) env) &

(|

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

Towards type-directed compiler calculation 23

We can almost read off the required definition — but the two recursive calls require two
different environments. To construct the appropriate environment, we define a pair of
auxiliary functions, projecting the desired elements out of a larger environment:

712 (A; Ay @ SubsetT) — [Env]s LA UA;] — [Env]s [Ay]
7y 1 (A1 Ay SubsetT) — [Env]s LA UA,;] — [Env]s [A;]

Using these definitions, we can define an optimizing version of apply as follows:

apply-opt : (A; Ay : SubsetT") — ([Env]s LA] = [a=b]s) —
([Env]s LA2] — [a]s) = (JEnv]s LATU Az] — [b]s)
apply-opt A; Ay fxenvé = f(r; A; Azenv) (x(my A Azenv), &)

Here our types guarantee that our evaluator is still type safe by construction. In particu-
lar, these types guarantee that the values required are always available in the appropriate
environment.

We do still need to show that 77| and 7, compute the same environment as restrict, but
these two lemmas are entirely straightforward to prove:

mwi-lemma : (Ay A, : SubsetT’) — (env : [Env]sT) —
(restrict Ajenv)=m; Ay Ay (restrict (A1 U Aj) env)
my-lemma : (Ay A, : SubsetT’) — (env : [Env]sT) —
(restrict Ay env) =1, Ay Ay (restrict (A1 U Aj) env)
Finally, we use these two definitions — enter-opt and push-opt — to define an optimizing
stack-based evaluator. Of the two remaining cases, return and lookup, the first can remain

unchanged. The lookup function used for variables, however, must be adapted slightly to
use the new variable and environment representation — even if its behaviour stays the same.

stack-eval-opt : CDBI' Aa — [Env]s [A] — [a]s

stack-eval-opt (val x) = push x
stack-eval-opt (var t) = lookupt
stack-eval-opt (lamt) = enter-opt A (stack-eval-optt)

stack-eval-opt (app t; t;) = apply-opt A; A, (stack-eval-opt t;) (stack-eval-opt t)

Here we have hidden a few implicit arguments, introduced in the patterns, from the
typeset code. The correctness of this definition follows immediately from the calculations
we have given above.

6 Discussion

There is a substantial body of work on verifying and calculating compilers and abstract
machines (Bahr & Hutton, 2015, 2020, 2022; Pickard & Hutton, 2021). Just as in this
article, these calculations start from an evaluator for the source language. Each of these
calculations define a stack-based interpreter with the same behaviour as the evaluator, but
the motivation for sow this stack-based interpreter is calculated is usually given by the
surrounding text. The most closely related work by Pickard & Hutton (2021) calculates a
compiler for an arithmetic expressions and exceptions in an intrinsically typed fashion. In
this calculation, the (indexed) types for stacks, code, and stack-based interpreters are not
derived, but rather drawn from existing work by McKinna & Wright (2006); there is no

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

24 W. Swierstra

general pattern to systematically derive these types. The purpose of this paper is to demon-
strate how these types follow systematically using the «-y conversion functions. Although
the definition of the stack-based denotation of our object types and these conversion func-
tions require some creativity — these form a part of our specification. They can be re-used
to map other languages and interpreters to their stack-based implementation.

The work by Pickard & Hutton (2021) does not address higher-order functions; it is not
immediately obvious how to extend their stack types to facilitate this. Although we have
not defined a compiler for the lambda calculus, our specification is general enough to spec-
ify and calculate a stack-based evaluator for the simply typed lambda calculus. Calculating
the corresponding compiler is less straightforward: the variable context changes as we
traverse under a binder. Adapting the derivation of the target language and its seman-
tics accordingly is still an open problem. The existing work on handling variable binding
by Allais e al. (2018) may offer a viable solution, shifting to the Kripke function space
in our compiler derivation to extend the context accordingly as every time we go under a
binder.

There is a further limitation of the approach in this paper. The same -y conversion
functions are used for both the lambda calculus and the language of arithmetic expressions.
When determining the type of the arguments a function expects on the stack, the args
function used in the definition of our ‘stack semantics’ for types, [_]s, is defined as follows.

args : U— List U — Set
args(a=b)o = [a]s x argsbo

In particular, the value stored on the top of the stack is itself a ‘stack value’ rather than a
‘direct value’. As a result, base types, such as natural numbers or booleans, are represented
as functions operating on an arbitrary (possibly empty) stack rather than first-order data.
In the calculations throughout the paper, occasionally an additional application of the y is
used to convert these functions back to natural numbers and booleans. This is a symptom
of the choice to define the conversion functions independently of both the source language
and the direct semantics. Alternatively, one could replace the type [a]s with the direct
semantics [a], but this choice would also store functions on the stack. A better approach
would be to define a first-order value representation:

val : U— Set

val nat =N
valbool = Bool
val(a=b) = T (ListU)(AT — Term(a :: ') b x EnvvalT")

Using this definition, we ensure that all the data on the stack is indeed first-order. Any
arguments to higher-order functions are stored as closures on the stack. The corresponding
calculations would produce more efficient machines, without some of the spurious conver-
sions between data representations — at the expense of having to use the type of the source
language, Term, in the definition of the stacks’ type.

The current work, however, has not yet considered effectful interpreters, such as those
that use exceptions (Pickard & Hutton, 2021) or other monadic effects Bahr & Hutton
(2022) and Garby et al. (2024). The specification of the stack-based interpreter can be

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

Towards type-directed compiler calculation 25

readily extended to these settings. Recall the very first specification of the stack-based
evaluator for arithmetic expressions boils down to the following equation:

V (e : Expra) — « (eval e) = machinee

If the evaluator at the start of the derivation may throw an exception or use some other
monadic effect, the obvious reformulation of the specification reads:

V (e : Expra) — map « (eval €) = machinee

where the conversion « is mapped over the result of evaluation. This ensures that the
resulting machine produces a monadic result in line with the original evaluator. Although
the CPS transformation may no longer be necessary to fix the order of evaluation in this
setting, it does help calculate a linear sequence of instructions, as opposed to the syntax
trees that the stack-based evaluator takes as its input.

The most closely related work in spirit is that by Meijer (1992) and Elliott (2020). Where
Meijer’s work suggests using the abstraction and concretization functions to determine the
type of the resulting machine, the types are slightly different from those presented here.
Using the notation from this paper, Meijer defines:

[_]s : U— Set
[a]s = argsa T — N

That is, this definition fixes the return type to be natural numbers, the only base type in the
object language Meijer considers. Inspired by the observation made by Elliott (2020), we
tease the stack semantics for our types into two parts: the argument types are on the input
stack; these are replaced by the function’s result type in the output stack.

Gibbons (2002, §4) also showed how to compute a compiler using uncurrying. The cal-
culation, however, is difficult to formalize as there is no typing discipline guaranteeing the
absence of stack underflows. More recently, Gibbons (2022) has explored how general-
ized composition operators, initially suggested by Wand (1982), capture CPS transformed
functions that pass intermediate results from one computation to the next. Gibbons’s work,
like ours, makes use of dependent types to assign static types to these composition opera-
tors. Just as our stack semantics splits a (function) type into its arguments and return type,
Gibbons’s Arrow type collects a function’s arguments in a list of types. This type is then
used to define the generalized composition operators used throughout the derivation.

The defunctionalized CPS transformation is a standard technique for turning structurally
recursive computations into tail recursive abstract machines, dating back to (Reynolds,
1972). Since then it has been popularized by Danvy and his many co-authors (Ager et al.,
2003; Danvy, 2004, 2008; Danvy & Nielsen, 2001). More recently, Huang & Yallop
(2023) have studied how to defunctionalize dependently typed higher-order functions. A
similar pattern of type indices appears when typing Danvy and Nielsen’s (2004) refocusing
transformations (Swierstra, 2012).

Acknowledgements. 1 would like to thank Guillaume Allais, Roger Bosman, Jacco
Krijnen, Lawrence Chonavel, Mitchell Pickard, Graham Hutton, and the anonymous
reviewers for their feedback on earlier versions of this paper. Cas van der Rest was an
invaluable sparring partner who contributed to a much improved revision of this work. The

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

26 W. Swierstra

thoughtful and constructive feedback from the anonymous reviewers helped to improve
this paper significantly.

Conflicts of Interest. None.

References

Ager, M. S., Biernacki, D., Danvy, O. & Midtgaard, J. (2003) A functional correspondence between
evaluators and abstract machines. In Proceedings of the 5th ACM SIGPLAN International
Conference on Principles and Practice of Declaritive Programming, pp. 8—19.

Allais, G., Atkey, R., Chapman, J., McBride, C. & McKinna, J. (2018) A type and scope safe
universe of syntaxes with binding: their semantics and proofs. In Proceedings of the ACM on
Programming Languages 2(ICFP), 1-30.

Augustsson, L. & Carlsson, M. (1999) An exercise in dependent types: A well-typed interpreter.
In Workshop on Dependent Types in Programming, Gothenburg.

Bahr, P. & Hutton, G. (2015) Calculating correct compilers. J. Funct. Program. 25(e14), 1-44.

Bahr, P. & Hutton, G. (2020) Calculating correct compilers ii: Return of the register machines.
J. Funct. Program. 30, €25.

Bahr, P. & Hutton, G. (2022) Monadic compiler calculation. Proc. ACM Program. Lang. 6(ICFP),
93:1-93:29.

Danvy, O. (2004) A rational deconstruction of landin’s secd machine. In Symposium on
Implementation and Application of Functional Languages, pp. 52-71. Springer.

Danvy, O. (2008) From reduction-based to reduction-free normalization. In International School on
Advanced Functional Programming, pp. 66—164. Springer.

Danvy, O. & Nielsen, L. R. (2001) Defunctionalization at work. In Proceedings of the 3rd ACM
SIGPLAN International Conference on Principles and Practice of Declarative Programming,
pp. 162—-174.

Danvy, O. & Nielsen, L. R. (2004) Refocusing in reduction semantics. BRICS Rep. Ser. 11(26).

Elliott, C. (2020) Calculating Compilers Categorically. Unpublished draft.

Garby, Z., Hutton, G. & Bahr, P. (2024) Calculating compilers effectively (Functional Pearl).
In Proceedings of the 17th ACM SIGPLAN International Haskell Symposium, pp. 109-119.

Gibbons, J. (2002) Calculating functional programs. In Algebraic and Coalgebraic Methods in the
Mathematics of Program Construction: International Summer School and Workshop Oxford, UK,
April 10-14, 2000 Revised Lectures, pp. 151-203. Springer.

Gibbons, J. (2022) Continuation-passing style, defunctionalization, accumulations, and associativity.
Art Sci. Eng. Program. 6. https://doi.org/10.22152/programming-journal.org/2022/6/7

Huang, Y. & Yallop, J. (2023) Defunctionalization with dependent types. Proc. ACM Program.
Lang. 7(PLDI), 516-538.

Leroy, X. (2009) Formal verification of a realistic compiler. Commun. ACM 52(7), 107-115.

McBride, C. (2008) Clowns to the left of me, jokers to the right: Dissecting data structures.
In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL 08, pp. 287-295.

McBride, C. (2018) Everybody’s got to be somewhere. Electron. Proc. Theor. Comput. Sci.
275(July), 53-69.

McKinna, J. & Wright, J. (2006) A Type-Correct, Stack-Safe, Provably Correct Expression
Compiler. Accepted for publication in the Journal of Functional Programming.

Meijer, E. (1992) Calculating Compilers. PhD thesis, Radboud Universiteit Nijmegen.

Norell, U. (2007) Towards a practical programming language based on dependent type theory.
PhD thesis, Chalmers University of Technology.

Pickard, M. & Hutton, G. (2021) Calculating Dependently-Typed Compilers. Proc. ACM Program.
Lang. 5(ICFP). https://doi.org/10.1145/3473587

Reynolds, J. C. (1972) Definitional interpreters for higher-order programming languages.
In Proceedings of the ACM Annual Conference-Volume 2, pp. 717-740.

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.22152/programming-journal.org/2022/6/7
https://doi.org/10.1145/3473587
https://doi.org/10.1017/S0956796825100087

Towards type-directed compiler calculation 27

Swierstra, W. (2012) From mathematics to abstract machine: A formal derivation of an executable
Krivine machine. In Proceedings Fourth Workshop on Mathematically Structured Functional
Programming, Tallinn, Estonia, 25 March 2012, Chapman, J. & Levy, P. B. (eds), Electronic
Proceedings in Theoretical Computer Science, vol. 76, pp. 163—177. Open Publishing Association.

Tomé Cortifias, C. & Swierstra, W. (2018) From algebra to abstract machine: A verified generic
construction. In Proceedings of the 3rd ACM SIGPLAN International Workshop on Type-Driven
Development. TyDe 2018, pp. 78-90.

Wadler, P. (1988) Deforestation: Transforming programs to eliminate trees. European Symposium
on Programming pp. 344-358. Springer.

Wand, M. (1982) Deriving target code as a representation of continuation semantics. ACM Trans.
Program. Lang. Syst. 4(3), 496-517.

https://doi.org/10.1017/50956796825100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100087

	Towards type-directed compiler calculation
	Introduction
	A simple expression language
	An intrinsically typed interpreter
	Stack-based interpreters
	Calculating a stack-based interpreter
	Transforming to continuation passing style
	Calculating a compiler
	A tail recursive machine

	Lambda calculus
	A stack-based evaluator for the lambda calculus
	Optimizing environments
	Discussion

