
On the Correctness of Barron and Strachey’s
Cartesian Product Function

Wouter Swierstra1[0000−0002−0295−7944] and Jason Hemann2[0000−0002−5405−2936]

1 Utrecht University
w.s.swierstra@uu.nl
2 Seton Hall University
jason.hemann@shu.edu

Abstract. This paper shows how to verify Barron and Strachey’s Carte-
sian product function. Doing so is not only a useful exercise in the specifi-
cation and verification of a classic functional program—but gives insight
into the importance of formulating soundness and completeness as sym-
metrical properties.

Keywords: Functional programming · verification · specification · Agda

1 Introduction

Christopher Strachey is one of the founding fathers of functional programming.
His lecture notes from 1963 together with David Barron, as transcribed in Ad-
vances in Programming and Non-Numerical Computation, contain several exam-
ples of CPL programs [1]. Among these is a function for computing the Cartesian
product of a list of lists. Consider the following example call:

Main> product [[1,2],[3,4,5],[6,7]]
[[1 , 3 , 6], [1 , 3 , 7], [1 , 4 , 6],
[1 , 4 , 7], [1 , 5 , 6], [1 , 5 , 7],
[2 , 3 , 6], [2 , 3 , 7], [2 , 4 , 6],
[2 , 4 , 7], [2 , 5, 6], [2 , 5 , 7]]

Barron and Strachey’s definition of product is quite puzzling at first glance. We
present it here, based on the modern implementation in Haskell by Danvy and
Spivey [4]:

product :: [[a]] → [[a]]
product xss = foldr f [[]] xss
where
f :: [a] → [[a]] → [[a]]
f xs yss = foldr g [] xs
where
g :: a → [[a]] → [[a]]
g x zss = foldr (λ ys qss → (x : ys) : qss) zss yss

2 Wouter Swierstra and Jason Hemann

This definition uses three calls to foldr , lexical scoping, and several higher
order functions—all rather unusual for a program that is over sixty years old!
Danvy and Spivey [4] have carefully dissected Barron and Strachey’s Cartesian
product function, and refer to it as ‘possibly the first ever functional pearl.’
What more could there possibly be to say about this mother of pearls?

One issue that remains unexplored is a mechanized formal correctness proof
of Barron and Strachey’s Cartesian product function. Mechanization would cer-
tainly have been out of reach for those authors back in 1963—four years before
even the start of the Automath project [2, 8]. We believe there is still mystery
to be wrung out of this definition.

In writing our proofs, the inductive argument will elucidate the inductive
structure of the functions themselves—giving a better insight into how this func-
tion computes a Cartesian product.

Throughout the remainder of this paper, we will use the programming lan-
guage and proof assistant Agda [9] to specify and verify the Cartesian prod-
uct function. The key technique, inspired by Danielsson’s work on bag equiv-
alence [3], is to verify that the desired soundness and completeness properties
not only hold, but form an isomorphism, establishing a much stronger result.
The underlying technique for specifications and proofs—establishing an isomor-
phism between two symmetric components of the specification—deserves to be
more widely known. More generally, this technique illustrates the importance
of proof relevance, where we are interested not only in whether or not a given
statement is true, but also in accounting for the different possible proofs. The
code associated with this paper has been published separately [10].

2 Warm-up: permutations

Rather than study the Cartesian product function immediately, we begin by a
slightly simpler case study: computing all the permutations of a list. This is a
typical exercise in functional programming; the verification of this function will
introduce some of the scaffolding and specifications used in the remainder of the
paper.

The permute function computes all the possible permutations of its input list:

permute : List A → List (List A)
permute [] = [[]]
permute (x :: xs) = concatMap (sprinkle x) (permute xs)

The work is done by the sprinkle function that sprinkles its first argument in all
the possible positions in its second argument:

sprinkle : A → List A → List (List A)
sprinkle y [] = [[y]]
sprinkle y (x :: xs) = (y :: x :: xs) :: map (x ::_) (sprinkle y xs)

So far so good—but we still need state what ‘correctness’ means for comput-
ing permutations and to prove that our function satisfies this specification. In
the case of permutations, we are interested in two separate properties:

On the Correctness of Barron and Strachey’s Cartesian Product Function 3

– soundness states that all the elements of the resulting list are permutations
of the input;

– completeness states that every possible permutation of the input appears in
the output.

The problem with writing such specifications in English is that we have clev-
erly side-stepped the problem of specifying when one list is a permutation of
another—which is not necessarily any easier than the problem we set out to
solve in the first place!

There are many different ways to specify that two lists are permutations
of one another: by repeatedly swapping adjacent elements (as is done in the
Rocq standard library); by quotienting the laws of commutative monoids [5]; by
counting the number of occurrences of each element in the list; or, as we shall
see shortly, by establishing an isomorphism between membership proofs.

To start our exploration of list processing functions, we begin with defining
the binary relation, written x ∈ xs, that states that an element x occurs in a list
xs:

data _∈_ (x : A) : List A → Set where
here : x ∈ (x :: xs)
there : x ∈ xs → x ∈ (y :: xs)

This definition is reminiscent of the Haskell elem function: if the list is empty,
the property is false and hence there is no corresponding constructor. If the list
is non-empty, there are two alternatives: either the element we are looking is the
first element, here, or it occurs in the tail of the list, there.

Besides this relation, our specification will use an additional predicate trans-
former on lists, given by the All data type below:

data All (P : A → Set) : List A → Set where
[] : All P []
:: : P x → All P xs → All P (x :: xs)

The proposition All P xs holds precisely when we have a proof of P x for each
element x of of xs.

As a first approximation, we might define the following types to formalize
our notions of soundness and completeness for our permute function:

soundness : (xs : List A) →
∀ ys → ys ∈ permute xs → All (_∈ xs) ys

completeness : (xs : List A) →
∀ ys → All (_∈ xs) ys → ys ∈ permute xs

This specification, however, is not very good. In words, the soundness property
states that every list ys in permute xs draws its elements from xs. As it is stated,
however, this property fails to prohibit illegal ‘permutations’ that might dupli-
cate elements or discard elements. To illustrate this point, consider the following
lists:

4 Wouter Swierstra and Jason Hemann

one-one = 1 :: []
two-ones = 1 :: 1 :: []

Now both All (_∈ one-one) two-ones and All (_∈ two-ones) one-one hold—yet
clearly the lists are not permutations of one another. The completeness property
is similarly problematic: just because the list ys contains all the elements in
xs does not make ys a permutation of xs. Clearly we need to account for the
number of occurrences of each element more carefully. In a way, the soundness
and completeness properties as formulated above consider lists as sets rather
than bags.

To address this problem, we take inspiration from Danielsson’s work on defin-
ing bag equivalence using a proof relevant membership relation [3]. The key idea
is to consider two lists to be bag equivalent if there is an isomorphism between
their membership relations. To make this more precise, we begin by defining the
notion of isomorphism:

record _≃_ (A B : Set) : Set where
field

to : A → B
fro : B → A
to-fro : ∀ x → fro (to x) ≡ x
fro-to : ∀ y → to (fro y) ≡ y

Two lists are bag equivalent if there is an isomorphism between membership
proofs. We formalise this relation as follows:

≈ : List A → List A → Set
xs ≈ ys = ∀ x → x ∈ xs ≃ x ∈ ys

In words, two lists xs and ys are bag equivalent, written xs ≈ ys, when there is
a one-to-one correspondence between the proof of x ∈ xs and x ∈ ys, for every x.
It is straightforward to prove that this definition of bag equivalence does form
an equivalence relation.

A better specification for our permutation function now states:

soundness : (xs : List A) →
∀ ys → ys ∈ permute xs → xs ≈ ys

completeness : (xs : List A) →
∀ ys → xs ≈ ys → ys ∈ permute xs

We will now briefly sketch the key lemmas used to prove these two properties of
the permute function.

Soundness The proof of soundness relies on the property that sprinkle ‘preserves’
bag equivalence:

sprinkle-equiv : ys ∈ sprinkle x xs → ys ≈ (x :: xs)

On the Correctness of Barron and Strachey’s Cartesian Product Function 5

More precisely, we should say that each list ys in the list of lists produced by a
call to sprinkle x xs is bag equivalent to x :: xs.

To establish soundness, however, needs a bit more work. In particular, it is
not immediately obvious how to use an assumption of the form:

ys ∈ concatMap (sprinkle x) xs

To do so, we prove an equivalence between the elements of a list we generated
by a call to concatMap:

(y : B) (f : A → List B) (xs : List A) →
y ∈ concatMap f xs ≃ ∃ [x : A] (x ∈ xs ∧ y ∈ f x)

Here we use the logical conjunction symbol, ∧, to create a pair of proofs; the
prevalent notation A × B is confusing when the types A and B also contain the
variable x. In our implementation, we have packaged the fact of the concatMap
membership equivalence into a custom view [7], letting us tease apart our as-
sumption more easily. The proof of soundness follows from these ingredients
using a straightforward inductive argument.

Completeness To prove completeness is a bit trickier. In particular, our assump-
tion that some list ys is a permutation of xs is itself not an inductively defined
relation. Instead, we use the isomorphism between the elements of a concatMap
in the other direction. Doing so, relies on a corresponding completeness result
for sprinkle:

sprinkle-complete : (p : x ∈ xs) → xs ∈ sprinkle x (remove xs p)

This proves that the sprinkle at least recovers the original list xs, after removing
an arbitrary element from it. Here the remove function deletes the occurrence
referenced by the proof p:

remove : (xs : List A) → x ∈ xs → List A
remove (x :: xs) here = xs
remove (x :: xs) (there i) = x :: remove i

To prove completeness, we perform induction on the list ys. When this list is
empty, our hypothesis tells us that xs must also be empty, and the proof is
trivial. In the inductive case, however, we need to do a bit more work. We use
the concatMap-isomorphism from the previous section in the opposite direction.
The sprinkle-complete lemma and our induction hypothesis finish the proof. To
use our inductive hypothesis, however, we need to establish that if x :: xs ≈ ys,
then xs is bag equivalent to removing some particular element of ys, which we
leave as a finicky proof for the reader.

Correctness Even if we establish soundness and completeness, this is still not
sufficient to guarantee the correctness of our permute function. There is nothing
ruling out the following (incorrect) variation of the permute function:

6 Wouter Swierstra and Jason Hemann

wrong-permute : List A → List (List A)
wrong-permute xs = permute xs ++ permute xs

Indeed, we should prove that the soundness and completeness functions are mu-
tual inverses, which involves equivalences of (bag) equivalences —the mind bog-
gles. . . . Rather than go down this particular homotopical rabbit hole, however,
we now return to our original problem: proving the correctness of the Cartesian
product function.

3 Cartesian products

We now turn our attention to the verification of the Cartesian product function
from the introduction. We verify the function in two steps. First, we show how
the version by Barron and Strachey is equivalent to a simpler definition using
concatMap. Next, we establish the correctness of this second version. Arguably,
this style of proof introduces an unnecessary indirection; we briefly sketch the
direct proof in Section 4.

3.1 From concatMap to nested folds

Barron and Strachey’s definition of Cartesian product seems perplexing at first
and what’s more, as Danvy and Spivey write, the authors seem almost to pull
this startling definition out of thin air. To better explain how the triply nested
fold arises, we have formalised a derivation of this function, suggested by a
reviewer, starting from a simpler definition. The proof sketch of this derivation
is in Figure 1.

The following reference implementation of the Cartesian product function is
a bit easier to understand and corresponds more closely to what one might write
initially:

product-spec : List (List A) → List (List A)
product-spec [] = [[]]
product-spec (xs :: xss) =

concatMap (λ x → concatMap (λ ys → [x :: ys]) (product-spec xss)) xs

The derivation in Figure 1 illustrates the inductive case, establishing that this
reference implementation is the same as the one from Barron and Strachey given
in our introduction. After applying the induction hypothesis, the next two steps
replace the calls to concatMap with the corresponding fold, using the following
identity:

concatMap f xs ≡ foldr (λ x ys → f x ++ ys) [] xs

The penultimate step relies on the following property, essentially allowing us to
fuse a call to map and append into a single fold:

foldr (λ x ys → f x :: ys) [] xs ++ zs ≡ foldr (λ x ys → f x :: ys) zs xs

On the Correctness of Barron and Strachey’s Cartesian Product Function 7

product-spec (xs :: xss)
≡〈 definition of product-spec 〉

concatMap (λ x → concatMap (λ ys → [x :: ys]) (product-spec xss)) xs
≡〈 induction hypothesis 〉

concatMap (λ x → concatMap (λ ys → [x :: ys]) (product xss)) xs
≡〈 concatMap as foldr 〉

foldr (λ x zss → concatMap (λ ys → [x :: ys]) (product xss) ++ zss) [] xs
≡〈 concatMap as foldr 〉

foldr (λ x zss → foldr (λ ys qss → (x :: ys) :: qss) [] (product xss) ++ zss) [] xs
≡〈 property of foldr 〉

foldr (λ x zss → foldr (λ ys qss → (x :: ys) :: qss) zss (product xss)) [] xs
≡〈 definition of product 〉

product (xs :: xss)
□

Fig. 1. Derivation of Barron and Strachey’s Cartesian product function

This is used to replace the empty list in the base case with the previously com-
puted elements of the Cartesian product, zss. To achieve the definition from the
introduction, we would need to introduce the auxiliary functions, f and g, explic-
itly; Agda happily unfolds these definitions, however, completing the proof for
us. The complete listing of the Agda reimplementation of Barron and Strachey’s
function is in Figure 2.

3.2 Verification

With this simpler definition in place, we finally give the specification and correct-
ness proof of the Cartesian product function. To specify the desired behaviour,
we define another predicate transformer. The Pairwise data type lifts a relation
between A and B to one over lists of A and lists of B:

data Pairwise (P : A → B → Set) : List A → List B → Set where
[] : Pairwise P [] []
:: : P x y → Pairwise P xs ys → Pairwise P (x :: xs) (y :: ys)

The Pairwise predicate transformer is similar to Haskell’s zipWith function, re-
quiring a proof of P x y for all elements x and y that occur at the same position
in xs and ys respectively. Note that, unlike zipWith, the Pairwise predicate en-
forces that both lists have exactly the same length. There is no possible proof of
a pairwise predicate if the argument lists have different lengths.

Just as we saw in the previous section, we formulate both soundness and
completeness properties:

8 Wouter Swierstra and Jason Hemann

soundness : List (List A) → List (List A) → Set
soundness xss yss = ∀ ys → ys ∈ yss → Pairwise _∈_ ys xss
completeness : List (List A) → List (List A) → Set
completeness xss yss = ∀ ys → Pairwise _∈_ ys xss → ys ∈ yss

Both of these properties are slightly more general than necessary: rather than
mention product xss, we refer to an arbitrary list yss. Instantiating yss to the
list produced by product xss gives the soundness and correctness properties you
might expect. The soundness property then states that all the elements listed
by the product function must draw their elements from the input lists; the com-
pleteness property then states that any list that does so must be in the list
computed by the product function. By generalizing over the list yss, however,
we can re-use these properties to talk about the soundness and completeness of
other functions—as we shall see in the next section.

Inspired by the bag equivalence relation from the previous section, we now
formulate the overall correctness result we wish to establish:

correctness : List (List A) → Set
correctness xss = ∀ ys → ys ∈ product-spec xss ≃ Pairwise _∈_ ys xss

The soundness and completeness results each form one of the functions in this
isomorphism. This overall correctness result ensures that the two functions are
each other’s inverse. This stronger property ensures that the Cartesian product
function does not duplicate or discard elements: there is always a unique proof
that each element in the Cartesian product draws its elements from the input
lists.

Soundness The soundness proof is somewhat involved. Given the assumption
that ys ∈ product-spec xss, we need to establish that ys draws its elements pair-
wise from xss. In the inductive case, we deconstruct our assumption into several
smaller parts:

ys ∈ concatMap f (product-spec xss) →
∃ [xs : List A] ((xs ∈ product-spec xss) ∧ (ys ∈ f xs))

Using this lemma twice, we produce the desired proof that the head of ys occurs
in the head of xss; the inductive hypothesis then completes the proof.

Completeness Somewhat surprisingly, the proof of completeness is almost trivial.
We perform induction on our assumption that ys draws its elements pairwise from
product-spec xss. In the inductive case, we have all the ingredients necessary to
establish that ys ∈ product-spec (xs :: xss). We use the lemma from the previous
section to establish that ys is an element of a list in the image of two calls to
concatMap.

On the Correctness of Barron and Strachey’s Cartesian Product Function 9

product : List (List A) → List (List A)
product xss = foldr f [[]] xss

module F where
f : List A → List (List A) → List (List A)
f xs yss = foldr g [] xs

module G where
g : A → List (List A) → List (List A)
g x zss = foldr (λ ys → (x :: ys) ::_) zss yss

Fig. 2. An Agda implementation of Barron and Strachey’s Cartesian product function.

Correctness The overall correctness proof establishes that the soundness and
completeness proofs are mutual inverses. The proof itself is tedious, but technical,
following the inductive structure of both lemmas.

The overall strategy for the proof in this section has been relate the Carte-
sian product from §1 to a simpler reference implementation, followed by the
verification of this reference implementation. In the next section we show how to
avoid this indirection and give a direct correctness proof Barron and Strachey’s
original implementation.

4 A direct proof

To prove the soundness and completeness of the original implementation, we
begin by giving the complete definition in Agda in Figure 2. A technical detail
worth mentioning is that the additional local modules F and G enable us to
refer to the locally defined functions f and g. These functions also generalize
over all local variables in scope, in their order of occurrence. For example, the
function g takes arguments xss, xs, yss, x and zss in that order; the function f
takes arguments xss, xs and yss, even though it does not directly use xss.

4.1 Soundness

To establish the soundness of the original Cartesian product function, we need
to prove:

soundness-direct : (xss : List (List A)) → soundness xss (product xss)

The base case follows readily enough; the inductive step requires an auxiliary
lemma about the auxiliary function f:

f-soundness : ∀ xs → soundness xss yss → soundness (xs :: xss) (f xss xs yss)

10 Wouter Swierstra and Jason Hemann

The corresponding proof defers all the work to a final lemma about the function
g:

g-soundness : soundness xss yss →
soundness (xs :: xss) zss →
soundness ((x :: xs) :: xss) (g xss xs yss x zss)

This lemma makes the inductive nature of the nested-fold explicit: the outermost
fold traverses the outermost list of lists; the auxiliary function f adds a new list
xs to this list of lists; and finally, the function g adds elements the inner list xs.
The proof itself requires two lemmas:

sound-there : Pairwise _∈_ xs (ys :: yss) → Pairwise _∈_ xs ((y :: ys) :: yss)
elem-destruct : ys ∈ foldr (λ zs → _::_ (x :: zs)) yss xss →

Either (∃ [xs : List A] (ys ≡ x :: xs ∧ xs ∈ xss))
(ys ∈ yss)

The first lemma is used to extend the inner list with new elements. The second
is used to decompose the hypothesis that ys occurs in the fused map-fold: either
ys is in the image of map (x ::_) or it occurs in the list yss, returned when xss is
empty.

4.2 Completeness

The completeness proof is simpler, following exactly the same inductive struc-
ture. The types of the three key lemmas follow the same pattern as we saw for
soundness:

product-complete : (xss : List (List A)) → completeness xss (product xss)
f-complete : completeness xss yss → completeness (xs :: xss) (f xss xs yss)
g-complete : completeness xss yss →

completeness (xs :: xss) zss →
completeness ((x :: xs) :: xss) (g xss xs yss x zss)

Once again, the only work is done by the last lemma about the auxiliary func-
tion g. This lemma traverses its argument Pairwise proof, using the following
properties of g:

g-in-xss : ys ∈ xss → (y :: ys) ∈ g yss xs xss y zss
g-in-zss : ys ∈ zss → ys ∈ g xss xs yss x zss

Essentially, both these properties illustrate how the elements produced by g are
either in the remainder of the Cartesian product (zss) or produced by adding
the current head of the first list, y, to another list. The proofs of both these
properties follow by a simple inductive argument.

On the Correctness of Barron and Strachey’s Cartesian Product Function 11

5 Intrinsic verification

Now that the inductive structure of the proof and program both coincide closely:
why not do both at once? To achieve this, we need to abandon the simply typed
folds used in Haskell, in favor of the dependently typed induction principle or
eliminator :

elim : {P : List A → Set} →
(∀ x {xs} → P xs → P (x :: xs)) →
P [] →
∀ xs → P xs

elim step base [] = base
elim step base (x :: xs) = step x (elim step base xs)

Operationally, the functions foldr and elim behave the same. The key difference
is in the return type. A simply typed fold produces a value of the same type,
irrespective of its input. On the other hand, the return type of the eliminator
depends on its input value xs. As we have set out to define a function returning
both a list and the proof that this resulting list is the Cartesian product of its
input, we need this extra generality.

To make this even more clear, we introduce a type for ‘correct Cartesian
product’, or CCP for short:

data CCP (xss : List (List A)) : Set where
, : (yss : List (List A)) → correctness xss yss → CCP xss

Such a correct Cartesian product of the list xss consists of an output list yss,
together with the desired correctness proof relating xss and yss. The CCP type
will form the first (implicit) argument P to the eliminator, sometimes referred
to as the motive [6].

We now define a correct by construction Cartesian product function. The
complete listing is given in Figure 3, lightly edited for the sake of legibility.
Replacing elim with foldr yields almost exactly the same function as the one
in the introduction, only we now return both a list and a correctness proof. We
have two base cases for our proofs, base and f-base, but we omit their definitions.
The type signatures of the auxiliary functions, f and g, mention an additional
(implicit) argument—but this is not used in the function’s definition. The only
real work—as always—is done by the innermost function, g, that uses a simple
fold to construct the desired list and assembles the desired correctness proof—
phrased in this way, we do not need the extra generality of the dependently
typed elim function as we merely compute a list. The proof component is built
by the function g-correct, that calls the soundness and completeness results from
the previous section. Written in this way, the correct by construction Cartesian
product function is only slightly more complicated than the original definition.

12 Wouter Swierstra and Jason Hemann

product : (xss : List (List A)) → CCP xss
product xss = elim f ([[]] , base) xss

where
base : correctness [] [[]]
f : (xs : List A) → {xss : List (List A)} → CCP xss → CCP (xs :: xss)
f xs (yss , yss-c) = elim g ([] , f-base) xs

where
f-base : correctness ([] :: xss) []
g : (x : A) → {xs : List A} → CCP (xs :: xss) → CCP ((x :: xs) :: xss)
g x (zss , zss-c) =

(foldr (λ ys → (x :: ys) ::_) zss yss , g-correct yss-c zss-c)

Fig. 3. A correct-by-construction Cartesian product

6 Discussion

It is unsurprising that a pure function defined using a fold is (relatively) easy
to test and verify. Nonetheless, establishing the correctness of a triply nested
fold that makes clever use of lexical scoping is still an amusing puzzle: finding a
suitable specification, proving the required lemmata, and assembling the pieces
all require a bit of thought. In particular, the symmetry in our specifications
enables us to express the isomorphism of proofs succinctly.

This symmetry between the soundness and completeness is no accident. We
have tried several other equivalent formulations. Although these alternative for-
mulations are logically equivalent, they make it harder to express the required
property that soundness and completeness are mutual inverses.

All soundness Rather than express soundness by mentioning individual elements
of the output list, we can give an alternative, capturing the desired characteristic
property of all the results returned by the Cartesian product function:

soundness : List (List A) → List (List A) → Set
soundness xss yss = All (λ ys → Pairwise _∈_ ys xss) yss

This definition is equivalent to the one introduced previously in Section 3. This
follows readily from the following property, relating individual elements and the
All predicate:

all∈ : (x ∈ xs → P x) ⇔ All P xs

Accumulating completeness The definition above shows how to specify soundness
without mentioning individual elements. In the quest for symmetry, we have

On the Correctness of Barron and Strachey’s Cartesian Product Function 13

also considered alternative notions of completeness. Defining a suitable notion
of completeness in this style is not entirely straightforward. One way to do so is
using an accumulating parameter :

accumulate : (P : List A → Set) → List (List A) → Set
accumulate P [] = P []
accumulate P (xs :: xss) = All (λ x → accumulate (P ◦ (x ::_)) xss) xs
complete-acc : List (List A) → List (List A) → Set
complete-acc xss yss = accumulate (_∈ yss) xss

This avoids the additional quantification of the list ys. Like the notion of sound-
ness above, this notion of completeness is described in terms of All. Once again,
this definition is logically equivalent to the one we have seen previously. A for-
tiori, we show that for any predicate P the accumulating and pairwise specifica-
tions are equivalent:

acc-equiv : {P : List A → Set} (xss : List (List A)) →
accumulate P xss ⇔ ((∀ xs → Pairwise _∈_ xs xss → P xs))

This directly implies that the accumulating and direct definitions of complete-
ness are equivalent—but the formulation used in the paper makes it easier to
express the isomorphism. The required proofs mirror the inductive structure of
the underlying definitions. The proof from left to right is defined tail-recursively,
extending the predicate P as we recurse over the input list and pairwise proofs.
The other direction follows by induction on the input list, using the following
lemma to accumulate the elements of the input list accordingly:

all-map : (∀ x → P x → Q x) → All P xs → All Q xs

Conclusion Even setting aside the challenges of proving correspondence to an im-
plementation, writing good specifications is hard. A specification that is too loose
leaves room for incorrect implementations, as we saw with the wrong-permute
function. Conversely, one that is too strict rules out valid programs, for example,
by fixing the order in which the elements of a Cartesian product function must be
generated. Expressing soundness and completeness symmetrically, however, has
paid dividends: we establish a one-to-one correspondence between the elements
of our Cartesian product and the proofs that these are valid.

Acknowledgments. We would like to thank the reviewers and attendees of TFP
for their helpful feedback and suggestions. They have helped improve the paper enor-
mously. Nicolas Wu suggested studying permutations before moving on to the Cartesian
product function itself. The research of Jason Hemann has been partially supported
by NSF grant CCF-2348408.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

14 Wouter Swierstra and Jason Hemann

References

1. Barron, D.W., Strachey, C.: Programming. In: Fox, L. (ed.) Advances in Program-
ming and Non-Numerical Computation. pp. 49–82. Pergammon Press (1966)

2. de Bruijn, N.G.: Automath: A language for mathematics. EUT
report 68-WSK-05, Technische Hogeschool Eindhoven (1968),
https://pure.tue.nl/ws/portalfiles/portal/2039924/256169.pdf, wSK, Dept. of
Mathematics and Computing Science

3. Danielsson, N.A.: Bag equivalence via a proof-relevant membership relation. In: In-
teractive Theorem Proving: Third International Conference, ITP 2012, Princeton,
NJ, USA, August 13-15, 2012. Proceedings 3. pp. 149–165. Springer (2012)

4. Danvy, O., Spivey, M.: On Barron and Strachey’s cartesian product function. In:
Proceedings of the 12th ACM SIGPLAN International Conference on Functional
Programming. p. 41–46. ICFP ’07, Association for Computing Machinery (2007).
https://doi.org/10.1145/1291151.1291161

5. Dinges, A., Hinze, R.: What’s in a bag?: An “Application Proving Inter-
face” for finite bags and its implementation. In: Proceedings of the 35th
Symposium on Implementation and Application of Functional Languages. IFL
’23, Association for Computing Machinery, New York, NY, USA (2024).
https://doi.org/10.1145/3652561.3652563

6. McBride, C.: Elimination with a motive. In: International Workshop on Types for
Proofs and Programs. pp. 197–216. Springer (2000)

7. McBride, C., McKinna, J.: The view from the left. Journal of functional program-
ming 14(1), 69–111 (2004)

8. Nederpelt, R.P., Geuvers, J.H., de Vrijer, R.C.: Selected Papers on Automath.
Studies in Logic and the Foundations of Mathematics, Elsevier, Netherlands (1994).
https://doi.org/10.1016/s0049-237x(08)70226-x

9. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden (September 2007)

10. Swierstra, W., Hemann, J.: Proofs associated with the paper ‘On the Cor-
rectness of Barron and Strachey’s Cartesian Product Function’ (Apr 2025).
https://doi.org/10.5281/zenodo.15118185

