
Hole Refinements for Polymorphic Type-and-Example
Driven Synthesis

Niek Mulleners
Utrecht University

Utrecht, Netherlands
n.mulleners@uu.nl

Johan Jeuring
Utrecht University

Utrecht, Netherlands
j.t.jeuring@uu.nl

Wouter Swierstra
Utrecht University

Utrecht, Netherlands
w.s.swierstra@uu.nl

Abstract
Many synthesizers implicitly benefit fromusing polymorphic
types, since parametric polymorphism reduces the search
space. Additional synthesis constraints may interfere with
parametricity. In particular, a polymorphic type may cause
otherwise feasible input-output examples to contradict each
other. We present Taxi (type-and-example based inferencer),
a tool for efficiently reasoning about the feasibility of poly-
morphic programs specified by input-output examples, and
Driver, a tactic language for top-down program synthesis
that uses feasibility reasoning to prune the search space. Taxi
guarantees that every search state corresponds to a correct
(albeit possibly partial) implementation. In addition, it allows
for shortcutting the synthesis when a subspecification covers
all cases. We show that these techniques have the potential
to speed up top-down enumerative type-and-example driven
synthesizers.

CCS Concepts: • Software and its engineering → Pro-
gramming by example; • Theory of computation →
Type theory; Automated reasoning.

Keywords: parametricity, container functors, feasibility, pro-
gram synthesis, example propagation
ACM Reference Format:
Niek Mulleners, Johan Jeuring, and Wouter Swierstra. 2026. Hole
Refinements for Polymorphic Type-and-Example Driven Synthesis.
In Proceedings of the 2026 ACM SIGPLAN International Workshop on
Partial Evaluation and Program Manipulation (PEPM ’26), January
11–17, 2026, Rennes, France. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3779209.3779535

1 Introduction
In statically typed functional languages, programmers of-
ten rely on the compiler as an assistant, both to check their
progress and to guide them along [Lubin and Chasins 2021].
Program sketching [Solar-Lezama 2009], or programming
with holes, allows the programmer to be explicit about which

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
PEPM ’26, Rennes, France
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2357-5/2026/01
https://doi.org/10.1145/3779209.3779535

parts of the program are unfinished. The compiler can then
check that the program is type correct as well as infer the
types of the holes, which can be used to guide the program-
mer further, for example by giving suggestions of valid next
steps [Gissurarson 2018].

Figure 1 shows some examples of possible suggestions to
refine a hole 1© of type [𝑎] → [𝑎]. Following the suggestions
ensures that the program remains type-correct. However,
there are no guarantees that the resulting program is seman-
tically correct. In fact, many of the suggestions are not very
sensible at all: due to the polymorphic type, map 2© can
only ever be refined to map id; const 2© to const Nil; and
filter 2© to either filter (const True) or filter (const False).1
Most likely, none of these refinements are what the program-
mer intended. If only the programmer could express their
intent to the compiler, we would be able to give more appro-
priate suggestions. Input-output examples are arguably the
easiest and most straight-forward way to do so. For example,
the programmer might intend to write a function removing
the first element from a list. With just a few input-output
examples and some elbow grease, all suggestions but pattern
matching can be discarded.

Once only valid hole refinements are allowed, the pro-
grammer may repeatedly ask for more refinements, to the
point where the program practically writes itself. In this
process of stepwise refinement, the program space is nar-
rowed down, while ensuring that the programs within never
contradict the type or the input-output examples.

In this paper, we explore how to automatically check
whether a hole refinement is valid with respect to a type and
input-output examples, and how this technique can benefit
program synthesis. To do so, we first define Taxi, a tool for
reasoning about the feasibility of programs specified by a
polymorphic type and a set of input-output examples. Next,
we define Driver, a program synthesizer aimed at customiz-
ability (through a language of tactics) and correctness (by
employing feasibility reasoning to ensure only correct re-
finements are introduced).

Contributions. In this paper, we extend our previous
work on reasoning about the feasibility of polymorphic pro-
grams with monomorphic input-output examples [Mulleners
et al. 2024].
1We assume here the programmer is only interested in a total implementa-
tion.

17

https://orcid.org/0000-0002-7934-6834
https://orcid.org/0000-0001-5645-7681
https://orcid.org/0000-0002-0295-7944
https://doi.org/10.1145/3779209.3779535
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779209.3779535

PEPM ’26, January 11–17, 2026, Rennes, France Niek Mulleners, Johan Jeuring, and Wouter Swierstra

skip ∶ ∀𝑎. [𝑎] → [𝑎]
skip = 1©

1© ⊑ reverse
1© ⊑ map 2©
1© ⊑ filter 2©
1© ⊑ const 2©
1© ⊑ foldr 2© 3©
1© ⊑ 𝜆xs. case xs of

Nil → 2©
Cons y ys → 3©

Figure 1. Possible suggestions of hole refinements based on
the type of a hole.

In particular, we
• define a general form for polymorphic examples (Sec-
tion 3);

• show how partial programs can be extracted from
these specifications (Section 3.6);

• define a notion of coverage checking to check the ex-
haustiveness of polymorphic examples (Section 3.7);

• provide support for algebraic datatypes (Section 3.3),
as well as limited support for ad hoc polymorphism
(Section 3.8); and

• implement these techniques in a tool called Taxi and
show that it outperforms prior work.

In addition, to show the potential of Taxi in program syn-
thesis, we implement Driver, a customizable, tactics based
synthesizer that employs the aforementioned techniques
to prune the search space while ensuring that every state
corresponds to a partial implementation (Section 4).

2 Motivating Examples
In this section we highlight how the techniques described in
this paper can be used to reason about the validity of hole
refinements and to prune the search space during program
synthesis.

2.1 Valid Hole Refinements
Suppose the programmer intends to implement the skip func-
tion, which removes the first element from a list (if it has any).
Based on the type alone, the compiler may give the suggested
refinements shown in Figure 1. Uncertain about which of
these suggestions is the correct one, the programmer may
write some input-output examples:

skip [1, 2, 3] ≡ [2, 3]
skip [4, 5] ≡ [5]

We will show how, using just these input-output examples,
most of the suggestions can be discarded.

For refinements that do not introduce holes, such as reverse,
we can evaluate the expression against the input-output ex-
amples. The call reverse [1, 2, 3] evaluates to [3, 2, 1], rather

than the expected result [2, 3]. Thus reverse is not a valid
refinement.

For refinements introducing holes, the correctness relies
onwhether the holes can still be filled to get the correct result.
In the case ofmap, the first input-output example states that
∃𝑓 . map 𝑓 [1, 2, 3] ≡ [2, 3]. Using equational reasoning, we
show that this is incorrect, since map preserves the length
of the input list.

map 𝑓 [1, 2, 3] ≡ [𝑓 1, 𝑓 2, 𝑓 3] ≢ [2, 3]

We cannot get the expected output, regardless of how 𝑓 is
instantiated, so map is not a valid refinement.

For filter, we get ∃𝑝. filter 𝑝 [1, 2, 3] ≡ [2, 3]. From this we
can derive the following constraint on 𝑝 :

𝑝 1 ≡ False ∧ 𝑝 2 ≡ True ∧ 𝑝 3 ≡ True

It may seem that this constraint is satisfiable. However, we
can use parametricity [Reynolds 1983; Wadler 1989] to show
that it is not. Simply put, parametricity states that we cannot
inspect or produce values of a polymorphic type 𝑎, only pass
them around. Since the type of 𝑝 is 𝑎 → Bool, we cannot
distinguish between the inputs 1, 2, and 3. This means that
the predicate 𝑝 cannot return different outputs, hence filter
is not a valid refinement.

The function const is also not a valid refinement, since
it throws away the input, which is relevant for computing
the output. We can once again use equational reasoning and
parametricity. From the equation ∃𝑐. const 𝑐 [1, 2, 3] ≡ [2, 3],
we derive that 𝑐 is constrained to the constant [2, 3]. Para-
metricity states, however, that we cannot produce 2 or 3,
since 𝑐 has type [𝑎].

Reasoning about recursion schemes, such as foldr, is a bit
more involved. Given the polymorphic type of skip, the input-
output example skip [4, 5] ≡ [5] implies skip [2, 3] ≡ [3].
This leads to the following equation:

∃𝑓 𝑒. foldr 𝑓 𝑒 [1, 2, 3] ≡ [2, 3] ∧ foldr 𝑓 𝑒 [2, 3] ≡ [3]

We can see how these two input-output examples are related
by expanding the call to foldr 𝑓 𝑒 [1, 2, 3] once:

𝑓 1 (foldr 𝑓 𝑒 [2, 3]) ≡ [2, 3]

Using foldr 𝑓 𝑒 [2, 3] ≡ [3], we end up with the input-output
example 𝑓 1 [3] ≡ [2, 3]. Since 𝑓 has type [𝑎] → [𝑎], this
example is contradictory. As such, foldr is not a valid refine-
ment.

The last suggested refinement pattern matches on the
input.This refinement is always valid, regardless of the input-
output examples.

After checking each possible refinement from Figure 1
for validity, we can conclude that only the last suggestion
should be given. If the programmer accepts the suggestion
to pattern match on the input, suggestions for the remaining
holes lead to the following correct implementation:

skip xs = case xs of Nil → Nil ; Cons y ys → ys

18

Hole Refinements for Polymorphic Type-and-Example Driven Synthesis PEPM ’26, January 11–17, 2026, Rennes, France

With the help of the suggestions, the program practically
wrote itself. In the next section, we take this a step further,
showing how the synthesis of a program can be automated
by performing repeated refinements.

2.2 Program Synthesis
By repeatedly applying valid refinements, we end up with a
program that is correct by construction. For example, con-
sider the function nub, which removes all duplicates from
a list, keeping only the first occurrences. We can specify
nub using the following type signature and input-output
examples.

nub ∶ ∀𝑎. Eq 𝑎 ⇒ [𝑎] → [𝑎]
nub xs = 1© 1© ⊨

⎧
⎪
⎪

⎨
⎪
⎪
⎩

xs
[] ↦ []
[1] ↦ [1]
[1, 1] ↦ [1]
[2, 1] ↦ [2, 1]
[1, 1, 1] ↦ [1]
[1, 2, 1] ↦ [1, 2]

The synthesis tactic described in Section 4 will find the fol-
lowing hole refinements, leading to the desired solution.

1© ⊑ foldr (𝜆x r. 2©) 3© xs
2© ⊑ Cons 4© 5©
3© ⊑ Nil
4© ⊑ x
5© ⊑ filter (𝜆y. 6©) r
6© ⊑ x ≠ y

1© We try map and filter before trying foldr, as described
in Section 4.5. Since map and filter fail, the first valid
refinement for hole 1© uses foldr. This results in the
following constraints on the holes.

2© ⊨
⎧
⎪

⎨
⎪
⎩

x r
1 [] ↦ [1]
1 [1] ↦ [1]
2 [1] ↦ [2, 1]
1 [2, 1] ↦ [1, 2]

3© ⊨ []

2© All examples have an output list with at least one ele-
ment. So we can introduce the Cons constructor. This
has precedence over introducing functions.

4© ⊨
⎧
⎪

⎨
⎪
⎩

x r
1 [] ↦ 1
1 [1] ↦ 1
2 [1] ↦ 2
1 [2, 1] ↦ 1

5© ⊨
⎧
⎪

⎨
⎪
⎩

x r
1 [] ↦ []
1 [1] ↦ []
2 [1] ↦ [1]
1 [2, 1] ↦ [2]

3© This hole is constrained to the constant Nil, so no need
to try other refinements.

4© Before trying any other tactics, we check if a variable
in scope matches the examples. In this case x is the
right value.

5© The refinement map fails, but filter succeeds. Since
filter can be defined in terms of foldr, we do not try a
refinement with foldr.

6© ⊨ {
x y
1 2 ↦ True
1 1 ↦ False

6© At this point, the input-output examples along with
polymorphic type cover all possible cases. We can rec-
ognize this automatically by means of example cover-
age checking (Section 3.7). Further refinements can no
longer influence the semantics of the program, so we
can use program extraction to fill hole 6© (Section 3.6).

After this final step, the synthesis is finished and the final
program follows from the refinements:

nub xs = foldr (𝜆x r. Cons x (filter (𝜆y. x ≠ y) r)) Nil xs
Not only is this the first solution found by our synthesizer,
but every refinement step is the first valid refinement con-
sidered for its hole. This means that no backtracking or un-
necessary branching occurred during the synthesis of this
program. Note, however, that this particular example works
especially well with the synth tactic defined in Section 4. In
practice, the user may find it necessary to write their own
tactic to achieve the best results.

3 Polymorphic Examples
It may seem that a single input-output example, such as
𝑓 [1, 2, 3] ≡ [2, 3], only restricts 𝑓 on a single input. How-
ever, when the constrained function has a polymorphic type,
such as 𝑓 ∶ ∀𝑎. [𝑎] → [𝑎], parametricity constrains many
more inputs based on this single input-output example. In
particular, 𝑓 is restricted on every input list of length three,
regardless of the type and values of the list elements. In
a way, our single input-output actually represents a set of
input-outputs, described by the following equation:

∀𝑥 𝑦 𝑧. 𝑓 [𝑥, 𝑦 , 𝑧] ≡ [𝑦, 𝑧]
We refer to such an equation as a polymorphic example, and
to the original input-output example as a monomorphic ex-
ample. Informally, to compute a polymorphic example, we
traverse the elements in the monomorphic example, assign-
ing a unique variable to each. Since polymorphic functions
work for any input, we universally quantify over the input
elements. The output elements of a polymorphic function
should come from the input, so we constrain them to the
inputs that have the same value. When the input contains
duplicate elements, outputs can be chosen arbitrarily among
them in the corresponding polymorphic example. For exam-
ple, for the monomorphic example 𝑓 [1, 1] ≡ 1:

∀𝑥 𝑦. ∃𝑧 ∈ {𝑥, 𝑦}. 𝑓 [𝑥, 𝑦] ≡ [𝑧]
Sometimes, an input-output example and a polymorphic type
contradict each other. For example, the monomorphic exam-
ple 𝑓 [1, 2] ≡ [2, 3] contradicts the type ∀𝑎. [𝑎] → [𝑎], since

19

PEPM ’26, January 11–17, 2026, Rennes, France Niek Mulleners, Johan Jeuring, and Wouter Swierstra

the output 3 does not occur in the input. This contradiction
is visible in the corresponding polymorphic example:

∀𝑥 𝑦. ∃𝑧 ∈ {}. 𝑓 [𝑥, 𝑦] ≡ [𝑦, 𝑧]

In our previous work, we have shown how to automate such
reasoning about the feasibility of polymorphic functionswith
monomorphic input-output examples [Mulleners et al. 2024].
Polymorphic functions are interpreted as morphisms be-
tween finitary container functors. Translating input-output
examples to the setting of container functors results in more
manageable constraints that can be solved by an SMT solver.
Note how finitary containers are exactly traversable func-
tors [Jaskelioff and O’Connor 2015], matching our intuition
of polymorphic examples being computed by traversing the
input-output examples.

In this section, we give an overview of our previous tech-
nique and extend upon it in several ways in our tool Taxi,
allowing for faster reasoning, more transparent feedback, as
well as support for algebraic datatypes and limited ad hoc
polymorphism.

3.1 Container Morphisms
Abbott et al. [2003, 2005] show how some datatypes that
contain other datatypes can be represented in terms of their
structure and their contents. A container 𝑆 ▷ 𝑃 has a shape of
type 𝑆, representing its structure and, for every shape 𝑠 ∶ 𝑆,
a set of positions of type 𝑃𝑠, specifying the locations within
that structure where each element is located. For example,
the structure of a list is its length (a natural number) and
a list of length 𝑛 has exactly 𝑛 elements. As such, the list
container is defined as ℕ ▷ Fin, where Fin 𝑛 = {0,… , 𝑛 − 1},
the type containing exactly 𝑛 elements. The extension of a
container 𝑆 ▷ 𝑃 (written J𝑆 ▷ 𝑃K) is a functor defined using a
dependent pair as J𝑆 ▷ 𝑃K 𝑋 ≜ Σ(𝑠∶𝑆) (𝑃𝑠 → 𝑋).

Values of type J𝑆 ▷ 𝑃K 𝑋 consist of a shape 𝑠 ∶ 𝑆 and a
function mapping each position 𝑝 ∶ 𝑃𝑠 to the correspond-
ing element of type 𝑋. For example, the list [𝑥0, … , 𝑥𝑛−1] is
represented in the list container extension as (𝑛, 𝜆𝑖. 𝑥𝑖).

When reversing a list, its elements are reordered from
highest to lowest index. This is easily done in the container
representation: the reverse of (𝑛, 𝜆𝑖. 𝑥𝑖) is (𝑛, 𝜆𝑖. 𝑥𝑛−𝑖−1). Note
how this reversal can be expressed in terms of only the in-
dices of elements, rather than their values. Such functions,
that only refer to the indices of elements, are exactly con-
tainer morphisms.

A container morphism between the containers 𝑆 ▷ 𝑃 and
𝑇 ▷ 𝑄 is a pair (𝑢, 𝑔), where 𝑢 ∶ 𝑆 → 𝑇 is a function from
input shapes to output shapes and 𝑔 ∶ Π(𝑠∶𝑆) (𝑄 (𝑢 𝑠) → 𝑃𝑠)
is a function mapping, for each input shape, output positions
to input positions. In other words, 𝑔 describes where each
element in the output comes from. Container morphisms

can be applied using their extension:

⟨⟨𝑢, 𝑔⟩⟩ ∶ ∀𝑎. J𝑆 ▷ 𝑃K 𝑎 → J𝑇 ▷ 𝑄K 𝑎
⟨⟨𝑢, 𝑔⟩⟩ ≜ 𝜆(𝑠, 𝑝). (𝑢 𝑠, 𝑝 ∘ 𝑔𝑠)

We can define list reversal as the extension of a container
morphism as ⟨⟨(𝜆𝑛. 𝑛), (𝜆𝑛 𝑖. 𝑛 − 𝑖 − 1)⟩⟩.

3.2 Reasoning about Feasibility
Container morphisms are exactly natural transformations be-
tween container functors: if a function 𝑓 is a natural transfor-
mation between container functors, there exists a container
morphism (𝑢, 𝑔) such that 𝑓 ≅ ⟨⟨𝑢, 𝑔⟩⟩ [Abbott et al. 2005]. In
our previous work, we used this insight to reason about the
feasibility of input-output examples on polymorphic func-
tions, by translating those examples to the container setting,
where they can easily be solved by an SMT solver [Mulleners
et al. 2024].

More concretely, we asked the following question: given
container functors 𝐹 and 𝐺, and a set of input-output pairs,
does there exist a function 𝑓 ∶ ∀𝑎. 𝐹 𝑎 → 𝐺 𝑎 that implements
the input-output pairs? To answer this question, we then
defined the following procedure:

1. find a container 𝑆 ▷ 𝑃 such that 𝐹 ≅ J𝑆 ▷ 𝑃K;
2. find a container 𝑇 ▷ 𝑄 such that 𝐺 ≅ J𝑇 ▷ 𝑄K;
3. assert that there exists a container morphism (𝑢, 𝑔)

such that 𝑓 ≅ ⟨⟨𝑢, 𝑔⟩⟩;
4. for every input-output example 𝑓 𝑖 ≡ 𝑜 instantiating

𝑓 at type 𝜏
a. compute (𝑠, 𝑝) ∶ J𝑆 ▷ 𝑃K 𝜏 such that 𝑖 ≅ (𝑠, 𝑝);
b. compute (𝑡, 𝑞) ∶ J𝑇 ▷ 𝑄K 𝜏 such that 𝑜 ≅ (𝑡, 𝑞);
c. note that ⟨⟨𝑢, 𝑔⟩⟩(𝑠, 𝑝) ≡ (𝑡, 𝑞);
d. check the shape component 𝑢 𝑠 ≡ 𝑡;
e. check the position component 𝑝 ∘ 𝑔 ≡ 𝑞.

Finding a contradiction in step 4d or 4e shows that no such
function 𝑓 exists, and solutions for 𝑢 and 𝑔 correspond to a
correct definition of 𝑓 .

Challenges of SMT-based Feasibility Reasoning. In our
previous work, to try and find solutions for 𝑢 and 𝑔, we used
an SMT solver. In steps 1, 2, 4a, and 4b, we used handcrafted
translations, translating common functors to their canonical
container representations.

The effectiveness of this approach on list functions relies
heavily on the fact that the shape and position types of
the canonical list container (ℕ and Fin respectively) can
be represented as integers with lower and upper bounds,
which SMT solvers are optimized for. In contrast, consider
the following binary Tree datatype:

data Tree 𝑎 = Node (Tree 𝑎) 𝑎 (Tree 𝑎) | Leaf

We can represent it as a container whose shape is a bare tree
(without values in the nodes) and its positions are indices
in that tree. To encode these in an SMT solver, we have to
represent the bare tree as an algebraic datatype and check

20

Hole Refinements for Polymorphic Type-and-Example Driven Synthesis PEPM ’26, January 11–17, 2026, Rennes, France

that the indices do not fall outside that tree. While this is
possible, it leads to a large bump in complexity compared to
lists. We recognize the following downsides of SMT-based
feasibility reasoning, especially in the context of program
synthesis:
Flexibility Container translations have to be constructed

manually for every datatype.
Efficiency Shape and position types are dependent types:

to model them in an SMT solver one has to make sure
only correct values can be represented. While this is easy
for simple types like ℕ and Fin, more complex datatypes
are difficult to represent efficiently.

Transparency When the specification is infeasible, there
is no explanation as to which constraint failed. When it
is feasible, the solver returns arbitrary implementations
of 𝑢 and 𝑔, which prove feasibility, but cannot easily be
translated back into a program in the target language.
Additionally, there is no way to inspect or reason about
the polymorphic examples.

Reliability There are no clear guarantees as to when or
whether the SMT solver terminates.

HowWe Address These Challenges. In this work, we use
the same general procedure for reasoning about feasibility,
but use a generic container translation and forgo the use of
a solver.

For the container translation, we use the observation that
𝐹 ≅ J𝐹 ⊤ ▷ SizeK, where Size 𝑠 has exactly one element for
each unit in 𝑠 ∶ 𝐹 ⊤. In other words, we use a translation
where the shape of a functor 𝐹 is that functor filled with
units, and the type of positions has exactly one element for
each such unit. By using this generic translation, we do not
need specialized container translations for every type, as it
works for any strictly positive type.

To solve the constraints in steps 4d and 4e, rather than
relying on an SMT solver, we define a terminating procedure
for computing a normal form for polymorphic examples.
This allows us to make better use of the structure that is
present in these constraints, for more efficient, transparent,
and reliable reasoning.

3.3 A Generic Container Translation
In Figure 2, we describe the syntax of simple values, types,
and input-output examples. A datatype 𝐷 is defined as a
(possibly recursive) sum of products. A strictly positive type
𝜋 consists of products, datatypes, and free variables. A value
𝑣 consists of tuples and constructors.

We translate values to their container representation, a
shape 𝑠 and a position map 𝑝, using the inference rules in
Figure 3. We write 𝑣 ∶ 𝜋 ↓𝑚𝑛 𝑠 ▷ 𝑝 to denote that the value 𝑣
checked against the type 𝜋 has shape 𝑠 and a position map 𝑝
that maps the positions [𝑚, 𝑛) to values. We may leave out
position bounds (𝑚 and/or 𝑛) when they are not relevant.
The translation of a value to its container representation

Constructor 𝐶 ∈ Constructors
Type Variable 𝑎 ∈ Variables
Position 𝑛 ∈ ℕ
Datatype 𝐷 ∶∶= 𝐶 𝜋
Positive Type 𝜋 ∶∶= ⊤ | 𝜋1 × 𝜋2 | 𝐷 | 𝑎
Value 𝑣 ∶∶= () | (𝑣1, 𝑣2) | 𝐶 𝑣
Shape 𝑠 ∶∶= () | (𝑠1, 𝑠2) | 𝐶 𝑠 | 𝑛

Position Map 𝑝 ∶∶= { 𝑛 ↦ 𝑣 ∶ 𝑎 }
Origin Map Ω ∶∶= { 𝑛 ↦ {𝑛1, … , 𝑛𝑖} }

Figure 2. Syntax for type-and-example specifications.

𝑣 ∶ 𝜋 ↓𝑚𝑛 𝑠 ▷ 𝑝

() ∶ ⊤ ↓𝑛𝑛 () ▷ −
unit

𝑣1 ∶ 𝜋1 ↓𝑙𝑚 𝑠1 ▷ 𝑝1 𝑣2 ∶ 𝜋2 ↓𝑚𝑛 𝑠2 ▷ 𝑝2
(𝑣1, 𝑣2) ∶ (𝜋1 × 𝜋2) ↓𝑙𝑛 (𝑠1, 𝑠2) ▷ (𝑝1 ∪ 𝑝2)

tuple

𝑣 ∶ 𝜋 ↓𝑚𝑛 𝑠 ▷ 𝑝 𝐶 𝜋 ∈ constructors(𝐷)
𝐶 𝑣 ∶ 𝐷 ↓𝑚𝑛 𝐶 𝑠 ▷ 𝑝

constructor

𝑣 ∶ 𝑎 ↓𝑛𝑛+1 𝑛 ▷ { 𝑛 ↦ 𝑣 ∶ 𝑎 }
free

Figure 3. Inference rules for translating values to their con-
tainer representation.

replaces each value at type 𝑎 with a uniquely labeled box
𝑛 and stores the value in the position map at position 𝑛.
Intuitively, this translation makes the separation of structure
and content explicit.

To translate a tuple, both parts are translated separately
such that their position bounds are consecutive, ensuring
that each position is uniquely and consistently labeled. Their
shapes are then tupled and their position maps unioned. The
free rule is the most interesting: any value 𝑣 at type 𝑎 is
stored in the position map at position 𝑛, and the value 𝑣 is
replaced by 𝑛 .2 Note that this is the only rule that strictly
increases the range of positions.

The translation can easily be reverted by substituting the
boxes in a shape 𝑠 with the values found in the position
map 𝑝. We write ̂𝑝(𝑠) to substitute the boxes in 𝑠 for values
according to 𝑝. If 𝑣 ∶ 𝜋 ↓ 𝑠 ▷ 𝑝, then ̂𝑝(𝑠) = 𝑣.

2Note that there is no ambiguity as to which rule applies; 𝑎 is a free type
variable and distinct from other types.

21

PEPM ’26, January 11–17, 2026, Rennes, France Niek Mulleners, Johan Jeuring, and Wouter Swierstra

3.4 Computing Polymorphic Examples
In this section, we follow the steps from Section 3.2 to turn
monomorphic examples into polymorphic examples and
check their feasibility. Consider once again the function
𝑓 ∶ ∀𝑎. 𝐹 𝑎 → 𝐺 𝑎. Following steps 1 and 2, we start by
picking containers for 𝐹 and 𝐺. We assume that 𝐹 𝑎 and 𝐺 𝑎
are strictly positive, i.e. 𝐹 𝑎 = 𝜋1 and 𝐺 𝑎 = 𝜋2. As such,
we can use the generic container translation described in
Section 3.3.

For every input-output example 𝑓 𝑖 ≡ 𝑜, following steps 4a
and 4b, we translate the input and output using the inference
rules in Figure 3:

𝑖 ∶ 𝜋1 ↓ 𝑠 ▷ 𝑝 𝑜 ∶ 𝜋2 ↓ 𝑡 ▷ 𝑞

We can then reformulate the input-output example in terms
of 𝑠, 𝑡, 𝑝, and 𝑞:

𝑓 ̂𝑝(𝑠) ≡ 𝑞̂(𝑡)

As we did in the introduction of Section 3, we want to gen-
eralize this input-output example to constrain inputs of any
type 𝜏, containing any elements. To do so, we have to show
how 𝑝 and 𝑞 constrain 𝑓 . Together, the position maps 𝑝 and
𝑞 define, for every output position in 𝑡, which input positions
in 𝑠 are valid origins. Concretely, each output position corre-
sponds to a set of input positions, given by the origin map
Ω:

Ω = { 𝑛 ↦ { 𝑚 | (𝑚 ↦ 𝑣 ∶ 𝑎) ∈ 𝑝 } | (𝑛 ↦ 𝑣 ∶ 𝑎) ∈ 𝑞 }

To give a general form for polymorphic examples in terms of
the triple ⟨𝑠, 𝑡 , Ω⟩, we generalize the input-output example
by quantifying over 𝑝 and 𝑞:

𝑓 ⊨ ⟨𝑠, 𝑡 , Ω⟩ ≜ ∀𝑝. ∃𝑞. 𝑓 ̂𝑝(𝑠) ≡ 𝑞̂(𝑡) ∧ 𝑝 ⋉Ω 𝑞 (1)

where 𝑝 ⋉Ω 𝑞 =

∀(𝑛 ↦ 𝑣 ∶ 𝑎) ∈ 𝑞. ∃(𝑚 ↦ 𝑣 ∶ 𝑎) ∈ 𝑝. ∃(𝑛 ↦ 𝑜) ∈ Ω. 𝑚 ∈ 𝑜

An Example Translation. Consider the input-output
example 𝑓 [1, 1] ≡ [1] for the function 𝑓 ∶ ∀𝑎. [𝑎] → [𝑎].
After translating, we end up with a polymorphic example
𝑓 ⊨ ⟨𝑠, 𝑡 , Ω⟩, where

𝑠 = [0 , 1], 𝑡 = [0], and Ω = { 0 ↦ {0, 1} }.

Equation 1 quantifies over the position maps 𝑝 and 𝑞. Since
we know the number of positions in 𝑠 and 𝑡, we can make 𝑝
and 𝑞 explicit. They are of the form { 0 ↦ 𝑥 ∶ 𝑎, 1 ↦ 𝑦 ∶ 𝑎 }
and { 0 ↦ 𝑧 ∶ 𝑎 } respectively, so we can quantify over 𝑥, 𝑦,
and 𝑧 instead. In doing so, the relation 𝑝 ⋉Ω 𝑞 simplifies to
𝑧 ∈ {𝑥, 𝑦}:

∀𝑥 𝑦. ∃𝑧 ∈ {𝑥, 𝑦}. 𝑓 [𝑥, 𝑦] ≡ [𝑧]

Typically, when the shapes of polymorphic examples are
known, we will write them in this form, by quantifying over
the elements rather than the position maps.

3.5 Feasibility Conflicts
We have seen how to translate input-output examples into
polymorphic examples. For a set of examples, we get

𝑓 𝑖𝑘 ≡ 𝑜𝑘 ⟹ 𝑓 ⊨ ⟨𝑠𝑘, 𝑡𝑘, Ω𝑘⟩

We are interested to know whether a program 𝑓 satisfying
the input-output examples exists, i.e. whether the polymor-
phic examples are feasible. As shown in our previous work,
if polymorphic examples are infeasible, this is due to one of
three conflicts [Mulleners et al. 2024]. We can easily check
for these conflicts by inspecting the polymorphic examples.
Magic Output An example has an output element that does

not occur in the input. When this is the case, Ω is empty
at the corresponding output position.

Shape Conflict Two examples have the same input shape,
but not the same output shape.

Position Conflict Two or more examples have the same
input and output shape, but they disagree on the origins
of the output elements. To check for position conflicts, we
merge examples with the same input shape by taking the
pointwise intersection of their origin maps:

𝑓 ⊨ ⟨𝑠, 𝑡 , Ω1⟩
…

𝑓 ⊨ ⟨𝑠, 𝑡 , Ω𝑛⟩
} 𝑓 ⊨ ⟨𝑠, 𝑡 , ⋂

𝑖
Ω𝑖⟩

A position conflict occurs exactly if there is a magic output
in the merged example.

3.6 Program Extraction
After checking and merging the constraints, we end up with
a set of polymorphic examples with unique input shapes and
origin maps that are non-empty at every position. We can
show that a partial program implementing these constraints
exists. For every position 𝑛 in every output shape 𝑡, we pick
an input position from the origin map, denoted 𝜔(𝑡, 𝑛). We
can then define a program 𝑓 by pattern matching on the
input shapes. For every triple ⟨𝑠, 𝑡 , Ω⟩, we create a pattern by
filling the positions in the input shape with fresh variables.
All other cases are caught by a wildcard pattern, whose right-
hand side is simply a hole.

𝑓 = 𝜆case
̂𝑝(𝑠) → 𝑞̂(𝑡) where 𝑝 = {𝑚 ↦ 𝑥𝑚 }

𝑞 = { 𝑛 ↦ 𝑥𝜔(𝑡,𝑛) }
_ → ©

This implementation is guaranteed to satisfy all the input-
output examples, but may be partial, if not all patterns are
covered.

3.7 Example Coverage Checking
We can perform a basic form of pattern match coverage
checking to see which cases are missing from a set of poly-
morphic examples. Note that we only have to check which
input shapes are missing, by enumerating all possible shapes

22

Hole Refinements for Polymorphic Type-and-Example Driven Synthesis PEPM ’26, January 11–17, 2026, Rennes, France

of the input container. We are particularly interested in cases
where all shapes are covered, as this means a program found
by program extraction is guaranteed to be total. For example:

swap ∶ ∀𝑎 𝑏. Either 𝑎 𝑏 → Either 𝑏 𝑎
swap (Left 3) ≡ Right 3
swap (Right ()) ≡ Left ()

Extract
−−−−−−−→ 𝜆case Left x → Right x ; Right x → Left x

3.8 Ad Hoc Polymorphism
To reason about ad hoc polymorphic functions, we adopt
the approach by Seidel and Voigtländer [2010] for extending
containers with ad hoc polymorphism. When the ad hoc
polymorphism describes a relation (such as an equality or
an ordering), it can be used to indirectly inspect elements by
checking if the relation holds between them. Consider, for
example, the following specification for the max function:

max ∶ ∀𝑎. Ord 𝑎 ⇒ 𝑎 → 𝑎 → 𝑎
max 1 2 ≡ 2
max 1 1 ≡ 1
max 3 2 ≡ 3

We would like to compute conditional polymorphic exam-
ples, as follows:

∀𝑥 𝑦. ∃𝑧 ∈ {𝑥, 𝑦}. {
max 𝑥 𝑦 ≡ 𝑦 if 𝑥 < 𝑦
max 𝑥 𝑦 ≡ 𝑧 if 𝑥 ≡ 𝑦
max 𝑥 𝑦 ≡ 𝑥 if 𝑥 > 𝑦

We can, however, avoid extending our formalization by re-
formulating the problem. One way to define an ordering is
in terms of the Ordering datatype and the accompanying
compare function.

data Ordering = LT | EQ | GT
compare ∶ ∀𝑎. Ord 𝑎 ⇒ 𝑎 → 𝑎 → Ordering

We can capture the ordering of the inputs using the compare
function and pass it to the fully polymorphic helper function
max′. The feasibility ofmax andmax′ are equivalent, as they
can be defined in terms of each other.

max 𝑥 𝑦 = max′ (compare 𝑥 𝑦) 𝑥 𝑦
where max′ ∶ ∀𝑎. Ordering → 𝑎 → 𝑎 → 𝑎

We can now compute the following polymorphic examples,
showing that max′ (and thus max) is feasible. Better yet, we
can use example coverage checking and program extraction
to find a total solution for max.

∀𝑥 𝑦. ∃𝑧 ∈ {𝑥, 𝑦}. {
max′ LT 𝑥 𝑦 ≡ 𝑦
max′ EQ 𝑥 𝑦 ≡ 𝑧
max′ GT 𝑥 𝑦 ≡ 𝑥

Effectively, the Ord constraint is replaced by the Ordering
argument. Every function with an Ord constraint can be
automatically rewritten in a similar manner, in terms of a
helper function that replaces the constraint with an argu-
ment that carries the ordering information. We automate

this process for dealing with Ord constraints, and do the
same for Eq constraints.

4 Sketching
We have seen how to use program extraction (Section 3.6)
to generate a partial program implementing a feasible speci-
fication. Such programs do not, however, generalize beyond
the given input-output examples. Instead, we want to in-
troduce common abstractions that generalize beyond the
input-output examples in a natural way. To do so, we will
use program sketching, a technique whereby a program is
written incrementally, leaving holes for the parts that are
yet to be defined. At each increment, we make sure that the
program is still feasible and compute which specification
should hold on each hole to guarantee a correct solution.

4.1 An Example: delete in terms of filter
Consider the following specification for the delete function,
along with a simple sketch.

delete ∶ ∀𝑎. Eq 𝑎 ⇒ 𝑎 → [𝑎] → [𝑎]
delete 0 [] ≡ []
delete 1 [1] ≡ []
delete 2 [2, 2] ≡ []
delete 3 [1, 3] ≡ [1]

delete 𝑎 xs = 0©

After confirming that the specification of delete is feasible,
we may attempt to implement it using filter, by introducing
the following hole filling.

0© ↦ filter (predicate 𝑎) xs where predicate 𝑥 y = 1©

Using type checking and equational reasoning, we can infer
that predicate should satisfy the following specification:

predicate ∶ ∀𝑎. Eq 𝑎 ⇒ 𝑎 → 𝑎 → Bool
predicate 1 1 ≡ False
predicate 2 2 ≡ False
predicate 3 1 ≡ True

We can compute the polymorphic examples as described in
Section 3 to show that predicate is feasible.

∀𝑥 𝑦. { predicate 𝑥 𝑦 ≡ False if 𝑥 ≡ 𝑦
predicate 𝑥 𝑦 ≡ True if 𝑥 ≢ 𝑦

The resulting constraint is not only feasible, but also ex-
haustive and unique. This means that there is a single, total
solution for predicate, which we can find using program
extraction. After inlining predicate and normalizing, we end
up with the following implementation of delete:

delete 𝑥 xs = filter (𝜆𝑦. 𝑥 ≢ 𝑦) xs

4.2 A Sketching Framework
We define Driver, a domain specific language in Haskell for
sketching. The main datatypes are defined in Figure 4.

23

PEPM ’26, January 11–17, 2026, Rennes, France Niek Mulleners, Johan Jeuring, and Wouter Swierstra

data Sketch hole = … | Hole hole
data Signature = Signature { args ∶ Args, out ∶ Type }
type Args = [(String, Type)]
data Example = Example { args ∶ [Value], out ∶ Value }
data Spec = Spec { sig ∶ Signature, exs ∶ [Example] }

Figure 4. The datatypes used in sketching.

A specification consists of a type signature and a list of input-
output examples. A sketch is an expression from the lambda-
calculus extended with data (de)constructors and holes. A
sketch is parameterized over the type of values stored in the
holes. For example, we may store numbers in holes to refer
to them. More interestingly, we can store specifications in
holes to describe the subgoals.

Tactics. Starting from a specification, we may want to
introduce a sketch and compute the subgoals. Imagine a func-
tion propagate that can compute subgoals by propagating a
specification through a sketch.

propagate ∶ Sketch 𝑎 → Spec → Maybe (Sketch Spec)

Unfortunately, we cannot define this function in general. The
process of inferring the input-output examples that should
hold on the holes of an expression, known as example propa-
gation [Osera and Zdancewic 2015], is not well-defined for
all sketches. For example, when implementing delete, if we
try to introduce the hole filling 0© ↦ filter 1© 2©, there is an
infinite number of possible input-output examples we could
infer for 2©. As a solution, we only allow sketching through
tactics, i.e. functions that attempt to introduce a sketch for
which example propagation is well-defined. For example, we
can describe a tactic that applies filter to a variable in scope,
introducing the following hole filling:

filter (predicate a) xs where predicate x y = ©
In addition to failing when the sketch does not fit the spec-
ification, the tactic should be able to (1) arbitrarily choose
a variable xs to apply filter to (possibly leading to multiple
correct sketches), and (2) generate fresh variable names for
predicate, x, and y. To this end, we define tactics in terms of
a Synth monad, which allows failure, branching, and gener-
ating fresh variables.

type Tactic = Spec → Synth (Sketch Spec)
(∥) ∶ Tactic → Tactic → Tactic
fail ∶ Tactic

We define a tactic introFilter that applies filter to a specific
variable in scope, passes all the other variables in scope along
to the predicate, computes the specification that should hold
on the predicate, ensures that this specification is feasible,
and applies program extraction if all cases are covered.

introFilter ∶ Var → Tactic

To apply this function to any variable in scope, we define
the tactic combinator anywhere.

anywhere ∶ (Var → Tactic) → Tactic
anywhere t spec = foldr (∥) fail ts

where ts = map t (variables spec)
To find an implementation for the function delete, we simply
apply the tactic anywhere introFilter to the specification and
enumerate the values in the resulting Synth monad. If we
find a sketch without holes, it is guaranteed to be a total
program that implements the specification.

We define many such tactics. For example, exact intro-
duces a sketch without holes; introCase introduces a case
distinction on a variable in scope (provided it is an algebraic
datatype); and introConstructor introduces a constructor
if all input-output examples agree. Additionally, we define
tactics introducing higher-order combinators such as filter,
map, and foldr. While introMap and introFilter only work on
lists, introFold works on any inductively defined datatype.

exact ∶ Sketch Void → Tactic
introCase ∶ Var → Tactic
introConstructor ∶ Tactic
introMap ∶ Var → Tactic
introFilter ∶ Var → Tactic
introFold ∶ Var → Tactic

Recursion Schemes. The tactic introFold is particularly
important, for defining recursive programs. Unfortunately,
example propagation on folds results in subgoals in terms
of input-output traces, rather than input-output examples.
Consider the following example for reverse:

reverse [1, 2, 3] ≡ [3, 2, 1]
If we try to implement reverse as foldr 𝑓 [], this leaves us
with the following input-output trace:

𝑓 1 (𝑓 2 (𝑓 3 [])) ≡ [3, 2, 1]
It is possible to reason about the feasibility of such input-
output traces by encoding the constraints in an SMT solver,
as we did in our previous work [Mulleners et al. 2024]. Taxi
can, however, only reason about constraints that are just
input-output pairs. We can remedy this by requiring that
the input-output examples are trace complete [Osera and
Zdancewic 2015]. A set of input-output examples is trace
complete if any recursive call is also represented in the input-
output examples. In the case of reverse, we additionally re-
quire the following input-output examples:

reverse [2, 3] ≡ [3, 2]
reverse [3] ≡ [3]
reverse [] ≡ []

With these examples, the constraint on 𝑓 becomes tractable:

𝑓 1 [3, 2] ≡ [3, 2, 1]
𝑓 2 [3] ≡ [3, 2]
𝑓 3 [] ≡ [3]

24

Hole Refinements for Polymorphic Type-and-Example Driven Synthesis PEPM ’26, January 11–17, 2026, Rennes, France

The tactic introFold only succeeds on specifications that are
trace complete.

4.3 Composing Tactics
Typically, we want to apply tactics one after the other. Con-
sider the function intersect ∶ ∀𝑎. [𝑎] → [𝑎] → [𝑎], which
removes all elements from the first list xs that do not occur
in the second list ys. Applying the tactic introFilter to a spec-
ification for intersect results in a sketch with a single hole
containing a specification for (∈ ys). Then, we traverse the
sketch, applying introFold to the hole. This leaves us with a
sketch of sketches (of type Sketch (Sketch Spec)), which we
flatten by accepting the hole filling.3

accept ∶ Sketch (Sketch hole) → Sketch hole

We can define tactic composition in terms of accept.

compose ∶ Tactic → Tactic → Tactic
compose t u spec = do

sketch ← t spec
nested ← traverse u sketch
return (accept nested)

We can implement intersect using the tactic

compose (anywhere introFilter) (anywhere introFold)

After introducing filter and foldr, coverage checking kicks
in, leading to the following solution:

intersect xs ys = filter (𝜆x. foldr (𝑓 x) False ys) xs
where 𝑓 x y False = 𝑥 ≡ 𝑦

𝑓 x y True = True

4.4 Program Synthesis
Note that the tactics we defined so far describe only the
high-level structure of the functions they implement. The
details, such as which variables to apply functions to and
how to solve the subgoals, are handled by the anywhere
combinator and by example coverage checking. This means
that these tactics can also be used to implement various other
functions that use the same structure. The right tactic can
synthesize programs for a variety of different specifications.
Often, however, we cannot rely somuch on example coverage
checking, and require many more tactics to be used in a
specific order to find the definition we are looking for. We
will define a tactic that repeatedly tries many different tactics.
First, we define the tactic combinator repeat.

repeat ∶ Tactic → Tactic
repeat tactic = compose tactic (repeat tactic)

3Note that Sketch is a monad, with join = accept and return = Hole.

Next, we define a step tactic that tries a variety of different
tactics in parallel.

step ∶ Tactic
step = anywhere assume ∥ anywhere eliminate
∥ introTuple ∥ introConstructor
∥ anywhere2 compare ∥ anywhere2 equate

eliminate x = introMap x ∥ introFilter x
∥ introFold x ∥ introCase x

The tactic assume tries to fill a hole with a variable in scope.
The tactics compare and equate introduce a patternmatch on
the ordering and equality of pairs of inputs respectively. To
apply them we use a variant of anywhere, called anywhere2,
that applies its argument to each unique pair of variables in
scope. We define a synthesis tactic as synth = repeat step.
This tactic is general enough to synthesize delete, intersect,
reverse, as well as many other functions.

Enumeration Strategy. Synthesis proceeds by building
up a tactic, applying it to a specification, and then enumerat-
ing the results. We use Dijkstra’s algorithm [Dijkstra 1959]
to enumerate the results, allowing the programmer to add
weights to tactics. For synth, we want to prioritize simple
tactics over recursion schemes, and especially discourage
pattern matching, because it leads to overfitting. As such, we
give simple tactics a weight of 1, recursion schemes a weight
of 4, and pattern matching a weight of 7.

4.5 Biased Choice
The step tactic performs a lot of branching, to cover a large
space of programs. Some of this branching, however, is re-
dundant. For example, if the tactic assume x succeeds, there
is no need to attempt any other tactic, since a correct solu-
tion is found. We introduce a new tactic combinator ◁ for
biased choice, where the right hand tactic is only tried when
the left hand tactic fails. Together with a biased version of
the anywhere tactic, we redefine the step tactic so that no
other tactic is tried if introducing any variable is successful.

step = anywhereBiased assume ◁ …

It may be tempting to replace any occurrence of (∥) with
(◁), but this will lead to some programs never being reached.
For example, if we write introCase x ◁ introMap x, the tactic
introMap x will never be reached, because pattern matching
on lists always succeeds.

The biased choice operator only makes sense if we can
be sure that if the left hand tactic succeeds, the resulting
subgoals are feasible. This means that proper feasibility rea-
soning is a prerequisite for using a biased choice operator.4
We should, however, only use t ◁ u instead of t ∥ u if we al-
ways prefer a solution in terms of t over a solution in terms
of u (when both are applicable). This implies that we can

4Except if the left hand tactic does not introduce holes.

25

PEPM ’26, January 11–17, 2026, Rennes, France Niek Mulleners, Johan Jeuring, and Wouter Swierstra

always use t◁u or u◁ t interchangeably when t and u are dis-
tinct (i.e. they never both succeed on the same specification).
We use this principle to adjust the definition of eliminate:

• If both introMap x and introFilter x apply, the specifi-
cation describes the identity function on lists, which
would have already been caught by assume x. Hence,
we can consider them distinct.

• If introFilter x applies, introFold xwill also apply, since
filter can be defined in terms of foldr. We prefer a
definition in terms of filter, to avoid reimplementing
filter in terms of foldr.

• Since introCase xwill always apply (provided that x is
an algebraic datatype), we have to decide whether we
prefer defining a function as a fold whenever possible.
While there are cases where pattern matching leads to
a simpler solution, we accept the risk of finding some
convoluted solutions.5

This leads to the following redefinition of eliminate:

𝜆x. introMap x ◁ introFilter x ◁ introFold x ◁ introCase x

5 Evaluation
We have implemented both Taxi and Driver in Haskell. The
full implementation is available on Zenodo [Mulleners 2025]
for reproduction and on GitHub6 for reuse. In this section,
we evaluate our implementation on two benchmarks: one
for automatically testing whether a function is a fold, and
one for program synthesis. Both benchmarks are run on an
HP Elitebook 850 G6 with an Intel® Core™ i7-8565U CPU
(1.80 GHz) and 32 GB of RAM.

5.1 Benchmark: Fold Detection
We evaluated our previous work by using feasibility reason-
ing to automatically test whether a series of functions from
the Haskell prelude can be implemented as a fold [Mulleners
et al. 2024]. We can similarly check whether a function is a
fold by applying the tactic introFold. To evaluate Taxi, we
test it on the same benchmark of functions. Whereas our pre-
vious work distinguished between trace complete and trace
incomplete example sets, Taxi only works for trace complete
example sets. For simplicity and for a more equal compari-
son, we ran both tools on trace complete examples sets. We
made the following minor changes to the benchmark:

• The examples for append and prepend were not trace
complete, so we added the missing case.

• We replaced integer arguments with natural numbers.
• For zip and unzip we use the more generic type as
seen in the Haskell prelude, using two separate type
variables rather than a single one.

5In general, it is up to the programmer to decide whether this is a risk
worth taking when defining a synthesis tactic. Luckily, one can always try
a different tactic when the result is not satisfactory.
6https://github.com/NiekM/taxi-driver

As seen in Table 1, we improve significantly on this bench-
mark, achieving speedups of more than a hundredfold. This
paves the way for applications where feasibility reasoning
is called repeatedly, for example to prune the search space
during program synthesis. In addition, we extend the bench-
mark with various functions on trees, to show how Taxi can
reason about folds over inductive datatypes other than lists,
as well as ad hoc polymorphic functions using Eq and Ord
constraints.

5.2 Benchmark: Program Synthesis
We evaluate Driver on the same benchmark of programs as
Taxi, by applying the synth tactic defined in Section 4.4. To
see the effect of the techniques described in this paper, we
test synthesis using various different options: we perform
synthesis without feasibility reasoning (N); with feasibility
reasoning (F); with example coverage checking (C), using
program extraction to shortcut the search when a specifi-
cation is exhaustive; with branching control (B), using the
eliminate tactic from Section 4.5; and with both coverage
checking and branching control (C+B).

This benchmark suite, shown in Table 1, shows that we
can use synth to synthesize a large variety of functions at
reasonable speed. While feasibility reasoning only seldomly
leads to significant speedups, it allows for coverage checking
and branching control, leading to additional speedups with
minimal overhead.

Coverage checking works particularly well for programs
with Eq and Ord constraints. This can be explained by the
additional equate and compare tactics, introduced by Eq and
Ord constraints respectively, that can be circumvented by
coverage checking.

Branching control mostly affects programs working on
lists, since introMap and introFilter are specialized to lists.
In a way, branching control using a biased choice operator
allows us to add helper functions like map and filter to the
search space without increasing the branching factor.

Several functions still fail to synthesize, either due to a
timeout or overfitting. Some functions fail because they can-
not be implemented using the synth tactic. Typically because
they require a stronger recursion scheme.

The functions insert, sorted, sort, and ordNub, are most
naturally defined using paramorphisms [Meertens 1992],
rather than a fold. We can define a tactic introPara, which
generalizes introFold. Both insert and sorted are synthesized
correctly by composing introPara and synth. The functions
sort and ordNub are synthesized by composing introFold,
introPara, and synth.

Interestingly, the function sort does synthesize correctly
when branching control (B) is turned off. On closer inspec-
tion, we see that this is an implementation of insertion sort,
with the following curious, inefficient solution for insert:

insert x = foldr (𝜆y r. min x y ∶ map (max y) r) [𝑥]

26

https://github.com/NiekM/taxi-driver

Hole Refinements for Polymorphic Type-and-Example Driven Synthesis PEPM ’26, January 11–17, 2026, Rennes, France

Table 1. Benchmark testing fold detection and synthesis on a series of common functions. Times in milliseconds. The fold
detection benchmark shows how fast we can compute whether each function can be implemented as a fold. We compare
our current work (Curr.) to our previous work (Prev.) [Mulleners et al. 2024] where possible. We use 3 and 7 respectively to
denote whether a function is or is not a fold. Note that union is a fold over its second, but not its first argument. The synthesis
benchmark shows how fast each of the functions can be synthesized using various levels of feasibility reasoning: no feasibility
reasoning (N); feasibility reasoning (F); feasibility reasoning with coverage checking (C); feasibility reasoning with branching
control (B); and feasibility reasoning with coverage checking and branching control (C+B). Timeouts (taking longer than 1
second) are denoted by ⊥. Overfitted synthesis results are shown in gray. Noticeable improvements (≥ 50%) are shown in bold.

Fold Detection Synthesis

name ∶ Type Fold? Curr. Prev. Gain N F C B C+B

append ∶ ∀𝑎. [𝑎] → [𝑎] → [𝑎] 3 0.455 159 349× 1.28 1.59 1.57 1.36 1.35
concat ∶ ∀𝑎. [[𝑎]] → [𝑎] 3 0.568 126 222× 3.66 3.90 2.92 2.39 1.74
drop ∶ ∀𝑎. Nat → [𝑎] → [𝑎] 7 0.263 45 171× 4.15 2.76 2.77 2.21 2.20
head ∶ ∀𝑎. [𝑎] → Maybe 𝑎 3 0.240 33 138× 0.305 0.362 0.288 0.321 0.295
index ∶ ∀𝑎. Nat → [𝑎] → Maybe 𝑎 7 0.235 39 166× 14.0 11.6 11.7 5.45 5.42
init ∶ ∀𝑎. [𝑎] → [𝑎] 7 0.260 31 119× 23.4 9.40 8.30 4.51 4.21
last ∶ ∀𝑎. [𝑎] → Maybe 𝑎 3 0.314 31 99× 1.60 1.30 0.363 0.706 0.371
length ∶ ∀𝑎. [𝑎] → Nat 3 0.182 23 126× 0.303 0.350 0.306 0.312 0.313
null ∶ ∀𝑎. [𝑎] → Bool 3 0.203 20 99× 0.237 0.271 0.242 0.281 0.248
prepend ∶ ∀𝑎. [𝑎] → [𝑎] → [𝑎] 3 0.460 149 324× 1.20 1.57 1.58 1.37 1.38
reverse ∶ ∀𝑎. [𝑎] → [𝑎] 3 0.272 57 210× 3.26 3.27 1.63 1.58 1.36
splitAt ∶ ∀𝑎. Nat → [𝑎] → ([𝑎], [𝑎]) 3 0.396 384 970× 223 221 226 190 192
tail ∶ ∀𝑎. [𝑎] → [𝑎] 7 0.160 31 194× 0.494 0.303 0.311 0.308 0.304
take ∶ ∀𝑎. Nat → [𝑎] → [𝑎] 3 0.423 83 196× 122 114 113 29.9 30.2
unzip ∶ ∀𝑎 𝑏. [(𝑎, 𝑏)] → ([𝑎], [𝑏]) 3 0.350 126 360× 3.69 3.89 3.42 1.90 1.45
zip ∶ ∀𝑎 𝑏. [𝑎] → [𝑏] → [(𝑎, 𝑏)] 3 0.324 128 395× 21.6 23.0 23.2 8.54 8.79

bfe ∶ ∀𝑎. Tree 𝑎 → [𝑎] 7 0.887 – – ⊥ ⊥ ⊥ ⊥ ⊥
depth ∶ ∀𝑎. Tree 𝑎 → Nat 3 0.536 – – 4.77 4.74 4.36 2.67 2.64
inorder ∶ ∀𝑎. Tree 𝑎 → [𝑎] 3 1.21 – – 8.74 8.79 8.66 5.43 5.42
levels ∶ ∀𝑎. Tree 𝑎 → [[𝑎]] 3 1.15 – – ⊥ ⊥ ⊥ ⊥ ⊥
mirror ∶ ∀𝑎. Tree 𝑎 → Tree 𝑎 3 0.554 – – 0.713 0.966 0.905 0.866 0.807
size ∶ ∀𝑎. Tree 𝑎 → Nat 3 0.624 – – 3.76 3.76 3.04 2.38 2.34

compress ∶ ∀𝑎. Eq 𝑎 ⇒ [𝑎] → [𝑎] 3 0.745 – – 105 28.9 16.9 23.0 12.8
group ∶ ∀𝑎. Eq 𝑎 ⇒ [𝑎] → [[𝑎]] 3 0.673 – – ⊥ ⊥ ⊥ ⊥ ⊥
elem ∶ ∀𝑎. Eq 𝑎 ⇒ 𝑎 → [𝑎] → Bool 3 0.723 – – 0.836 0.979 0.852 0.961 0.845
elemIndex ∶ ∀𝑎. Eq 𝑎 ⇒ 𝑎 → [𝑎] → Maybe Nat 3 0.482 – – 631 603 212 28.4 18.2
nub ∶ ∀𝑎. Eq 𝑎 ⇒ [𝑎] → [𝑎] 3 0.313 – – 6.47 6.46 1.52 3.81 1.27
union ∶ ∀𝑎. Eq 𝑎 ⇒ [𝑎] → [𝑎] → [𝑎] 7/3 1.07 – – ⊥ ⊥ ⊥ ⊥ ⊥

insert ∶ ∀𝑎. Ord 𝑎 ⇒ 𝑎 → [𝑎] → [𝑎] 3 0.569 – – 108 102 37.8 45.5 21.8
maximum ∶ ∀𝑎. Ord 𝑎 ⇒ [𝑎] → Maybe 𝑎 3 0.608 – – 5.73 5.29 0.710 1.84 0.697
ordNub ∶ ∀𝑎. Ord 𝑎 ⇒ [𝑎] → [𝑎] 3 0.475 – – 72.5 68.9 20.7 24.1 8.63
pivot ∶ ∀𝑎. Ord 𝑎 ⇒ 𝑎 → [𝑎] → ([𝑎], [𝑎]) 3 0.732 – – 95.4 94.6 5.62 46.5 4.02
sort ∶ ∀𝑎. Ord 𝑎 ⇒ [𝑎] → [𝑎] 3 0.566 – – 216 201 55.1 66.7 20.4
sorted ∶ ∀𝑎. Ord 𝑎 ⇒ [𝑎] → Bool 7 0.542 – – 20.7 20.1 20.5 19.9 20.2

Proving the correctness of this implementation is left as an
exercise to the reader. It may seem that branching control
has made synthesis worse, but this is only accidental: the
synth tactic finds three solutions at the same depth, of which
only one is correct. In the benchmark we only consider the

first of these solutions, and the order of solutions is arbitrary,
but influenced by the use of branching control. This example
highlights two ways in which the programmer can interact
with the synthesizer: (1) the programmer can enumerate
the first 𝑛 results returned by the synthesizer, to see if any

27

PEPM ’26, January 11–17, 2026, Rennes, France Niek Mulleners, Johan Jeuring, and Wouter Swierstra

of them have the intended behavior; and (2) the program-
mer can test the returned solution, find a counterexample,7
and update the specification accordingly. Both of these ap-
proaches would help the programmer find a correct (albeit
very inefficient) solution for sort. Unsurprisingly, we can use
the same approach to synthesize insert directly.

The functions drop, index, splitAt, take, and zip all are
most naturally defined by recursing over both inputs simul-
taneously. This can be done as a fold over one of the inputs,
by passing the other input as an additional argument to the
fold. Following our previous work, however, the introFold
tactic does not allow passing additional arguments [Mullen-
ers et al. 2024]. As such, these functions all fail to synthesize.

The expected definition for depth requires computing the
maximum of two natural numbers, requiring structural re-
cursion over both numbers at the same time.8 Similarly, the
function levels can be implemented as a fold in terms of
longZip, which traverses two lists at the same time.

Breadth first enumeration (bfe) can be implemented in
many ways, but typically using an intermediate result. For
example, bfe can be implemented by first computing levels,
and then concatenating the result. The synth tactic provides
no way to compute or reason about intermediate results, so
naturally it fails to implement bfe.

6 Related Work
6.1 Programming with Holes
When writing a program, there are many points at which
the state of the program is not syntactically correct, in par-
ticular when parts of the program are still unfinished or
missing. This makes it difficult to test the program. A com-
mon practice is to have unfinished parts of a program raise
an exception (such as NotImplemented). This allows the pro-
gram to still compile and type check, as well as be executed
(exceptionally). A more principled approach, however, is to
use holes. Holes explicitly tell the compiler which parts of
the program are yet to be finished, allowing it to give helpful
feedback, for example inferring the types of the holes.

There have been many efforts to make programming with
holes (also known as sketching [Solar-Lezama 2009]) an in-
tegral part of the development process. Gissurarson [2018]
uses the type of a hole to give suggestions on how to fill it.
Omar et al. [2017]; Yuan et al. [2023]; Zhao et al. [2024] use
holes in the structure editor Hazel, in order to make as many
editor states as possible meaningful. Omar et al. [2019] define
live evaluation, which proceeds around the holes rather than
aborting when a hole is encountered during execution. Lubin
et al. [2020] compare the result of live evaluation against an
expected output to turn top-level assertions into assertions
on the holes of a program. Taxi brings types, assertions (in

7E.g. using property-based testing to find a minimal counterexample.
8The compare tactic currently only allows comparing polymorphic variables
with an Ord constraint, not natural numbers.

the form of input-output examples), and sketching together
to allow reasoning about incomplete programs and possible
hole suggestions.

6.2 Type-and-Example Directed Program Synthesis
Program synthesis concerns the automatic generation of
programs based on a specification. Many synthesizers fo-
cus on types and input-output examples as specifications. A
common idea for top-down synthesizers is that the space
of type-correct programs can be explored by “inverting the
typing rules” [Osera 2019]. Some synthesizers focus on ef-
ficiently exploring this search space using compact repre-
sentations of type-correct programs [Botelho Guerra et al.
2023; Guo et al. 2019; Koppel et al. 2022]. Other synthesizers
aim to explore fewer programs, narrowing down the search
space by only allowing those refinements that preserve the
input-output constraints [Feser et al. 2015; Frankle et al. 2016;
Lubin et al. 2020; Mulleners et al. 2023; Osera and Zdancewic
2015]. Driver takes a similar approach, but focuses on the
interactions between input-output constraints and polymor-
phic types, and explores how synthesizers can benefit from
these interactions to prune and short-circuit the search.

6.3 Feasibility of Specifications
When programming from specifications, an important ques-
tion to ask is whether a program satisfying the specification
exists. Morgan [1990] describes specifications for which no
implementation exists as infeasible. Feasibility reasoning is
related to proof search and program synthesis, but focuses
more on figuring out that a specification is not feasible. How
well we can reason about the feasibility of specifications
depends on the nature of the specifications, as well as the
underlying programming language. Urzyczyn [1997] reasons
about the feasibility of types, known to as type inhabitation.
The term realizability is often used instead of feasibility, typ-
ically to refer to the feasibility of programs in a restricted
grammar [Hu et al. 2019, 2020; Kim et al. 2023]. In our previ-
ous work, we reasoned about the feasibility of polymorphic
types and input-output examples [Mulleners et al. 2024].
Taxi extends upon this work, allowing for faster and more
transparent reasoning about a wider range of types.

6.4 Tactic Programming
Tactic programming is a form of metaprogramming, where
tactics are functions that refine a goal (i.e. a specification) [Gor-
don et al. 1979]. Tactics transform a single goal into subgoals
(a process referred to as backwards reasoning), such that a
solution to these subgoals leads to a solution of the original
goal. Tactic programming is most commonly seen in proof as-
sistants, such asThe Rocq Prover [Coquand and Huet 1985],9
Lean [de Moura et al. 2015],10 and Isabelle/HOL [Nipkow

9https://rocq-prover.org/docs/metaprogramming-ltac2
10https://lean-lang.org/doc/reference/latest/Tactic-Proofs

28

https://rocq-prover.org/docs/metaprogramming-ltac2
https://lean-lang.org/doc/reference/latest/Tactic-Proofs

Hole Refinements for Polymorphic Type-and-Example Driven Synthesis PEPM ’26, January 11–17, 2026, Rennes, France

et al. 2002]. These proof assistants typically use the Curry-
Howard correspondence to prove propositions by encoding
them in a dependent type system and then implementing
a program of that type to serve as a proof witness. Tactics
allow one to focus on solving the goals, typically extracting
the proof witness only as a byproduct. Tactic combinators,
or tacticals, are used to combine simple tactics into more
complex ones, to the point that a single tactic may perform
automated proof search to solve a large range of goals.

There has been some effort towards introducing tactics
outside of proof assistants. In general-purpose languages, the
intended behavior of programs is typically not so rigorously
defined, and as a result, there are not always clear goals to
be discharged by tactics. In addition, we care more about the
exact nature of programs, beyond just their existence as proof
witnesses. In general-purpose statically typed languages,
however, we can still use types as goals, and use tactics to
introduce type-correct refinements for a sketch. An example
is refinery,11 a framework for tactic programming loosely
based on [Sterling and Harper 2017], which used to power
theWingman for Haskell synthesis tool.12 Wingman allowed
the programmer to refine their programs by applying tactics
through the language server protocol.

Driver uses a tactic language inspired by refinery to
provide a structured way of exploring sketches, but extends
it in two ways: Driver uses backwards reasoning not just
with types, but also with input-output examples (i.e. example
propagation); and Driver tactics can returnmultiple possible
sketches, such that tactics build up a program space that can
be traversed and enumerated.

7 Conclusion
We have shown how automated reasoning about the feasi-
bility of polymorphic functions with input-output examples
can be made efficient enough to serve as a pruning tool dur-
ing type-and-example driven program synthesis, ensuring
that every synthesis state corresponds to a correct (albeit
partial) implementation. These guarantees allow the use of a
biased choice operator, which allows one to use more build-
ing blocks during synthesis, without the downside of ad-
ditional branching. Example coverage checking allows the
synthesizer to automatically finish any subgoals that corre-
spond to a total implementation, without the need to further
explore the search space.

7.1 Limitations and Future Work
Taxi can only deal with conjunctions of input-output ex-
amples, as opposed to more complex constraints, such as
input-output traces. As such, Driver may get stuck when
trying to apply a recursion scheme to trace incomplete input-
output examples. This is particularly difficult to avoid when

11https://github.com/TOTBWF/refinery
12https://hackage.haskell.org/package/hls-tactics-plugin

the recursion occurs deeper in the program, as it is unlikely
that propagated input-output examples turn out to be trace
complete, even if the top-level input-output examples are
trace complete. An SMT-based approach can represent more
complex constraints, and therefore reason about the feasi-
bility of input-output traces, at the cost of efficiency, trans-
parency, and decidability. Future work could explore how
such constraints can still be solved efficiently, as well as how
example propagation can be adapted to allow propagating
such constraints further.

Various functions require more complex recursion pat-
terns than the ones used in this paper. For example, the
typical implementation for zip recurses over both input lists
in tandem, requiring a specialized tactic. Determining which
recursion schemes are worth including and figuring out how
their inclusion influences performance requires more exper-
imentation.

Acknowledgments
We would like to acknowledge the contribution that the late
Bastiaan Heeren made to this work before his unfortunate
passing. We would also like to thank the members of the
ST4LT and ST research groups at Utrecht University for their
support and feedback.

References
Michael Abbott, Thorsten Altenkirch, and Neil Ghani. 2003. Categories of

Containers. In Proceedings of the 6th International Conference on Founda-
tions of Software Science and Computation Structures and Joint European
Conference on Theory and Practice of Software (Warsaw, Poland) (FOS-
SACS’03/ETAPS’03). 23–38. doi:10.1007/3-540-36576-1_2

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. 2005. Containers:
Constructing Strictly Positive Types. Theor. Comput. Sci. 342, 1 (sep 2005),
3–27. doi:10.1016/j.tcs.2005.06.002

Henrique Botelho Guerra, João F. Ferreira, and João Costa Seco. 2023.
Hoogle⋆: Constants and 𝜆-abstractions in Petri-net-based Synthesis us-
ing Symbolic Execution. In 37th European Conference on Object-Oriented
Programming (ECOOP 2023) (Leibniz International Proceedings in In-
formatics (LIPIcs), Vol. 263), Karim Ali and Guido Salvaneschi (Eds.).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
4:1–4:28. doi:10.4230/LIPIcs.ECOOP.2023.4

Thierry Coquand and Gérard Huet. 1985. Constructions: A higher or-
der proof system for mechanizing mathematics. In EUROCAL ’85,
Bruno Buchberger (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
151–184. doi:10.1007/3-540-15983-5_13

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and
Jakob von Raumer. 2015. The Lean Theorem Prover (System Description).
In Automated Deduction - CADE-25, Amy P. Felty and Aart Middeldorp
(Eds.). Springer International Publishing, Cham, 378–388. doi:10.1007/
978-3-319-21401-6_26

Edsger W. Dijkstra. 1959. A note on two problems in connexion with graphs.
Numerische mathematik 1, 1 (1959), 269–271. doi:10.1007/BF01386390

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data
structure transformations from input-output examples. ACM SIGPLAN
Notices 50, 6 (Aug. 2015), 229–239. doi:10.1145/2813885.2737977

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic.
2016. Example-Directed Synthesis: A Type-Theoretic Interpretation.
SIGPLAN Not. 51, 1 (jan 2016), 802–815. doi:10.1145/2914770.2837629

29

https://github.com/TOTBWF/refinery
https://hackage.haskell.org/package/hls-tactics-plugin
https://doi.org/10.1007/3-540-36576-1_2
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.4230/LIPIcs.ECOOP.2023.4
https://doi.org/10.1007/3-540-15983-5_13
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/2813885.2737977
https://doi.org/10.1145/2914770.2837629

PEPM ’26, January 11–17, 2026, Rennes, France Niek Mulleners, Johan Jeuring, and Wouter Swierstra

Matthías Páll Gissurarson. 2018. Suggesting valid hole fits for typed-holes
(experience report). SIGPLAN Not. 53, 7 (sep 2018), 179–185. doi:10.1145/
3299711.3242760

M. Gordon, R. Milner, and C. P. Wadsworth. 1979. Edinburgh LCF: A Mecha-
nized Logic of Computation. Number 78 in Lecture Notes in Computer
Science. Springer Berlin Heidelberg, Berlin, Heidelberg. doi:10.1007/3-
540-09724-4

Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit
Jhala, and Nadia Polikarpova. 2019. Program Synthesis by Type-Guided
Abstraction Refinement. Proc. ACM Program. Lang. 4, POPL, Article 12
(Dec. 2019), 28 pages. doi:10.1145/3371080

Qinheping Hu, Jason Breck, John Cyphert, Loris D’Antoni, and Thomas
Reps. 2019. Proving Unrealizability for Syntax-Guided Synthesis. In
Computer Aided Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer
International Publishing, Cham, 335–352. doi:10.1007/978-3-030-25540-
4_18

Qinheping Hu, John Cyphert, Loris D’Antoni, andThomas Reps. 2020. Exact
and approximate methods for proving unrealizability of syntax-guided
synthesis problems. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (London, UK)
(PLDI 2020). Association for Computing Machinery, New York, NY, USA,
1128–1142. doi:10.1145/3385412.3385979

Mauro Jaskelioff and Russell O’Connor. 2015. A representation theorem for
second-order functionals. Journal of Functional Programming 25 (2015),
e13. doi:10.1017/S0956796815000088

Jinwoo Kim, Loris D’Antoni, and Thomas Reps. 2023. Unrealizability Logic.
Proc. ACM Program. Lang. 7, POPL, Article 23 (jan 2023), 30 pages. doi:10.
1145/3571216

James Koppel, Zheng Guo, Edsko de Vries, Armando Solar-Lezama, and
Nadia Polikarpova. 2022. Searching Entangled Program Spaces. Proc.
ACM Program. Lang. 6, ICFP, Article 91 (Aug 2022), 29 pages. doi:10.
1145/3547622

Justin Lubin and Sarah E. Chasins. 2021. How statically-typed functional
programmers write code. Proc. ACM Program. Lang. 5, OOPSLA, Article
155 (Oct. 2021), 30 pages. doi:10.1145/3485532

Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. 2020. Program
Sketching with Live Bidirectional Evaluation. Proc. ACM Program. Lang.
4, ICFP, Article 109 (Aug. 2020), 29 pages. doi:10.1145/3408991

Lambert Meertens. 1992. Paramorphisms. Form. Asp. Comput. 4, 5 (Sept.
1992), 413–424. doi:10.1007/BF01211391

Carroll Morgan. 1990. Programming from specifications. Prentice-Hall, Inc.,
USA.

Niek Mulleners. 2025. NiekM/taxi-driver: PEPM 2026. doi:10.5281/zenodo.
17900892

Niek Mulleners, Johan Jeuring, and Bastiaan Heeren. 2023. Program Syn-
thesis Using Example Propagation. In Practical Aspects of Declarative
Languages: 25th International Symposium, PADL 2023, Boston, MA, USA,
January 16–17, 2023, Proceedings (Boston , MA, USA). Springer-Verlag,
Berlin, Heidelberg, 20–36. doi:10.1007/978-3-031-24841-2_2

Niek Mulleners, Johan Jeuring, and Bastiaan Heeren. 2024. Example-Based
Reasoning about the Realizability of Polymorphic Programs. Proc. ACM

Program. Lang. 8, ICFP, Article 247 (Aug. 2024), 21 pages. doi:10.1145/
3674636

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. 2002. Is-
abelle/HOL: a proof assistant for higher-order logic. Springer-Verlag, Berlin,
Heidelberg. doi:10.1007/3-540-45949-9

Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019. Live
Functional Programming with Typed Holes. Proc. ACM Program. Lang.
3, POPL, Article 14 (Jan. 2019), 32 pages. doi:10.1145/3290327

Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A.
Hammer. 2017. Hazelnut: a bidirectionally typed structure editor calculus.
SIGPLAN Not. 52, 1 (Jan. 2017), 86–99. doi:10.1145/3093333.3009900

Peter-Michael Osera. 2019. Constraint-Based Type-Directed Program Syn-
thesis. In Proceedings of the 4th ACM SIGPLAN International Workshop on
Type-Driven Development (Berlin, Germany) (TyDe 2019). Association for
Computing Machinery, New York, NY, USA, 64–76. doi:10.1145/3331554.
3342608

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-Example-
Directed Program Synthesis. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Port-
land, OR, USA) (PLDI ’15). Association for Computing Machinery, New
York, NY, USA, 619–630. doi:10.1145/2737924.2738007

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism.
In IFIP Congress.

Daniel Seidel and Janis Voigtländer. 2010. Proving Properties about Func-
tions on Lists Involving Element Tests. In Proceedings of the 20th In-
ternational Conference on Recent Trends in Algebraic Development Tech-
niques (Etelsen, Germany) (WADT’10). Springer-Verlag, Berlin, Heidel-
berg, 270–286. doi:10.1007/978-3-642-28412-0_17

Armando Solar-Lezama. 2009. The Sketching Approach to Program Synthe-
sis. In Programming Languages and Systems, Zhenjiang Hu (Ed.). Springer
Berlin Heidelberg, 4–13. doi:10.1007/978-3-642-10672-9_3

Jonathan Sterling and Robert Harper. 2017. Algebraic Foundations of Proof
Refinement. ArXiv (2017). doi:10.48550/arXiv.1703.05215

Pawel Urzyczyn. 1997. Inhabitation in typed lambda-calculi (a syntactic
approach). In Typed Lambda Calculi and Applications, Philippe de Groote
and J. Roger Hindley (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 373–389. doi:10.1007/3-540-62688-3_47

Philip Wadler. 1989. Theorems for Free!. In Proceedings of the Fourth Interna-
tional Conference on Functional Programming Languages and Computer
Architecture (Imperial College, London, United Kingdom) (FPCA ’89).
Association for Computing Machinery, New York, NY, USA, 347–359.
doi:10.1145/99370.99404

Yongwei Yuan, Scott Guest, Eric Griffis, Hannah Potter, David Moon, and
Cyrus Omar. 2023. Live Pattern Matching with Typed Holes. Proc.
ACM Program. Lang. 7, OOPSLA1, Article 96 (April 2023), 27 pages.
doi:10.1145/3586048

Eric Zhao, Raef Maroof, Anand Dukkipati, Andrew Blinn, Zhiyi Pan, and
Cyrus Omar. 2024. Total Type Error Localization and Recovery with
Holes. Proc. ACM Program. Lang. 8, POPL, Article 68 (Jan. 2024), 28 pages.
doi:10.1145/3632910

Received 2025-10-24; accepted 2025-11-28

30

https://doi.org/10.1145/3299711.3242760
https://doi.org/10.1145/3299711.3242760
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1145/3371080
https://doi.org/10.1007/978-3-030-25540-4_18
https://doi.org/10.1007/978-3-030-25540-4_18
https://doi.org/10.1145/3385412.3385979
https://doi.org/10.1017/S0956796815000088
https://doi.org/10.1145/3571216
https://doi.org/10.1145/3571216
https://doi.org/10.1145/3547622
https://doi.org/10.1145/3547622
https://doi.org/10.1145/3485532
https://doi.org/10.1145/3408991
https://doi.org/10.1007/BF01211391
https://doi.org/10.5281/zenodo.17900892
https://doi.org/10.5281/zenodo.17900892
https://doi.org/10.1007/978-3-031-24841-2_2
https://doi.org/10.1145/3674636
https://doi.org/10.1145/3674636
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1145/3290327
https://doi.org/10.1145/3093333.3009900
https://doi.org/10.1145/3331554.3342608
https://doi.org/10.1145/3331554.3342608
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1007/978-3-642-28412-0_17
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.48550/arXiv.1703.05215
https://doi.org/10.1007/3-540-62688-3_47
https://doi.org/10.1145/99370.99404
https://doi.org/10.1145/3586048
https://doi.org/10.1145/3632910

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Valid Hole Refinements
	2.2 Program Synthesis

	3 Polymorphic Examples
	3.1 Container Morphisms
	3.2 Reasoning about Feasibility
	3.3 A Generic Container Translation
	3.4 Computing Polymorphic Examples
	3.5 Feasibility Conflicts
	3.6 Program Extraction
	3.7 Example Coverage Checking
	3.8 Ad Hoc Polymorphism

	4 Sketching
	4.1 An Example: delete in terms of filter
	4.2 A Sketching Framework
	4.3 Composing Tactics
	4.4 Program Synthesis
	4.5 Biased Choice

	5 Evaluation
	5.1 Benchmark: Fold Detection
	5.2 Benchmark: Program Synthesis

	6 Related Work
	6.1 Programming with Holes
	6.2 Type-and-Example Directed Program Synthesis
	6.3 Feasibility of Specifications
	6.4 Tactic Programming

	7 Conclusion
	7.1 Limitations and Future Work

	Acknowledgments
	References

