BETTER SOFTWARE
WITH
BETTER TYPES

WOUTER SWIERSTRA
UNIVERSITY OF NOTTINGHAM

FOUNDATIONS OF PROGRAMMING
UNIVERSITY OF NOTTINGHAM

AREAS OF EXPERTISE

e Category Theory
e Type Theory

 Functional Programming

TYPE SYSTEMS

e Strong type systems catch a lot of bugs
betore a program is ever run...

e .. but things can still fail dynamically!

e For instance:

public int evil(int &)
& oreturn x/0;)

Can we do better?

FUNCTIONAL
PROGRAMMING

e Haskell programmers claim “if a
program compiles it is correct”.

data List Nil
R @ons Tnt List

e The tail function is partial:

Eag] 20 st —> Jiist
a1l (Cons X Xs) =.Xs
ttaq 1. N1l =272

THE CHALLENGE

Types give approximate information.
Sometimes we want to be more precise:

et = Tistnyr => Listn

This pops up all the time: array
indexing, division by zero, ...

But conventional type system don’t
provide this kind of guarantee.

EPIGRAM

SIMPLE TYPES

x—+ 1:Int using x : Int
AX.Xx + 1 : Int — Int

1sZero : Int — Bool b Ink
isZero(5) : Bool

How much information can these types give us?

SIMPLE TYPES

B - S5
& \xft:. S5

e S - T [= s 5
B = fi(s)

PROPOSITIONAL CALCULUS

Type systems:

I'Ef:5—-T I'Fs:85 T.z:5 %888
s f(s): T I'FAxt: S — 8

Logic:

= —{ = s | s
B . Bis=-1

THE CURRY-HOWARD
ISOMORPHISM

Iypes are propositions.

Proofs are programs.

Propositional calculus is pretty weak...

What about predicate calculus?

DEPENDENT TYPES

What is the type of print£?

PpEantf(”’%s 1s %d”,"Wouter?, 24

The number of arguments depends on the
formatting string!

DEPENDENT TYPES

e - S 8
B dx.t: (z:5)— B

= (z:5) —>T I’ s 8
B () Eie s

Alternative notations:

(x:85)—=T [Sl VoS i

ENTER DEPENDENT TYPES

e Types express properties of values.

e To express meaningful properties, we
need values to appear within types.

el £ T.1st,+y —> Liisty
redBlackTree :: RBTree Black 4

 We can capture arbitrary properties and
invariants of our programs in their typel!

e Yet the type system fits on a beer coaster.

DEPENDENT TYPES

Dependent types were introduced by Per
Martin Lof to formalise mathematics.

We can prove every constructively valid
formula in predicate logic.

Dependent types form the basis of lots of
theorem provers (Coq, Agda, ...)

Proving a theorem is writing a term.

DEPENDENT TYPES
IN ACTION

e Most research is biased towards theorem
proving.

e Recently, interest has shifted towards
programming with dependent types.

EPIGRAM

A purely functional language with
dependent types.

Interactive programming environment.
Types guarantee program behaviour.
Pay-as-you go program correctness.

You can reason about programs you
write without an external tool.

DEMO

NOT EVERYTHING IN THE
GARDEN IS ROSY.

FAREWELL
PHASE DISTINCTION

e How should we unify vec 3 Int and
Vec (1+2) Int?

e Unification must evaluate terms.

e What about statically evaluating
e (.. FformatHardDisk..)?

e Can type checking diverge?

All our functions must be pure and total.

PURITY AND TOTALITY

e Total functions are guaranteed to return
a result for every input.

J

e Pure functions are perfectly predictable

» have no side-effects — that means no
destructive updates, interaction with
users, random numbers, ...

» the result only depends on the input
and is completely context insensitive.

RECENT WORK

What is a pure and total webserver?

We want real-world nasties into our
beautitul language.

Construct a faithful pure model.

Then we can permit: teletype I/ O,
mutable state, concurrency, non-
termination, ...

WHAT ARE INTEGERS?

* We cannot expect programmers to write
suc (suc(suc zero) instead of 3.

 We need better support for
programming with integers.

 Programmers use different integers all
the time (counters, divide-and-conquer,
modular arithmetic).

BIGGER DESIGN SPACE

Do you want lists or vectors? Or both?

We need good support for generic
programming.

We need to find the right libraries.

We need to facilitate code refactoring.

COMPILER TECHNOLOGY

e How should we compile dependently
typed languages?

e Types don’t slow us down — they give us
the opportunity to optimize.

e Can we provide some kind of type
inference?

REFERENCES

e Epigram:

Conor McBride
Epigram: Practical Programming with Dependent Types
Summer School on Advanced Functional Programming, 2004

e Curry-Howard:

Phil Wadler, New Languages, Old Logic, Dr. Dobbs Journal

e Why Dependent Types Matter

James McKinna — POPL 2006

