
Better Software
with

Better Types
Wouter Swierstra

University of Nottingham

Foundations of Programming
University of Nottingham

• Category Theory

• Type Theory

• Functional Programming

Areas of Expertise

Type Systems

• Strong type systems catch a lot of bugs
before a program is ever run...

• .. but things can still fail dynamically!

• For instance:

Can we do better?

public int evil(int x)
 { return x/0; }

Functional
Programming

• Haskell programmers claim “if a
program compiles it is correct”.

• The tail function is partial:
tail :: List -> List
tail (Cons x xs) = xs
tail Nil = ??

data List = Nil
 | Cons Int List

The Challenge

• Types give approximate information.

• Sometimes we want to be more precise:
 tail :: Listn+1 -> Listn

• This pops up all the time: array
indexing, division by zero, ...

• But conventional type system don’t
provide this kind of guarantee.

Epigram

Simple types

x + 1 : Int using x : Int

λx.x + 1 : Int → Int

isZero : Int → Bool 5 : Int

isZero(5) : Bool

How much information can these types give us?

Simple Types

Γ ! f : S → T Γ ! s : S

Γ ! f(s) : T

Γ, x : S ! t : T

Γ ! λx.t : S → T

Propositional Calculus

Γ, x : S ! t : T

Γ ! λx.t : S → T

Γ, s ! t

Γ ! s ⇒ t

Γ ! f : S → T Γ ! s : S

Γ ! f(s) : T

Type systems:

Logic:

Γ ! s ⇒ t Γ ! s

Γ ! t

The Curry-Howard
Isomorphism

• Types are propositions.

• Proofs are programs.

• Propositional calculus is pretty weak...

• What about predicate calculus?

Dependent Types

What is the type of printf?

printf(“%s is %d”,”Wouter”,24)

The number of arguments depends on the
formatting string!

Dependent Types

Πx : S.T ∀x : S.T

Alternative notations:

(x : S) → T

Γ ! f : (x : S) → T Γ ! s : S

Γ ! f(s) : T [x/s]

Γ, x : S ! t : T

Γ ! λx.t : (x : S) → T

Enter Dependent types

• Types express properties of values.

• To express meaningful properties, we
need values to appear within types.
tail :: Listn+1 -> Listn
redBlackTree :: RBTree Black 4

• We can capture arbitrary properties and
invariants of our programs in their type!

• Yet the type system fits on a beer coaster.

Dependent types

• Dependent types were introduced by Per
Martin Löf to formalise mathematics.

• We can prove every constructively valid
formula in predicate logic.

• Dependent types form the basis of lots of
theorem provers (Coq, Agda, ...)

• Proving a theorem is writing a term.

Dependent Types
in Action

• Most research is biased towards theorem
proving.

• Recently, interest has shifted towards
programming with dependent types.

Epigram

• A purely functional language with
dependent types.

• Interactive programming environment.

• Types guarantee program behaviour.

• Pay-as-you go program correctness.

• You can reason about programs you
write without an external tool.

Demo

Not Everything in the
Garden is Rosy.

Farewell
Phase distinction

• How should we unify Vec 3 Int and
Vec (1+2) Int ?

• Unification must evaluate terms.

• What about statically evaluating
T (..formatHardDisk..)?

• Can type checking diverge?

All our functions must be pure and total.

Purity and Totality

• Total functions are guaranteed to return
a result for every input.

• Pure functions are `perfectly predictable’

‣ have no side-effects – that means no
destructive updates, interaction with
users, random numbers, ...

‣ the result only depends on the input
and is completely context insensitive.

Recent Work

• What is a pure and total webserver?

• We want real-world nasties into our
beautiful language.

• Construct a faithful pure model.

• Then we can permit: teletype I/O,
mutable state, concurrency, non-
termination, ...

What are Integers?

• We cannot expect programmers to write
suc(suc(suc zero) instead of 3.

• We need better support for
programming with integers.

• Programmers use different integers all
the time (counters, divide-and-conquer,
modular arithmetic).

Bigger Design Space

• Do you want lists or vectors? Or both?

• We need good support for generic
programming.

• We need to find the right libraries.

• We need to facilitate code refactoring.

Compiler technology

• How should we compile dependently
typed languages?

• Types don’t slow us down – they give us
the opportunity to optimize.

• Can we provide some kind of type
inference?

References

• Epigram:
Conor McBride
Epigram: Practical Programming with Dependent Types
Summer School on Advanced Functional Programming, 2004

• Curry-Howard:
Phil Wadler, New Languages, Old Logic, Dr. Dobbs Journal

• Why Dependent Types Matter
James McKinna – POPL 2006

