Isomorphisms for context-free types

Wouter Swierstra

April 7, 2006

The University of

Nottingham

)y

Into the rabbit hole . ..

Into the rabbit hole . ..

Into the rabbit hole . ..

Add spine
Pilhelid ittt

Remove spine
-

What is an isomorphism?

An isomorphism between two types o and 7 consists of functions
psi:: 0 — 7 and isp :: 7 — o such that:
» psioisp =id;
> isp o psi = id,
» No peeking!

When are two types different?

» What should we do if we can't find an isomorphism between
two types?

» We can show two data types are distinct by counting the
number of inhabitants.

» Are the following familiar types isomorphic?

data List a = Nil | Cons a (List a)
data Tree a = Leaf | Node (Tree a) (Tree a)

What is a type?

Context-free types over an index set | are built from:

0,0 +7 coproducts
1,0 x 7 products

iel parameters
X,Y,... recursive variables
uX.o least fixed point

For instance:
» Lists: uX.14+ A x X
» Binary trees: uX.1+ X x Ax X

Types and grammars

» These context-free types resemble context-free grammars.
» There are two important differences:

1. Products commute 0 X T~ T X 0
2. Coproducts are not idempotent o + 0 % o

» Can we use parsing technology to distinguish different types?

Parser combinators

» Goal: Write a parser of type that recognizes when a given
string is in a language or not:

I*—2

» Intermediate: We write combinators of the following type:

I* — Pen(I7)

» We can run an intermediate parser by checking if the entire
input has been consumed.

Monadic parser combinators

» Lists and finite powersets have both certain structure.

» They form monoids.

0:a

b.a—a—a

» They form monads.

return :1a— ma

>=:ma— (a— mb)— mb

v

We can define parser combinators using only these properties.

Rethinking the underlying monad

» How can we adapt monadic parser combinators to distinguish
different types?

» It suffices to only change the underlying structure!

» Instead of powersets and lists we use multisets:

e Order of input doesn't matter.
e The number of parses is important.

Monadic parsers revisited

» Goal: Write a ‘parser’ that counts the number of inhabitants
of a given type:
M(l)— N

v

Intermediate: We write combinators of the following type:

M(I) = M(M(1))

» We should show that multisets have the required structure. ..

v

The actual parsers do not change!

Powerseries

» The multiset parsers give us a new interpretation of our types.

» We consider a type o over a singleton index set / as:
Z ap x X"
neN

where a, is the result of running the o parser on n.

» Lemma Two types are isomorphic iff their powerseries are
equal.

Powerseries

» The multiset parsers give us a new interpretation of our types.

» We consider a type o over a singleton index set / as:
Z ap x X"
neN

where a, is the result of running the o parser on n.

» Lemma Two types are isomorphic iff their powerseries are
equal.

The essence of a type is a powerseries.

Conclusions

v

Formalizing these intuitions requires quite some work.

» We have a semi-algorithm for deciding whether or not two
types are isomorphic.

v

Is the problem decidable?

v

Is there a subset of types for which isomorphism is decidable?

