
A Functional
Specification of Effects

Wouter Swierstra
joint work with Thorsten Altenkirch

3/12/2007

How can we write
reliable software?

Static typing

• Types can give a “partial proof of correctness.”

• For example:

div : Int -> Int -> Int

• We can prevent certain illegitimate calls to
div, such as div True 2;

• ... but what about div 3 0 ?

Dependent types

• If we want to make sure that division never
goes wrong, we need stronger types.

• A better type for division would be:

Int -> {x : Int | x != 0} -> Int

• Now the value x appears in a type.

Status quo

• Dependent types form the basis of many
theorem proving tools, such as Coq.

• Coq has

• a rich type theory ~ propositions;

forall p : Prop, p -> p

• a simple lambda calculus ~ proofs.

fun x => x

Curry-Howard
Isomorphism

• Coq has

• a rich type system ~ types;

forall a : Set, a -> a

• a simple lambda calculus ~ programs.

fun x => x

Example

• We can implement stacks as a list;

• and add functions to manipulate stacks;

• prove properties of our implementation;

• extract code to Haskell or ML.

Limitations

• Programs in Coq must be pure and total:

• must terminate on all possible inputs;

• no mutable state, I/O, etc.

• Great for formalizing constructive
mathematics.

• What about programming queues using
mutable references?

Real programs

• Real programs tend to:

• diverge;

• throw exceptions;

• use concurrency;

• interact with the user;

• use mutable state...

How can we incorporate such
effects in a dependently typed
programming language?

Haskell

• Haskell is a functional language with a careful
treatment of I/O.

• All effects are encapsulated in a monad;

• This determines a clear evaluation order –
Haskell is a non-strict language.

Monads: motivation

• What does the following Haskell program do?

[print “Hello”, print “World”]

• In Haskell, the print statements are not
immediately evaluated.

• Monads make the evaluation order explicit.

Monads: top-down

• The main function that gets executed when
you run a Haskell program has type:

main :: IO a

• It does some I/O,

• and returns a value of type a.

Monads: bind

• To sequence two effectful computations, we
could use a “semi-colon” operation:

>> :: IO a -> IO b -> IO b

• But now the result of the first computation
always gets discarded.

Monads: bind

• A better choice is:

 IO a -> (a -> IO b) -> IO b

• This feeds the result of the first computation
to the second one.

Monads: return

• Sometimes we want to mix I/O interactions
and pure computations.

return :: a -> IO a

• There’s no function going the other way!

Monads: example

• In Haskell, you have built-in functions that
perform I/O.

getChar :: IO Char

putChar :: Char -> IO ()

• Using the monadic operators you can
combine them to form complex
computations.

Example: echo

• For example, you can write an echo function:

echo :: IO ()

echo = getChar >>= \c ->

 putChar c >>= \() ->

 echo

Monads: generally

• Any functor with a bind and return
operation (subject to certain laws) is a
monad.

• Haskell supports special syntax for
programing with monads.

• “Programmable semi-colon”

Will this do?

Reasoning

• Reasoning about pure functional programs
is really easy:

• structural induction;

• expand definitions.

• This is essentially what we can do using
proof assistants such as Coq.

• But what about the impure ones?

Echo revisited

• We would like to reason about how our
echo function behaves...

• But functions like getChar don’t have a
pure definition.

• Instead, it calls a C library that does all the
dirty work.

Now what?

• We could break out a semantics textbook,
hope to find some useful semantics that
correspond to how Haskell behaves, and do
a pen and paper proof.

Now what?

• We could break out a semantics textbook,
hope to find some useful semantics that
correspond to how Haskell behaves, and do
a pen and paper proof.

... but that’s not how we’re going to do it.

Idea

• The rest of this talk will outline one idea:

 a purely functional

 specification of effects

• can help you reason about your code;

• opens the door to “verified effectful
programs”.

Outline

• We’ll build a monad capturing the
operations we want to specify;

• Add functions to build computations in this
monad;

• and assign meaning to these computations.

Another monad...

data IO a where

 Return :: a -> IO a

| Put :: Char -> IO a -> IO a

| Get ::(Char -> IO a) -> IO a

Building computations

We introduce some helper functions to make
it easier to write computations:

getChar :: IO Char

getChar = Get Return

putChar :: Char -> IO ()

putChar c = Put c (Return ())

Result

• What should the result of a computation be?

data Output =

 Finish a

 | Print Char (Output a)

 | Read (Output a)

Executing computations

run :: IO a ->

 Stream Char -> Output a

run input (Return x) = Finish x

run (i:is) (Get g) = run is (g i)

run is (Put c io) =

 Print c (run is io)

Why bother?

• So we’ve written quite a bit of code, what
does this buy us?

• We can write specifications of impure
computations;

• and show that our impure computations
meet their spec.

Example: echo

• We can specify the behaviour we expect our
echo function to have:

copy :: Stream Char -> Output ()

copy (i:is) =

 Read (Print i (copy is))

• And we can prove once and for all:

run echo is = copy is

A coinductive aside

• Our IO data type is actually mixed inductive-
coinductive:

• νX . μ Y . YC + X × C + A

• We can only consume finite input from the
user, before producing (potentially infinite)
output to the screen.

• Note: run and copy are still total.

So what?

• If we write our specifications in Coq, this
proof can be machine-verified

• If we program in Haskell we can port all the
debugging and testing technology on pure
programs to work on these pure
specifications.

Is that all?

• We have written similar semantics for:

• mutable state;

• concurrency;

• STM;

• non-termination;

• distributed arrays;

Outline

• We’ll build a monad capturing the
operations we want to specify;

• Add functions to build computations in this
monad;

• and assign meaning to these computations.

Mutable state

data Ref = Int

data IO a where

 Return :: a -> IO a

| Read :: Ref -> (Int -> IO a) -> IO a

 | Write :: Ref -> Int -> IO a -> IO a

| New :: Int -> (Ref -> IO a) -> IO a

Mutable state II

new :: Int -> IO Ref

write :: Int -> Ref -> IO ()

read :: Ref -> IO Int

Describing memory

data Heap = Ref -> Int

type Store = (Heap, Int)

emptyStore = (undefined, 0)

Execution

• Our semantics now have the following type:

 IO a -> Store -> (a,Store)

• but not everything in the garden is rosy...

What’s wrong?

• Our run function is not total...

• What will happen when we access
unallocated memory?

• We have only managed to store natural
numbers – what if we want something else?

Solution

• In a richer type theory, such as Coq, or
Epigram, or Agda, we can give a total run
function...

• ... and even provide heterogeneous
references.

Sized heaps

• We record the size of the heap:

data Heap : Nat -> * where

 empty : Heap 0

 alloc : Nat -> Heap n

 -> Heap (n + 1)

Key points

• We make sure references always point to a
valid place in the heap;

• We now write IO n m a for a
computation that takes a heap of size n to a
heap of size m, returning a value of type a.

• Our run function uses this “heap size”
information to guarantee totality.

But now...

• Precise types help guarantee total semantics,

• but introduce new problems:

• when we allocate new memory, the type
of valid references changes.

• it becomes much harder to write
compositional programs.

Further work

• Add more powerful logical technology
(separation logic, Hoare logic, ...)

• Find good examples!

• Combine effects.

• Make it usable.

