How can we write reliable software?
Static typing

- Types can give a “partial proof of correctness.”
- For example:
 \[
 \text{div} : \text{Int} \rightarrow \text{Int} \rightarrow \text{Int}
 \]
- We can prevent certain illegitimate calls to \text{div}, such as \text{div True 2};
- ... but what about \text{div 3 0}?
Dependent types

• If we want to make sure that division never goes wrong, we need stronger types.

• A better type for division would be:

\[
\text{Int} \rightarrow \{x : \text{Int} \mid x \neq 0\} \rightarrow \text{Int}
\]

• Now the value \(x \) appears in a type.
Status quo

- Dependent types form the basis of many *theorem proving tools*, such as Coq.

- Coq has
 - a rich type theory ~ propositions;
 \[
 \forall p : \text{Prop}, \ p \rightarrow p
 \]
 - a simple lambda calculus ~ proofs.
 \[
 \text{fun } x \rightarrow x
 \]
Curry-Howard Isomorphism

- Coq has
 - a rich type system ~ types;
 \[\forall a : \text{Set}, a \rightarrow a \]
 - a simple lambda calculus ~ programs.
 \[\text{fun } x \Rightarrow x \]
Example

• We can implement stacks as a list;
• and add functions to manipulate stacks;
• prove properties of our implementation;
• extract code to Haskell or ML.
Limitations

- Programs in Coq must be pure and total:
 - must terminate on all possible inputs;
 - no mutable state, I/O, etc.
- Great for formalizing constructive mathematics.
- What about programming queues using mutable references?
Real programs

- Real programs tend to:
 - diverge;
 - throw exceptions;
 - use concurrency;
 - interact with the user;
 - use mutable state...
How can we incorporate such effects in a dependently typed programming language?
Haskell

- Haskell is a functional language with a careful treatment of I/O.
- All effects are encapsulated in a monad;
- This determines a clear evaluation order – Haskell is a non-strict language.
Monads: motivation

- What does the following Haskell program do?
  ```haskell
  print "Hello", print "World"
  ```
- In Haskell, the print statements are not immediately evaluated.
- Monads make the evaluation order explicit.
Monads: top-down

• The main function that gets executed when you run a Haskell program has type:
 \[\text{main} :: \text{IO} \ a \]
• It does some I/O,
• and returns a value of type \(\text{a} \).
Monads: bind

- To sequence two effectful computations, we could use a “semi-colon” operation:
 \[
 \gg \ :: \ \text{IO} \ a \ \rightarrow \ \text{IO} \ b \ \rightarrow \ \text{IO} \ b
 \]
- But now the result of the first computation always gets discarded.
Monads: bind

- A better choice is:
 \[\text{IO } a \rightarrow (a \rightarrow \text{IO } b) \rightarrow \text{IO } b \]
- This feeds the result of the first computation to the second one.
Monads: return

- Sometimes we want to mix I/O interactions and pure computations.

\[\text{return} :: a \to \text{IO } a \]

- There’s no function going the other way!
Monads: example

• In Haskell, you have built-in functions that perform I/O.

\[
\text{getChar :: IO Char} \\
\text{putChar :: Char -> IO ()}
\]

• Using the monadic operators you can combine them to form complex computations.
Example: echo

• For example, you can write an echo function:

```
echo :: IO ()

echo = getChar >>= \c ->
    putChar c >>= \() ->
    echo
```
Monads: generally

• Any functor with a bind and return operation (subject to certain laws) is a monad.
• Haskell supports special syntax for programming with monads.
• “Programmable semi-colon”
Will this do?
Reasoning

• Reasoning about pure functional programs is really easy:
 • structural induction;
 • expand definitions.

• This is essentially what we can do using proof assistants such as Coq.

• But what about the impure ones?
Echo revisited

- We would like to reason about how our echo function behaves...
- But functions like `getChar` don’t have a pure definition.
- Instead, it calls a C library that does all the dirty work.
Now what?

• We could break out a semantics textbook, hope to find some useful semantics that correspond to how Haskell behaves, and do a pen and paper proof.
Now what?

- We could break out a semantics textbook, hope to find some useful semantics that correspond to how Haskell behaves, and do a pen and paper proof.

... but that’s not how we’re going to do it.
Idea

• The rest of this talk will outline one idea:

 a purely functional

 specification of effects

• can help you reason about your code;

• opens the door to “verified effectful programs”.
Outline

• We’ll build a monad capturing the operations we want to specify;
• Add functions to build computations in this monad;
• and assign meaning to these computations.
Another monad...

data IO a where

Return :: a -> IO a

| Put :: Char -> IO a -> IO a

| Get ::(Char -> IO a) -> IO a
Building computations

We introduce some helper functions to make it easier to write computations:

```
getChar :: IO Char
getChar = Get Return

putChar :: Char -> IO ()
putChar c = Put c (Return ())
```
Result

• What should the result of a computation be?

```haskell
data Output =
  Finish a
  \| Print Char (Output a)
  \| Read (Output a)
```
Executing computations

run :: IO a ->
 Stream Char -> Output a
run input (Return x) = Finish x
run (i:is) (Get g) = run is (g i)
run is (Put c io) =
 Print c (run is io)
Why bother?

• So we’ve written quite a bit of code, what does this buy us?

• We can write specifications of impure computations;

• and show that our impure computations meet their spec.
Example: echo

- We can specify the behaviour we expect our echo function to have:

  ```haskell
  copy :: Stream Char -> Output ()
  copy (i:is) =
      Read (Print i (copy is))
  ```

- And we can prove once and for all:

  ```haskell
  run echo is = copy is
  ```
A coinductive aside

• Our IO data type is actually mixed inductive-coinductive:

 \(\nu X \cdot \mu Y \cdot Y^C \; + \; X \times C \; + \; A \)

• We can only consume finite input from the user, before producing (potentially infinite) output to the screen.

• Note: run and copy are still total.
So what?

• If we write our specifications in Coq, this proof can be machine-verified

• If we program in Haskell we can port all the debugging and testing technology on pure programs to work on these pure specifications.
Is that all?

- We have written similar semantics for:
 - mutable state;
 - concurrency;
 - STM;
 - non-termination;
 - distributed arrays;
We’ll build a monad capturing the operations we want to specify;
Add functions to build computations in this monad;
and assign meaning to these computations.
Mutable state

data Ref = Int

data IO a where

 Return :: a -> IO a

 Read :: Ref -> (Int -> IO a) -> IO a

 Write :: Ref -> Int -> IO a -> IO a

 New :: Int -> (Ref -> IO a) -> IO a
Mutable state II

new :: Int -> IO Ref
write :: Int -> Ref -> IO ()
read :: Ref -> IO Int
Describing memory

data Heap = Ref -> Int

type Store = (Heap, Int)

emptyStore = (undefined, 0)
Execution

- Our semantics now have the following type:
 \[
 \text{IO } a \rightarrow \text{Store} \rightarrow (a, \text{Store})
 \]
- but not everything in the garden is rosy...
What’s wrong?

- Our run function is not **total**...
- What will happen when we access unallocated memory?
- We have only managed to store natural numbers – what if we want something else?
Solution

• In a richer type theory, such as Coq, or Epigram, or Agda, we can give a total run function...

• ...and even provide heterogeneous references.
Sized heaps

- We record the size of the heap:

```agda
data Heap : Nat -> * where
  empty : Heap 0
  alloc : Nat -> Heap n
      -> Heap (n + 1)
```
Key points

• We make sure references always point to a valid place in the heap;

• We now write $\text{IO } n \rightarrow m \ a$ for a computation that takes a heap of size n to a heap of size m, returning a value of type a.

• Our run function uses this “heap size” information to guarantee totality.
But now...

- Precise types help guarantee total semantics,
- but introduce new problems:
 - when we allocate new memory, the type of valid references changes.
 - it becomes much harder to write compositional programs.
Further work

- Add more powerful logical technology (separation logic, Hoare logic, ...)
- Find good examples!
- Combine effects.
- Make it usable.