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How can we write 
reliable software?



Static typing

• Types can give a “partial proof of correctness.”

• For example:

div : Int -> Int -> Int

• We can prevent certain illegitimate calls to 
div, such as div True 2;

• ... but what about div 3 0 ?



Dependent types

• If we want to make sure that division never 
goes wrong, we need stronger types.

• A better type for division would be:

Int -> {x : Int | x != 0} -> Int

• Now the value  x appears in a type.



Status quo

• Dependent types form the basis of many 
theorem proving tools, such as Coq.

• Coq has

• a rich type theory ~ propositions;

forall p : Prop, p -> p

• a simple lambda calculus ~ proofs.

fun x => x



Curry-Howard 
Isomorphism

• Coq has

• a rich type system ~ types;

forall a : Set, a -> a

• a simple lambda calculus ~ programs.

fun x => x



Example

• We can implement stacks as a list;

• and add functions to manipulate stacks;

• prove properties of our implementation;

• extract code to Haskell or ML.



Limitations

• Programs in Coq must be pure and total:

• must terminate on all possible inputs;

• no mutable state, I/O, etc.

• Great for formalizing constructive 
mathematics.

• What about programming queues using 
mutable references?



Real programs

• Real programs tend to:

• diverge;

• throw exceptions;

• use concurrency;

• interact with the user;

• use mutable state...



How can we incorporate such 
effects in a dependently typed 
programming language?



Haskell

• Haskell is a functional language with a careful 
treatment of I/O.

• All effects are encapsulated in a monad;

• This determines a clear evaluation order – 
Haskell is a non-strict language.



Monads: motivation

• What does the following Haskell program do?

[print “Hello”, print “World”]

• In Haskell, the print statements are not 
immediately evaluated.

• Monads make the evaluation order explicit.



Monads: top-down

• The main  function that gets executed when 
you run a Haskell program has type:

main :: IO a

• It does some I/O,

• and returns a value of type a.



Monads: bind

• To sequence two effectful computations, we 
could use a “semi-colon” operation:

>> :: IO a -> IO b -> IO b

• But now the result of the first computation 
always gets discarded.



Monads: bind

• A better choice is:

  IO a -> (a -> IO b) -> IO b

• This feeds the result of the first computation 
to the second one.



Monads: return

• Sometimes we want to mix I/O interactions 
and pure computations.

return :: a -> IO a

• There’s no function going the other way!



Monads: example

• In Haskell, you have built-in functions that 
perform I/O.

getChar :: IO Char

putChar :: Char -> IO ()

• Using the monadic operators you can 
combine them to form complex 
computations.



Example: echo

• For example, you can write an echo function:

echo :: IO ()

echo = getChar >>= \c ->

       putChar c >>= \() ->

       echo



Monads: generally

• Any functor with a bind and return 
operation (subject to certain laws) is a 
monad.

• Haskell supports special syntax for 
programing with monads.

• “Programmable semi-colon”



Will this do?



Reasoning

• Reasoning about pure functional programs 
is really easy:

• structural induction;

• expand definitions.

• This is essentially what we can do using 
proof assistants such as Coq.

• But what about the impure ones?



Echo revisited

• We would like to reason about how our 
echo function behaves...

• But functions like getChar don’t have a 
pure definition.

• Instead, it calls a C library that does all the 
dirty work.



Now what?

• We could break out a semantics textbook, 
hope to find some useful semantics that 
correspond to how Haskell behaves, and do 
a pen and paper proof.



Now what?

• We could break out a semantics textbook, 
hope to find some useful semantics that 
correspond to how Haskell behaves, and do 
a pen and paper proof.

... but that’s not how we’re going to do it.



Idea

• The rest of this talk will outline one idea:

          a purely functional 

       specification of effects

• can help you reason about your code;

• opens the door to “verified effectful 
programs”. 



Outline

• We’ll build a monad capturing the 
operations we want to specify;

• Add functions to build computations in this 
monad;

• and assign meaning to these computations.



Another monad...

data IO a where

  Return :: a -> IO a

| Put :: Char -> IO a -> IO a

| Get ::(Char -> IO a) -> IO a



Building computations

We introduce some helper functions to make 
it easier to write computations:

getChar :: IO Char

getChar = Get Return

putChar :: Char -> IO ()

putChar c = Put c (Return ())



Result

• What should the result of a computation be?

data Output = 

    Finish a 

  | Print Char (Output a)

  | Read (Output a)



Executing computations

run :: IO a -> 

  Stream Char -> Output a

run input (Return x) = Finish x

run (i:is) (Get g) = run is (g i)

run is (Put c io) = 

  Print c (run is io)



Why bother?

• So we’ve written quite a bit of code, what 
does this buy us?

• We can write specifications of impure 
computations;

• and show that our impure computations 
meet their spec.



Example: echo

• We can specify the behaviour we expect our 
echo function to have:

copy :: Stream Char -> Output ()

copy (i:is) = 

  Read (Print i (copy is))

• And we can prove once and for all:

run echo is = copy is



A coinductive aside

• Our IO data type is actually mixed inductive-
coinductive:

• νX . μ Y .  YC   +   X × C   +   A

• We can only consume finite input from the 
user, before producing (potentially infinite) 
output to the screen.

• Note: run and copy are still total.



So what?

• If we write our specifications in Coq, this 
proof can be machine-verified

• If we program in Haskell we can port all the 
debugging and testing technology on pure 
programs to work on these pure 
specifications.



Is that all?

• We have written similar semantics for:

• mutable state;

• concurrency;

• STM;

• non-termination;

• distributed arrays;



Outline

• We’ll build a monad capturing the 
operations we want to specify;

• Add functions to build computations in this 
monad;

• and assign meaning to these computations.



Mutable state

data Ref = Int

data IO a where

   Return :: a -> IO a

| Read :: Ref -> (Int -> IO a) -> IO a

 | Write :: Ref -> Int -> IO a -> IO a

| New :: Int -> (Ref -> IO a) -> IO a



Mutable state II

new :: Int -> IO Ref

write :: Int -> Ref -> IO ()

read :: Ref -> IO Int



Describing memory

data Heap = Ref -> Int

type Store = (Heap, Int)

emptyStore = (undefined, 0)



Execution

• Our semantics now have the following type:

 IO a -> Store -> (a,Store)

• but not everything in the garden is rosy...



What’s wrong?

• Our run function is not total...

• What will happen when we access 
unallocated memory?

• We have only managed to store natural 
numbers – what if we want something else?



Solution

• In a richer type theory, such as Coq, or 
Epigram, or Agda, we can give a total run 
function...

• ... and even provide heterogeneous 
references.



Sized heaps

• We record the size of the heap:

data Heap : Nat -> * where

  empty : Heap 0

  alloc : Nat -> Heap n 

              -> Heap (n + 1)



Key points

• We make sure references always point to a 
valid place in the heap;

• We now write IO n m a for a 
computation that takes a heap of size n to a 
heap of size m, returning a value of type a.

• Our run function uses this “heap size” 
information to guarantee totality.



But now...

• Precise types help guarantee total semantics,

• but introduce new problems:

• when we allocate new memory, the type 
of valid references changes.

• it becomes much harder to write 
compositional programs.



Further work

• Add more powerful logical technology 
(separation logic, Hoare logic, ...)

• Find good examples!

• Combine effects.

• Make it usable.


