Implementing a Dependently Typed Lambda Calculus

Wouter Swierstra
12-04-07
Who am I?
Haskell-cafe

- Wouldn’t it be nice to have dependent types?
- GADTs are darn near dependent types.
- Dependent types force you to write correct code.
- No dependent types are necessary.
Dependent type - Wikipedia, the free encyclopedia
In computer science and logic, a dependent type is a type which depends on a value. Dependent types play a central role in Intuitionistic Type Theory and in ...

Why Dependent Types Matter
File Format: PDF/Adobe Acrobat - View as HTML
Dependent types reduce certification to type checking, hence they provide ... In section 5 we how to use dependent types to maintain static invariants about ...

Lightweight Dependent-type Programming
Several techniques to emulate and benefit from dependent typing in existing languages such as Haskell or ML.

Dependent ML: DML
Conservative ML extension, has type system to enrich ML with restricted form of dependent types, to allow many interesting program properties: memory safety ...

Dependent Types in Practical Programming - Xi, Pfenning ...
Programming is a notoriously poor prune process, and a great deal of evidence in practice has demonstrated that the use of a type system in a programming ...

Dependent Types: Resources and Errata
Dependent Types: Resources and Errata. David Aspinall and Martin Hofmann. The OCaml implementation deptypes.tgz (coming soon): A list of errata for the ...

Do we Need Dependent Types?
Do we Need Dependent Types? ... within the Hindley-Milner type system, some functions which seem to require a language with dependent types.
Systems of The Lambda Cube

Pure first order dependent types
The system λP of pure first order dependent types, corresponding to the logical framework LF, is obtained by generalising the function space type of the simply typed lambda calculus to the dependent product type.

Writing $\text{Vec}(\mathbb{R}, n)$ for n-tuples of real numbers, as above, $\Pi n : \mathbb{N}. \text{Vec}(\mathbb{R}, n)$ stands for the type of functions which given a natural number n returns a tuple of real numbers of size n. The usual function space arises as a special case when the range type does not actually depend on the input, e.g. $\Pi n : \mathbb{N}, \mathbb{R}$ is the type of functions from natural numbers to the real numbers, written as $\mathbb{N} \rightarrow \mathbb{R}$ in the simply typed lambda calculus.

See also:
- Lambda cube
- Typed lambda calculus
- Intuitionistic type theory

Languages with dependent types
- C++
- Epigram
- Dependent ML
Type rules

Simply typed lambda calculus

\[
\begin{align*}
\Gamma, x : \sigma & \vdash t : \tau \\
\hline
\Gamma & \vdash \lambda x.t : \sigma \to \tau \\
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash t_1 : \sigma \to \tau \\
\Gamma & \vdash t_2 : \sigma \\
\hline
\Gamma & \vdash t_1 t_2 : \tau \\
\end{align*}
\]
Type rules

Dependently typed lambda calculus

\[
\Gamma, x : \sigma \vdash t : \tau[x] \\
\Gamma \vdash \lambda x. t : (x : \sigma) \rightarrow \tau[x]
\]

\[
\Gamma \vdash t_1 : (x : \sigma) \rightarrow \tau[x] \quad \Gamma \vdash t_2 : \sigma \\
\Gamma \vdash t_1 t_2 : \tau[t_2]
\]
Why should I care about dependent types?
Polymorphism

• Polymorphism allows abstraction over types:

\[
\text{id :: forall } \ a, \ a \rightarrow a \\
\text{id } x = x
\]

Dependent types facilitate polymorphism:

\[
\text{id :: (a :: *) } \rightarrow a \rightarrow a \\
\text{id } __ \ x = x
\]

...but also enable abstraction over data.
GADTs

data Z = Z

data S k = S k

data Vec n a where
 Nil :: Vec Z a
 Cons :: a -> Vec a k -> Vec a (S k)

vhead :: Vec (S k) a -> a

What about append?
GADTs

- This pattern is very, very common.
- Red black trees
- Well-scoped lambda terms
- Parsers and lexers

Precise Programming
Curry-Howard Isomorphism

- Dependent types provide a mathematical framework for doing proofs.
- At the heart of proof assistants like Coq.
- You can program and prove properties of your programs in the same system.

```
Lemma revLemma
  (a : *) (xs : list a) : reverse (reverse xs) = xs.
```
Why should I care about dependent types?
More abstraction.
When are two types ‘the same’?

• Syntactic equality
• Unifiable

What about these two types?

• Vec 4 Int
• Vec (2+2) Int
The conversion rule

\[
\Gamma \vdash t : \sigma \quad \sigma \simeq_{\beta} \tau \\
\frac{}{\Gamma \vdash t : \tau}
\]

Type checking needs to perform evaluation!
Misconceptions

- Dependent type checking:
 - is undecidable.
 - will cause your type checker to loop.
 - is really, really hard.
Implementing the simply typed lambda calculus

- Terms and values
- Types
- Substitution
- Evaluation
- Type checking
Terms

data InferTerm
 = Check CheckTerm Type -- annotation
 | Var Int -- bound variables
 | Par Int -- parameters
 | App InferTerm CheckTerm

data CheckTerm
 = Infer InferTerm
 | Lam CheckTerm
Values and types

-- with HOAS...

data Value
 = VApp Int [Value] -- x (\y -> y) z
 | VLam (Value -> Value) -- (\y -> y)

data Type
 = TPar Int -- sigma, tau, etc.
 | Fun Type Type -- sigma -> tau
Substitution is easy

\[
\text{subst } i \ t \ (\text{Par } y) = \text{Par } y \\
\text{subst } i \ t \ (\text{Var } j) \\
\quad | \ i == j \quad = t \\
\quad | \ otherwise \quad = \text{Var } j
\]

All the other cases follow the structure of terms.
type Env = [Value]

evalInfer :: InferTerm -> Env -> Value
evalInfer (Par x) env = VApp x []
evalInfer (Var i) env = env !! i
evalInfer (App f x) env =
 app (evalInfer f env) (evalInfer x env)

app :: Value -> Value -> Value
app (VLam f) x = f x
app (VApp x vs) v = VApp x (vs ++ [v])
Evaluation - II

evalCheck :: CheckTerm -> Env -> Value
evalCheck (Lam f) env = VLam (\v -> eval f (v : env))
Type checking

type Context = [(Name, Type)]

inferType :: Int -> Context
 -> InferTerm -> Maybe Type

checkType :: Int -> Context -> Type
 -> CheckTerm -> Maybe ()
A few interesting cases

```haskell
inferType i g (Par x) = lookup x g

inferType i g (App f x) = do
  Fun d r <- inferType i g f
  checkType i g d x
  return r

checkType i g (Fun d r) (Lam t) = do
  checkType (i + 1) ((i,d):g) r
  (subst 0 (Par i) t)
```
What about dependent types?
Implementing dependent types

- Terms and values
- No separate data type for our types!
- Substitution
- Evaluation
- Type checking

- Avoid conversion check by fully evaluating types.
data InferTerm
 = -- Check, Var, Par, App and
 | Star -- the type of all types
 | Pi CheckTerm CheckTerm
 -- dependent function space
 -- (x : sigma) -> tau[x]
Values

data Value
 = VApp Name [Value] -- x (\y -> y)
 | VLam (Value -> Value) -- (\y -> y)
 | VStar -- just like the Star term
 | VPi Value (Value -> Value)
Substitution is still easy.
Evaluation - what’s new

```haskell
type Env = [Value]

evalInfer Star env = VStar

evalInfer (Pi d r) env =
  VPi (evalInfer d env)
    (\v -> evalInfer r (v:env))
```

The rest is unchanged.
Type inference

inferType :: Int -> Context -> InferTerm -> Maybe Value

inferType i g (Star) = return VStar

inferType i g (Pi d r) = do
 checkType i g VStar d
 let dVal = eval d []
 checkType (i+1) ((i,dVal) : g) VStar (subst 0 (Par i) r)
 return VStar
Type checking

checkType :: Int -> Context -> Value
 -> CheckTerm -> Maybe ()

checkType i g (VPi d r) (Lam t) =
 checkType (i+1) ((i,d):g)
 (r (VApp i [])) (subst 0 (Par i) t)
Dependent types

inferType i g (App f x) = do
 VPi d r <- inferType i g f
 checkType i g d x
 return (r (eval x []))
To actually display and compare values, we need a function:

```
quote :: Value -> CheckTerm
```

Idea: fully apply a value to fresh variables.
And now to write a programming language...

- This calculus is not much more useful than the simply typed lambda calculus.
- We need to add data types, pattern matching, and recursion.
- Then we need to add tactics that do the menial jobs.