The Problem of the Dutch National Flag

Wouter Swierstra

AIM X
There is a row of buckets numbered from 1 to n. It is given that:

- each bucket contains one pebble
- each pebble is either red, white, or blue.

A mini-computer is placed in front of this row of buckets and has to be programmed in such a way that it will rearrange (if necessary) the pebbles in the order of the Dutch national flag.

A Discipline of Programming, E.W. Dijkstra
Specification

• The mini-computer supports two commands:
 • swap \((i,j) \) exchanges the pebbles in buckets numbered \(i \) and \(j \) for \(1 \leq i,j \leq n \);
 • read \((i) \) returns the colour of the pebble in bucket number \(i \) for \(1 \leq i \leq n \).
• Solution should use one pass only and constant memory.
The Problem of the Dutch National Flag

Wouter Swierstra
AIM X
The Problem of the

Dutch National Flag

Polish

Wouter Swierstra
AIM X
Known to be white
Known to be white

Known to be red
Plan of attack

- Implement the mini-computer in Agda;
- Write a solution for the Problem of the Dutch National Flag;
- Verify our solution is correct.
Pebbles and Buckets

```haskell
data Pebble : Set where
    Red : Colour
    White : Colour

data Buckets : Nat -> Set where
    Nil : Buckets Zero
    Cons : Pebble -> Buckets n -> Buckets (Succ n)
```
Indices

data Fin : Nat -> Set where
 Fz : Fin (Succ n)
 Fs : Fin n -> Fin (Succ n)
Indices

data Fin : Nat -> Set where
 Fz : Fin (Succ n)
 Fs : Fin n -> Fin (Succ n)
The state monad

State : Nat -> Set -> Set
State n a =
 Buckets n
 -> Pair a (Buckets n)
Reading

read : Fin n -> State Pebble
read i bs = (bs ! i , bs)

where

(Cons p _) ! Fz = p
(Cons _ ps) ! (Fs i) =
ps ! i
Swap

swap : Fin n -> Fin n
 -> State n Unit

swap i j =
 read i >>= \pi ->
 read j >>= \pj ->
 write i pj >>
 write j pi
Back to the problem
An approximation

sort :: Int -> Int -> IO ()
sort w r =
 if w == r then return ()
 else case read w of
 White -> sort (w + 1) r
 Red -> swap w r >>
 sort w (r - 1)
An approximation

sort :: Int -> Int -> IO ()
sort w r =
 if w == r then return ()
 else case read w of
 White -> sort (w + 1) r
 Red -> swap w r >>
 sort w (r - 1)

Why does this terminate?
An approximation

```haskell
sort :: Int -> Int -> IO ()
sort r w =
  if r == w then return ()
  else case read r of
    White -> 
    Red ->  swap r w >>
             sort r (w - 1)
    White -> sort (w + 1) r
    Red ->  swap r w >>
             sort w (r - 1)
```

Monday, 14 September 2009
An approximation

\textit{Only terminates if} \(w \leq r \)

\begin{verbatim}
sort :: Int -> Int -> IO ()
sort r w =
 if r == w then return ()
 else case read r of
 White ->
 Red -> swap r w >>
 sort r (w - 1)
 sort (w + 1) r
 sort w (r - 1)
\end{verbatim}
Manipulating Fin n

sort :: Int -> Int -> IO ()
sort r w =
 if r == w then return ()
 else case read r of
 White -> sort w
 Red -> swap r w >>
 sort r (w - 1)
 sort r (r - 1)
Two problems

• We need to increment and decrement inhabitants of $\text{Fin} \ n$;
• We need to prove that our algorithm terminates.
Fs : Fin n → Fin (Succ n)
Injection

\[
\begin{align*}
inj : \text{Fin } n \rightarrow \text{Fin } (\text{Succ } n) \\
inj Fz &= Fz \\
inj (Fs \ i) &= Fs (inj \ i)
\end{align*}
\]
Fs or inj

0 1 2 3

0 1 2 3

Fs

inj
Idea

• Only increment the image of inj;
• Only decrement the image of Fs.
Less than or equal

```agda
data _<=_ : (i j : Fin n) -> Set where
  Base : (i : Fin (Succ n) -> Fz <= i
  Step : (i j : Fin n) ->
       (i <= j) -> (Fs i <= Fs j)
```
data Diff : (i j : Fin n) → Set where
 Base : (i : Fin (Succ n) → Diff i i
 Step : (i j : Fin n) →
 Diff i j → Diff (inj i) (Fs j)
Sort – Base case

\[
\text{sort : (w r : Fin n) \rightarrow} \\
\text{Diff w r \rightarrow} \\
\text{State n Unit} \\
\text{sort i .i Base = return unit}
\]
Sort – Base case

\[\text{sort : } (w \ r : \text{Fin } n) \rightarrow \]
\[\text{Diff } w \ r \rightarrow \]
\[\text{State } n \text{ Unit} \]
\[\text{sort } i \ .i \text{ Base } = \text{return unit} \]
sort : (w r : Fin n) ->
 Diff w r ->
 State n Unit

sort .(inj w) .(Fs r) (Step w r p)
= read (inj w) >>= \p ->
case p of
 White -> sort (Fs w) (Fs r) ?
 Red ->
 swap (inj w) (Fs r) >>
 sort (inj w) (inj r) ?
Lemmas

• We need to prove a few useful lemmas:
 • Diff i j \rightarrow Diff (Fs i) (Fs j)
 • Diff i j \rightarrow Diff (inj i) (inj j)

• Actually, we need to choose
 • Diff : Nat \rightarrow (i j : Fin n) \rightarrow Set
Verification

the easy part
Correctness Theorem

(h : Buckets n) (w r : Fin n)
p : Diff w r
(forall i -> i < w -> h ! i == White) ->
(forall i -> r < i -> h ! i == Red) ->
let h' = exec (sort w r p) h
in Sigma (Fin n) (\m ->
 forall i -> i < m -> h' ! i == White
 \\ forall i -> m < i -> h' ! i == Red)
Proof sketch

• Proof proceeds by induction on Diff

• Distinguish three cases:
 • Base case (trivial);
 • No swap happens (not too hard);
 • Swap happens (a bit trickier).

• In the latter two cases, we establish the invariant holds and make a recursive call.
Conclusions

• It is possible to reason about “impure” functions using Agda;

• It is not entirely trivial.

• A simple algorithm leads to simple proofs.