A functional specification of effects

Wouter Swierstra
SET seminar, 12/03/09
Functional programming is great for writing high assurance software.
Implement a stack.
type Stack a = [a]

top :: Stack a -> Maybe a
top [] = Nothing
top (x : xs) = Just x

push :: a -> Stack a -> Stack a
push x xs = x : xs
Testing

lifoProp :: Int -> Stack Int -> Bool
lifoProp x xs =
 top (push x xs) == Just x

Stacks> quickCheck lifoProp
OK, passed 100 tests.
Equational reasoning

\[
\text{top } (\text{push } x \; \text{xs}) \\
= \quad \{ \text{definition of push} \} \\
\text{top } (x : \text{xs}) \\
= \quad \{ \text{definition of top} \} \\
\text{Just } x
\]
Proof assistants

Theorem fifo

(a : Set) (x : a) (xs : Stack a) :
 top (push x xs) = Some x.

Proof.

trivial.

Qed.
The Reasoning Toolkit

- Automatic testing;
- Equational reasoning;
- Proof assistants.
Implement a queue.
data Cell = Cell Int (IORef Cell) |
 NULL

type Queue =
 (IORef Cell, IORef Cell)

enqueue :: Queue -> Int -> IO ()
dequeue :: Queue -> IO (Maybe Int)
empty :: IO Queue
How can we show our program is correct?
The Reasoning Toolkit

- Automatic testing;
- Equational reasoning;
- Proof assistants.
The great divide

Pure & Total
- Easy to reason about.
- Clear semantics
- Tool support for verification, testing, and debugging.

Impure
- Not so much.
- Hardly.
- ...
- Very useful!
Pure specifications of impure functions.
Computer memory

type Loc = Int

type Data = Int

type Heap = Loc -> Data

type Mem = (Loc, Heap)
Syntax

data IO a =
 Return a
 Read Loc (Data -> IO a)
 Write Loc Data (IO a)
 New Data (Loc -> IO a)

(a free monad)
Semantics

type Heap = Loc -> Data

type Mem = (Loc,Heap)

eval :: IO a -> Mem -> (a,Mem)

(a monad morphism from the free monad to the state monad)
Semantics - Return

type Heap = Loc -> Data
type Mem = (Loc,Heap)

eval :: IO a -> Mem -> (a,Mem)
eval (Return x) m = (x,m)
Semantics - Read

type Heap = Loc -> Data

type Mem = (Loc,Heap)

eval :: IO a -> Mem -> (a,Mem)
eval (Read l rd) (l,h) =
 eval (rd (h l)) (l,h)
Semantics - Write

eval :: IO a -> Mem -> (a,Mem)
eval (Write l d wr) (fresh, heap) =
 eval wr (fresh,update l d m)

update l d heap =
 \l' -> if l == l' then d
 else heap l'
eval :: IO a -> Mem -> (a,Mem)
eval (New d new) (fresh, heap) =
 eval (new fresh)
 (fresh + 1, update fresh d m)
Queues, revisited

• Now, if we choose:

```
data Data = Cell Int Loc | NULL
```

• We can QuickCheck our queues...

• ...and even check that queue reversal is possible in constant memory.
Functional specifications

- In my thesis I present functional specifications in Haskell for:
 - teletype I/O;
 - mutable state;
 - concurrency (MVars and STM).
- and some machinery to syntactically combine specifications.
But...

- The Haskell specification is not total...
- so it cannot be transcribed to a proof assistant;
- and equational reasoning with these semantics is not obviously sound.
Problems

• The Haskell specification deals with one fixed type of data;

• and the programmer can access unallocated memory;

• the initial memory is “bogus”

```haskell
type Heap = Loc -> Data
type Mem  = (Loc,Heap)
```
To explain why the functional specifications are total, we need a richer type structure.
data Nat : Set where
 Zero : Nat
 Succ : Nat -> Nat

plus : Nat -> Nat -> Nat
plus Zero m = m
plus (Succ k) m = Succ (plus k m)
Lists

data List (a : Set) : Set where
 Nil : List a
 Cons : a -> List a -> List a

head : List a -> a
head Nil = ???
head (Cons x xs) = x
Vectors

data Vec (a : Set) : Nat -> Set where
 Nil : Vec a Zero
 Cons : a -> Vec a n -> Vec a (Succ n)

head : Vec a (Succ n) -> a
head (Cons x xs) = x
Memory model

• What types can we store on the heap?
• What is the heap?
• What is a reference?
Universes

• A universe is a pair of:
 • a type \mathbb{U} and
 • a function $\text{el} : \mathbb{U} \rightarrow \text{Set}$
Universes – example

data U : Set where
 NAT : U
 PAIR : U -> U -> U
 FUN : U -> U -> U

el : U -> Set
el NAT = Nat
el (PAIR s t) = (el s , el t)
el (FUN s t) = (el s) -> (el t)
The heap

For some universe...

\[\text{Shape} = \text{List } U \]

```haskell
data Heap : Shape -> Set where
  Empty : Heap Nil
  Alloc : el u -> Heap us -> Heap (Cons u us)
```
data Ref : U -> Shape -> Set where
 Top : Ref u (Cons u us)
 Pop : Ref u us -> Ref u (Cons v us)
Syntax

data IO (a : Set) : Shape -> Shape -> Set
Return : a -> IO a s s
Write : Ref u s -> el u -> IO a s t
 -> IO a s t
Read : Ref u s -> (el u -> IO a s t)
 -> IO a s t
New : el u
 -> (Ref u (Cons u s)
 -> IO a (Cons u s) t)
 -> IO a s t
eval : IO a s t -> Heap s -> (a, Heap t)
eval (Return x) h = (x, h)
Write

eval : IO a s t \rightarrow Heap s \rightarrow (a, Heap t)
eval (Write r x wr) h
 = eval wr (update r x h)

update : Ref u s \rightarrow el u \rightarrow
 Heap s \rightarrow Heap s
update Top x (Alloc _ h) = Alloc x h
update (Pop r) x (Alloc y h)
 = Alloc y (update r x h)
eval : IO a s t -> Heap s -> (a, Heap t)
eval (Read r rd) h
 = eval (rd (lookup r h)) h

lookup : Ref u s -> Heap s -> el u
lookup Top (Alloc x _) = x
lookup (Pop r) (Alloc _ h) = lookup r h
New

eval : IO a s t -> Heap s -> (a, Heap t)
eval (New x new) h
 = eval (new Top) (Alloc x h)
Programming

- We can now define pure versions of functions such as `read` that program with this specification;
- and then use the `eval` function to reason about how such programs behave.
- So we can implement efficient queues, prove their correctness, and compile to Haskell.
Limitations

• Non-modular – you must always carry around the entire heap-shape in the types...

• No higher-order store:

 Read : Ref u s ->

 (el u -> IO a s t) -> IO a s t

• The type of references change when memory is allocated.
Related work

• Hoare Type Theory takes a different approach:
 • postulate the existence of a Hoare Type;
 • add axioms for return and bind;
 • and axioms for read, write, new, fix, ...
Conclusions